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Abstract

In an ever-changing and demanding world new technologies, which allow more efficient and easier in-
dustrial processes, are needed. Furthermore, until now, traditional vision technologies and algorithms
have been used in the industrial area. These techniques, even though they achieve good results in simple
vision tasks, they are really limited since any change in the processed image affects their performance.
For example, in code reading tasks, if the code has a mark or it is not completely visible, the piece with
the code would be discarded which leads to losses for the company. These kind of problems can be solved
by the implementation of machine learning techniques for vision purposes. Moreover, these techniques
learn from example images and even though a perfect performance is difficult to get, machine learning
techniques are much more flexible than traditional techniques. Even though the term machine learning
was coined for the first time in 1959, until now, these techniques have barely been implemented in the
industrial area. They have mostly been used for investigation purposes.

Apart from the new vision techniques, new types of robots are being implemented in industrial
environments such as collaborative or social robots. On the one hand, collaborative robots allow the
workers to work next to or with the robot without any type of physical interference between them. On
the other hand, social robots allow an easier communication between the robot and the user which can
be applied in different parts of the industry such as introducing the company to new visitors.

The present project gathers information in regard to the analysis, training and implementation of a
vision artificial neuronal network based software called ViDi Cognex software. By the use of this software,
three different vision tasks were trained. The most important one is the hand gesture recognition task
since the obtained hand gesture controls the action performed by the YuMi robot, which is programmed
in RAPID language. It is believed that the development of the different artificial neuronal networks with
industrial purposes can show the applicability of machine learning techniques in an industrial environ-
ment. Apart from that, the hand gesture recognition shows an easy way to control the movements of
a robot which could be used by a person with no knowledge of robots or programming. To finish, the
use of a two arm collaborative robot, could show the potential and versatility of collaborative robots for
industrial purposes.

Keywords: Artificial neuronal network, ViDi software, YuMi robot, hand gesture recognition, syn-
chronized movements and TCP/IP connection.
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Chapter 1

Introduction

1.1 Motivation

In order to accomplish a specific task, a set of actions are required. The main motivation for this project
is to perform an intuitive control of a collaborative robot by the use of common knowledge hand gestures.
This way, language barriers, spoken and programming ones, are avoided and an easier communication
between the person and the robot is obtained. This project should be implemented and tested by people
of different ages and cultures in a technological fair during several days. Hence, an easy understanding
and interaction with the robot are a must in this project which should be obtained by the use of the
hand gestures for the control of the robot. Nowadays, this degree of performance is reachable by the use
of deep learning methods which allows to process complex images.

Figure 1.1: Key elements of cognition and process of the robot

To obtain these results, the robot should follow the key steps of cognition (see Figure 1.1). Firstly,
the robot is recognising the hand gesture performed by the user. Next, this image is processed and the
action to be performed is selected. Finally, the selected action is performed by the robot to complete the
whole process of the robot performance.

This project highlights the usability of social robots when it comes to a more interactive, user-friendly
and assistive control of robots. The user, without any knowledge of technical skills should be able to
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control the robot with intuitive hand gestures. Moreover, even though social and cognitive robots are a
trend in robotics, they are barely used in industrial fields and less in production lines. The same situation
happens with deep learning methods. Despite vision processing has been used since many years ago in
industry and deep learning methods show a better performance than the previous existing algorithms,
they have not still been intensively implemented in industry. This project aims to be helpful to show the
applicability and good performance of social robots and deep learning methods in an industrial area.

1.2 Objectives

This project aims to reproduce a whole process starting from the recognition of hand gestures (Percep-
tion), by the use of deep learning methods, to continue with the selection of the proper action to be
performed (Reasoning) and to finish with the accomplishment of the commanded tasks (Action) in real
time. The tasks to be performed by the robot will depend on the commanded hand gesture, which will
be classified in two groups, either movement result or second action result. Movement result class refers
to when the robot is just performing a certain movement, whereas the second action result refers to when
the robot has a second reasoning task to be performed. In order to accomplish this general objective, the
below listed specific milestones should be defined:

• Evaluate and select best methods required for perception and reasoning.

• Develop a framework that could interpret the user’s instruction in a right manner.

• Develop a framework that could perform actions in a dynamic environment.

• Develop a task planning framework that could define its own problem statement.

• Develop the connections between different programs.

• Use RobotStudio to program the tasks to be performed by the robot.

• Develop a framework that runs in real time.

Another goal in this project is to develop an easy and attractive communication with the robot. As
far as the robotic platform should be exposed and working in a technological fair, the defined gestures to
be controlled by the robot should be easy and natural for the user and the tasks to be carried out by the
robot should be interesting and attractive. By accomplishing these objectives people should be attracted
to the showroom, so the overall robotic framework and the hand gesture recognition application will be
tested by more people.

1.3 Scope

The scope of this project is to develop a robotic, computer vision and deep learning framework which
is able to recognise human hand gestures by the use of ViDi software to perform some predefined tasks
as well as to test the framework on the YuMi robot from ABB in a technological fair. The project
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would have two stages defined by the deep learning part of the framework, the training phase and the
implementation phase. This project is developed to include the following aspects:

• Select hand gestures and get data from different participants.

• Define a task to be performed for each hand gesture.

• Recognize hand gestures to select the task.

• Decide the final setup of the framework.

• Develop the program to control the robot reasoning.

• Develop the path planner program.

• Train the artificial neural network (ANN) for hand gesture recognition and tasks.

1.3.1 Used Methodology

In order to engage in the essential research questions of this project, a global research context has to be
chosen. As reported by [1], there is generally a research method for each inquiry. However, it can happen
that the global research method is constructed by more than one research procedures. The following
paragraph presents an analysis of the chosen research technique and its usefulness for this master thesis.

As expressed in the previous paragraph, a generic objective is performed in this study, which is the
demonstration of the usability of deep learning methods in industry application. With this goal, the
target of the analysis is the development of a new information technology (IT) device through the study
of several methods as mathematical proof or proof by demonstration, among others. Once that this is
done, the choice of a suitable method for the hand gesture recognition process and the type of connection
for the transmission of the information between the different software will be made. An additional and
remarkable point is the real time performance of this framework, which should be validated by a build-up
of a demonstrator. As a consequence, the research methodology to be used is vesign and creation strategy.

This type of research procedures shares its main target with this project, that is the development of
new artefacts; hence, to build up IT products. This case of study contains methods and theories that
have been used in other studies. In any case, a new domain with the use of ViDi software of Cognex and
RobotStudio has been introduced to the application of hand gesture recognition and the corresponding
action of the robot. Thus, the application itself is the contribution to knowledge.

Documents, as scientific papers or articles, have been the primary source of information in this project.
This data compilation describes information about earlier work in terms of methods or theories that have
been used, how the hand gesture image processing should be performed, or the amount of data that
is needed for the correct implementation, among others. Moreover, to be supported by former records
might increase the reliability of this thesis.

Finally, to approve the proposed solution, the developed demonstrator will be tested and adapted
until it is validated.
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1.3.2 Process Diagram

In order to achieve the established objectives and aspects, a process diagram (see Figure 1.2) has been
designed to display a clear idea of the steps to be followed in the performance of this project.

Figure 1.2: Process diagram of the study
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Chapter 2

Background

In this chapter the collection of used devices and employed software resources are listed as tools. Fur-
thermore, the state of art associated to the objective of the master thesis is presented.

2.1 Tools

In this section, the set of hardware and software elements used for the development of the project is
depicted.

2.1.1 YuMi Robot

For the progress of this project, a robot arm is employed to perform the requested tasks. In this project,
the YuMi robot by ABB is selected for this aim. ABB is a multinational corporation, whose main
business objectives are the electrical energy generation and the industrial automation. In this second
sector, their robots are globally well-known.

The YuMi robot (see Figure 2.1), which stands for “you and me”, is one of their lastly created
collaborative robots in 2015. This dual arm robot, originally has 6 joints in each arm, as most of the
robotic arms, but its dual arm disposition gives more reachability and flexibility when it comes to feasible
movements and manipulations. This robot is thought to work with humans side-by-side on the same
collaborative space. Therefore, safety is built into the functionality of the robot itself. This safety-based
architecture allows the robot to perform tasks without the need of a robotic cell surrounding it and still
ensures the security of the workers working next to it. The last version of the robot, which is available
in single or dual arm, is a 7-axis one, which makes the robot to be more agile than the previous version.
In this project, the YuMi robot is in charge of the performance of the tasks and the communication with
the user.
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Figure 2.1: YuMi robot from ABB

2.1.2 Cognex VisionPro ViDi Software

Cognex corporation is the principal global provider of systems, software, vision sensors and industrial
readers used for automation manufacturing processes. The Cogenx’s vision software helps companies to
improve the quality of their products by eliminating production errors and reducing fabrication costs. The
usual applications for this software are defect detection, the supervision of production lines, guideline of
assembly robots and the tracking, classification and identification of parts. Because of these applications
Cognex software and hardware are commonly used in industrial environments.

Cognex ViDi™ is a deep learning technology which focuses in the analysis of industrial images. This
software is able to find specific characteristics, defects and to classify different known types of the same
part in a similar way as a supervisor will do in a production line. In case of multiple shape defects, the
system is trained in non supervised mode, this way learns the normal shape of the object with its tolerable
variations. The software creates a reference model of the object based in this representative images. This
is an iterative process which is constantly improving. During this process the parameters can be tuned
and the result can be validated until the model works properly. During the execution time, ViDi extracts
information from a new set of images and its ANN finds parts, extracts defects and classifies them. This
process is defined in Figure 2.2, which deploys two phases, the training phase and the deployment phase.

When it comes to the training phase, the first step is to upload the images to the software. ViDi works
with images of high resolution, including colour and thermal images, to recognise virtually anomalies.
Then, these images are characterised. To do so, the software is providing four different functions, which
are:

• Locate: Searches complex characteristics and objects.

• Analyse: Detects aspect anomalies and defects.

• Classify: Separates and classifies objects or scenes.

• Read: Decodes challenging texts and characters.

After the characterisation of the images, these features are used in the training phase. Cognex ViDi
works with a small group of images for the training unlike other deep learning based software packages.
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Figure 2.2: VisionPro ViDi software process

Besides, it is able to make complex counting and decodes deformed and difficult reading characters. Once
the ANN is trained, the results are delivered in the form of both, a confusion matrix and a ROC curve.
In case that results are satisfactory enough this phase would be end. Otherwise, images can be refined
to obtain improved results.

2.1.3 RobotStudio Software

RobotStudio is a simulation software for automatic lines of the already mentioned ABB company created
specifically for their products. The programming of this software is performed offline to maximise the
inversion of robotic systems, this way the production of the line is not interrupted by the programming.
This software is constructed in the Virtual controller of ABB, an exact copy of the real software which
runs the robot production. This approach allows to perform realistic simulations, with robot configuration
folders and programs identical to the ones used in the installations.

To code programs in this software there is a specific language to be used, which is called RAPID.
This high level programming language has functions specifically created for ABB robots. A RAPID
application is composed by a program and a set of modules of the system. The program is a sequence
of instructions which control the robot. This sequence in general is composed of three parts: the main
program, the set of sub-routines and the data of the program. This software is going to be used in this
project to program and simulate the movements and performance of the tasks of the YuMi robot (refer
to Section 2.1.1).

2.1.4 Basler pia2400-17gc Camera

When comes to the cameras there is a wide range of types of cameras designed for specific tasks. As
they are 2D and 3D vision cameras, Barcode readers, high resolution cameras, cameras with embedded
intelligence and the most common cameras which just take pictures. In this specific case, a Basler pia
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2400-17gcv (see Figure 2.3) 2D colour camera of 12 bits of depth with the lens FujiFilm HF9HA-1B is
going to be used for the hand gesture recognition.

Figure 2.3: Basler pia2400-17gc camera

2.1.5 Basler acA2500-14gc Camera

When it comes to the camera for the tasks, the Basler acA2500-14gc camera (see Figure 2.4) colour
camera will be used with the lens FujiFilm HF9HA-1B.

Figure 2.4: Basler acA2500-14gc camera

2.1.6 TCP/IP Connection

The Transmission Control Protocol (TCP) is one of the essential Internet protocols. It was created
between the 1973 and 1974 by Vint Cerf and Robert Kahn. When there are more than one program in
the same computer network, TCP can be used to create connections between them so that data can flow.
This protocol ensures that data will be delivered without errors and in the proper destiny in the same
order that were sent. Moreover, TCP protocol provides the user a mechanism to distinguish different
applications of the same machine by the use of “port” concept. TCP is the intermediate layer between
the Internet Protocol (IP) and the application (see Figure 2.5).

Figure 2.5: TCP/IP model next to OSI

IP is a communication protocol of digital data across network boundaries. Its routing function enables
inter-networking, and mainly the establishment of the Internet. Its main function is the bidirectional
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use, in origin or destiny of the communication to transmit data by the use of non oriented connection
protocols. This communication protocol allows to transfer computed packages across different physical
networks which were previously interconnected according to the open system interconnection model, OSI.

2.1.7 Hercules Software

In this project, when it comes to the transference of data from one software to another one will be made
by TCP/IP connection (see Section 2.1.6). As far as the different parts of the project, the hand gesture
recognition procedure and the robot programming task, are separately developed, a software allowing
to test the client/server connection is needed. The Hercules setup utility is endowed with a serial port
terminal (RS-485 or RS-232 terminal), UDP/IP terminal and TCP/IP Client Server terminal 2.6. In this
case, the TCP/IP client server terminal is used to send messages to RobotStudio 2.1.3 in order to test
its socket performance. Eventhough this software was originally made for internal use, nowadays it is a
Freeware.

Figure 2.6: Hercules software

2.1.8 EA Vision Studio Software (EAVS)

EA Vision Studio (EAVS) is a Windows based software to develop vision applications for PC. The basic
function of this program is to take pictures from cameras, perform image analysis and return measured
results (see Figure 2.7). The software enables the configuration of all the input devices to operate the
system automatically, which includes cameras, measuring functions, communication, etc. In this project
the EAVS will be used first for the capture of hand gesture images in the training phase and after, for
the capture of real time hand gesture images and for the application of already trained ANNs.

2.2 State of the Art

In this section, the state of the art of this project is depicted.
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Figure 2.7: Examples of EAVS applications

2.2.1 Gesture Recognition

Gesture recognition is a part of the computational science and language technology, its objective being
to interpret human gestures by the use of mathematical algorithms. Gestures can be any type of body
movement or state, but in general they are performed by the use of hands or the face. Nowadays there
are studies about facial emotion recognition and hand gesture recognition [2]. Most of these studies use
cameras and vision methods, these are processed by algorithms that allow to interpret gesture language.
Moreover, the identification and recognition of the posture, the march, the proxemics and the human
behaviour are areas studied by gesture recognition techniques too. Gesture recognition can be taken as
a try of computers of understanding the human body language, this way the relation between human
and machines will become more strong and easy. This way, old systems as text interfaces or graphical
user interfaces (GUI), which still limit the majority of the informative inputs are left behind. Because of
all these reasons, the number of gesture recognition applications has had a big increase in the past few
years. The different applications of gesture recognition go from human motion recognition [3] to gesture
pod for white cane users [4]. Nowadays, to do this type of gesture recognition, there are several methods
to obtain the input information as vision based methods [3] which are obtained by the use of cameras,
electromyographic [2] and sensors as 3-D accelerometers [5] among others. The most used method for
collecting data are vision based methods, which are going to be used in this project. This method requires
cameras at specific orientations, this fact makes them impractical in some scenarios as in [4]. Moreover,
the input images can be static images (photos) or videos [6], both types of images have been used in
several studies related to human body and hand gesture recognition. Furthermore, the images can be
taken in different modes as black and white, RGB [6] or RGB-D [7], even though for the recognition of
different objects in the image, the RGB or RGB-D images give more information compared with black
and white images. Finally, the quality of the image will depend on the number of bits of the image. The
needed quality of the image will depend on the purpose of the recognition. For this project, RGB images
will be taken with the standard quality given by a mobile phone camera.

Hand Gesture Recognition

Hand gesture recognition refers to the identification of human hand gestures, this is a main part of the
previously mentioned gesture recognition area and the focus of this project. In this project, hand gestures
will be the input information for the robot, this will allow the user to control the actions of the robot.
In general, the hand gesture recognition methods are divided in two groups, methods which use data
gloves [8] and the ones that are vision based. On the one hand, the first approach uses sensors that
are attached to the gloves which transduces finger movements into electrical pulses to determine hand
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gestures. On the other hand, the second approach uses computer vision based techniques, which are not
invasive for the user since there is not need of any device attached to the user to transmit the needed
information. Moreover this last method works better in controlled environments and not in generic usage
processes [9, 10]. In this project, the second method is going to be used, that is to say vision based
techniques.

Once the recognition method is selected, the hand gesture taxonomies and representations should be
taken into account. Therefore, it is important to select the type of image, static [11] or dynamic [7],
which depends in the type of information that is wanted to be processed. The static hand gestures are
described as the position and orientation of a hand image while a specific amount of time in which there
is not any movement. On the other hand, the dynamic hand gestures includes movements associated to
body parts as it is waving a hand [10]. Another used method is the Motion Fused Frame application,
which allows to recognise movements from a group of static images which are correlated between them,
because each image is part of the same hand movement [12]. This method is used to enable movement
recognition with static images, this way dynamic images are not needed. For the implementation of this
project, static images are enough besides the available camera does not allow to take video recordings.
Due to these facts, static pictures are going to be taken and used for the hand gesture recognition.

When it comes to the representation of the gestures, there are two main categories; 3D model based
and appearance based representations [10, 13]. Each of them have different recognition techniques for
gesture representation as 3D textured volumetric [5], which contains highly detailed human body skeleton
and skin surface, 3D geometric model that has less information about the skin surface but still contains
skeleton information and 3D skeleton model, that is a really simple skeleton representation [14]. For
these techniques one or more cameras are focused on the real target. On the other hand, the appearance
based repressions have different techniques too, which are colour based models that uses colour based
markers, silhouette geometry model which contains several geometric properties (perimeter, convexity,
surface, etc.), deformable gabarit model and motion based model which uses the motion of an object for
the recognition [12].

For the recognition of the hand gestures there are different methods or algorithms as K-means, whose
main objective is to decide k points that are centres to minimise the clustering error. Another used
algorithm for the vision recognition is the k-nearest neighbour which classifies objects referenced on
closest training examples in the feature space. Mean shift clustering is a non-parametric technique, this
method does not need prior knowledge of the number of clusters and the shape of the cluster is not
constraint. Another used method is Support Vector Machine (SVM) which is a non-linear classifier, this
technique in general obtains better results than previously mentioned methods [10]. The Hidden Markov
model (HMM) [15] can be considered as a generalisation of the Markov chain method but without its
chain limitations, this method that was introduced in the mid 1990s became quickly recognised [16].
The Dynamic Time Warping [17] algorithm takes two possible points out of two signals depending in
their associated feature values and calculates the distance between them. In addition to the previously
mentioned methods, the Time delay neural networks is a special Artificial Neural Network (ANN) whose
main focus is to work with continuous data making the architecture of the Neural Network (NN) adaptable
to each case, this is highly advantageous for real time applications. This method is commonly considered
as an extension of multi-layer perceptron. To finish, the Finite State Machine [18] method has a limited
number of possible case scenarios, an infinite machine could be created but would not be practical.
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The hand gesture recognition in this project will be in real time and with several different users who
have not been tracked before. For this aim, the best method to be used is the deep learning method as
mentioned before, specifically Convolutional Neuronal Network (CNN). There are several projects that
used CNNs for the hand gesture recognition in the past years [12, 14, 19]. These articles show the good
performance of CNN for hand gesture recognition with high accuracy percentages, which validates the
use of this method for this specific procedure.

2.2.2 Artificial Neuronal Network

Besides the previously mentioned hand gesture recognition, in this project another two tasks should be
performed by ANN. For both tasks, images are taken to lately use as image input of the ANN and get
the results of them. Due to this, ANN for computer vision purposes will be used to classify and process
the taken images. In [20], different networks for vision purposes are explained, as Amari and Hopfield
Networks. On the one hand, Amari network has been studied since 1960 and in 1970 proposed two
self-organizing random networks. The first network is a non-recurrent network for association and the
second one is a recurrent network used for concept formation. On the other hand, the Hopfield network
is a discrete network which uses two state threshold neurons. In [20], next to [21] show the applicability
of ANN in vision problems.

The purpose of each task is different. In task 1, scratches or errors of a industrial piece are wanted
to be found and classify the industrial piece as good or bad. To do so, small differences in the surface
of the industrial piece should be found out by the ANN. In [22] the same principle is used, to find for
anomalies in the image. In this case, ANN searches for diverse medical anomalies in different images as
cervicovaginal smears, breast cancer histopathology and in ultrasound imaging of the carotid artery. For
the classification task of these images an ANN composed by Self-Organizing Map (SOM) is employed.
In [23], errors are searched for errors in the eggshell by colour based error detection by the use of ANN.
Specifically, the trained ANN founds out blood spots in the eggshells. If the eggshell does not have any
blood spot, is classified as A type egg whereas if the eggshell has blood spots the egg is classified as
defective. For this application, authors used a commercial NN named NeuroShellTM with an accuracy of
92%. For the task 1 recognition methods could be used too as in [24, 25]. In task 2, dices which have
images of muffins and chihuahua dogs are thrown inside a box, the objective of the ANN is to classify
correctly the images of the dices and to count them. There are many articles that talk about classification
of images by the use of ANN [26, 27, 28]. In [27], the objective was the quality inspection of beans based
in their size and colour. For that, authors created a hardware, a software based in Matlab and the images
were processed as RGB images. By the created software a mean accuracy of 90.6% was obtained and
the used method to obtain this result was ANN. Another example of the use of an ANN for classification
is [28], where weeds and crops are classified. To do so, a back propagation ANN is created which can
distinguish young corn plants from weeds. For that 40 images of each type were trained in the ANN.
The obtained results were 100% of success in the classification of corn plants and a 80% of success in the
classification of weeds. Which are good results taking into account the amount of used image database.
These articles show that ANN are a good option for the two tasks performance, where anomalies search
and classification methods could be applied.
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2.2.3 HRC – Human Robot Collaboration

Mechanical devices have been used since ancient times. There are several concepts similar to robots
found approximately 400 years BC. For example, the famous inventor Leonardo da Vinci from 1495 had
drawings of a mechanical knight. Even though, the word robot was first used by the Czech writer Karel
Čapek in a 1921 play. The word comes from a Czech word, robota that means work or compulsory
work. The first collaborative robot or Cobot was invented in 1996 by J. Edward Colgate and Michael
Peshkin. They call Cobot to a device and a methodology that enables physical direct interaction between
a person and a manipulator controlled by a computer. With the years many different cobots have been
commercialised by different companies as Kuka or ABB [29].

The robots, which are mainly known as robotic arms that work in structured factories are moving to
human populated environments, this makes a need of more complex cognitive abilities in robots. The
efficiency and safety characteristics of robots are not enough for human populated environments, they
need to be more cooperative and communicative with humans. The HRC field has a wide range of
applications, coming future and potential economical impact [30]. To add these characteristics to the
robots, the ability of performing usual tasks in human environment, one of the most used methods is
the deep learning techniques. This way, the robot is able to learn from its environment and adjust
depending the specific requirements [31]. When it comes to the introduction of Cobots in industrial
environment, where they have to coexist with other robots and human being the security systems and
design considerations change. What are known as industrial robots need security barriers to ensure the
safety of the workers in the facilities, whereas cobots do not need any barriers because of their internal
security mechanisms. This internal mechanisms are force detectors which in case the robotic arm feels
a force against itself, the motors of the joints of the arm are stopped. Even though, the supply of the
robotic arm is not switched off, so the robotic arm still has available all the connections with other devices
and the electricity source. Many articles talk about these specifications and purpose safe human-robot
collaborative workplaces design considerations [32, 33].

Furthermore, even though still cobots are more used in laboratories than industrial environments,
this number is increasing and there are several studies that support the idea of using cobots in industrial
environments. One of the main worries in industrial environment to use this type of robots is the security
concerning as no physical barriers are used to protect the workers from the movements of the robot.
Nevertheless, this insecurity regarding to the security issues is decreasing and companies are feeling more
comfortable when it comes to the use of cobots in industries [34]. This is due to the different applications
and studies done with cobots around this topic. For example, in [35] the usability of cobots is enhanced for
middle sized volume tasks and the possibility of investing in small dynamic and flexible work stations that
can easily be changed of work stations. This way, in case a specific part of the line needs an extra help, the
cobot station can be moved an reprogrammed easily saving time and money to the company. Another
main worry around cobots or robots in general is the fear of unemployment in between the workers.
For this reason it is important to define and assign correctly the tasks of the production line. Robots
are great for repetitive, uncomfortable or even dangerous situations for humans, because robots unlike
humans they do not feel pain or fatigue. So, if the cobot is correctly placed in the production line and
helps in the performance of the human worker, the human being will not feel threaten by the robot [36].
There are other many studies about the application of cobots in industrial environments [37, 38].

In this project, a collaborative robot is used which performs tasks in collaboration with human beings.
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To do so, the previously mentioned security specifications and characteristics of the robot will be taken
into account.

2.2.4 Dual Arm Robot Programming

In this project, the YuMi robot of ABB is going to be used (see Section 2.1.1) which as it can be observed
in Figure 2.1 is equipped with two robotic arms that are attached one to the other one by a common base.
The robots with this composition are called dual arm robots. This configuration allows the programmer
to design synchronised motions or master-slave configuration in each arm, where one arm movements
are defined by the movements of the other arm [39]. These kind of motions often are quite complex
to program since each arm is controlled independently. This happens in the YuMi robot too, even the
exiting physical connection of both arm, each robot arm program is independent. So, to synchronise both
arms, there are specific functions created in RAPID code for RobotStudio ABB software. There are two
ways to synchronise the arms; by synchronisation point where both arms work independently but one
arm waits the other one until this reaches the corresponding point and by synchronisation motion where
both arms start and end the motions in the same time. In case of synchronised motions, master-slave
configuration can be settled which allows to configure the position of one arm relative to the position of
the other arm [40].

The YuMi robot has been used in several human-robot collaborative projects as making a puzzle [41],
gift wrapping [42] or inserting a lid on a toy box [40]. These articles show the usability of this robot
in synchronised tasks which have human interaction. This project is performed in Sweden during the
Spring period, which means the weather conditions which affect the robot conditions have to be taken
into account as mentioned in [42].
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Chapter 3

Demonstrator Setup

In this first phase, all the different setup and layout selections are explained. Moreover, the selection of
the hand gestures and the robots actions, the reasoning of the layout of the work-space and the selection
of the components needed for the correct operation of this project are performed.

Figure 3.1: Structure with measurements

3.1 Layout Settings

For the correct performance of this project, a structure has been mounted. In this section, the different
taken decisions and details of the setup of the project are reported. To place the different parts that
correspond to the two tasks of the project and the YuMi robot itself a metallic table, which in the company
is used for training purposes, has been chosen. To this metallic table a structure has been added, which
is used to place the two needed cameras for the extraction of the images and the lights for the control of
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the ambient light. The position and size of these lights has been crucial for the correct illumination of
the parts of the tasks. The positions of all the mentioned objects can be observed in the Figure 3.1.

Moreover, the size of the lights positioned in the two sides of the task camera is of 1200 × 200mm.
Smaller lights were tried out but the reflection of the industrial part was unavoidable. Therefore, the
ANN trained to search faults in the industrial part, incorrectly detected reflections as errors.

When it comes to the cameras, the camera used for the hand gesture detection is the Basler pia2400-
17gc camera (see Figure 2.1.4) and the camera to take the images of both tasks is the Basler acA2500-14gc
camera (see Figure 2.1.5).

Moreover, for a good performance of the YuMi robot when it comes to holding the pen in Task 1 or
the dices box in Task 2, grippers and handles specifically designed for this project have been used. The
grippers shape has been designed for an easy and accurate grip of the pen (see Figure 3.2). Furthermore,
the shape of the handles of the box have been designed according to the specified grippers adding them
a slot for a better fastening of the box (see Figure 3.3). Finally, to hold the pen correctly a pen holder
has been manufactured, as it can be observed in Figure 3.4.

Figure 3.2: Designed grippers Figure 3.3: Designed handlers Figure 3.4: Designed pen holder

3.1.1 Task 1: Industrial Part

The main objective in Task 1 is to detect failures on an industrial part. A breaker of a car with a highly
reflective protective layer has been chosen (see Figure 3.5). Besides, a permanent black pen is selected
to write markings in the previously mentioned industrial part.

Figure 3.5: Selected industrial part Figure 3.6: Selected ROI for ANN classification
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3.1.2 Task 2: Chihuahua Muffin Dices

To setup the dices for the Task 2, the images printed in Figure 3.7 were placed in wooden made dices
as it can be observed in Figure 3.8. For that, 15 different images of muffins and 15 different chihuahua
images have been used. These images have been extracted from two different free online databases1.

Figure 3.7: Chihuahua vs muffin photos database

Figure 3.8: Chihuahua vs muffin dice setup

3.2 Hand Gesture Selection

In this section, the research, reasoning and selection of the used hand gestures is going to be explained.
For the selection of the hand gestures, elements like cultural aspects, ergonomics, simplicity and common
knowledge have been taken into account. Each hand gesture should be easy recognisable and related to
a common global meaning. The user, without a reference manual, should be able to know the meaning
associated to the hand gesture. To get reliable information about different hand gestures around the
world some articles and web pages have been checked [43, 44, 45].

In the implementation of this project, two stages have been defined. In each stage, a different task
will be performed. To tell the robot which task to perform, a hand gesture will be linked with each task.
Hence as there are 2 tasks the easiest way to communicate with the robot which of them is the selected is
by the use of number hand gestures (NHG). According to [45] the western Europe hand gestures combined
with the hand gestures used in The United States (US), United Kingdom (UK), China and Sweden have
been selected, as far as the Japanese hand gestures have been discarded (see Figure 3.9). This selection

1http://www.image-net.org/synset?wnid=n02085620 and https://github.com/bfolkens/animals_or_food

http://www.image-net.org/synset?wnid=n02085620
https://github.com/bfolkens/animals_or_food


18

is due to the fact that this project was thought to be exposed in a technological fair in Sweden where
the majority of the users are expected to be European, English speakers and specially Swedish. Besides,
the Japanese NHG use the opposite logic to all the other cultural NHG’s. That is to say, in European
countries the number of shown fingers is the number which is wanted to be expressed, whereas in Japan
the number of hidden fingers is the number that is wanted to be transmitted.

Figure 3.9: Selected and discarded number hand gestures

Beyond the NHG, other gestures would be added to get a more complete control of the robot, which
are stop, ready, give and cancel gestures (see Figure 3.10). The stop gesture allows to stop/freeze the robot
when it is moving according to a previously selected movement. While the stop gesture is recognised, the
robot will remain stopped; when the hand is taken out from the camera, that is to say the stop gesture
is not being recognised anymore, the robot will resume the previously calculated movement. In case that
the robot is moving to a selected task (1, 2, good, bad, middle, give or rock) and the task is wanted to be
changed, then cancel gesture would have to be performed. This way, the selected task will be erased and
another task can be selected. When it comes to the ready gesture, this will be used when the user wants
to communicate to the robot that users interruption in the task has finished and the robot can continue
with its work. Last but not least, the give gesture informs the robot to give an advertisement present to
the user.

Figure 3.10: Other selected hand gestures:stop, rock, cancel, middle, bad, good, give and ready.

Because the final purpose of this project is to be placed in a technological fair workshop, its main
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objective is to be attractive for the visitors in the fair. With this aim, five additional gestures have been
added which are good, bad, middle finger and rock gestures (see Figure 3.10). These gestures do not
activate a task or process, they just make a movement in the dual robot arm which express happiness,
sadness, madness or the movements of playing a guitar (see Figure 3.11 and Figure 3.12). This way, the
workshop will be more interactive and entertaining for the visitors of the fair.

In total, there would be 16 different gestures, some of them with the same meaning, this makes the
user to have more options when it comes to the communication with the robot. To summarise, the
selected hand gestures would be the following ones:

• One: UK, US, China and Sweden style (Figure 3.9).

• Two: UK, US, China and Sweden style (Figure 3.9).

• One: Western Europe style (Figure 3.9).

• Two: Western Europe style (Figure 3.9).

• One: Other case scenarios (Figure 3.9).

• Stop (Figure 3.10)

• Bad (Figure 3.10)

• Ready: Making a circle with the index finger and thumb (Figure 3.10).

• Good: Closing the hand and opening the thumb up (Figure 3.10).

• Cancel:With the hands in fist mode (Figure 3.10).

• Cancel:With the hands opened (Figure 3.10).

• Give: Opening the palm up (Figure 3.10).

• Rock: Showing the small and index fingers (Figure 3.10).

3.3 Selection of Final Actions

In this section, the actions to be performed by the robot are going to be analysed and selected depending
on the input hand gestures explained in Section 3.2.

As explained in Section 3.1, the project will have two different tasks, in each task a vision recognition
process will be performed. To inform the robot which of these tasks should be executed, the number
hand gestures will be used (see Figure 3.9). Hence, when the made hand gesture is a number, the robot
will move to the corresponding task and will perform the expected task.
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3.3.1 Task 1: Find Errors on the Metallic Part

If the user makes the number one gesture (see Figure 3.9) is selecting to do the first task which is to find
errors, for example scratches, in a metallic piece. In this task, first the robot will pick the marker and
will move it in the air so that the user proceeds to make markings in the metallic part. Once the gesture
is done, the robot will give the marker to the user. The user will have to take the marker and make some
paintings in the metallic part. Once the marks are done, the user will have to leave the marker in the
support of the marker and make the ready gesture. This way, the robot understands that the drawing
of the piece has been finished and can take a picture of the metallic part to process the image and find
the painted marks. Once the markings are found, the industrial piece with the detected markings will be
shown in a screen. For the search of the marks, an ANN will be created.

3.3.2 Task 2: Play Yatzy with Chihuahua and Muffin Photos dices

If the user makes the number two gesture (see Figure 3.9), the second task is selected, which is to play
Yatzy with chihuahua and muffin dices. Yatzy is a really popular game in the Scandinavian countries and
it is played with 5 dices. The main objective is to obtain 5 dices with the same number, this achievement
is called “yatzy”. To obtain 5 dices with the same number, the player has three throws. After each roll,
the player chooses which dice to keep, and which to re-roll. In this case, spite of numbered dices, the
faces of the dices will be covered with photos of chihuahuas and muffins. The objective of the player is
to get 5 chihuahuas. To do so, the player has three throws. Each time that the player throws the dices,
the robot will take a picture of the dices and count the amount of chihuahuas and muffins. In case there
are less than 5 chihuahuas and the player has thrown less than 3 times, the robot will allow the player to
throw again. Otherwise, if the user has rolled the dices three times and has not obtained 5 equal dices
the robot will make the sad gesture. Conversely, if the player has obtained 5 equal dices, within three
throws, the robot will make the happy gesture.

3.3.3 Emotion Robot Gestures

Whereas, if the introduced hand gesture is the good gesture (Figure 3.10) the robot will do the happiness
movement represented in Figure 3.11. The same happens if the bad gesture (Figure 3.10) is made. In
this case, the sadness movement will be performed by the robot (see Figure 3.11). If the user shows
the middle finger to the robot, this will get mad and will answer the user with a boxing movement (see
Figure 3.12). To finish, if the user makes rock gesture, the robot will get excited and make the movement
of playing a guitar (see Figure 3.12). These movements are predefined.

3.3.4 Robots Reactions to Stop, Cancel, and Give Gestures

In case the stop gesture (Figure 3.10) is performed in front of the camera, the robot will freeze the
movement that is currently been performed. When the hand is taken out from in front of the camera,
the stop gesture is not recognised anymore, the robot will continue with the movement that was being
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Figure 3.11: Happiness and Sadness robots reactions

Figure 3.12: Madness and Rock robots reactions

performed before the stop of the movement. Hence, the stop gesture allows to block the movement or
trajectory of the robot while the stop gesture is being performed.

If the user makes the cancel gesture (Figure 3.10), the outcome of this gesture is to cancel the
previously selected task. Furthermore, first a task has to be selected to be able to use this gesture.
For example, the user selects the first stage task by making the gesture of one (Figure 3.10) and then
decides to perform another task, so the user cancels the selected task by performing the cancel gesture
(Figure 3.10). This gesture cleans the previously selected task path and moves the robot to the home
position waiting for the selection of another task. Moreover, stop and cancel gestures should be introduced
after the selection of another task. The separate selection of these tasks does not make sense since they
allow to modify or control the movement of the robot.

The last gesture is give gesture (Figure 3.10), which asks the robot to give something to the user. As
this project is thought to be for a fair, the robot will give an advertisement of the company EA as present
to the user, when this gesture is performed by the user.

3.4 User Process Explanation

To understand the available tasks for the user and the correspondent actions performed by the robot the
flow chart in the Figure 3.13 has been generated.
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Figure 3.13: The flow chart of the process to be followed by the user
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3.5 Photo Database

In this section, the followed process to obtain needed photos for the training of the ANN is explained. To
take the images needed to train the three ANN’s, two cameras, Basler pia2400-17gc (Section 2.1.4) and
Basler acA2500-14gc camera (Section 2.1.5) have been used. The Basler pia2400-17gc camera has been
used for the hand gesture task and the second camera, the Basler acA2500-14gc camera, for the other
two tasks. The two cameras are placed in the middle front of the table as described in Section 3.1. For
the control of the two cameras in the different situations EAVS program has been used (see Section 2.1.8)
and three different recipes have been created. One recipe was made for the hand gesture camera with
a exposure time of 15.000µ s, the other two recipes were created with the Basler acA2500-14gc camera.
One of the recipes in this camera is for Task 1 with a exposure time of 7.000µs and the other recipe is
for the Task 2 with a exposure time of 35.000µs. The difference in the exposure time of the recipes for
the different tasks is depending the amount of light that is needed for each task. In case of Task 1, the
industrial piece has a tendency to reflect the light really easily, because of this the exposure time of task
one is much smaller than the exposure time of task two. A lower exposure time means that the picture
taken by the camera is darker, this way an image with less reflections in the industrial piece is obtained,
due to this is easier to process the photo.

3.5.1 Hand Gesture Images Database

To get a well trained ANN, photos with different hand types, sizes and skin colours are needed with both
left and right hands, making the different gestures defined in Section 3.2.

To obtain this data base of images, the camera has been set in the same position as in the final
setup (see Section 3.1). The used camera is Basler pia2400-17gc with the lens FujiFilm HF9HA-1B which
allows to take colour images and focus the image to a certain distance. A colour camera was selected
spite of white and black camera to have more information to train the ANN. Since the hand is more easily
differentiated from the face of the person by the use of colour cameras. To obtain the needed photos for
the development of this project, the EA Vision Studio (EAVS) software (Section 2.1.8) has been used,
which is a vision software created by the company EA. This software allows to obtain, trait and process
the images.

The needed images have been taken during two days to different people in the company. Each person
has performed all the gestures introduced in Section 3.2 with both hands and in both sides of each hand.
Fourteen people have participated in the image obtaining phase and 588 photos have been taken. The
amount of photos which correspond to each hand gesture can be observed in Table 3.1.

images person no one
for each one two stop bad ready good cancel middle rock give stands in
gesture still photo
session 1 186 123 31 30 34 30 45 31 48 30 0 0
session 2 338 274 109 125 170 114 45 109 152 122 41 7

Table 3.1: Number of images taken in each photo session
After the tests of the ANN with the 1st photo session data base, the need of more photos was realized.
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To prove the capability of the location tool, some photos with people standing still and without people
were taken too. In the end, the number of photos listed in the 2nd photo session were obtained (see
Table 3.1).

3.5.2 Task 1 Images Obtaining

In this subsection the created image database for the Task 1, industrial part task, is reported. As the
objective of this task is to find errors or scratches in an industrial part, two types of photos have been
taken. On the one hand, pictures of the industrial piece without any type of marks have been taken (see
Figure 3.14). On the other hand, photos of the industrial part with different types of markings, which
have been done with a black pen, have been taken (see Figure 3.15). In the created database for the Task
1, there are 21 images of the part without marks and 59 images of the piece with marks. The reason to
take more images with marks than without, is that the markings made by the user can vary a lot.

Figure 3.14: Task 1 piece without markings Figure 3.15: Task 1 piece with markings

3.5.3 Task 2 Images Obtaining

For Task 2, images of the dices placed in different positions and with different rotations withing the box
have been taken. For the training of the ANN, 59 images of the dices have been captured, an example of
it can be observed in Figure 3.16.

Figure 3.16: Task 2 image with location tool applied

If the Figure 3.15 is compared with Figure 3.16 the difference in the lighting between the two images
is observable. As expressed before in Section 3.5 the brightness of the images is related to the settled
exposure time of each recipe.
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Chapter 4

The Training phase

In this second phase, all the needed steps to get a trained ANN for the recognition of hand gestures, the
search of markings in the industrial piece and the classification and counting of muffin and chihuahua
dices will be listed. These steps can be observed in Figure 4.1.

Figure 4.1: Workflow of the training phase

To do so, first the hand gestures that are going to control the robot have to be decided. Next, the
ANN is designed and trained. Once the ANN gives the first results, these are analysed and, if needed,
refine them until acceptable results are obtained.

4.1 ANN ViDi Results Interpretation

The ViDi software, when the ANN is designed and run, gives the obtained results in form of a table in
case there is one class, a ROC-AUC curve in the case there are two classes and a confusion matrix in
case there are more than two classes (see Table 4.1).

In this project, when the Location tool is used there will be only one class, the hand. Hence, the
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Table ROC curve Confusion matrix
number of classes in Classify 1 2 >2
number of classes in Locate always – –

Table 4.1: ViDi software methodology to display the results

obtained results from the program will be a table which represents the number of found hands, trained
photos, labelled photos, recall, precision and F-score.

The recall or sensitivity is the ratio of the total number of correctly classified positive examples
divided by the total number of positive samples. If the recall is higher means that the class is correctly
recognised. Its equation can be observed in Equation 4.1, where the True Positive (TP) is an outcome
where the model correctly predicts the positive class and False Negative (FN) is an outcome where the
model incorrectly predicts the negative class,

Recall = TP

TP + FN
(4.1)

The precision or positive predicted value refers to the data classified correctly over all the data that
has been classified as positive in each type of gesture, in this case. Its equation is similar to the recall
equation, but spite of taking all the photos of the current class, it takes all the photos that have been
predicted as the current class. That is to say, the TP is divided by the sum of TP and False negative
(FP) (see Equation 4.2), that refers to the images that have been incorrectly classified as the current
class.

Precision = TP

TP + FP
(4.2)

To finish, the F-score is the combination of the recall and the precision and it is calculated as expressed
in the Equation 4.3,

Fscore = 2 ∗ Precision ∗Recall
Precision+Recall

(4.3)

In the classification tool, the number of classes will depend in the number of gestures that have been
uploaded to the work-space. In this project, the number of gestures used in the work-space will change
while the ViDi software is being tested. Once conclusions are obtained, the last ANN will be created with
all the gestures commented in Section 3.2. So, in general, results will be obtained by the information
given in the confusion matrix.

4.1.1 ROC Curve

When there are two classes defined in the ANN, the results are given by the ROC curve (see Figure 4.11)
and the AUC (area under the curve) value, apart from the precision, recall and the F-score values. The
ROC curve is a probability curve that displays the values of the recall (Equation 4.1), otherwise called
true positive rate (TPR), against the false positive rate (FPR). An ROC space is defined by FPR and
TPR as x and y axes, respectively. The FPR is calculated by the Equation 4.4.
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(a) Best ROC case scenario (b) Normal ROC case scenario
with type I and II errors

(c) Worst ROC case scenario

(d) classes confused with each-
other

Figure 4.2: ROC curves

FPR = 1− specifity = 1− TNR = FP

TN + FP
(4.4)

Furthermore, the AUC is the rate that expresses the ability of the model to distinguish between
positive and negative classes, hence the ability to classify different classes. In general, the AUC rate is
shown next to the ROC curve (see Figure 4.2).

4.1.2 Confusion Matrix

When there are more than two defined classes to train the ANN, the results are given by the confusion
matrix (see Figure 4.3). Apart from that, the precision, recall and the F-score values are expressed.
If the Figure 4.3 is observed, the diagonal that goes from the left up corner to the right down corner
represents the classes that are correctly classified. All the circles that are out from this diagonal are miss-
classified pictures. As it can be observed in the previous image, the main diagonal remarked in green
has the biggest circles which means most of the photos are correctly classified. The circles that appear
out from the confusion matrix, the ones remarked with a red square, are the ones that have not been
classified at all. This means that there was not a class outstanding from the others. This is calculated
by the percentage of similarity of the current image compared with other learnt gestures. Moreover, the
confusion matrix provides the needed information about which gestures are miss-classified with which
ones and the level of miss-classification in percentages. For example, in Figure 4.3 is remarkable that the
two gesture is highly confused or miss-classified with one gesture and vice versa.
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Figure 4.3: Confusion matrix explanation

4.2 Hand Gesture ANN

4.2.1 Structure Creation of the ANN

For the hand gesture recognition, ViDi software has been used, which has 4 different tools for the creation
of the ANN that can be combined to get different results (see Section 2.1.2). After reading the capabilities
of the different tools, the Reading and Analyzing tools were discarded. On the one hand, the Reading
tool’s main objective is to read codes, words, or serial numbers which for hand gesture recognition does
not have any usability. On the other hand, the Analyzing tool finds error in the images of the work-space,
this can not be applied for the hand gesture recognition neither. So, the remaining tools, Location and
Classification tools, will be tested to see which one performs better to reach the goal of this project. In
this section, the different tested ANN structures are going to be stated.

Testing of Different Structures

As explained before, two different tools, the Location and Classification tools, will be tested to see which
one is the best option to get best results for the hand gesture recognition. To have equal conditions in
the test of these two different tools, both will be tested with the same pictures, same amount of photos,
same Region Of Interest (ROI) and the same percentage of trained images. The photos will contain two
hand gestures, one number hand gesture and two number hand gesture (see Section 3.2).

When it comes to the training of the images, the 70% of the images will be randomly selected. This
selection will be done with three of the structures and the results will be compared between them to see
which one obtains better performance. For this testing, 309 photos are added to the work-space. From
that 309 photos, 186 are one number hand gestures and the remaining 123 are two number hand gestures.



29

Classification Tool Structure

As it was stated in the beginning, the performance of the different tools of the ViDi software to recognize
hand gestures was completely unknown, hence different structures have been tried. In this section, the
use of only the Classification tool will be reported (see Figure 4.4).

Figure 4.4: Setup of the classification ANN

Following all the assumptions explained in Section 4.2.1, 70% of the uploaded photos have been
randomly trained in the classification ANN. To run the Classification tool, each photo is labeled with a
class, in this case one or two. The obtained result from this training can be observed in Figure 4.5. As
it can be seen in the results, the ANN was not able to learn due to the amount of information in each
picture. This is caused by the selected ROI, as the photos are taken with the person in the middle of the
image surrounded by the actual environment, the tool is not capable to understand what is important in
the photo. Hence, the tool takes all the information of the image as samples and gets lost (see Figure 4.6).

Figure 4.5: Results of the tested classification ANN Figure 4.6: Selected ROI for classification ANN

In conclusion, the Classification tool itself can not be used for the hand gesture recognition since the
photos of the user will be taken as expressed in Figure 3.6.

Location Tool Structure

In this second test, the Location tool itself is used as the structure of the ANN. As in the previous case,
specifications explained in Section 4.2.1 are followed. Hence, 309 photos were added to the work-space
and the same ROI as in Figure 4.8 was taken for this test. Even though, as in the Location tool an
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identification window (see Figure 4.8) is used to locate the part that is wanted to be analyzed, some
images were erased as some of them were blurry or confusing even for a human. Because of this reason,
a total of 297 photos were in the work-space, where 178 were labeled as one and 119 were labeled as two.
The labelling of the photos is allowed by the identification window, which gave the possibility of naming
each window in each photo as a new class. In this case, the identification windows will be named with
two different classes, one and two. The obtained results from this experiment, after training the 70% of
each class, can be observed in Figure 4.7.

Figure 4.7: Results of the tested Loca-
tion ANN with 70% training

Figure 4.8: Selected ROI and identifica-
tion window of Location ANN

As it can be observed in Figure 4.7, 173 images of one label were found over the existing 178 and in
case of the two label, 117 were found over 119. But this does not mean the found images are correctly
classified. Since the precision and recall of the images is so low, the miss-classification of most of the
images can be concluded. Hence, the precision is 73.5% in the case of class one and 61.8% in case of the
class two, meanwhile recall is of 66.7% and 58.3%, respectively. The Location tool is not useful to classify
the different labels. Moreover, most of the hands are found, 290 over 297 photos, so the Location tool
works properly when it comes to the search and localization of hands in the images.

Location plus Classification Tools Structure

After observing the results and obtained conclusions of the Classification and Location tool, the best
way of approaching hand gesture recognition is throughout a combination of both tools (see Figure 4.13).
The same work-space used in the Location tool structure has been used in this test. That is to say, a
total of 297 photos were in the work-space, where 178 were labeled as one and 119 were labeled as two.
In this case, the Location tool will only be used to locate the hand in the photo. Due to this, all the
identification windows will be named as hand (see Figure 4.10) so that any classification is given at this
stage of the structure of the ANN. Hence, in the Location ANN there will be only one class named hand.

As it can be observed in Figure 4.10, most of the hands were found in the 297 labeled photos, 293
to be exact, with a precision value of 100% and a recall value of 95.6%. All this result with a randomly
selected 70% of the total photos (207) for the training of the ANN. Taking these figures into account, a
high efficiency when it comes to the localization of the hand can be concluded. These results compared
with the ones explained in Location tool structure are much more encouraging.

Once the hand is found within the image by the use of the Location tool, the Classification tool
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Figure 4.9: Results of the tested Loca-
tion ANN with 70% training of the Loca-
tion + Classification structure

Figure 4.10: Selected ROI and identi-
fication window of Location ANN in the
Location + Classification structure

will identify the type of gesture that is being performed by the user. As the Location tool created the
identification window observable in Figure 4.10, the ROI of the Classification tool will be limited to
the identification window as can be seen in Figure 4.12. This means that the Classification tool will
have a smaller image, less information, to be processed. This way, the problem that appeared in the
Classification tool structure in Section 4.2.1 is avoided. So, once the ROI is applied to the images, these
are labeled as one or two depending in the gesture observable in the image. As in all the previous cases,
this ANN will be trained randomly with the 70% of each class photos getting the results in Figure 4.11.

Figure 4.11: Results of the tested Clas-
sification ANN with 70% training of the
Location + Classification structure

Figure 4.12: Selected ROI and identi-
fication window of Classification ANN in
the Location + Classification structure

In this case, the Classification tool does not give any error of the number of data sample, instead gives
the ROC curve and the AUC value next to the precision, recall and F-score values. As it is observable
in Figure 4.11, the ROC curve is near of getting a perfect result, a complete fulfilled square with an
AUC of 1. This is appreciable in the values of the recall, precision and the F-score too, which are over
80% of performance. If these values are compared to the ones obtained with the Location tool structure,
it is remarkable the achieved improvement. For example, when the one label has to be classified the
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precision in this case is of 88.5%, whereas in case of the Location structure this value decreases in a 15%
obtaining a precision of 73.5%. The value with the biggest difference between this test and the Location
tool structure test is the recall of the label two, in this test takes a value of 83.3% whereas in the Location
structure takes a value of 58.3%, this means a decrease of 25%.

In conclusion, the best structure for the hand gesture recognition is the combination of the Location
and Classification tools. First, applying the location tool for the search of the hand in the picture and
then the classification tool to classify the type of gesture in the processed image.

Final ANN Structure

To perform the main objective of the ANN, that is the recognition of hand gestures, two steps have been
completed. First the recognition of the hand over the photo has been performed and then, once the
location of the hand is established, the type of gesture performed by the user has been classified. To do
so, locate and classify tools of ViDi software have been used in that order (see Figure 4.13). First in
the input box, the images are added to the work-space. This box is just for the uploading of the needed
images.

Figure 4.13: Setup of the final ANN

Once the images are available, the Location tool that itself is a ANN will locate the hand in the image
as it can be observed in Figure 4.14.

Figure 4.14: Locate hand gestures

As it can be observed, some of the added images (see Figure 4.14) have people standing still without
doing any hand gestures or non people at all. In these cases, the ANN does not recognise any hand in
the picture, what means that the pictures that are not labelled, do not have any hand, are not going to
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be processed by the next tool, the Classification tool. Furthermore, in the first two photos, where the
one and stop gestures can be observed, the ANN finds the hands and remarks them.

Figure 4.15: Classification of hand gestures

In the previous images(see Figure 4.15), the behaviour of the classify tool can be observed. First, the
region specified by the location process is taken over all the image, only the information that is inside
this region is processed by the Classification ANN. If the middle and right images in Figure 4.15 are
observed, the different colours of the words one and two can be seen. These colours represent whether
the image is in the training set or not, the name in green means that the image is being trained and in
white that the image is taken in the test set.

Furthermore, the fact that these ANN tools are black boxes must be also remarked. This means that
the user is not able to tune any parameter of the ANN as weights or structure. Hence, to understand the
behaviour of these ANN it is important to test different case scenarios and see how the black box system
reacts.

4.2.2 Training of the ANN

In this section, the training of the ANN’s for the Location and Classification tools is explained as well
as the analysis of the obtained results with different data sets. As explained before, the Location and
Classification tools are black boxes, hence there is not any available information about the structure or
the weights in them. Due to this fact, different proves with different data sets have been performed.
Starting from simple ones, with few gestures, and finishing with the complete set of photos with all the
gestures expressed in Section 3.2. For all these tests, the final ANN structure will be used, that is the
combination of Location tool with Classification tool.

First Approach: Workers Photos with Basic Gestures

In this first approach, the photos of 14 workers of the company have been used, with the 6 basic gestures
that are bad, good, stop, one, two and ready. With this input data set, first the Location ANN has been
trained to locate the hand in each photo. Once the location of the hands was performed, the Classification
of the obtained photos has been performed.
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Location Tool As explained before, the location tool is the responsible to find the hand in the image.
To do so, in this first approach 356 images have been used as data set. From that 356 images the 80%
has been used to train the ANN, that is to say 284 photos. With this data set the obtained results are
expressed in Table 4.2.

Feature Found Train Labelled Recall Precision F-score
hand 355 284 356 98.6 100.0 99.3

Table 4.2: 1st approach: Results of the location tool
As in this case there is only one feature to be found in the images, hand, a confusion matrix is not

plot in the program. In its place, the Table 4.2 is obtained. In this table, the number of trained photos,
labelled photos and found photos is observable. If the number of figures in the table are observed, the
labelled photos are 356 and the found hands are 355 what means that an image has not been found. Be-
cause of this failed photo, the recall is of 98.6%, the percentage in which the class is correctly recognised,
while the precision is 100.0% and the F-score 99.3%. These values show a really good performance of the
ANN. Moreover, all the photos used in this first approach have people making gestures. This means that
there is not any photo without people or people without doing anything, so for the ANN is easier to find
the hands in the photos.

Classification Tool In this part of the first approach, the classification of the previously cropped
images will be performed with a data set of 356 photos and 6 different gestures. In the one gesture, the
little finger gesture has been deleted to avoid mismatches in the training and to have a more balanced
data set. Apart from that, when the photos were taken to the volunteers, some of the volunteers expressed
the difficulty and feeling uncomfortably when they were performing this gesture. Due to all these facts,
this gesture has been deleted.

To train this ANN, first 50% of the total photos has been trained randomly. Once the results of
the 50% trained photos was obtained, the miss-classified photos where added to the training set until a
70%-80% of each gesture photos was trained. This way, the results are presented in Figure 4.16

The successful training percentages of this approach are the following ones:

• One: 102/124 →82% trained.

• Two: 90/122 →73.77% trained.

• Stop: 21/31 →67,74% trained.

• Bad: 21/28 →75% trained.

• Ready: 18/24 →75% trained.

• Good: 21/26 →75% trained.

As it can be observed in the results, the obtained precision and recall are really good in the bad, good
and one gestures, stop and two gestures have an acceptable performance but the ready gesture recall is
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Figure 4.16: 1st approach: Results of the Classification ANN with 70% training

really bad. In the case of the ready gesture, there are more miss classified photos than correctly classified,
this being unacceptable. This problem can be caused by the unbalanced number of photos between the
different pictures since one and two gestures have more than double photos to be trained and tested.
Even though, a clear reason of why the ready gesture is miss-classified in such percentage can be obtained
just looking these results. This is due to the ignorance of the structure and the way the weights are
settled in the ANN of the classification tool. This uncertainty makes the writer think about different
possibilities to get these results. One possibility could be that the ViDi software gives the weights to
the classes depending in the amount of photos that has that class, in that case the one and two gestures
would have higher priority than the others. Another possibility is that the ANN needs more information
to be able to identify the ready gesture without any confusion. On the one hand, the solution to the first
option is to add a balanced number of photos to every class/gesture. Hence, to have a similar amount
of photos in all the gestures for the training and testing of the ANN. On the other hand, the solution
for the second option is to add more photos to the gestures that are being confused, ready and stop, and
have less images than one and two gestures.

Second Approach: Adding Images of ready and stop Gestures

In this second approach, more photos for ready and stop gestures have been added to the original data
set, so that the confusion regarding to these two gestures is minimized, as explained in the previous test.
As the training of the Location tool ANN does not really change, the only difference is the number of
the data set which will increase, the analysis of the Location tool is not going to be performed in this
section. On its place, the results of the classification tool will be analysed to see whether the increase
in the amount of available images of the ready and stop gestures makes a difference in the classification
of the different classes. Apart from that, the indirect effect in the results of the other gestures will be
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evaluated.

Classification Tool As explained previously, more photos of ready and stop gestures have been added
to the original data-set, this way a work-space with 561 photos has been obtained. First, 50% of the
photos was randomly trained and the results of it can be observed in Figure 4.17. As the main objective
of this test was to see the effect of adding more photos to the most miss-classified gestures, the obtained
results will be compared to the ones achieved in the previous test. A remarkable fact is the acquired
improvement in the recall of the ready gesture, which increased in a 71.8% (see Figure 4.17). Even the
results of the ready gestures are improved, the other gestures have worse F-score than in the previous
case. Moreover, these results are obtained with the 50% of photos used for training of the ANN. So, the
miss-classified photos will be added to the training set until a 70-80% of the photos are used for training.
This way, a similar situation to the previous one with better results will be obtained (see Figure 4.18).

Figure 4.17: 2nd approach: Results of
the Classification ANN with 50% training

Figure 4.18: 2nd approach: Results of
the Classification ANN with 70% training

Results are listed as,

• One: 90/124 →72.58% trained.

• Two: 86/120 →71.67% trained.

• Stop: 53/100 →53% trained.

• Bad: 20/28 →71.43% trained.

• Ready: 86/156 →55.13% trained.

• Good: 16/23 →69.56% trained.
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With the listed values of training percentage, the obtained results have improved significantly (see
Figure 4.18) compared with the previous case scenario. That is to say, the performance of ready and
stop gestures have increased unquestionably. But, even the bad gesture still has a really good recall and
precision, the good gesture has low recall. Furthermore, the precision and recall of the different gestures
is not really affected because of the addition of the ready and stop gesture images. Otherwise, all the
precision and recall values of all the classes will change and that did not happen with the bad gesture.
So, if the behaviour of the ANN is taken into account can be said that the weights are not related to
the amount of images of each label. Moreover, as the good gesture recall has decreased, more images will
have to be added to get better results.

Third Approach: Balanced Number of Photos with Basic Gestures

In this third approach, more photos of good and bad gestures have been added to the previous data-set so
that the number of photos of each gesture is similar. Furthermore, the possibility of weight assignment
depending in the number of photos of the class is further tested. Apart from the added hand gesture
photos, some other photos with anyone on them or people without doing any hand gesture were added
(see Figure 4.14). This way, the capability of the Location tool to locate hands in different case scenarios
is tested.

Location Tool In this third approach, 785 images have been used as data-set. From that 785 images,
among the photos that are labelled (737 photos), 80% have been used to train the Location ANN, that
is to say 590 photos. With this data-set the obtained results are expressed in Table 4.3.

Feature Found Train Labelled Recall Precision F-score
hand 736 590 737 98.6 98.6 98.6

Table 4.3: 3rd approach: Results of the Location tool

Even photos without people and photos with people without doing any hand gestures (see Figure 4.14)
were added, the performance of the Location tool ANN continues to be really good with a recall and
a precision of 98.6%. This can be observed in the number of found photos over the number of labeled
photos because the number of found photos is one less than the number of labelled ones. This means,
only one photo of the hand gestures was not found. Apart from that, it should be noted that photos that
are not labelled (the ones that they do not have any hand gesture) cannot be trained. This means that
the added photos of either, a person standing still without doing any hand gesture or the photos where
there is not any person, are not trained. Hence, the ANN was able to identify correctly the photos where
a hand was visible.

Classification Tool In this part of the third approach, the classification of the previously cropped
images will be performed with a data-set of 737 photos and 6 different gestures. In this case, all classes
have similar amount of photos in the data-set, what makes a more balanced training of the ANN.

To train this ANN, first 50% of the total photos have been trained randomly (see Figure 4.19). Even
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the results obtained with this percentage of the training data-set were pretty good, more images were
added to the training set to get more precise results with higher recall values. Once the results on 50%
trained photos were obtained, the miss-classified photos where added to the training set until a 70%-
80% of each hand gesture photos were trained. When the ANN was trained with approximately 70%
of the data-set, the number of total labeled images was smaller, this can be observed in Figure 4.19
and Figure 4.20. The number of labelled photos is reduced to 731, 6 photos less than in the previous
case. This is due to the difficulty to understand the hand gesture in some photos, these images were not
significant for the ANN, so they were erased. This way, the results presented in the Figure 4.20 were
obtained.

Figure 4.19: 3rd approach: Results of
the Classification ANN with 50% training

Figure 4.20: 3rd approach: Results of
the Classification ANN with 70% training

The trained percentages of the 70% approach (Figure 4.20) are the following ones.

• One: 95/122 →77.87% trained.

• Two: 88/119 →73.95% trained.

• Stop: 62/103 →60.19% trained.

• Bad: 73/122 →59.84% trained.

• Ready: 87/159 →54.72% trained.

• Good: 60/106 →56.6% trained.

If the results obtained in Figure 4.19 and Figure 4.20 are compared, the improvement of the precision
and the recall can be observed. In the confusion matrix, the miss-classified images are clearly represented,
which are the circles that are located out from the diagonal that goes from the left up corner to the right
bottom corner. The confusion matrix in Figure 4.20 has less circles out from this diagonal than the one
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located on Figure 4.19. Hence, the confusion matrix located to the right has classified the different classes
better than the one located to the left. This is due to the amount of images that have been used for the
training set in each case.

The results obtained after the 70% of the training of the photos are really good since all F-score
values are over 98%. The lowest value is the precision for the two hand gesture which takes a value of
96.9%, that is a very good precision value. Hence, the results obtained after this experimentation are
applicable for the hand gesture recognition with good predicted results. Even though, more gestures
(cancel, rock, give, middle) are missing in the training of the ANN. When this missing gestures are added
to the work-space a change in the performance of the ANN and the results is expected.

Fourth Approach: Adding cancel Gesture to the work-space

Once the behaviour of the ANN when it comes to the weights is concluded, the effect of the class size
or amount of information in the image is wanted to be tested. This is due to the selection of one of the
gestures, the cancel gesture, which needs a bigger identification window than the other gestures.

Location Tool As said before, the cancel gesture takes a bigger area in the image, hence a bigger
identification window is needed (see Figure 4.21). This makes the Location tool to train with a bigger
amount of information in the window.

Figure 4.21: Difference in the size of cancel and other gestures

The size given to this identification window is the same for all the photos that are being used in the
work-space. Hence, the identification window is fixed for all the gestures, once the size of the window
is selected cannot be modified depending on the type of gesture. This means that for cancel gesture, a
bigger window will be optimal but this will affect the other gestures since their window will grow too,
getting not significant information for the ANN.

Feature Found Train Labelled Recall Precision F-score
hand 775 620 775 97.4 98.1 97.7

Table 4.4: 4th approach: Results of the Location tool
Even though, looking to the results obtained in the first running of the location tool (Figure 4.4),

the good performance of the hand location is not affected. From 823 pictures, 775 are labelled, which
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means the rest are people standing still or pictures without any person in front of the camera (48 photos).
Among the 775 photos that are labelled, 620 are trained in the ANN, that is 80% of the photos. With
this amount of photos a recall of 97.4% and a precision of 98.1% is obtained. The fact that all the labelled
photos were correctly found is remarkable as well as the good performance of the Location ANN. So,
in conclusion, the change in the size of the selection window of the Location tool does not affect the
performance of this tool.

Classification Tool As the identification window has been changed for the incorporation of the cancel
gesture to the gestures group, the amount of information that is available for the Classification tool will
be affected. As the ROI of the classification tool becomes bigger, this tool will have more information to
learn for each gesture. To see how this change affects to the results of the ANN, the same steps followed
in the two previous cases have been accomplished. Firstly, 50% of each gesture data-set has been trained
obtaining the results displayed in Figure 4.22.

Figure 4.22: 4th approach: Results of
the
Classification ANN with 50% training

Figure 4.23: 4th approach: Results of
the Classification ANN with 70% training

If the results of the previous tests are observed, a tendency of miss-classification between the one and
two gestures can be seen, which with the adding of the cancel gesture becomes more obvious. As still a
20% of each class can be added to the training data-set, the mismatched photos of each gesture will be
added to this set until it contains between 70-80% of the photos of each hand gesture. This way, the ANN
has more information since the miss-classified photos are used to train the ANN. Moreover, this makes
an improvement of the precision and recall of the confusion matrix as it can be observed in Figure 4.23.

Results are listed in the following points.

• One: 94/118 →79.66% trained.

• Two: 87/119 →73.11% trained.
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• Stop: 59/102 →57.84% trained.

• Bad: 67/121 →55.37% trained.

• Ready: 92/159 →57.86% trained.

• Good: 69/105 →65.71% trained.

If precision and recall of the different classes in Figure 4.23 are observed, most of the gestures have
really good results. Even though, the performance of the one class falls drastically when it comes to
its recall. Apart from that, the precision of the gesture two is not good either. Moreover, as expressed
before, this tendency was observed in the previous results too. When more photos were added to the
data-set of the other gestures (bad, good, ready and stop), the performance of one and two hand gestures
started to become worse. This could be related to the fact that one and two classes have two different
ways of representing the same gesture as can be observed in Figure 3.9. Due to this, the ANN has at
tendency to confuse these gestures with the others since there are less images of each type of one and
two hand gestures. Otherwise, the fact that the identification window is bigger does not seem to affect
the performance of the classification tool to classify the other gestures.

Last Approach: 10 hand Gestures Together

In this last approach, a big amount of classes will be tested in the ANN to see the effect that has adding
more classes to the ANN. Apart from that, once good results are obtained, the training of the ANN will
be continued. This way, the effect of adding more images to the training set once this is giving good
results will be observed.

Location Tool In this last approach, 1314 images have been used as data-set. From that 1314 images,
between the photos that are labelled, 1267 photos (80%) have been used to train the Location ANN, that
is to say 1013 photos. The photos that are not labeled, 47 photos, do not have any hand gesture. As
they are not labeled, they are not trained by the ANN. Hence, the search of hands by the Location tool
is based in the photos with a person making a hand gesture. With this data-set the obtained results are
expressed in Table 4.5.

Feature Found Train Labelled Recall Precision F-score
hand 1269 1013 1267 98.4 98.4 98.4

Table 4.5: Last approach: Results of the Location tool

As it can be observed in Table 4.5, the found photos are 1269, two more than the labeled ones. This
means that in two photos where no-one appears or there is someone standing still, hands were incorrectly
identified (see Figure 4.24).

Due to these two failures, precision and recall for the ANN is 98.4%, what leads to an F-score of
98.4%. Even the small mistake, the results are really good since all the hands were found in the gesture
photos. This means that none of the hand gestures were lost in the process of the Location ANN, so the
Classification ANN will get all the hand gestures for its training.



42

Figure 4.24: Wrongly identified hand

Classification Tool Once the Location ANN was trained, the Classification ANN has been performed.
As in the previous cases, first the 50% of each gesture photos have been randomly selected to train the
ANN. This way, the results in Figure 4.25, with 10 classes, were obtained.

The results obtained in Figure 4.25 show a mean recall of 76.1% and a mean precision of 81.8% over all
the trained classes. All the spots out from the left up to the right down diagonal show the miss-classified
images. Once, the 50% of the images is trained, miss-classified photos were added to the training set.
To obtain as best results as possible, the photos added to the training set have been changed in number
until three versions of ANN with pretty good results were obtained. This can be seen in Figure 4.26,
Figure 4.27 and Figure 4.28. The percentages used for the training set in each version results can be
observed in Table 4.6.

In the first obtained version of 70% trained images ( see Figure 4.26) compared with the results
obtained with 50% of trained images, the mean percentage of recall is improved in a 23.25% and the
precision is improved in a 17.86%. Apart from this, 7 over 10 classes have a F-score of 100%, which
means the recall and the precision have a result of 100% too. Hence, they have the maximum value of
recall and precision. The gestures with lower values of F-score are one, rock and two. Even though, the
F-scores of all these gestures are over the 97%, the only value that goes under this value is the precision
of the one gesture with a value of 96.6%. Taking all this into account, and the number of images used for
the training of this classification ANN [1st results in Table 4.6] can be concluded that the results obtained
in Figure 4.26 are really good.

After this 1st version of the 70% trained classification ANN, more images were added to the training
set obtaining the 2nd version of the ANN (see Figure 4.26). When the mean results of the 1st version
are compared with the 2nd version results, a small fall in the precision and the recall can be observed.
In case of the recall, a deterioration of 0.85% is reported and in case of the precision a fall of 0.80% can
be seen. In this 2nd version, 3 gestures obtain a F-score of 100 over the 7 that were obtained in the 1st

version. As in the previous case, all the F-scores are higher than the 97% but there is more than one
gesture with values of recall and precision that are under this value. Furthermore, as commented before,
more photos than in the previous version have been used for the training set and even though, worse
results were obtained. Because of all these reasons, the 1st version is selected over the 2nd version.
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Figure 4.25: Last approach: Results of
the Classification ANN with 50% training

Figure 4.26: Last approach: Results of
the Classification ANN with 70% training
first version

After the 2nd version, more images were added to the training set to obtain the 3rd version (see
Table 4.6). This 3rd version results will be compared with the results of the 1st one, the mean recall falls
1.95% and the mean precision falls 0.76%. As in the previous version, the F-score of three gestures of
this version is 100% but the F-score goes under 97% in some hand gestures. Even more images are added
to the training set, worse results than in the 1st results are obtained. This means that arrives a point
when the ANN does not learn more from the newly added images. The addition of these images spite of
improving the results of the ANN made them worse.

Tag 1st results 2nd results 3rd results
bad 63.56 63.56 64.41

cancel 58.14 58.14 58.14
give 70.83 70.83 70.83
good 62.75 62.75 64.71
middle 71.43 71.43 75
one 77.65 80.00 80.00
ready 65.38 65.38 65.38
rock 69.07 69.07 69.07
stop 59.60 61.61 62.64
two 66.80 69.17 69.57

Table 4.6: Last approach: Percentages of classification ANN
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Figure 4.27: Last approach: Results of
the Classification ANN with 70% training
second version

Figure 4.28: Last approach: Results of
the Classification ANN with 70% training
third version

Conclusions about ANN Training

In this subsection, the conclusions obtained throughout the training of the different hand gesture ANN
versions are listed,

• Number of images for each class is not closely related to the weights of the ANN. So, the same
number of images in all classes are not needed to have a good performance.

• More images in a class means better results in recall and precision for that class.

• Bigger size of identification window means more information to be processed by the ANN. Due to
this, more images are needed by the ANN to identify correctly the gestures in the images.

• There is a tendency of miss-classification between the one and two gestures.

• There is a tendency of miss-classification between the two and rock gestures.

• When the classification ANN is being trained, it reaches a point where the addition of images in
the training set deteriorates the results of the performance of the ANN.

After applying all these obtained conclusions by the training and testing of different ANN in the last
structure, the definitive ANN will be created.
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4.2.3 Final Results of the ANN

In this section, the last ANN created taking into account the conclusions obtained in the training of
the ANN in the last subsection will be explained and analyzed. The last ANN expressed in this section
will be tested in the implementation section. To do so, all the gestures that are going to be applied in
this project (bad, good, middle, cancel, one, two, rock, ready and stop) have been trained in the ANN in
the same way as before. Hence, first the Location ANN has been trained with photos of people doing
hand gestures or photos without people or photos with people standing still. After the Location tool was
trained, the Classification tool has been trained first with 50% random photos for each gesture. Then,
the miss-classified photos have been added to the training set until good results were obtained with a
limitation of 80% of trained photos of each gesture.

Location Tool

In this final ANN, 1261 images have been used as data-set. From that 1261 images, among the 1214
photos that are labelled, the 80% have been used to train the Location ANN, that is to say 971 photos.
The photos that are not labeled, 47 photos, do not include any hand gesture. As they are not labeled,
they are not used to train the ANN. Hence the search of hands of the Location tool is based in the photos
with a person making a hand gesture. The obtained results With this data-set are expressed in Table 4.7.

Feature Found Train Labelled Recall Precision F-score
hand 1214 971 1214 97.1 99.16 98.1

Table 4.7: Final ANN results of the Location tool

As it can be observed in Table 4.7, the number of found photos is 1214, the same number as the
labelled photos. This could mean that all the hand gestures have been found correctly and that the
photos without any gesture have been avoided. But, if recall and precision are observed, or F-score
overall, they do not get a 100% value. So this means that some photos have not been correctly identified.

Classification Tool

Once the Location ANN was trained, the Classification ANN was trained. As in the previous cases, first,
50% of each gesture photos have been randomly selected for training. The obtained results are shown in
Figure 4.29 with the selected final 9 classes, which are bad, good, middle,cancel, one, two, rock,ready and
stop.

When results in Figure 4.29 are compared with those in Figure 4.30, the improvement of the mean
recall value which has improved 21.42% and the precision value that has improved 15.03%, can be
observed. All F-scores are over the 98% of performance, which is a really good result. The lowest value
is the recall for the rock gesture, which is 97.5%, followed by precision for the two gesture, which is
98.5%. This is due to the miss-classification of rock gesture with two gesture as it can be observed in
the confusion matrix in Figure 4.30. Although the results have improved, in middle and one gestures
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Figure 4.29: Results of the final hand
gesture Classification ANN with 50%
training

Figure 4.30: Results of the final hand
gesture Classification ANN with 70%
training 1st version

the percentage of needed images exceeds the 80%. In the case of the middle hand gesture this number is
exceeded by a 1.63% and in the case of one gesture 0.4% (see Table 4.8). Even though these exceeding
percentages are not big, the ANN will be newly trained with less images of the middle hand gesture.
Before the performance of the training of this ANN a deterioration of the results is expected, since the
middle gesture will have less images to work with.

When this second version of the 70% trained classification ANN is run (see Figure 4.31) and compared
with the previous version (Figure 4.30), as expected, a fall of the mean recall and precision values can be
observed. The recall falls a 1.82% and the precision a 0.33% compared with the previous version. Apart
from that, the lowest F-score value corresponds to middle hand gesture, which was predictable since the
number of images used to train this gesture has been reduced in four. In general, all values of recall and
precision have dropped compared with the previous version. An interesting result is of the rock gesture,
since the amount of trained images of this gesture had an increase which lead to a fall of 5% in its recall.
This means that the reduction of images for the training of the middle gesture is indirectly affecting
especially the results of rock gesture.

When the results of both ANN (Figure 4.30 and Figure 4.31) are observed, even though in the 1st

version (see Figure 4.30) the percentage of used images for the training of the ANN exceeds the 80%,
better results than in the previous version are obtained. So, the ANN expressed in the Figure 4.30 will
be selected as the final ANN and tested in the implementation section.
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Figure 4.31: Results of the final hand gesture Classification ANN with 70% training 2nd version

Tag 50% results 70% 1st results 70% 2nd results
bad 50.00 55.93 55.93

cancel 47.62 54.76 54.76
good 51.00 65.31 65.31
middle 48.98 81.63 73.50
one 49.80 80.40 80.40
ready 50.00 60.90 62.18
rock 49.64 70.80 70.80
stop 49.50 63.64 63.64
two 49.80 74.21 74.60

Table 4.8: Final Accuracy percentages for Classification ANN

4.3 ANN for Task 1

In this section, the development and analysis of the created ANN for the Task 1 is reported.

4.3.1 Structure Creation of the ANN

The structure of the ANN for this task is composed by two tools. Firstly, the Location tool is used for the
same reason as in the hand gesture case, to crop the industrial piece from the remaining part of the image
(see Figure 3.14 and Figure 3.15). Once the Location tool is applied and the industrial part is separated
from the rest of the image, the Analyze tool is used. This tool first searches for small details in the image
that allows to classify the image as bad (images with a marking in the piece) or good (images without
any marking in the piece). In this case, the small details are the marks done in the industrial part, which
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simulate errors in the piece. So the final structure of the ANN for the Task 1 is the combination of
Location and Analyze tools as it can be observed in Figure 4.32.

Figure 4.32: ANN structure for the Task 1

4.3.2 Training of the ANN

In this part, the training of the whole ANN is explained. Firstly, the process and obtained results of the
Location tool will be expressed. Next, the different approaches made by the Analyze tool will be listed.

Location Tool

As expressed before, the Location tool is used to find and separate the part of the image that is interesting
for the ANN, in this case the industrial piece. To do so, the images listed in Section 3.5.2 have been
uploaded to the ANN. Then, as in the hand gesture ANN, the region of interest has been decided as all
the image since the camera will take that region. Next, a model was created since the industrial piece
will always be placed in the same position within the image. The model is an area within the target has
to be placed. This allows to easily locate the wanted part of the image since the marker should be inside
the created model. After the model is applied, the industrial piece of each image has been pointed with
the marker of the Location tool (see Figure 4.33).

Figure 4.33: Task 1 Location tool application image

The first square visible in the image, the biggest one, is the applied model to the image. This model
has a number on it that represents if a marker has been found inside the selected area. If the number
is 0/1 means that there was not a marker inside the model. Whereas, if the number is 1/1 means that
a marker has been found inside the model. The second square (the one inside the model square) is the
actual marker that finds the piece in the image, which has the size of the defined feature size.

As in this case a model was applied, in the results two different tables were obtained. On the one
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hand, the table representing the actual results of the performance of the ANN. On the other hand, the
results that represent the performance of the model.

Feature Found Train Labelled Recall Precision F-score
Task1 80 40 80 100 100 100

Table 4.9: Markers results of the Task 1 ANN

Model Found Train Labelled Recall Precision F-score
Model 1 80 40 80 100 100 100

Table 4.10: Models results of the Task 1 ANN
As it can be observed in the two tables (see Table 4.9 and Table 4.10) with a 50% of images used for

the training of the ANN and the other 50% for test, a 100% of recall and precision are obtained, which
is the best case scenario with not failures at all.

Analyze Tool

As explained in the beginning of this section, the Analyze tool allows to analyze the image given to the tool
and find differences between the images labelled as good and bad. The tool gives the option to train the
ANN as what are called “supervised” or “unsupervised” methods. Even though, following the description
of what is the difference between supervised and unsupervised methods in machine learning [46] is the
existence of labels in the training set. The unsupervised method suggests pattern recognition without
the implication of a target attribute.

In the ViDi software, when the “unsupervised” method is used, the images are labeled as good or bad
but the details that make the difference between them are not marked. This way of training the ANN
is incorrectly called unsupervised in this software since the images are labelled, hence it is a supervised
method. When the “supervised” method is used, apart from labelling the images as good or bad, the
scratches or markings in the target are manually marked.

First Approach: Supervised Method Without Markings First the supervised method without
marking the errors in the industrial piece has been used for the training of the ANN, which in the ViDi
software is called as “unsupervised” method. In this case, the images are labelled as good or bad. On
the one hand, if the industrial piece in the image has markings, then the image will be labelled as bad.
Whereas if the industrial part does not have any markings the image will be labelled as good. Once all
the images were labelled, 50% of the images of the database were used for the training of the ANN and
the remaining 50% of the image database were used for the testing set. As it is observable in Figure 4.34,
Figure 4.35 and Figure 4.36, there are three possible results. When the image is correctly identified as
good piece (see Figure 4.34), when the image is correctly identified as bad piece (see Figure 4.35) and
when the piece could not be identified neither as good or bad (see Figure 4.36).

In the Figure 4.34, in the right upper corner, a green tag can be seen which means the image was
labelled as good. Apart from that, the square surrounding the image is green too, this square represents
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Figure 4.34: 1 st approach: Correct piece after the Analyze ANN

the identification tag that the ANN gave to the image.

Figure 4.35: 1 st approach: Incorrect piece after the Analyze ANN

In the Figure 4.35 image, the red marks in the middle of the image are the found errors in the photo,
depending in the level of the found markings the image is identified as good or bad. As in the previous
image, the label given to the photo is represented by the colour of the line placed in the upper right
corner of the photo, which in this case is red so is a bad piece. Even though, if the image is observed,
there are some error markings out the industrial piece, which means the ANN found incorrectly errors in
the image.

Figure 4.36: 1st approach: Unidentified piece after the Analyze ANN

The Figure 4.36 shows an error made by the ANN when it comes to the search of mistakes in the
industrial piece since the piece is a good part and does not have errors. As the square surrounding the
image is gray, the photo has not been identified as neither good or bad. The results obtained from this
ANN can be observed in Figure 4.37 and Figure 4.38.

The Figure 4.37 and Figure 4.38 show the same results in different graphic representations. In the
left image (see Figure 4.37), the TP, TN, FP and FN are easily identified. The true positives, the images
identified correctly as good, are the 18 images located in the green slope. The true negatives, the 52
images identified correctly as bad, are the images located in the red slope. The false positives, the images
identified incorrectly as good, are the 4 images positioned inside the gap between the two vertical lines
in red colour. To finish, the false negatives, the images identified incorrectly as bad, are the 3 images
positioned inside the gap in green colour. The same results are represented in Figure 4.38 in form of
ROC curve and AUC value, this has a value of 0.992% which is a really good result with a 99.2% of
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Figure 4.37: 1 st approach: Results of
Analyze tool ANN in confusion matrix

Figure 4.38: 1 st approach: Results of
Analyze tool ANN in ROC curve

performance of the ANN. Even though, the total 7 miss-classified images, the sum of FP and FN, are
wanted to be classified correctly. To do so, the other mode of the software is tested, what is called as
supervised method in the software, this way the AUC of the ANN will be higher which means a better
performance of the ANN will be obtained.

Second Approach: Supervised Method With Markings In this second approach, the supervised
method of the software with a manual marking of the errors in the pieces will be tested. The feature
size of the ANN is of 40 pixels and the colour sample is of 4 channels which are CMYK (cyan, magenta,
yellow, and key (black)). Apart from that, as it can be observed in Figure 4.39 the errors in the bad
pieces have been manually marked, this is easily identifiable if this figure is compared with Figure 4.35.
This way, mistakes in the error (scratches and markings) search of the industrial piece are avoided. As it
is observable in Figure 4.39 the markings are pretty thick and not really concise. With this settings, the
results listed in the Figure 4.40 and Figure 4.41 have been obtained.

Figure 4.39: 2nd approach: Marking of the errors in the industrial piece
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Figure 4.40: 2nd approach: Results of
Analyze tool ANN in confusion matrix

Figure 4.41: 2nd approach: Results of
Analyze tool ANN in ROC curve

In this results, apart from the information given by the ROC curve and the Scores graphic, the region
area metrics outcome is given. This last results give the information about the performance of the size of
the markings made in the images. To obtain the results represented in these images, 45% of the database
has been used for training purposes and the remaining 55% as testing set. As predicted before, with the
manual markings of the errors in the industrial piece better results than in the previous approach are
obtained. Hence, the AUC has increased to a 100% of performance which is observable in Figure 4.41
as well as the lack of miss-classified images in Figure 4.40. This is easily observable in Figure 4.40 in
the empty gap between the vertical lines. This means there are not FP or FN in the results of the ANN
which is translated in a perfect performance in the prediction of the ANN. Apart from that, the region
area recall is of 74.7% and the precision is of 86.2%. Since the performance of the ANN is perfect with a
AUC of 1 and a really low percentage of images is used for the training set, the only thing to be improved
is the precision and the recall of the marking size. To improve these results, the only parameter to be
changed is the feature size, because of that reason different feature sizes have been tested to see how the
results of the region area metrics are affected.

Approach Feature size Recall Precision F-score
3 40 pixels 93.4 70.4 80.3
4 19.9 pixels 69.3 96.7 80.7
5 30 pixels 73.1 89.1 80.3
6 33 pixels 84.6 82.2 83.4

Table 4.11: Different feature size Task 2 Classification tool table

From these tests (see Table 4.11) the best possible and balanced results for this ANN can be concluded,
these are obtained when the feature size is near 33 pixels.
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4.3.3 Final results

In this last approach, the supervised method with hand made markings has been used. In this case, the
markings are more precise as it can be seen in Figure 4.42 since precision and recall of region area matrix
have improved compared with the previous approach (see Figure 4.39. Apart from that, the feature size
has been changed to 32.5 pixels and 53% of the images in the database has been used for the training of
the ANN, leaving the remaining 47% for the testing set.

Figure 4.42: Final approach: Marking of the errors in the industrial part

Figure 4.43: Final approach: Results of
Analyze tool ANN in confusion matrix

Figure 4.44: Final approach: Results of
Analyze tool ANN in ROC curve

The results obtained in this approach can be observed in Figure 4.43 and Figure 4.44. As in the
previous approach, the AUC remains in a 100%, which means a perfect performance of the ANN and
non confusion between the two different labels. This can be observed in the empty gap between the two
vertical lines of the scores graphic too. So, the obtained improvement by the change of the precision of
the markings in the industrial piece is the performance of the region area metrics, which has increased
in a 3.8% in the F-score. Apart from that, the area marked by the vertical lines is more centered in the
graphic and the TP (green slope) and TN (red slope) are more identifiable.
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4.4 Task 2: Muffin Chihuahua Dice Game ANN

In this section, how the structure and the training of the chihuahua muffin dice ANN has been performed
is explained and analysed. As reported before in Section 3.3.2, the main objective of this task is to get 5
chihuahuas, what is called to get a Yattzy, to win the dice game.

4.4.1 Structure Creation of the ANN

The structure for this ANN has two parts, the location tool and the Classification tool. Hence, the
structure of this ANN is the same as the structure of the hand gesture ANN (see Figure 4.13). As in
the previous cases, the Location tool is used to crop the parts of the image that are important for the
training of the ANN. In this case, the important parts of the taken image are the dices with muffin and
chihuahua photos. When the Location tool is applied, the box which contains the dices is found within
the image and cut out from the rest of the photo. After the Location tool is applied and the wanted
parts of the image are obtained, the Classification tool is applied to classify the dices photos as muffins or
chihuahuas. This way, apart from finding the chihuahuas and muffins in the image, the amount of them
can be counted.

4.4.2 Training of the ANN

As expressed in the structure creation of the ANN, the ANN has two parts, so in this subsection the
different tried parameters will be expressed with the used two tools (Location and Classification tools).
For the training of this ANN, 59 images of the muffin/chihuahua dices in different positions and with
different images of chihuahuas and muffins have been taken.

Location Tool

As explained before, the ANN first part is the location tool with the aim of searching for the dice in the
image. This can be observed in Figure 3.16 where the location squares are placed in the dices. For the
training of this ANN, over the 59 images that were taken to create the database for this task, 30 were
used for the training set and the remaining 29 for the testing set. This means that the 50.85% of the
images of the database were used for the training of the ANN. As in each taken image there are 5 dices,
the total amount of labeled dices are 295 and as 50% of them are used for the training set this leads
150 labelled dices for the training set and 145 for the testing set. With this set parameters, the results
observable in Figure 4.12 were obtained.

Feature Found Train Labelled Recall Precision F-score
Dice 295 150 295 100 100 100

Table 4.12: Location results for the Task 2
As it can be observed in Figure 4.12, recall and precision obtained by this ANN is 100% which can



55

not be improved more since it is the highest score that can be obtained. Hence, this location ANN will
be the final one.

Classification tool

After applying the Location tool, the Classification tool has been applied to classify the cropped images
between muffins and chihuahuas. This can be observed in Figure 4.45. The ANN has 295 images like the
one pointed in Figure 4.45 and the number of muffins and chihuahua images is not the same.

Figure 4.45: Cropped dice image by the Location tool

First Approach: Classification Tool with Dices with a Feature Size of 98.8 Pixels In this 1st

approach of the Classification tool, the used database was of 295 images of chihuahuas and muffins, 162
images were used as training set and the remaining 133 were used as testing set. This means that 55%
of the total number of images have been used for the training set and 45% for the testing set. Moreover,
the used feature size is 98.8 pixels with a luminance of 30%, a contrast of 20% and a colour sample of 3
channels (RGB). With these parameters, the results printed in Figure 4.46 were obtained.

Figure 4.46: 1st approach: ROC curve of the Classification tool in Task 2

The AUC obtained from this ANN is 94.5%, which is pretty good but can be improved. The precision
result of the dog tag (referred to the chihuahua dices) is 90.6% which is acceptable, but recall falls to
75% which is improvable. The muffin tag has better results with a recall of 92.8% and a precision of
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80%. This leads to a mean recall value of 83.9% and a precision of 85.3%. These values are wanted to be
improved as much as possible, to do so the feature size will be changed until as best results as possible
are obtained with the actual database.

The different tested feature sizes and their correspondent mean precision, recall and F-score results
are listed in Table 4.13.

Approach Feature size Mean Recall Mean Precision Mean F-score
2 18.1 pixels 96.9 97.3 97.0
3 25.4 pixels 96.9 97.3 97.0
4 34.1 pixels 94.5 95.4 94.7
5 10.4 pixels 96.9 97.3 97.’

Table 4.13: Different feature size Task 2 Classification tool table
The different tests related to the feature size, do not give a lot of information about the tendency of

the ANN when the feature size is changed. Even though, it is clear that a bigger feature size gives worse
results than a smaller one. Because of that reason, the ANN will be trained with the smallest feature
size as possible, that is 6.58 pixels.

4.4.3 Final Results

The final ANN for the 2nd Task is the combination of the already explained Location ANN in Section 4.4.2
and the Classification ANN explained in this subsection which can be observed in Figure 4.47. In this
final Classification ANN, the feature size has been settled to 6.58 pixels and the tool parameters have
been adjusted to the same parameters as in the 1st approach (contrast, colour channel etc.). The obtained
results by this specifications are observable in Figure 4.47.

In this case, the mean recall has improved 1% and the mean precision has improved 0.7% which
means that the mean F-score has improved 1%, compared with the last approach made in the previous
subsection, the 5th approach. This last approach has a F-score of 98%. Apart from that, the AUC of the
ROC curve gets a performance of 99.9% which is really near to 100%, the perfect score, that is a really
good result.
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Figure 4.47: Final approach: ROC curve of the Classification tool in Task 2
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Chapter 5

Simulation Phase of the Robot

In this section, the simulation of the YuMi robot will be explained. Before the implementation of the whole
project in the real robot and the real environment, a simulation of the movements, TCP/IP connection
(see Section 2.1.6) and synchronisation of the arms of the robot (Section 2.2.4) has been performed.

Figure 5.1: Workflow of the simulation of the robot

The YuMi robot (Section 2.1.1) will make two different types of movements which will depend in the
action to be performed. The movements can be synchronized, when both arms do the same gestures but
in mirror effect, or individual in case each robot arm has to perform a different movement.

The programming of the YuMi robot has been coded in RAPID language by the use of RobotStudio
program (Section 2.1.3). As the arms of the YuMi robot are designed as individual robot arms with the
same base, each robot arm needs a program with a main module and a data module. Due to this, two
programs with the names T_ROB_R and T_ROB_L have been created, the first one refers to the right robot
arm and the second one to the left arm. Apart from that, another program has been created for the
client server function of the TCP/IP connection called TCP_IP_. This three programs work in parallel
so that none of the programs interfere the other ones. To watch the results of the previously commented
programs in a simulation in RobotStudio, please visit https://youtu.be/iJIk3bHi0-4.

https://youtu.be/iJIk3bHi0-4
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5.1 Robot Arm Programs

As expressed before, each robot arm has its own program which is composed by a data module and a
main module. The main objective of the data module is to define the global variables shared with the
other modules. Whereas the main module is composed by the functions and instruction for the correct
functionality of the robot. As the name itself says, the main module is the main part of the program.
Both programs follow the same structure that can be observed in Figure 5.2.

Figure 5.2: Flow chart of the robot arms

As it can be observed in the flow chart of the robotic arms, some actions are colored. The blue action
is a function, the green ones are paths followed by the robot and last but not least, the red is the routine
that is run when the interrupt of cancel gesture is given.
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SyncTest Function

The SyncTest functions main job is to check whether the synchronization of both arms is active and in
that case to brake the synchronization between them. This way, the synchronization state of both arms
is ensured and clear, since sometimes a previous synchronization was stuck and did not allow to continue
with the execution of the program. This function, as it can be observed in the Figure 5.2, is used many
times in both robot arm programs. As expressed before, this function is coded in both main modules of
both robot arms.

Robot Paths

When it comes to the actions remarked in green, the robot paths, are functions which contain defined
movements with specific points that were previously established. Two different types of movements have
been used, which are MoveJ and MoveL. On the one hand, MoveJ enables the robot to move the joints
freely from the previous position to the defined new position. On the other hand, MoveL creates a linear
path from the previous position to the new position. Apart from the type of movement, the speed,
tool and error zone are defined. The error zone is the radius where the robot can move out from the
established path. Moreover, as it can be seen in the Figure 5.2 each path function has R/L written, this
depends in the actual selection of the program. If the right arm program is selected, the function will be
named HappyR, whereas if the program is of the left arm, the function will be named HappyL.

One important point to be noted is that this flow charts correspond to the simulation of the robot.
Hence, the path_10 and path_20 are invented movements to check the asynchronized movements of the
robot arms. Furthermore, all the other paths (Happy, Sad, mad and rock) are synchronized movements
of the robot used to express a feeling, which will be used in the implementation phase.

Cancel Routine

The cancel routine, the action in red, is executed when the interruption is given. The interruption is
activated when the cancel gesture is provided. When the interrupt is given, robot stops immediately
whatever it is performing in that moment and jumps to the routine. When this routine is run, if there
is a synchronization between the two arms, this is broken. When arms are not synchronized, the cycle is
finished by the use of previously created function called ExitCycle. This way, the program jumps to the
beginning of the program and moves the robot to the home position.

Synchronization of both Robot Arms

Another important point of this program is the synchronization of both robotic arms, T_ROB_R and
T_ROB_L. To do the synchronization and the desynchronization of both robotic arms, three predefined
functions have been used.

• WaitSyncTask The program waits in the point this function is written, until the other program
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arrives to the same WaitSyncTask of its code. This way, both programs (T_ROB_R and T_ROB_L)
are in the same point of the code.

• SyncMoveOff This function allows to desynchronize the robot arms that are pointed.

• SyncMoveOn This function allows to synchronize the robot arms that are pointed.

5.2 TCP_IP_ Program

To create the TCP/IP connection, server-client sockets have been programmed in the TCP_IP_ programs
main module. As in the previous case, this program is composed by a data module and a main module.
The flow chart of this program can be observed in Figure 5.3.

As in the previous program, the function of this program has been remarked in blue. There is only one
function which is called StartErrorHandling. This function, is executed after the robot is restarted after
a stop. Sometimes, the start predefined RAPID function does not work correctly, when that happens
this function ensures that the robot starts to move.

The setup function, that is remarked in orange, runs only once when the robot is started. This
function is used to initialize variables which need specific value in the start of the program.

Apart from these two functions, there is an error handler that is a special type of program, which is
not a function, routine or interruption. This error handler is programmed in the final part of the main
program and runs when there is an error in the creation or connection of the socket. When there is an
error, this error handler fixes the error by repeating the process of the creation of the sockets and making
the connection again.
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Figure 5.3: Flow chart of the TCP_IP program
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Chapter 6

The Implementation Phase

In this phase, all the needed steps to get the whole implementation of the project are explained. To do so,
each framework implementation will be explained and made separately to ensure the correct functionality
of each framework. Hence, the vision, recognition and execution frameworks are reported. The workflow
of the entire implementation of the project can be observed in the Figure 6.1.

Figure 6.1: Workflow of the final implementation phase

6.1 The Visual Perception Framework

Once the ANN’s are trained, their performance in real environment has been tested. To do so, images
for the three ANN’s have been taken, that is to say images of hand gestures and the two tasks. This lead
with a new database of 114 for hand gestures, 74 photos of the industrial piece and 26 photos of the box
with the dices (see Table 6.1).

Hand gesture Industrial piece Dices
114 74 26

Table 6.1: Number of images in the image database for the visual perception framework testing
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These images have been uploaded to the ViDi vision pro Cognex software to the already trained
ANN’s. This software has a “production mode” to test the already trained ANN with the new images
(see Figure 6.2). This way, the efficiency of the ANN with the new images is tested.

Figure 6.2: Implementation of the vision framework

6.1.1 Trained ANN test

In this subsection, the obtained results after the testing of the images listed in Table 6.1 are displayed.

Hand Gesture ANN

In this case, 114 new images have been taken to test the hand gesture ANN. The change of the building
where the images for the training of the hand gesture ANN must be remarked. This means that the
ambient light and the position of the cameras is different for the different image data-sets. That is to
say, the data-set used for the training of the ANN and the data-set taken for this implementation test.

Figure 6.3: Rock Gesture test correctly
classified

Figure 6.4: Two gesture test correctly
classified

Figure 6.5: Face incorrectly taken as
hand

Figure 6.6: One gesture test incorrectly
classified

As it can be observed in the previous images, some of the hand gestures were incorrectly classified (see
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Figure 6.5 and Figure 6.6) and some other correctly (see Figure 6.3 and Figure 6.4). Taken into account
the amount of miss-classified images, the performance of this ANN is not acceptable. This deterioration
of the performance of the ANN is due to the change of the placement of the structure, the environment
light and position of the cameras. Hence, the newly taken images, the ones taken for the test of the
implementation of the hand gesture ANN, will be added to the final ANN for its training.

Apart from adding the new images to the ANN, western Europe one and two gestures have been erased
(see Figure 3.9). This is due to the fact that the project is not going to be exposed in a technological
fair, spite it is going to be placed in the company where most of the workers are Swedish. So, for them,
the Swedish number signs were easier and more comfortable to make. Moreover, the possibility to select
the same task with two different gestures was confusing for some of the users. The obtained results of
the final ANN, with the specifications commented in this paragraph can be observed in Figure 6.2 and
Figure 6.7.

Feature Found Train Labelled Recall Precision F-score
hand 1162 810 1165 96.9 98.9 97.9

Table 6.2: Locate results: Final hand gesture ANN after implementation
Once the western Europe one and two gesture images were erased, the number of obtained images is of

1236. From that 1236 images, 1165 had hand gestures and the remaining 71 images have people standing
still or passing in front of the camera, without making any hand gesture. If the results in Figure 6.2
are observed, of the 1165 labelled images 1162 were found. This means that the images where people
is not making hand gestures are not taken into account and three images with hand gestures have not
been found by the ANN. Nevertheless, an F-score of 97.9% has been obtained with a recall of 96.9% and
precision of 98.9% which are really good results. Once the locate tool was trained, the classification tool
has been trained and the results represented in Figure 6.7 were obtained.

• One: 105/140 →75% trained.

• Two: 98/131 →74.8% trained.

• Stop: 56/99 →56.56% trained.

• Bad: 71/122 →58.2% trained.

• Ready: 100/166 →60.24% trained.

• Good: 74/106 →69.81% trained.

• Cancel: 44/79 →55.7% trained.

• Rock: 97/145 →66.9% trained.

• Middle: 40/52 →76.92% trained.

With a feature size of 37.2 pixels, 1162 hand gesture images and the trained percentages represented
in the previous points the results described in Figure 6.7 have been obtained. As it is observable, all
the recall and precision values of the different tags are higher than 91%, which means all the tags are
similarly well classified. The bad, cancel, good and stop gestures have 100% of recall and precision which
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Figure 6.7: Classify results: Final hand gesture ANN after implementation

can not be improved more. These results lead with a mean recall of 97.5% and a precision of 98.5% which
ends up with a F-score of 98%. Even these results are not as good as the results obtained in the final
hand gesture ANN (see Figure 4.31) with a F-score of 98.6% which is 0.6% higher to the ones obtained in
these last results (see Figure 6.7), the last ANN is more versatile since the environmental light, position
of the camera and proximity of the user changes in the different images.

Task 1 ANN

To test the Task 1 ANN 74 images have been taken. Three colours have been used to do the markings of
the industrial piece: black, the one used to train the ANN, red and blue. The obtained results with the
different colour markings can be observed in Figure 6.9, Figure 6.10 and Figure 6.11. In Figure 6.8 the
result of testing the industrial part without markings, the result of a good piece, can be observed.

If these images are observed, the ability of the ANN to search the markings and classify correctly the
pieces, when the used pen is the blue or black, can be observed. Hence, when the red pen is used to
make the markings, the ANN is not capable of finding the markings in the industrial part. Even though,
the piece is not classified as a good piece either, which means it is not classified at all. As the ANN
has only been trained with black markings, the difficulties of the ANN to search the markings in other
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Figure 6.8: Good piece result of the test
of the Task 1 ANN

Figure 6.9: Result of the black marked
Task 1 test

Figure 6.10: Result of the red marked
Task 1 test

Figure 6.11: Result of the blue marked
Task 1 test

colours is understandable. The ability of the ANN to search blue marks in the piece could be related to
the similarity between black and dark blue colours.

Task 2 ANN

To test the Task 2 ANN 60 images have been taken. As in each image there are 5 dices, in total there are
300 tests of muffin and chihuahua images. These 60 images have been tested and all of them have been
classified correctly. The obtained results with the different types of dices, chihuahuas and muffins, can
be observed in Figure 6.12 and Figure 6.13. The chihuahua dices are classified as dogs and the muffins
as muffins.

Figure 6.12: Task 2 ANN 1st test Figure 6.13: Task 2 ANN 2nd test

In these images, Figure 6.12 and Figure 6.13, the correct classification of the two types of dices is
observable. On the one hand, when over the dice appears a d, means that the dice is classified as dog,
hence, chihuahua dice. On the other hand, when the m letter appears over the dice, means that the dice
is classifies as muffin.
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6.2 The Reasoning and Execution Frameworks

In this project, the reasoning and execution frameworks are both placed in the robot. The reasoning
framework is the one in charge of selecting the action to be applied depending the received input infor-
mation. Whereas, the execution framework executes the action and specifies the robot which type of
movement has to be done to which position. In this section, the implementation of these frameworks
in the robot will be explained and tested. As the vision framework is still not connected to these two
frameworks, the Hercules software will send the input information to the robot by the use of TCP/IP
connection as it can be observed in Figure 6.14.

Figure 6.14: Implementation of the reasoning and execution frameworks

To make the TCP/IP connection between the robot and the computer, an Ethernet cable has been
used. Apart from that, IP addresses have been established to enable this connection between the different
devices as it can be seen in the Figure 6.15.

Figure 6.15: Network structure in the robot implementation phase

This implementation of the robot has been performed with the final robot arm programs, which means
are different to the ones used for the simulation of the robot in Section 5 (see Figure 5.2 and Figure 5.3).
Moreover, the part of the program which corresponds to the performance of the two tasks (see Section 3.3)
has been changed. Even though, the emotion robot movements have not been changed from the previous
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version. Therefore, by the implementation of these programs, emotion robot gestures (see Section 3.3.3)
have been tested as well as the TCP/IP server connection and the two tasks movements with the real
robot.

6.2.1 Flow Chart of the Robot Programs

In this subsection, the final flow charts of the robot arm programs are expressed as well as the last server
TCP_IP_ program. In each section, the main module of each program is expressed. The data module
of each process is the initialization of the global variables, this is expressed in the code in the annexes
section.

TCP_IP_ program

This program creates the server socket to enable the communication between the robot and the vision
program. As in this implementation of the robot program the vision part is not implemented, the gesture
messages are sent to the robot by the Hercules software. To understand how this program works see the
flow chart represented in Figure 6.16.

A remarkable point of this program is that it is not the final one since the robot works as server.
When EAVS software has to communicate with the robot program the EAVS program works as server,
so, the robot has to work as client. Due to this, for the hole implementation of the project, a last version
of TCP_IP_ program, which will work as client, will be created.

The code of this program is placed in the appendices, the data module in the Appendix B.1.1 and
the main module in the Appendix B.1.2.

T_ROB_R Right Robot Arm Program

The right robot arm orders over the left robot arm since the right arm has a more complex job than the
left arm. This is due to the Task 1, where the right arm is the one in charge of all the movements. To
understand how this program works see the flow chart represented in Figure 6.17.

The square in blue called SyncTest is a function, the explanation of it can be found in Section 5.1 and
its flow chart in Figure 6.18. Moreover, the CancelRountineR is a routine connected to an interruption,
which is given when cancel message is received (see Section 5.1). Apart from that, the green squares,
except HappyMoveR and SadMoveR, are robot paths (see Section 5.1), the majority of them have simple
move functions but Pen_Path and BoardR_Path have more complex codes since the gripper is controlled.
In the case of the HappyMoveR and the SadMoveR are functions which establish the synchronization of
both robot arms and after that the HappyR and SadR paths are run. To understand better each specific
function, see Figure 6.18.

The code of this program is placed in the appendices, the data module in the Appendix B.2 and the
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main module in the Appendix B.2.2.

T_ROB_L Left Robot Arm Program

In this section, the flow chart of the left robot arm program is expressed. This program and the
T_ROB_R program are really similar since both arms of the robot have to do the same work pretty
much. As mentioned in Section 6.2.1, the T_ROB_L is more simple than T_ROB_R since T_ROB_R
is the head program which directs the actions of T_ROB_L. This can be observed in the flow chart in
Figure 6.19). The functions of this program (see Figure 6.20) are really similar to the ones in Figure 6.18
too. The difference is that this program does not have a Pen_Path function since the left arm does not
interact in Task 1.

The code of this program is placed in the appendices, the data module in the Appendix B.3.1 and
the main module in the Appendix B.3.2.

6.2.2 Performance of the Robot

To see the performance of the robot with the programs explained in the flow charts Figure 6.16, Figure 6.17
and Figure 6.19 a video has been recorded. In this video, the process of sending the message of the
hand gestures by TCP/IP server, the robot processing it and making the action can be observed (see
https://youtu.be/f9YFXDSfdT8).

6.3 Complete Implementation

The workflow of the whole implementation can be observed in Figure 6.1. For this implementation,
the TCP_IP_ program has been changed from server to client. The flow chart of this program can be
observed in Figure 6.22 and the code is written in Appendix B.1.3. In this program, the client socket is
made. Apart from that, the message code to be sent from the robot to EAVS program and vice versa
has an specific structure which can be observed in Table 6.3. The specific messages to be sent between
the software EAVS and the robot can be seen in Figure 6.21. This structure is to ensure the correct
communication between EAVS and the robot program.

Sender message Receiver answer
“ID + \0A” “ID , nDataField1 + \0A”

Table 6.3: Structure of the message sent between the robot and EAVS program
There are two types of messages, one sent by the robot and the other one sent by EAVS software.

On the one hand, the message sent by the robot has two part. First, the ID message which corresponds
to the actual task (HAND, TASK1 or TASK2) and second, the “\0A” to point the end of the message.
On the other hand, the message sent by EAVS is composed by three parts. First, the ID of the message,

https://youtu.be/f9YFXDSfdT8
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in the second part of the message the result of the ANN is written and in the third part “\0A” is sent.
Furthermore, for a more detailed information of the different messages see Figure 6.21.

As it can be observed in Figure 6.22, the TCP_IP_ client program, two new functions are used, the
mVision EAVS initialization function (see Appendix B.1.3) and the communication function mEAVS (see
Appendix B.1.3). The mVision function initializes the needed sockets to create the TCP/IP connections
between the devices. Apart from that, the IP value and the port number are specified. The mEAVS
function is more complex than the mVision function since is in charge of sending, processing and receiving
the messages. To have a clearer idea of how this function works, observe the flow chart in Figure 6.23.

In mEAVS function, the robot message with the structure represented in Table 6.3 is sent and the
answer of EAVS is received. Once the answer is obtained, the mEAVS function separates the three parts
of the message and sends an array of two strings as result to the TCP_IP_ program. When the result is
collected, the second string, hence the result of the ANN, is announced to the two robot arm programs.
This way, the robot arms will activate to perform the commanded movement.

As mentioned before, the robot works as client and EAVS works as server1. There, the messages
reported in Figure 6.21 are sent by the use of Hercules software, which works instead of EAVS software.
The final step to complete the implementation of this project would be to run EAVS program in the
computer and see the different parts of this project working together. To understand better the workflow
of EAVS program see the hole implementation flow chart represented in Figure C.1, in Appendix C. The
final implementation could not be proven since the person of the company in charge of the implementation
of the ANN in EAVS software could not finish it on time.

1To check the TCP_IP_ client programs performance, visit https://youtu.be/wrQlOaDWA7U

https://youtu.be/wrQlOaDWA7U
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Figure 6.16: Flow chart of the TCP_IP_ server module
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Figure 6.17: Final flow chart of the T_ROB_R module



76

Figure 6.18: T_ROB_R functions
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Figure 6.19: Final flow chart of the T_ROB_L module
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Figure 6.20: T_ROB_L functions

Figure 6.21: Messages between the robot and EAVS program
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Figure 6.22: Flow chart of the TCP_IP_ client module
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Figure 6.23: Flow chart of the mEAVS function
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Chapter 7

Cost Planning

This project involves building some tools based on license paying programs, and testing them on a real
robot. Hence, this project includes the development cost of the programs, the cost of the license and the
different used machinery or equipment. The development cost of the programs has been computed based
on an average of 8 hours work per day, and on an average, a junior developer quotes around 20e/hour.
The development cost of this project has been portrayed in Table 7.1.

To calculate the cost of the robot, the amortization of three years has been calculated. For that, the
equation 7.1 has been used, where Vn is the value of the new robot, Vr the residual value (the value in
which is expected to sell the robot), T the expected lifetime of the robot and H robots working hours per
year. In this case, a residual value of 0 is taken since it is not expected to sell the robot after its usage.
Furthermore, the lifetime of the robot is expected to be of 10 years and a usage of 800 hours/year.

A =
(V c−V r)

T

H
=

(36,700−0)
10

800 = 4.5875 e/hour (7.1)

The robot has already been used during 3 years with a usage of 800 hours/year, this makes a total
amount of 2,400 hours in which the robot has been running. If the amortization of these 3 years, hence
2400 hours is taken, an actual cost of 11,010e is obtained.

The development of the programs have been performed in a system with Intel Core i7 CPU @ 2.8GHz
machine with 8GB of RAM with a graphical card of GeForce GTX 1050, has been utilised, the hardware
might cost around 1.200,00e.
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Number of development days 124 days
Number of working hours 8.0 hours/day

Development wage 20e/hour
Total development cost 19,840.00e

Cost of YuMi ABB robot (estimated) 11,010e
Cost of RobotStudio license 192.61e

Cost of ViDi Cognex Software 13,964.57e
Cost of computer for ViDi Cognex Software 3,370.76e

Cost of Basler pia2400-17gc Camera 1,444.61e
Cost of Basler acA2500-14gc Camera 866.77e

Cost of Box for the dices, task 2 144.46e
Cost of the dices 192.61e

Cost of grippers and box handlers 385.23e
Cost of industrial piece 4.82e
Cost of the two lights 288.92e

Cost of the structure of the project 529.69e
Cost of the screen of the vision part 192.61e

Total Cost 52,427.66e

Table 7.1: Development cost for this project
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Chapter 8

Sustainability Study

In this chapter, I will analyse the sustainability impact of this project from a view point as extended as
possible. Sustainability is the satisfaction of current necessities without involving the capacity of future
generations to satisfy theirs, guaranteeing the balance between the economical increase, environmental
care and the social well-been. Sustainability and the sustainable development are two terms that are
raising concern and are becoming to be linked to wider fields lately due to the population growth, which
has led to a faster degradation of the environment and shortage of natural resources, in extreme cases [47].

In order to implement a sustainable artefact, the three fields shown in Figure 8.1, which are economic,
social and environmental sustainability have been taken into account, as will be explained in the next sec-
tions. In this study, which consists in hand gesture recognition and its corresponding action performance
by a YuMi robot, the development of an artefact will be done, as a proof of concept. For the development
of this project there is no material to be chosen, so the sustainability of this project would be analysed as
a service. This way, the service should respect the previously mentioned three sustainability types (see
Figure 8.1), environmental, social and economic ones, in order to provide a sustainable solution.

Figure 8.1: The three spheres of sustainability



84

8.1 Environmental

The environmental sustainability refers to the capacity of maintaining biological aspects in their produc-
tivity and variety over time. This way to ensure the preservation of the natural resources and to create
awareness of the ecological aspects.

This project does not create any hazardous liquid, gas or material for the environment, hence it is
not going to cause any kind of impact in the environment. For the creation and implementation of this
project, computers, cameras and robots have been used. This machines are supplied by electricity, so the
generation of the electricity needed to supply and the material needed to create these machines would be
the only indirect impact in the environment caused by this project.

8.2 Social

The social sustainability refers to adopt values which generate behaviours as the value of nature, to
maintain harmonic and satisfactory levels of education, training and awareness-raising for the population
of a country to surpass themselves, to maintain a good living standard and to involve citizens to create
something new for the society.

The social impact of this project is hard to estimate because depends in the mindset of the people,
future industry situation and changes in technology. This project enables to introduce deep learning
in industrial environment and shows how it could be applied. Apart from that, shows the option of
controlling robots by hand gesture, which enables people without technical knowledge to be able to
control the robot. This could have a really good acceptance in industrial environment but until its
showing this can not be proven.

8.3 Economical

The economical sustainability refers to the capacity of generating wealth in suitable and equitable quan-
tities in different social areas. It is main objective is that the population is capable of solving their
economical issues as well as to strength the production and consumption in monetary sectors. To sum
up, the economical sustainability concerns the balance between the human been and the nature to satisfy
the necessities without putting at risk future generations.

When it comes to the economical impact of this project it is not easy to make any conclusion. As in
the social sustainabilities the economical aspect of this project totally depends in the reaction of people,
which can not be predicted. If the project and its idea is accepted and recognised could bring big profits
but this totally depends in the economical situation, technology advance and in the mindset of the people
and possible buyers.
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Chapter 9

Conclusions

In conclusion, a framework capable of recognizing hand gestures and acting in answer to them has
successfully been created. To do so, an ANN which is able to recognize hand gestures has been trained
and tested. Furthermore, a YuMi robot has been programmed to accomplish the tasks selected by the
hand gesture ANN. Apart from the objectives presented in the Section 1.2 two more ANN’s have been
trained, the industrial piece with markings and the chihuahua and muffin dices ANN.

Firstly, a study of the common knowledge hand gestures and human reactions has been performed to
apply in this project. This way, an easy control of the robot is ensured since the input commands of the
robot, the hand gestures, will be well known by the user.

For the training of the ANN’s, ViDi software from Cognex has been used. The ANN of this software
is a black box in which the only possible characteristics to be selected are the type of ANN (location,
classification, read or analyze), feature size, color model and other image parameters, but the ANN
structure, weights or activation function can not be modified. This brings a huge uncertainty in the
performance of the ANN for different applications as well as in the manner of tuning the previously
mentioned modifiable parameters. Due to this reason, an analysis of the software by the training of
the hand gesture ANN has been completed. With this analysis, different aspects of the software have
been clarified, as the non relation between the number of trained images and the given weight to a class.
Another obtained conclusion is the need of more images in the training set when the identification window
is increased in the location tool. This is due to the amount of data to be processed by the ANN, when
the identification window is bigger, the ANN has more information to process so with more images better
results are obtained. In addition, a bigger amount of images in the training of a class means better results
in the recall and precision of that class. Another observed characteristic of this software, in the case of
the classification tool, is that it reaches a point where more images in the training set confuses the ANN
and the values of recall and precision decrease. When it comes to the hand gesture recognition, there is
a tendency of miss-classification between the one and two gestures as well as between the two and rock
gestures. Lastly, when the obtained results are compared with the number of images used with training
purposes in each ANN, the ViDi software works better with industrial applications where the images
have patterns in comparison to applications where the position or rotation of the object in track is more
unpredictable.
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When it comes to the programming, the YuMi robot has two arms and these are coded in separate
programs. This means that when the objective is synchronized movement, the synchronization of both
programs has to be ensured. To do so, both programs have to be in the same point of the code and after,
the synchronization of both arms has to be created by a function in RAPID code. Apart from that, to
make a TCP/IP connection in RobotStudio, the TCP/IP program has to be parallel to the robot arm
programs. Otherwise, if the TCP/IP code is written in one of the robot arm programs as periodical
interruption, so that the messages are obtained regularly from the other device, the robot looses a lot
of information in the waiting time of the next interruption. Apart from that, returning to the previous
point of the code, when the robot was in a synchronized movement, after the interruption is difficult.
This is because when the interruption is given, the synchronization is lost and as the robot arm programs
are parallel the communication between them is completely lost, hence the robot arms work individually.
Furthermore, if the TCP/IP program is made in parallel, all these inconveniences are avoided since the
TCP/IP program will be constantly executed and sending the information to the other programs by
global variables.

Even though this project could not be shown and tested in the technological fair because of its
cancellation due to COVID-19, the final implementation tests showed an easy controlability of the robot
by simple commands. Apart from that, the results obtained in the performance of the three ANN are
good since the hand gesture ANN F-score reached a performance of 98%, task 1 ANN with an AUC of 1
and task 2 ANN with a F-score of 98% and an AUC of 0.999. With this results it can be concluded that
this project has been successful.
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Chapter 10

Future improvements

Even though it has been proven that the project was successful, there are still some improvements, which
are explained in the paragraphs bellow, that could be applied in future work.

Firstly, the implementation of the different parts of the project, hence the robot framework and the
performance of the trained ANN, could be set together by the implementation of the EAVS software.
This could not be implemented in this project because of external factors. Nevertheless, the flow chart
of the entire implementation can be observed in Figure C.1.

Secondly, for a better interaction between the robot and the user, sounds and facial expressions can be
added to the robot. As the YuMi robot is not equipped with speakers or any sound system, an external
device would have to be used. Furthermore, a study of this case has been done in this project and a
possible solution has been found. Hence, an Arduino board able to read SD cards could be used next
to a sound amplifier and an external speaker. By the use of YuMi robots digital outputs, signals to the
Arduino board could be sent to play sounds saved on the SD card. This solution can be observed in D.1.
Another way to improve the interaction between the user and the robot is by adding facial expression to
the robot. To do so, a screen would have to be added to the robot and programming of user interfaces
(UI’s). An example of possible facial expressions for the robot can be seen in D.2.

Thirdly, for a more advanced communication between the user and the robot, more hand gestures and
robot reactions could be added to the project. Nevertheless, this change could have a bad effect since
more hand gestures and reactions lead to a more complex interaction which could end up confusing the
user.

Lastly, the performance of two of the ANN’s, the hand gesture and the chihuahua and muffins ANN’s,
can be improved. Better results could be reached by the addition of images to the training set until
obtaining results as close as possible to a perfect performance, that is to say 100% of F-score or an AUC
of 1.
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Appendix A

The training phase

A.1 Task 1 ANN

In this section of the appendix, the results obtained in the tests made with different feature sizes (see
Table 4.11) are shown in case a more detailed information is wanted to be known.

A.2 Task 2 ANN

In this section of the appendix, the results obtained in the tests made with different feature sizes (see
Table 4.13) are shown in case a more detailed information is wanted to be known.
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Figure A.1: 3rd approach: ROC curve Figure A.2: 3rd approach: Scores graphic

Figure A.3: 4rth approach: ROC curve Figure A.4: 4rth approach: Scores graphic
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Figure A.5: 5th approach: ROC curve Figure A.6: 5th approach: Scores graphic

Figure A.7: 6th approach: ROC curve Figure A.8: 6th approach: Scores graphic
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Figure A.9: 2nd approach: ROC curve Figure A.10: 3rd approach: ROC curve

Figure A.11: 4rth approach: ROC curve Figure A.12: 5th approach: ROC curve
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Appendix B

Robot Program Code

B.1 TCP IP Code

B.1.1 Data Module

� �
1 MODULE DataModule
2

3 !
**************************************************************************

4 ! Shared data RobL -RobR - TCP_IP_Input
5 !

**************************************************************************

6 ! interrupts
7 PERS bool InitDone := FALSE;!START IN FALSE
8 PERS bool MoveCanceled := FALSE;
9 PERS string data;

10 PERS intnum connection :=0;
11 PERS intnum NumDice ;
12 ENDMODULE� �
B.1.2 Server

Main Module

� �
1 MODULE MainModule
2 PERS tasks TaskListThree {3}:=[[ " T_ROB_L "],[" T_ROB_R "],[" TCP_IP_Input "]];



100

3

4 VAR syncident syncTaskDefaultStart ;
5 VAR syncident syncTaskFinishStop ;
6 VAR syncident syncTaskFinishCancel1 ;
7 VAR syncident syncTaskFinishCancel2 ;
8 VAR syncident syncTaskFinishCancel3 ;
9 VAR syncident syncTaskFinishOne ;

10 !TCP/ip
11 VAR socketdev serverSocket ;
12 VAR socketdev clientSocket ;
13 VAR socketstatus statusTCP ;
14 VAR string dataRecieve ;
15 VAR string NumDiceRecieve ;
16 VAR string dataPrev ;
17

18

19 PROC main ()
20 data :="zero";
21 !TCP/ip initialization / connection
22 SocketCreate serverSocket ;
23 SocketBind serverSocket ," 192.168.125.1 " ,5000;
24 SocketListen serverSocket ;
25 SocketAccept serverSocket , clientSocket ,\ Time := WAIT_MAX ;
26 SocketSend clientSocket \Str :=" connected ";
27

28 !take first data
29 IF data="zero" THEN
30 SocketReceive clientSocket \Str := dataRecieve ;
31 data := dataRecieve ;
32 dataPrev := data;
33 ELSE
34 SocketSend clientSocket \Str :=" initialization error";
35 ENDIF
36 WaitSyncTask syncTaskDefaultStart , TaskListThree ;
37 InitDone := TRUE;
38 WHILE TRUE DO
39

40 SocketReceive clientSocket \Str := dataRecieve ;
41 data := dataRecieve ;
42

43 IF (data="stop") AND (NOT dataPrev ="two") THEN
44 SocketSend clientSocket \Str :=" stop received ";
45 ! tell the client stop has been recieved
46 StopMove \Quick\ AllMotionTasks ;
47 !while is the stop gesture mantain in loop
48 WHILE data="stop" DO
49 ! StopMove \Quick;
50 SocketReceive clientSocket \Str := dataRecieve ;
51 SocketSend clientSocket \Str :=" data received ";
52 data := dataRecieve ;
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53 ENDWHILE
54 StartMove \ AllMotionTasks ;
55 StartErrorHandling ;
56

57 ELSEIF data=" cancel " THEN
58 dataPrev :=" cancel ";
59 SocketSend clientSocket \Str :=" cancel received ";
60 StopMove \Quick\ AllMotionTasks ;
61 ! semaphore to activate Right arm interrupt
62 IF MoveCanceled =TRUE THEN
63 MoveCanceled := FALSE;
64 ELSEIF MoveCanceled =FALSE THEN
65 MoveCanceled := TRUE;
66 ENDIF
67 WaitSyncTask syncTaskFinishCancel1 , TaskListThree ;
68 StartMove \ AllMotionTasks ;
69 StartErrorHandling ;
70 WaitSyncTask syncTaskFinishCancel2 , TaskListThree ;
71 WaitSyncTask syncTaskFinishCancel3 , TaskListThree ;
72

73 ELSEIF data="good" THEN
74 dataPrev :="good";
75 SocketSend clientSocket \Str :=" good received ";
76

77 ELSEIF data="bad" THEN
78 dataPrev :="bad";
79 SocketSend clientSocket \Str :=" bad received ";
80

81 ELSEIF data="rock" THEN
82 dataPrev :="rock";
83 SocketSend clientSocket \Str :=" rock received ";
84

85 ELSEIF data="one" THEN
86 dataPrev :="one";
87 SocketSend clientSocket \Str :=" one received ";
88

89 ELSEIF data="two" THEN
90 dataPrev :="two";
91 SocketSend clientSocket \Str :=" two received ";
92

93 ELSEIF data="ready" THEN
94 SocketSend clientSocket \Str :=" ready received ";
95 ! connection gives the information of which task has been

previously selected , if connecction is = 1 is task 1 otherwise is task 2
96 WaitUntil connection <>0;
97 ! that means a task has been selected
98 IF connection =1 THEN
99 SocketSend clientSocket \Str :="task 1";

100 !send a message to EAVS of selection of task 1
101 WaitSyncTask syncTaskFinishOne , TaskListThree ;
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102 ELSEIF connection =2 THEN
103 SocketSend clientSocket \Str :="task 2";
104 !In case of the second task , look how many dices have

been counted by EAVS
105 SocketReceive clientSocket \Str := NumDiceRecieve ;
106 IF NumDiceRecieve ="1" THEN
107 NumDice :=1;
108 ELSEIF NumDiceRecieve ="2" THEN
109 NumDice :=2;
110 ELSEIF NumDiceRecieve ="3" THEN
111 NumDice :=3;
112 ELSEIF NumDiceRecieve ="4" THEN
113 NumDice :=4;
114 ELSEIF NumDiceRecieve ="5" THEN
115 NumDice :=5;
116 ENDIF
117 ENDIF
118 data :="zero";
119

120

121 ELSEIF data=" middle " THEN
122 SocketSend clientSocket \Str :=" middle received ";
123

124 !in case the user makes something that it is not considered a
gesture

125 ELSEIF data <>"stop" AND data <>" cancel " AND data <>"zero" THEN
126 SocketSend clientSocket \Str :=" Error , incorrect entrance :";
127 SocketSend clientSocket \Str := dataRecieve ;
128 !clean the variables
129 data :="zero";
130 dataRecieve :="";
131 ENDIF
132 ENDWHILE
133

134 !error handling for TCP/IP
135 ERROR
136 !to notify if there is any error the next
137 IF ERRNO= ERR_SOCK_TIMEOUT THEN
138 RETRY;
139 ELSEIF ERRNO= ERR_SOCK_CLOSED THEN
140 SocketClose clientSocket ;
141 SocketClose serverSocket ;
142 SocketCreate serverSocket ;
143 SocketBind serverSocket ," 192.168.125.1 " ,5000;
144 SocketListen serverSocket ;
145 SocketAccept serverSocket , clientSocket ,\ Time := WAIT_MAX ;
146 RETRY;
147 ELSE
148 RAISE ;
149 ENDIF
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150

151 ENDPROC
152

153

154 PROC StartErrorHandling ()
155 ERROR
156 IF ERRNO= ERR_STARTMOVE THEN
157 WaitTime 1;
158 StartMove \ AllMotionTasks ;
159 ELSEIF ERRNO= ERR_PROGSTOP THEN
160 ! execution stopped several times
161 ELSEIF ERRNO= ERR_ALRDY_MOVING THEN
162 !robot already moving
163 ENDIF
164 ENDPROC
165

166 PROC setup ()
167 ! Initialize variables
168 data :="zero";
169 InitDone := FALSE;
170

171 ENDPROC
172 ENDMODULE� �
B.1.3 Client

Main Module

� �
1 MODULE MainModule
2 PERS tasks TaskListThree {3}:=[[ " T_ROB_L "],[" T_ROB_R "],[" TCP_IP_Input "]];
3 PERS tasks TaskListTask2 {2}:=[[ " TCP_IP_Input "],[" T_ROB_R "]];
4

5 VAR syncident syncTaskDefaultStart ;
6 VAR syncident syncTaskFinishStop ;
7 VAR syncident syncTaskFinishCancel1 ;
8 VAR syncident syncTaskFinishCancel2 ;
9 VAR syncident syncTaskFinishCancel3 ;

10 VAR syncident syncTaskFinishOne ;
11 VAR syncident syncTaskTwoDice ;
12 !TCP/ip
13 VAR socketdev serverSocket ;
14 VAR socketdev clientSocket ;
15 VAR socketstatus statusTCP ;
16 VAR string dataRecieve ;
17 VAR string NumDiceRecieve ;
18 VAR string dataPrev ;
19
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20 !EA Vision Studio results
21 VAR recEAVSResult Result ;
22

23 ! Procedure alarm numbers
24 VAR errnum errCommandEAVS :=1;
25

26 PROC main ()
27 data :="zero";
28 InitDone := FALSE;
29 ! initialize EAVS
30 mVision_InitEAVS ;
31 WaitSyncTask syncTaskDefaultStart , TaskListThree ;
32 InitDone := TRUE;
33 WHILE TRUE DO
34

35 !Send command to EA Vision Studio
36

37 Result := mEAVS_Command (EAVS1 ,"HAND", errCommandEAVS );
38 GetEAVSHandMessage ( Result );
39

40 IF (data="stop") AND (NOT dataPrev ="two") THEN
41 ! tell the client stop has been recieved
42 StopMove \Quick\ AllMotionTasks ;
43 !while is the stop gesture mantain in loop
44 WHILE data="stop" DO
45 ! StopMove \Quick;
46 Result := mEAVS_Command (EAVS1 ,"HAND", errCommandEAVS );
47 GetEAVSHandMessage ( Result );
48 ENDWHILE
49 StartMove \ AllMotionTasks ;
50 StartErrorHandling ;
51

52 ELSEIF data=" cancel " THEN
53 dataPrev :=" cancel ";
54 StopMove \Quick\ AllMotionTasks ;
55 ! semaphore to activate Right arm interrupt
56 IF MoveCanceled =TRUE THEN
57 MoveCanceled := FALSE;
58 ELSEIF MoveCanceled =FALSE THEN
59 MoveCanceled := TRUE;
60 ENDIF
61 WaitSyncTask syncTaskFinishCancel1 , TaskListThree ;
62 StartMove \ AllMotionTasks ;
63 StartErrorHandling ;
64 WaitSyncTask syncTaskFinishCancel2 , TaskListThree ;
65 WaitSyncTask syncTaskFinishCancel3 , TaskListThree ;
66

67 ELSEIF data="good" THEN
68 dataPrev :="good";
69
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70 ELSEIF data="bad" THEN
71 dataPrev :="bad";
72

73 ELSEIF data="rock" THEN
74 dataPrev :="rock";
75

76 ELSEIF data="one" THEN
77 dataPrev :="one";
78

79 ELSEIF data="two" THEN
80 dataPrev :="two";
81

82 ELSEIF data="ready" THEN
83 ! connection gives the information of which task has been

previously selected , if connecction is = 1 is task 1 otherwise is task 2
84 WaitUntil connection <>0;
85 ! that means a task has been selected
86 IF connection =1 THEN
87 mVision_InitEAVS ;
88 Result := mEAVS_Command (EAVS1 ,"TASK1", errCommandEAVS );
89 WaitUntil result . nResultID ="TASK1" AND result .

nDatafield1 ="ok";
90 !send a message to EAVS of selection of task 1
91 WaitSyncTask syncTaskFinishOne , TaskListThree ;
92 ELSEIF connection =2 THEN
93 mVision_InitEAVS ;
94 Result := mEAVS_Command (EAVS1 ,"TASK2", errCommandEAVS );
95 GetEAVSTaskMessage ( Result );
96 !In case of the second task , look how many dices have

been counted by EAVS
97 WaitSyncTask syncTaskTwoDice , TaskListTask2 ;
98 ENDIF
99 data :="zero";

100

101 ELSEIF data=" middle " THEN
102 dataPrev :="two";
103 !in case the user makes something that it is not considered a

gesture
104 ELSEIF data <>"stop" AND data <>" cancel " AND data <>"zero" THEN
105 SocketSend clientSocket \Str :=" Error , incorrect entrance :";
106 SocketSend clientSocket \Str := dataRecieve ;
107 !clean the variables
108 data :="zero";
109 dataRecieve :="";
110 ENDIF
111 ENDWHILE
112

113

114 ENDPROC
115
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116

117 PROC StartErrorHandling ()
118 ERROR
119 IF ERRNO= ERR_STARTMOVE THEN
120 WaitTime 1;
121 StartMove \ AllMotionTasks ;
122 ELSEIF ERRNO= ERR_PROGSTOP THEN
123 ! execution stopped several times
124 ELSEIF ERRNO= ERR_ALRDY_MOVING THEN
125 !robot already moving
126 ENDIF
127 ENDPROC
128

129 PROC GetEAVSHandMessage ( recEAVSResult result )
130

131 IF result . nResultID ="HAND" AND result . nDatafield1 ="good" THEN
132 data :="good";
133 ENDIF
134

135 IF result . nResultID ="HAND" AND result . nDatafield1 ="bad" THEN
136 data :="bad";
137 ENDIF
138

139 IF result . nResultID ="HAND" AND result . nDatafield1 =" middle " THEN
140 data :=" middle ";
141 ENDIF
142

143 IF result . nResultID ="HAND" AND result . nDatafield1 ="rock" THEN
144 data :="rock";
145 ENDIF
146

147 IF result . nResultID ="HAND" AND result . nDatafield1 ="one" THEN
148 data :="one";
149 ENDIF
150

151 IF result . nResultID ="HAND" AND result . nDatafield1 ="two" THEN
152 data :="two";
153 ENDIF
154

155 IF result . nResultID ="HAND" AND result . nDatafield1 ="stop" THEN
156 data :="stop";
157 ENDIF
158

159 IF result . nResultID ="HAND" AND result . nDatafield1 =" cancel " THEN
160 data :=" cancel ";
161 ENDIF
162 IF result . nResultID ="HAND" AND result . nDatafield1 ="ready" THEN
163 data :="ready";
164 ENDIF
165
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166 ENDPROC
167

168 PROC GetEAVSTaskMessage ( recEAVSResult result )
169

170 IF result . nResultID ="TASK2" AND result . nDatafield1 ="0" THEN
171 NumDice :=0;
172 ENDIF
173

174 IF result . nResultID ="TASK2" AND result . nDatafield1 ="1" THEN
175 NumDice :=1;
176 ENDIF
177

178 IF result . nResultID ="TASK2" AND result . nDatafield1 ="2" THEN
179 NumDice :=2;
180 ENDIF
181

182 IF result . nResultID =" TEASK2 " AND result . nDatafield1 ="3" THEN
183 NumDice :=3;
184 ENDIF
185

186 IF result . nResultID ="TASK2" AND result . nDatafield1 ="4" THEN
187 NumDice :=4;
188 ENDIF
189

190 IF result . nResultID ="TASK2" AND result . nDatafield1 ="5" THEN
191 NumDice :=5;
192 ENDIF
193

194 ENDPROC
195

196 PROC setup ()
197 ! Initialize variables
198 data :="zero";
199 InitDone := FALSE;
200

201 ENDPROC
202 ENDMODULE� �
mEAVS

� �
1 MODULE mEAVS
2

3

4 ! Record for camera settings
5 RECORD recEAVS
6 socketdev ComSocket ;
7 num nPortNumber ;
8 string stIPNumber ;
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9 ENDRECORD
10

11 ! EAVSCommand results
12 RECORD recEAVSResult
13 string nResultID ;
14 string nDataField1 ;
15 ENDRECORD
16

17 ! *************************************************************************
18 ! PROCEDURE : mEAVS_Command
19 ! Code writer : Hans Nordberg
20 ! Date: 2011 -10 -18
21 !
22 ! Parameters : ComSocket ,nCommandID , nDataField1 -10, escapeErrCommand ,

nStatusComID , nStatusComID , escapeErrOnline
23 !
24 ! PROCEDURE : mEAVS_Command
25 ! Modified by: Leire Amenabar
26 ! Date: 2020 -06 -05
27 !
28 ! Added Parameters : nLength
29 ! Eliminated parameters : nDataField2 -10
30 !
31 !
32 ! *************************************************************************
33 FUNC recEAVSResult mEAVS_Command (
34 VAR recEAVS EAVS ,
35 string nCommandID ,
36 \ string nDataField1 ,
37 errnum escapeError
38 )
39

40 !***** - Function variables -*****
41

42 ! Result
43 VAR recEAVSResult Result ;
44

45 ! Timeout SocketSend
46 VAR bool bOnline := FALSE;
47 !Time values of the socket
48 VAR num nSockRecTimeOut :=50;
49 VAR num nSockConTimeOut :=5;
50 ! Variable of the hole message to be sent to EA Vision Studio
51 VAR string stCommand ;
52 ! Variable for the result
53 VAR string stResult ;
54 ! Variables for the recieving message
55 VAR num nStartPos :=0;
56 VAR bool bDone := FALSE;
57 VAR intnum nLength ;



109

58

59 !***** - Control the socket status with EA Vision Studio -*****
60

61 ! Socket status control
62 IF SocketGetStatus (EAVS. Comsocket ) <> SOCKET_CONNECTED THEN
63 ! Connect the robot with EA Vision Studio
64 SocketClose EAVS. ComSocket ;
65 SocketCreate EAVS. ComSocket ;
66 SocketConnect EAVS.ComSocket ,EAVS.stIPNumber ,EAVS. nPortNumber \Time :=

nSockConTimeOut ;
67 ENDIF
68

69 !***** - Send message to EA Vision Studio -*****
70

71 !Take the ID of the message to send
72 stCommand := nCommandID ;
73

74 !In case has a field add the field
75 IF present ( nDataField1 ) THEN
76 stCommand := stCommand +","+ nDataField1 ;
77 ENDIF
78

79

80 !Add the ending of the message
81 stCommand := stCommand +"\0A";
82

83 !Send the hole message to the computer
84 SocketSend EAVS. ComSocket \Str := stCommand ;
85

86 !***** - Recieving message from EA Vision Studio -*****
87

88 ! Recieve message from EA Vision Studio
89 SocketReceive EAVS. ComSocket \Str := stResult \Time := nSockRecTimeOut ;
90 TPWrite " recieved " + stResult ; ! Prints the result in the flex

pendant
91

92 bDone := FALSE;
93 !bDone := StrToVal ( StrPart (stResult ,1 ,4) ,Result . nResultID ); ! converts from

string to val (HAND)
94

95 ! Exempel recieved = HAND ,good \0A
96 ! Exempel Result =[" HAND "," good "]
97

98 nStartPos := StrMatch (stResult ,1,",")+1; ! position of the character that is
after the first comma StrMatch (stResult ,1 ," ,") -> StrMatch (message ,

starting position , finding character )
99 nLength :=( StrMatch (stResult ,nStartPos ,"0") -2) -(nStartPos -1); ! the length

of the word after the first ","
100 !-> find the 0 character position -2 (\0A) to get the last character

position of the word after the comma => HAND ,good \0A => d character
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position in this example
101 ! -nStartPos => the position of the first letter of the word after

the comma -1-> to get the length of the word that is after the first
comma.

102

103 Result . nResultID := StrPart (stResult ,1, StrMatch (stResult ,1,",") -1); !
Give the result ID by taking the string part ( StrPart ) of the stResult (
HAND ,good \0A) from the first charachter (H) with the length of from the
beggining to the character before the comma (D)-> length of 4

104 Result . nDataField1 := StrPart (stResult ,nStartPos , nLength );!Take the string
part of the stResult (HAND ,good \0A) from thhe nStartPos with the length
of nLength

105

106 ! Return the result
107 RETURN Result ;
108

109 ERROR
110 !in case of error error handling
111 RAISE escapeError ;
112 ENDFUNC
113

114 ENDMODULE� �
mVision

� �
1 MODULE mVision
2

3

4 ! ***************************************
5 !***** - Camera settings -*****
6 ! ***************************************
7

8 !EA Vision Studio
9 VAR recEAVS EAVS1;

10 PERS string nEAVSStation :="10";
11

12 ! *******************************************
13 !***** - Vision function 's response data -*****
14 ! *******************************************
15

16

17 !
*************************************************************************

18 ! PROCEDURE : mVision_initEAVS
19 ! Author : Hans Nordberg
20 ! Date: 2011 -10 -19
21 !
22 ! PROCEDURE : mVision_initEAVS



111

23 ! Modified by: Leire Amenabar
24 ! Date: 2020 -06 -05
25 !
26 ! Description : Connects robot to EAVS
27 !
28 !

*************************************************************************
29 PROC mVision_InitEAVS ()
30 ! Procedure alarm numbers
31 VAR errnum errCommandEAVS :=1;
32

33 !Setup EA Vision Studio
34 !
35 EAVS1. nPortNumber :=2001;
36 EAVS1. stIPNumber :=" 192.168.125.5 ";
37 nEAVSStation :="10";
38

39 ! Status check EA Vision Studio
40 ! mEAVS_StatusCheck EAVS1 , nEAVSStation ,"100" ,"200" , errCommandEAVS ;
41

42 ERROR
43 TEST ERRNO
44 CASE errCommandEAVS :
45 ! ReportAndAbort "EAVS: statuscheck timeout eller fel kommando ";
46 ENDTEST
47 ENDPROC
48 ENDMODULE� �

B.2 Right robot arm program Code

B.2.1 Data Module

� �
1 MODULE DataModule
2

3 ! *********************************************************
4 ! Shared data RobL -RobR - TCP_IP_Input
5 ! *********************************************************
6 ! interrupts
7 PERS bool InitDone ;
8 PERS bool MoveCanceled ;
9 PERS string data :="zero";

10 PERS intnum connection :=0;
11 PERS intnum NumDice ;
12

13 ! *********************************************************
14 ! Rob_R data
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15 ! *********************************************************
16 PERS tooldata Servo :=[ TRUE

,[[0 ,0 ,114.2] ,[1 ,0 ,0 ,0]] ,[0.215 ,[8.7 ,12.3 ,49.2] ,[1 ,0 ,0 ,0]
17 ,0.00021 ,0.00024 ,0.00009]];
18 TASK PERS wobjdata RobtR :=[ FALSE ,TRUE ,""

,[[0 ,0 ,0] ,[0 ,0 ,0 ,1]] ,[[0 ,0 ,0] ,[1 ,0 ,0 ,0]]];
19

20 ENDMODULE� �

B.2.2 Main Module

� �
1 MODULE MainModule
2 ! ***********************************************************
3 !
4 ! Module : Module1
5 !
6 ! Description :
7 ! <Insert description here >
8 !
9 ! Author : leire amenabar

10 !
11 ! Version : 1.0
12 !
13 ! ***********************************************************
14 ! Shared variables by T_ROB_L and T_ROB_R
15 PERS tasks TaskListDefaultPos {2}:=[[ " T_ROB_L "],[" T_ROB_R "]];
16 PERS tasks TaskListTask2 {2}:=[[ " TCP_IP_Input "],[" T_ROB_R "]];
17 PERS tasks TaskListThree {3}:=[[ " T_ROB_L "],[" T_ROB_R "],[" TCP_IP_Input "]];
18 !wait sync ident
19 VAR syncident syncTaskDefaultStart ;
20

21 VAR syncident syncTaskReadyGood ;
22 VAR syncident syncTaskReadyBad ;
23 VAR syncident syncTaskReadyOne ;
24 VAR syncident syncTaskReadytwo ;
25 VAR syncident syncTaskReadyMiddle ;
26 VAR syncident syncTaskReadyRock ;
27

28 VAR syncident syncTaskFinishGood ;
29 VAR syncident syncTaskFinishBad ;
30 VAR syncident syncTaskFinishOne ;
31 VAR syncident syncTaskFinishtwo ;
32 VAR syncident syncTaskFinishMiddle ;
33 VAR syncident syncTaskFinishRock ;
34

35 VAR syncident syncTaskFinishCancel1 ;
36 VAR syncident syncTaskFinishCancel2 ;
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37 VAR syncident syncTaskFinishCancel3 ;
38 VAR syncident syncTaskCancel ;
39

40 VAR syncident syncTaskRockStop ;
41

42 VAR syncident syncTaskTwo ;
43 VAR syncident syncTaskTwoDice ;
44

45 ! synchro making ident
46 VAR syncident syncMoveOnGood ;
47 VAR syncident syncMoveOnBad ;
48 VAR syncident syncMoveOnStop ;
49 VAR syncident syncMoveOnMiddle ;
50 VAR syncident syncMoveOnTaskTwo ;
51

52 VAR syncident syncMoveCancel ;
53 VAR syncident syncCancel ;
54

55 ! Interrupts
56 VAR intnum persStopIntL ;
57 VAR intnum persCancelintL ;
58

59 ! Variables
60 VAR BOOL CancelCycle := FALSE;
61 VAR intnum counter :=0;
62 VAR num nRightHandPos ;
63 VAR num nRightHandState ;
64

65 ! Interrupts
66 VAR intnum persStopInt ;
67 VAR intnum persCancelint ;
68

69

70 ! RobotTargets
71 CONST robtarget Target_10_1 :=[[50.93727774 , -211.58009673 , -57.503310529] ,
72 [0.681705621 , -0.317739889 ,0.422922566 ,0.505425871] ,[0 ,0 ,0 ,4] ,
73 [ -101.964426493 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
74 CONST robtarget Target_10 :=[[394.552488228 ,213.326359531 , -64.691837231] ,
75 [0.707107107 , -0.000001182 , -0.000000583 , -0.707106455] ,[0 ,0 ,0 ,0] ,
76 [ -146.664815972 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
77 CONST robtarget Target_20 :=[[394.55261883 ,70.452812463 , -65.823829472] ,
78 [0.707107107 , -0.000001182 , -0.000000583 , -0.707106455] ,[0 ,0 ,0 ,0] ,
79 [ -146.664815972 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
80

81 CONST robtarget HappyR_10 :=[[60.957925302 ,445.607575047 ,456.449117885] ,
82 [0.071967237 ,0.070402452 , -0.088760676 , -0.990951943] ,[1 ,0 ,0 ,4] ,
83 [68.620858195 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
84 CONST robtarget HappyR_20 :=[[60.955515952 ,503.645940808 ,523.610550629] ,
85 [0.061023532 ,0.052122332 ,0.023208561 , -0.996504267] ,[1 ,0 ,0 ,4] ,
86 [103.5993711 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
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87 CONST robtarget HappyR_30 :=[[60.95528943 ,503.645611603 ,672.110740551] ,
88 [0.053747759 ,0.059596985 ,0.152261621 , -0.985076533] ,[1 ,0 , -1 ,4] ,
89 [125.21597527 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
90

91 CONST robtarget SadR_10 :=[[54.944541606 ,539.031416692 ,380.398676486] ,
92 [0.445042891 , -0.48119534 , -0.592982499 , -0.467717463] ,[1 ,3 ,2 ,4] ,
93 [39.105047487 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
94 CONST robtarget SadR_20 :=[[54.945330891 ,632.632107318 ,400.458332345] ,
95 [0.445043108 , -0.481195875 , -0.592981981 , -0.467717364] ,[1 ,3 ,2 ,4] ,
96 [52.457904341 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
97

98 CONST robtarget madR_10 :=[[ -105.817477025 ,182.610106295 ,198.627859614] ,
99 [0.492434949 ,0.113516942 , -0.860686719 ,0.061968514] ,[0 ,0 ,0 ,4] ,

100 [ -101.964436053 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
101 CONST robtarget madR_20 :=[[ -105.817626662 ,182.61026717 ,198.627919452] ,
102 [0.652124321 ,0.099108607 , -0.746999117 ,0.083088347] ,[0 ,0 ,0 ,4] ,
103 [ -101.96442831 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
104 CONST robtarget madR_30 :=[[ -105.817738328 ,182.61053665 ,198.627927454] ,
105 [0.773068217 ,0.082993786 , -0.620998653 ,0.099187881] ,[0 ,0 ,0 ,4] ,
106 [ -101.964427601 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
107

108 CONST robtarget Home_R :=[[9.578368507 ,182.609892723 ,198.627808149] ,
109 [0.523068661 ,0.111214912 , -0.842420918 ,0.066010726] ,[0 ,0 ,0 ,4] ,
110 [ -101.964427132 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
111

112 CONST robtarget Pen_10
:=[[ -172.93 ,336.58 ,260.03] ,[0.0578979 ,0.731557 , -0.677851 , -0.0446021] ,

113 [0 ,0 , -1 ,5] ,[ -155.948 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
114 CONST robtarget Pen_30

:=[[ -172.92 ,336.60 ,155.70] ,[0.0578581 ,0.731514 , -0.677903 , -0.0445885] ,
115 [0 ,0 , -1 ,5] ,[ -155.947 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
116 CONST robtarget Pen_40

:=[[ -172.93 ,336.58 ,260.03] ,[0.0578998 ,0.731559 , -0.677849 , -0.0446021] ,
117 [0,0,-1,5], [ -155.949 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
118 CONST robtarget Pen_90

:=[[ -321.59 ,133.68 ,192.85] ,[0.0858492 ,0.616175 , -0.781151 , -0.052549] ,
119 [1 ,0 ,0 ,5] ,[ -158.814 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
120 CONST robtarget Pen_50

:=[[ -278.07 ,248.67 ,195.60] ,[0.138392 ,0.617445 , -0.771524 , -0.066035] ,
121 [1 ,0 ,0 ,5] ,[ -159.807 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
122 CONST robtarget Pen_70

:=[[ -440.77 ,138.00 ,188.10] ,[0.0383477 ,0.528685 , -0.847829 , -0.0144109] ,
123 [1 ,0 ,0 ,5] ,[ -144.248 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
124 CONST robtarget Pen_80

:=[[ -364.01 ,303.91 ,169.25] ,[0.110077 ,0.61076 , -0.783991 , -0.0146054] ,
125 [1 ,1 , -1 ,5] ,[ -153.974 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
126 CONST robtarget Pen_100

:=[[ -422.88 ,268.58 ,181.99] ,[0.105625 ,0.564905 , -0.815426 , -0.0693288] ,
127 [1 ,0 ,0 ,5] ,[ -147.315 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
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128 CONST robtarget Pen_60
:=[[ -489.12 ,102.46 ,213.95] ,[0.359194 ,0.459281 , -0.789068 , -0.193424] ,

129 [1 ,0 ,0 ,5] ,[ -137.831 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
130

131 CONST robtarget Rock_10 :=[[9.576073371 ,439.579231074 ,197.54020098] ,
132 [0.969920392 , -0.066595954 , -0.231651544 , -0.034014329] ,[0 ,1 ,0 ,4] ,
133 [ -82.350193572 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
134

135 CONST robtarget Board_10
:=[[ -422.04 ,24.72 ,150.12] ,[0.0390186 ,0.0963675 , -0.994102 ,0.0308575] ,

136 [2 ,1 ,1 ,5] ,[123.624 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
137 CONST robtarget Board_20

:=[[ -418.75 ,8.25 ,67.62] ,[0.0369636 ,0.0630328 , -0.997327 ,0.000250125] ,
138 [2 ,1 ,1 ,5] ,[127.717 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
139 CONST robtarget Board_30

:=[[ -403.13 ,9.88 ,139.82] ,[0.0456513 ,0.0855634 , -0.994904 ,0.0275852] ,
140 [2 ,1 ,1 ,5] ,[123.856 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
141 CONST robtarget Board_40

:=[[ -399.79 ,6.47 ,140.33] ,[0.150041 ,0.0835806 , -0.985108 ,0.00796113] ,
142 [2 ,0 ,1 ,5] ,[124.157 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
143 CONST robtarget Board_50

:=[[ -390.54 ,110.69 ,185.12] ,[0.54843 ,0.255766 , -0.760997 ,0.233864] ,
144 [1 ,0 ,1 ,5] ,[ -154.194 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
145

146 ! ***********************************************************
147 !
148 ! Procedure main
149 !
150 ! This is the entry point of your program
151 !
152 ! ***********************************************************
153 PROC main ()
154 IF Not InitDone THEN
155 !first time running the program
156 ! initial home position
157 g_Init ;
158 g_Calibrate \Jog;
159 WaitTime \InPos ,1;
160 g_GripOut ;
161 MoveJ Home_R ,v300 ,z100 ,tool0\WObj := RobtR;
162 ! Interrupts
163 IEnable ;
164 ! Enable interrupts
165 ! create interrupt in case the persistent variable changes value
166 CONNECT persCancelint WITH CancelRoutineR ;
167 IPers MoveCanceled , persCancelint ;
168 !wait until both arms are in this point
169 WaitSyncTask syncTaskDefaultStart , TaskListThree ;
170

171 ELSE



116

172 !when the movement is cancelled , this is run
173 connection :=0;
174 counter :=0;
175 !if it is not the first time the pointer is here because the

cancel TRAP has been run
176 WaitSyncTask syncTaskFinishCancel1 , TaskListThree ;
177 !wait the TCP/IP task to start movement
178 SyncTest ;
179 WaitSyncTask syncTaskFinishCancel2 , TaskListThree ;
180 !the task has been started
181 MoveJ Home_R ,v300 ,z100 ,tool0\WObj := RobtR;
182 !move the arm to home
183 IWatch persCancelint ;
184 ! reactivate interrupts
185 WaitSyncTask syncTaskFinishCancel3 , TaskListThree ;
186 ENDIF
187

188 ! Forever looop
189 WHILE TRUE DO
190

191 !Happy movement
192 IF data="good" THEN
193 HappyMove ;
194

195 ELSEIF data="bad" THEN
196 SadMove ;
197

198 ELSEIF data=" middle " THEN
199 SyncTest ;
200 WaitSyncTask syncTaskReadyMiddle , TaskListDefaultPos ;
201 IF NOT IsSyncMoveOn () THEN
202 SyncMoveOn syncMoveOnMiddle , TaskListDefaultPos ;
203 ENDIF
204 madR_Path ;
205 data :="zero";
206 SyncTest ;
207 WaitSyncTask syncTaskFinishMiddle , TaskListDefaultPos ;
208

209 ELSEIF data="rock" THEN
210 SyncTest ;
211 WaitSyncTask syncTaskReadyRock , TaskListDefaultPos ;
212 RockR;
213 WaitTime 0.7;
214 data :="zero";
215 SyncTest ;
216 WaitSyncTask syncTaskFinishRock , TaskListDefaultPos ;
217

218 ELSEIF data="one" THEN
219 SyncTest ;
220 ! ISleep persCancelint ;
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221 !wait until the other arm has finished the movement
222 WaitSyncTask syncTaskReadyOne , TaskListDefaultPos ;
223 PenPath ;
224 ! grippers path
225 WaitUntil data="ready";
226 connection :=1;
227 ! grippers path
228 ! activate trigger for the other arm
229 WaitSyncTask syncTaskFinishOne , TaskListThree ;
230 connection :=0;
231 !wait both programs to be in the same point
232 ! IWatch persCancelint ;
233

234 ELSEIF data="two" THEN
235 SyncTest ;
236 ISleep persCancelint ;
237 WaitSyncTask syncTaskTwo , TaskListDefaultPos ;
238 IF NOT IsSyncMoveOn () THEN
239 SyncMoveOn syncMoveOnTaskTwo , TaskListDefaultPos ;
240 ! synchronize movements
241 ENDIF
242 BoardPath ;
243 SyncTest ;
244 IWatch persCancelint ;
245 WaitUntil data="ready";
246 counter :=0;
247 connection :=2;
248 WHILE (NumDice <>5) and (counter <>3) DO
249 WaitUntil data="ready";
250 data :="zero";
251 WaitSyncTask syncTaskTwoDice , TaskListTask2 ;
252 counter := counter +1;
253 ENDWHILE
254 !wait until the other arm has finished the movement
255 WaitSyncTask syncTaskReadytwo , TaskListDefaultPos ;
256 IF NumDice =5 THEN
257 HappyMove ;
258 ELSE
259 SadMove ;
260 ENDIF
261 WaitSyncTask syncTaskFinishtwo , TaskListDefaultPos ;
262 data :="zero";
263 NumDice := 0;
264 counter :=0;
265 connection :=0;
266 !wait both programs to be in the same point
267 ENDIF
268 ENDWHILE
269

270 ENDPROC
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271

272 PROC SadMove ()
273 SyncTest ;
274 WaitSyncTask syncTaskReadyBad , TaskListDefaultPos ;
275 IF NOT IsSyncMoveOn () THEN
276 SyncMoveOn syncMoveOnBad , TaskListDefaultPos ;
277 ENDIF
278 SadR;
279 SyncTest ;
280 WaitSyncTask syncTaskFinishBad , TaskListDefaultPos ;
281 ENDPROC
282

283 PROC HappyMove ()
284 SyncTest ;
285 WaitSyncTask syncTaskReadyGood , TaskListDefaultPos ;
286 !wait the other arm
287 IF NOT IsSyncMoveOn () THEN
288 SyncMoveOn syncMoveOnGood , TaskListDefaultPos ;
289 ! synchronize movements
290 ENDIF
291 HappyR ;
292 !happy path of the right arm
293 SyncTest ;
294 WaitSyncTask syncTaskFinishGood , TaskListDefaultPos ;
295 ENDPROC
296

297 PROC BoardPath ()
298 ! StartMove ;
299 MoveJ Home_R \ID :=32 , v300 ,z10 ,tool0\WObj := RobtR;
300 MoveJ Board_50 \ID :=33 , v300 ,z10 ,tool0\WObj := RobtR;
301 MoveJ Board_10 \ID :=23 , v300 ,z10 ,tool0\WObj := RobtR;
302 MotionSup \Off;
303 MoveL Board_20 \ID :=24 , v300 ,z10 ,tool0\WObj := RobtR;
304 WaitTime \InPos ,1;
305 g_GripIn \ holdForce :=15;
306 WaitTime \InPos ,1;
307 MoveL Board_10 \ID :=25 , v300 ,z10 ,tool0\WObj := RobtR;
308 MoveJ Board_30 \ID :=26 , v100 ,z10 ,tool0\WObj := RobtR;
309 MoveJ Board_40 \ID :=27 , v100 ,z10 ,tool0\WObj := RobtR;
310 MoveJ Board_30 \ID :=35 , v100 ,z10 ,tool0\WObj := RobtR;
311 MoveJ Board_40 \ID :=36 , v100 ,z10 ,tool0\WObj := RobtR;
312 MoveJ Board_10 \ID :=28 , v200 ,z10 ,tool0\WObj := RobtR;
313 MoveL Board_20 \ID :=29 , v100 ,z10 ,tool0\WObj := RobtR;
314 WaitTime \InPos ,1;
315 g_GripOut ;
316 MoveL Board_10 \ID :=30 , v300 ,z10 ,tool0\WObj := RobtR;
317 MoveJ Board_50 \ID :=34 , v300 ,z10 ,tool0\WObj := RobtR;
318 MoveJ Home_R \ID :=31 , v300 ,z10 ,tool0\WObj := RobtR;
319 ENDPROC
320
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321 PROC HappyR ()
322 MoveJ Home_R \ID:=0,v300 ,z10 ,tool0\WObj := RobtR;
323 MoveJ HappyR_10 \ID:=1,v300 ,z10 ,tool0\WObj := RobtR;
324 MoveJ HappyR_20 \ID:=2,v300 ,z10 ,tool0\WObj := RobtR;
325 MoveJ HappyR_30 \ID:=3,v300 ,z10 ,tool0\WObj := RobtR;
326 MoveJ HappyR_20 \ID:=4,v300 ,z10 ,tool0\WObj := RobtR;
327 MoveJ HappyR_10 \ID:=5,v300 ,z10 ,tool0\WObj := RobtR;
328 MoveJ HappyR_20 \ID:=6,v300 ,z10 ,tool0\WObj := RobtR;
329 MoveJ HappyR_30 \ID:=7,v300 ,z10 ,tool0\WObj := RobtR;
330 MoveJ HappyR_20 \ID:=8,v300 ,z10 ,tool0\WObj := RobtR;
331 MoveJ Home_R \ID:=9,v300 ,z10 ,tool0\WObj := RobtR;
332 ENDPROC
333

334 PROC SadR ()
335 MoveJ Home_R \ID :=10 , v500 ,z10 ,tool0\WObj := RobtR;
336 MoveJ SadR_10 \ID :=11 , v500 ,z10 ,tool0\WObj := RobtR;
337 MoveJ SadR_20 \ID :=12 , v200 ,z10 ,tool0\WObj := RobtR;
338 MoveJ SadR_10 \ID :=13 , v200 ,z10 ,tool0\WObj := RobtR;
339 MoveJ Home_R \ID :=14 , v600 ,z10 ,tool0\WObj := RobtR;
340 ENDPROC
341

342 PROC madR_Path ()
343 MoveJ Home_R \ID :=15 , v400 ,z10 ,tool0\WObj := RobtR;
344 MoveJ madR_10 \ID :=16 , v400 ,z10 ,tool0\WObj := RobtR;
345 MoveJ madR_20 \ID :=17 , v400 ,z10 ,tool0\WObj := RobtR;
346 MoveJ madR_30 \ID :=18 , v400 ,z10 ,tool0\WObj := RobtR;
347 MoveJ madR_20 \ID :=19 , v400 ,z10 ,tool0\WObj := RobtR;
348 MoveJ madR_30 \ID :=20 , v400 ,z10 ,tool0\WObj := RobtR;
349 MoveJ madR_20 \ID :=21 , v400 ,z10 ,tool0\WObj := RobtR;
350 MoveJ Home_R \ID :=22 , v400 ,z10 ,tool0\WObj := RobtR;
351 ENDPROC
352

353 PROC PenPath ()
354 MoveJ Home_R ,v400 ,z10 ,tool0\WObj := RobtR;!move home
355 g_GripOut ;!open gripper
356 MoveJ Pen_10 ,v400 ,z10 ,tool0\WObj := RobtR;! position over the pen
357 MoveL Pen_30 ,v400 ,z10 ,tool0\WObj := RobtR;!go down , so that the pen is

in between the gripper fingers
358 MotionSup \Off;! diabilitated the collision check to avoid problems

when the pen is taken
359 WaitTime \InPos ,1;!wait until the previous function is finished
360 g_GripIn \ holdForce :=20;!close gripper with a force of 20N
361 WaitTime \InPos ,1;!wait until it is closed
362 MoveL Pen_40 ,v300 ,z10 ,tool0\WObj := RobtR;!move the pen up
363 !make a movement over the industrial piece
364 MoveJ Pen_50 ,v300 ,z100 ,tool0\WObj := RobtR;
365 MoveJ Pen_70 ,v100 ,z10 ,tool0\WObj := RobtR;
366 MoveJ Pen_80 ,v100 ,z10 ,tool0\WObj := RobtR;
367 MoveJ Pen_90 ,v100 ,z10 ,tool0\WObj := RobtR;
368 MoveJ Pen_100 ,v100 ,z10 ,tool0\WObj := RobtR;
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369 MoveJ Pen_60 ,v100 ,z100 ,tool0\WObj := RobtR;!give the pen to the user
370 WaitTime \InPos ,1;
371 nRightHandPos := g_GetPos ();!get the position of the gripper
372 nRightHandState := g_GetState ();!get the state of the gripper
373 WHILE nRightHandPos <>0 DO!if the gripper is not in position 0 (it is

not totally closed )
374 nRightHandPos := g_GetPos ();!look the position again
375 ENDWHILE
376 MoveJ Home_R ,v400 ,z10 ,tool0\WObj := RobtR;!move the robot arm to the

home position
377 g_GripOut ;!open the gripper
378 g_Stop ;!stop the gripper
379 MotionSup \On;! enable the collision check
380 ENDPROC
381

382 PROC RockR ()
383 MoveJ Home_R ,v300 ,z10 ,tool0\WObj := RobtR;
384 MoveJ Rock_10 ,v300 ,z10 ,tool0\WObj := RobtR;
385 WaitTime \InPos ,1;
386 WaitSyncTask syncTaskRockStop , TaskListDefaultPos ;
387 MoveJ Home_R ,v300 ,z10 ,tool0\WObj := RobtR;
388 ENDPROC
389

390 PROC SyncTest ()
391 IF IsSyncMoveOn () THEN
392 WaitSyncTask syncTaskCancel , TaskListDefaultPos ;
393 SyncMoveOff syncCancel ;
394 ELSE
395 ! Connected Motion Task is in independent mode
396 ENDIF
397 ENDPROC
398

399

400 ! In case the cancel gesture is read , this trap/ routine will be executed
401 TRAP CancelRoutineR
402 ! diactivate both interrupts
403 ISleep persCancelint ;
404 ExitCycle ; !start from main
405 ENDTRAP
406 ENDMODULE� �

B.3 Left robot arm program Code

B.3.1 Data Module

� �
1 MODULE DataModule
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2

3 ! ********************************************************
4 ! Shared data RobL -RobR - TCP_IP_Input
5 ! ********************************************************
6 ! interrupts
7 PERS bool InitDone ;
8 PERS bool MoveCanceled ;
9 PERS string data;

10 PERS intnum connection :=0;
11 PERS intnum NumDice ;
12

13 ! ********************************************************
14 ! Rob_L data
15 ! ********************************************************
16 PERS tooldata Servo :=[ TRUE ,[[0 ,0 ,114.2] ,[1 ,0 ,0 ,0]] ,
17 [0.215 ,[8.7 ,12.3 ,49.2] ,[1 ,0 ,0 ,0] ,0.00021 ,0.00024 ,0.00009]];
18 TASK PERS wobjdata RobtR :=[ FALSE ,TRUE ,""

,[[0 ,0 ,0] ,[0 ,0 ,0 ,1]] ,[[0 ,0 ,0] ,[1 ,0 ,0 ,0]]];
19

20 ! T_ROB_L points
21 CONST robtarget Home_R :=[[9.578260588 ,182.610106295 ,198.627859614] ,
22 [0.523068577 ,0.111214992 , -0.842420958 ,0.066010745] ,
23 [0 ,0 ,0 ,4] ,[ -101.964436053 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
24 TASK PERS wobjdata RobLWobj :=[ FALSE ,TRUE ,""

,[[0 ,0 ,0] ,[1 ,0 ,0 ,0]] ,[[0 ,0 ,0] ,[1 ,0 ,0 ,0]]];
25

26 ENDMODULE� �

B.3.2 Main Module

� �
1 MODULE MainModule
2 ! ***********************************************************
3 !
4 ! Module : Main Module of the left robot arm
5 !
6 ! Description :
7 ! The program of the lef robot arm for FMT project called : Real -Time

Collaborative Robot Control Using Hand Gestures , Recognised By Deep
Learning

8 !
9 ! Author : leire amenabar

10 !
11 ! Version : 1.0
12 !
13 ! ***********************************************************
14

15 ! Create the task lists
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16 PERS tasks TaskListDefaultPos {2}:=[[ " T_ROB_L "],[" T_ROB_R "]];
17 PERS tasks TaskListThree {3}:=[[ " T_ROB_L "],[" T_ROB_R "],[" TCP_IP_Input "]];
18

19 !wait sync ident
20 VAR syncident syncTaskDefaultStart ;
21

22

23 VAR syncident syncTaskReadyGood ;
24 VAR syncident syncTaskReadyBad ;
25 VAR syncident syncTaskReadyOne ;
26 VAR syncident syncTaskReadytwo ;
27 VAR syncident syncTaskReadyMiddle ;
28 VAR syncident syncTaskReadyRock ;
29

30 VAR syncident syncTaskFinishGood ;
31 VAR syncident syncTaskFinishBad ;
32 VAR syncident syncTaskFinishOne ;
33 VAR syncident syncTaskFinishtwo ;
34 VAR syncident syncTaskFinishMiddle ;
35 VAR syncident syncTaskFinishRock ;
36

37 VAR syncident syncTaskFinishCancel1 ;
38 VAR syncident syncTaskFinishCancel2 ;
39 VAR syncident syncTaskFinishCancel3 ;
40 VAR syncident syncTaskCancel ;
41

42 VAR syncident syncTaskRockStop ;
43

44 VAR syncident syncTaskTwo ;
45

46 ! synchro making ident
47 VAR syncident syncMoveOnGood ;
48 VAR syncident syncMoveOnBad ;
49 VAR syncident syncMoveOnStop ;
50 VAR syncident syncMoveOnMiddle ;
51

52 VAR syncident syncMoveCancel ;
53 VAR syncident syncCancel ;
54

55 VAR syncident syncMoveOnTaskTwo ;
56

57

58 ! Interrupts
59 VAR intnum persStopIntL ;
60 VAR intnum persCancelintL ;
61

62 ! RobotTargets
63 CONST robtarget target_10 :=[[352.995701338 , -300.327322519 , -85.772716956] ,
64 [0.441092614 ,0.636529641 , -0.302462263 , -0.555683275] ,[0 ,0 ,0 ,4] ,
65 [101.964426493 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];



123

66 CONST robtarget Target_20 :=[[167.036792116 ,220.524201729 , -408.514427477] ,
67 [0.879732391 , -0.047109949 , -0.023568525 , -0.472542165] ,[1 ,2 , -2 ,0] ,
68 [ -164.859205264 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
69

70 CONST robtarget Home_Left :=[[ -9.578260574 ,182.610106314 ,198.627859608] ,
71 [0.066010745 ,0.842420958 , -0.111214992 ,0.523068577] ,[0 ,0 ,0 ,4] ,
72 [101.964436056 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
73

74 CONST robtarget HappyL_10 :=[[60.958820992 ,445.606762518 ,456.448681711] ,
75 [0.071967175 ,0.070401944 , -0.088761109 , -0.990951945] ,[ -1 ,0 , -1 ,4] ,
76 [ -52.90711226 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
77 CONST robtarget HappyL_20 :=[[60.956008204 ,503.645632434 ,523.61020811] ,
78 [0.061023435 ,0.052121969 ,0.023208315 , -0.996504297] ,[ -1 ,0 , -1 ,4] ,
79 [ -112.389624624 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
80 CONST robtarget HappyL_30 :=[[60.955858421 ,503.64542279 ,672.110468721] ,
81 [0.053747604 ,0.059596788 ,0.152261375 , -0.985076592] ,[ -1 ,0 , -1 ,4] ,
82 [ -147.961369864 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
83

84 CONST robtarget SadL_10 :=[[54.945195375 ,539.030786525 ,380.398177203] ,
85 [0.445042763 , -0.481195859 , -0.592982284 , -0.467717324] ,[ -1 ,2 , -2 ,4] ,
86 [ -36.97195114 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
87 CONST robtarget SadL_20 :=[[54.945850668 ,632.63164956 ,400.458097163] ,
88 [0.445043016 , -0.481196176 , -0.59298196 , -0.467717168] ,[ -1 ,2 , -2 ,4] ,
89 [ -36.971997946 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
90

91 CONST robtarget madL_10 :=[[407.114313539 ,182.610106314 ,198.627859608] ,
92 [0.066010745 ,0.842420958 , -0.111214992 ,0.523068577] ,[0 ,0 ,0 ,4] ,
93 [101.964436056 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
94 CONST robtarget madL_20 :=[[407.114432752 ,182.610260456 ,198.627848504] ,
95 [0.120500657 ,0.341553057 , -0.046966071 ,0.930921742] ,[ -1 ,2 , -2 ,4] ,
96 [101.964434161 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
97 CONST robtarget madL_30 :=[[407.114518113 ,182.610478826 ,198.627743895] ,
98 [0.128731831 ,0.075505766 , -0.012424552 ,0.988722724] ,[ -1 ,0 ,0 ,4] ,
99 [101.964435427 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];

100

101 CONST robtarget RockL_10 :=[[284.693111647 ,204.957290926 ,147.913674178] ,
102 [0.473127174 ,0.466525842 , -0.631593808 ,0.399491649] ,[ -1 ,0 , -1 ,4] ,
103 [159.664820838 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
104 CONST robtarget RockL_20 :=[[284.693223049 ,204.957482636 ,229.150777492] ,
105 [0.473127256 ,0.466525929 , -0.631593826 ,0.399491421] ,[0 ,0 , -1 ,4] ,
106 [159.664826644 ,9 E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
107

108 CONST robtarget BoardL_10
:=[[407.85 ,317.20 ,141.92] ,[0.0241279 , -0.99954 , -0.00782593 , -0.016612] ,

109 [ -1 , -1 ,0 ,5] ,[155.537 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
110 CONST robtarget BoardL_20

:=[[407.26 ,322.93 ,54.03] ,[0.0286426 , -0.999113 , -0.0295573 , -0.00892847] ,
111 [ -1 , -1 ,0 ,5] ,[152.43 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
112 CONST robtarget BoardL_30

:=[[390.30 ,332.21 ,122.42] ,[0.0154118 , -0.999247 ,0.0152883 , -0.0321523] ,
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113 [ -1 , -1 ,0 ,5] ,[150.682 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
114 CONST robtarget BoardL_40

:=[[404.24 ,327.88 ,135.95] ,[0.0308986 , -0.993916 ,0.0214404 , -0.103524] ,
115 [ -1 , -1 ,0 ,5] ,[149.731 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
116 CONST robtarget BoardL_50

:=[[347.56 ,324.73 ,298.26] ,[0.0275514 , -0.962651 ,0.0500273 , -0.264653] ,
117 [ -1 , -1 ,0 ,5] ,[141.661 ,9E+09 ,9E+09 ,9E+09 ,9E+09 ,9E +09]];
118

119

120 !Main procedure
121 PROC main ()
122 IF Not InitDone THEN
123 ! variable initialization
124 MoveCanceled := FALSE;
125 g_Init ;
126 g_Calibrate \Jog;
127 WaitTime \InPos ,1;
128 g_GripOut ;
129 ! initial home position
130 MoveJ Home_Left ,v300 ,z10 ,tool0;
131 ! g_Init \ maxSpd := 20, \ holdForce := 10;
132 ! Interrupts
133 IEnable ;
134 ! Enable interrupts
135 ! create interrupt in case the persistent variable changes value
136 CONNECT persCancelintL WITH CancelRoutineL ;
137 IPers MoveCanceled , persCancelintL ;
138 !wait until both arms are in this point
139 WaitSyncTask syncTaskDefaultStart , TaskListThree ;
140

141 ELSE
142 !when the movement is cancelled , this is run
143 connection :=0;
144 WaitSyncTask syncTaskFinishCancel1 , TaskListThree ;
145 SyncTest ;
146 WaitSyncTask syncTaskFinishCancel2 , TaskListThree ;
147 MoveJ Home_Left ,v300 ,z10 ,tool0;
148 !move the arm to home
149 IWatch persCancelintL ;
150 ! reactivate interrupts
151 WaitSyncTask syncTaskFinishCancel3 , TaskListThree ;
152 ENDIF
153

154 ! Forever loop
155 WHILE TRUE DO
156

157 IF data="good" THEN
158 HappyMoveL ;
159

160 ELSEIF data="bad" THEN
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161 SadMoveL ;
162

163 ELSEIF data=" middle " THEN
164 SyncTest ;
165 WaitSyncTask syncTaskReadyMiddle , TaskListDefaultPos ;
166 IF NOT IsSyncMoveOn () THEN
167 SyncMoveOn syncMoveOnMiddle , TaskListDefaultPos ;
168 ENDIF
169 madL_Path ;
170 WaitTime 0.7;
171 data :="zero";
172 SyncTest ;
173 WaitSyncTask syncTaskFinishMiddle , TaskListDefaultPos ;
174

175 ELSEIF data="rock" THEN
176 SyncTest ;
177 WaitSyncTask syncTaskReadyRock , TaskListDefaultPos ;
178 Rock_L ;
179 WaitTime 0.7;
180 data :="zero";
181 SyncTest ;
182 WaitSyncTask syncTaskFinishRock , TaskListDefaultPos ;
183

184 ELSEIF data="one" THEN
185 SyncTest ;
186 ! ISleep persCancelintL ;
187 ! diactivate interrupt
188 !task one
189 WaitSyncTask syncTaskReadyOne , TaskListDefaultPos ;
190 WaitSyncTask syncTaskFinishOne , TaskListThree ;
191 data :="zero";
192 ! IWatch persCancelintL ;
193 ! reactivate the interrupt
194

195 ELSEIF data="two" THEN
196 SyncTest ;
197 ISleep persCancelintL ;
198 WaitSyncTask syncTaskTwo , TaskListDefaultPos ;
199 IF NOT IsSyncMoveOn () THEN
200 SyncMoveOn syncMoveOnTaskTwo , TaskListDefaultPos ;
201 ! synchronize movements
202 ENDIF
203 BoardPath ;
204 SyncTest ;
205 IWatch persCancelintL ;
206 !wait until the other arm has finished the movement
207 WaitSyncTask syncTaskReadytwo , TaskListDefaultPos ;
208 IF NumDice =5 THEN
209 HappyMoveL ;
210 ELSE
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211 SadMoveL ;
212 ENDIF
213 ! activate trigger for the other arm
214 WaitSyncTask syncTaskFinishtwo , TaskListDefaultPos ;
215 !wait both programs to be in the same point
216 ENDIF
217 ENDWHILE
218

219 ENDPROC
220

221

222 PROC SadMoveL ()
223 SyncTest ;
224 WaitSyncTask syncTaskReadyBad , TaskListDefaultPos ;
225 IF NOT IsSyncMoveOn () THEN
226 SyncMoveOn syncMoveOnBad , TaskListDefaultPos ;
227 ENDIF
228 ! synchronize both arms
229 SadL;
230 !sad path
231 data :="zero";
232 !so that it does not repeat the same movement
233 SyncTest ;
234 !every syncmove before put a waitsync
235 WaitSyncTask syncTaskFinishBad , TaskListDefaultPos ;
236

237 ENDPROC
238

239 PROC HappyMoveL ()
240 SyncTest ;
241 WaitSyncTask syncTaskReadyGood , TaskListDefaultPos ;
242 !wait the other arm
243 IF NOT IsSyncMoveOn () THEN
244 SyncMoveOn syncMoveOnGood , TaskListDefaultPos ;
245 ! synchronize movements
246 ENDIF
247 HappyL ;
248 WaitTime 0.7;
249 data :="zero";
250 SyncTest ;
251 WaitSyncTask syncTaskFinishGood , TaskListDefaultPos ;
252 ENDPROC
253

254 PROC BoardPath ()
255 MoveJ Home_Left \ID :=32 , v300 ,z10 ,tool0;
256 MoveJ BoardL_50 \ID :=33 , v300 ,z10 ,tool0;
257 MoveJ BoardL_10 \ID :=23 , v300 ,z10 ,tool0;
258 MotionSup \Off;
259 MoveL BoardL_20 \ID :=24 , v300 ,z10 ,tool0;
260 WaitTime \InPos ,1;
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261 g_GripIn \ holdForce :=15;
262 WaitTime \InPos ,1;
263 MoveL BoardL_10 \ID :=25 , v300 ,z10 ,tool0;
264 MoveJ BoardL_30 \ID :=26 , v100 ,z10 ,tool0;
265 MoveJ BoardL_40 \ID :=27 , v100 ,z10 ,tool0;
266 MoveJ BoardL_30 \ID :=35 , v100 ,z10 ,tool0;
267 MoveJ BoardL_40 \ID :=36 , v100 ,z10 ,tool0;
268 MoveJ BoardL_10 \ID :=28 , v300 ,z10 ,tool0;
269 MoveL BoardL_20 \ID :=29 , v300 ,z10 ,tool0;
270 WaitTime \InPos ,1;
271 g_GripOut ;
272 MoveL BoardL_10 \ID :=30 , v300 ,z10 ,tool0;
273 MoveJ BoardL_50 \ID :=34 , v200 ,z10 ,tool0;
274 MoveJ Home_Left \ID :=31 , v100 ,z10 ,tool0;
275

276 ENDPROC
277

278 PROC HappyL ()
279 MoveJ Home_Left \ID:=0,v300 ,z10 ,tool0;
280 ! without anything means that workobject0 is taken as base.
281 MoveJ HappyL_10 \ID:=1,v300 ,z10 ,tool0;
282 MoveJ HappyL_20 \ID:=2,v300 ,z10 ,tool0;
283 MoveJ HappyL_30 \ID:=3,v300 ,z10 ,tool0;
284 MoveJ HappyL_20 \ID:=4,v300 ,z10 ,tool0;
285 MoveJ HappyL_10 \ID:=5,v300 ,z10 ,tool0;
286 MoveJ HappyL_20 \ID:=6,v300 ,z10 ,tool0;
287 MoveJ HappyL_30 \ID:=7,v300 ,z10 ,tool0;
288 MoveJ HappyL_20 \ID:=8,v300 ,z10 ,tool0;
289 MoveJ Home_Left \ID:=9,v300 ,z10 ,tool0;
290 ENDPROC
291

292 PROC SadL ()
293 MoveJ Home_Left \ID :=10 , v500 ,z10 ,tool0;
294 MoveJ SadL_10 \ID :=11 , v500 ,z10 ,tool0;
295 MoveJ SadL_20 \ID :=12 , v200 ,z10 ,tool0;
296 MoveJ SadL_10 \ID :=13 , v200 ,z10 ,tool0;
297 MoveJ Home_Left \ID :=14 , v600 ,z10 ,tool0;
298 ENDPROC
299

300 PROC madL_Path ()
301 MoveJ Home_Left \ID :=15 , v400 ,z10 ,tool0;
302 MoveJ madL_10 \ID :=16 , v400 ,z10 ,tool0;
303 MoveJ madL_20 \ID :=17 , v400 ,z10 ,tool0;
304 MoveJ madL_30 \ID :=18 , v400 ,z10 ,tool0;
305 MoveJ madL_20 \ID :=19 , v400 ,z10 ,tool0;
306 MoveJ madL_30 \ID :=20 , v400 ,z10 ,tool0;
307 MoveJ madL_20 \ID :=21 , v400 ,z10 ,tool0;
308 MoveJ Home_Left \ID :=22 , v400 ,z10 ,tool0;
309 ENDPROC
310
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311 PROC Rock_L ()
312 MoveJ Home_Left ,v300 ,z10 ,Servo\WObj := wobj0;
313 MoveJ RockL_10 ,v300 ,z10 ,Servo\WObj := wobj0;
314 MoveL RockL_20 ,v200 ,z100 ,Servo\WObj := wobj0;
315 MoveL RockL_10 ,v200 ,z100 ,Servo\WObj := wobj0;
316 MoveL RockL_20 ,v200 ,z100 ,Servo\WObj := wobj0;
317 MoveL RockL_10 ,v200 ,z100 ,Servo\WObj := wobj0;
318 MoveL RockL_20 ,v200 ,z100 ,Servo\WObj := wobj0;
319 MoveL RockL_10 ,v200 ,z100 ,Servo\WObj := wobj0;
320 WaitTime \InPos ,1;
321 WaitSyncTask syncTaskRockStop , TaskListDefaultPos ;
322 MoveJ Home_Left ,v300 ,z10 ,Servo\WObj := wobj0;
323 ENDPROC
324

325 PROC SyncTest ()
326 ! WaitSyncTask syncTaskCancel , TaskListDefaultPos ;
327 IF IsSyncMoveOn () THEN
328 WaitSyncTask syncTaskCancel , TaskListDefaultPos ;
329 SyncMoveOff syncCancel ;
330 ELSE
331 ! Connected Motion Task is in independent mode
332 ENDIF
333 ENDPROC
334

335

336

337 ! In case the cancel gesture is read , this trap/ routine will be executed
338 TRAP CancelRoutineL
339 ! diactivate the cancel interrupts
340 ISleep persCancelintL ;
341 !start from main
342 ExitCycle ;
343 ENDTRAP
344

345

346 ENDMODULE� �
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Appendix C

Implementation

To understand better the implementation of all the parts performed in the project, the trained NN and the
robot programs, with EAVS program observe Figure C.1. Here all the process in its totality is explained.
The boxes in blue are actions performed by EAVS and the boxes in green are the ones performed by
the robot. The ANN would be inserted in EAVS program, EAVS program would run the selected ANN
depending in the received message from the robot.
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Figure C.1: Final implementation flow chart
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Appendix D

Future improvements

D.1 Sound

For a better communication between the user and the robot would be interesting to add sounds to the
robot. As the YuMi robot does not have speakers for the reproduction of the sounds, a possible solution
would be by the use of Arduino MKRZero which has the possibility to insert an SD card with ".wav"
sound archives. As the YuMi robot has digital outputs, this could be connected to the digital inputs of
the board to give digital signal to select the sound that is wanted to be played. As the maximum voltage
for the digital signals in the board is of 3.3v and the signal given by the robot is of 24v, a voltage divisor
would have to be made (see Figure D.1).

Figure D.1: Voltage Divisor

Apart from the voltage divisor, a sound amplifier is needed. This has been obtained from the web
page https://www.arduino.cc/en/Tutorial/SimpleAudioPlayer which uses a LM386 microchip and
can be observed in the Figure D.2. This circuit would need an external source to aliment the LM386,
which could be fixed with a battery of 9v. Apart from that, the Vin signal would have to be connected
to the Arduino board as well as the GND. By the connection of all GND external noises are partially
avoided.

https://www.arduino.cc/en/Tutorial/SimpleAudioPlayer
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Figure D.2: Sound amplifier

D.2 Facial expressions (UI)

For a more interactive communication between the user and the robot, an screen with facial expressions
could be added to the robot. To get ideas of which would be proper facial expressions for the robot, the
[48] and [49] articles have been read. From them, the facial expressions represented in Figure D.3 have
been designed.

Figure D.3: Robot facial expressions

As can be seen in the Figure D.3, there are four facial expressions, happy, sad, surprised and mad.
This facial expressions would be linked to the emotional movements of the robot. The happy face will go
with the victory or happy movement, the sad face will be linked to the failure or sad movement. When
it comes to the surprised face, this will be used when someone asks the robot to play the guitar, that is
to say when the user makes the rock gesture. To finish, the mad face will be used when a user shows the
middle finger and the robot answers with the mad movement.
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