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Abstract

Workspace and singularity determination of a 7-DoF

wrist-partitioned serial manipulator towards graffiti

painting
by Marc Esquerrà Corominas

Robots are overtaking every day more tasks in the industry. A lot of them are even designed for perform-

ing household chores. In general, robots are designed to facilitate the day-to-day of human beings. But

when it comes to artistic tasks, it is less usual to see robots performing them. We pretend to stay out

of the crowd by using a robot to paint a graffiti. The motivation to achieve this task converges into the

statement of two questions: ”What is the workspace of a robot, when the orientation of its end-effector

is fixed?” and ”For a given plane, what is the largest singularity free surface on it?”.

This thesis proposes a method for the computation of the position singularities of a wrist-partitioned se-

rial manipulator for a given plane. The method is obtained from the combination of a position singularity

determination method, which is based on the decoupling technique of a wrist-partitioned manipulator,

and a branch-and-prune algorithm for the resolution of systems of equations.

The workspace of a 7-DoF serial manipulator is obtained by a forward kinematics approach. A method-

ology to obtain the constant orientation workspace of a serial manipulator is presented and applied to

get approximations for some specific orientations.

It is shown how singularities can be analyzed by decoupling them into position singularities and ori-

entation singularities. The proposed method formulates and solves the equation that determines the

position singularities. In the case of the orientation singularities, it is shown that they can be avoided

without losing a significant amount of the workspace’s volume, from the point of view of the position.

Keywords: Workspace, singularity, end-effector, wrist-partitioned manipulator.

Mathematics Subject Classification American Mathematical Society code: [70b10].
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Resumen

Determinación del volumen de trabajo y las

singularidades de un manipulador serial redundante

de 7 grados de libertad con muñeca esférica

orientadas al grafiti
por Marc Esquerrà Corominas

Los robots están siendo utilizados, cada vez más, en la realización de tareas en la industria. Muchos

de ellos también son diseñados pensados para realizar las tareas del hogar. En general, los robots son

diseñados para facilitar el d́ıa a d́ıa de los seres humanos. Pero cuando se trata de obras art́ısticas, es

menos común encontrarse a robots realizándolas. Nosotros pretendemos salirnos de lo común mediante

el uso de un robot para pintar un grafiti. La motivación por lograrlo converge en la formulación de dos

preguntas: ”¿Cuál es el volumen de trabajo de un robot, cuando la orientación de su efector final está

fijada?” y ”Dado un plano arbitrario, ¿cuál es la mayor área de trabajo libre de singularidades en éste?”

Esta tesis propone un método para la obtención de las singularidades de posición en un plano cualquiera

de un manipulador serial con una muñeca esférica. El método ha sido obtenido mediante la combinación

de un método de determinación de singularidades de posición, el cual está basado en una técnica para el

decoplado de manipuladores que presentan una muñeca esférica, y un algoritmo branch-and-prune para

la resolución de sistemas de ecuaciones.

Se ha obtenido el volumen de trabajo de un manipulador serial de 7 grados de libertad a través de

un enfoque de cinemática directa. Se presenta la metodoloǵıa para obtener el volumen de trabajo del

manipulador serial cuando su efector final tiene una orientación constante y se aplica para obtener aprox-

imaciones para el caso de ciertas orientaciones.

Se muestra cómo las singularidades pueden ser analizadas a través de separarlas en singularidades de

posición y de orientación. El método propuesto formula y resuelve las ecuaciones que determinan las sin-

gularidades de posición. En cuanto a las singularidades de orientación, se muestra que pueden ser evitadas

sin perder una cantidad significante de volumen de trabajo, desde el punto de vista de la posición.

Palabras clave: Volumen de trabajo, singularidad, efector final, manipulador con muñeca esférica.

Código de clasificación de la American Mathematical Society : [70b10].
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Resum

Determinació del volum de treball i les singularitats

d’un manipulador serial redundant de 7 graus de

llibertat amb canell esfèric orientades al grafiti
per Marc Esquerrà Corominas

Els robots estan sent utilitzats, cada cop més, en la realització de tasques en la indústria. Molts d’ells

també són dissenyats pensats per a realitzar les tasques de la llar. En general, els robots són dissenyats

per a facilitar el dia a dia del éssers humans. Però quan es tracta d’obres art́ıstiques, és menys comú

trobar-se robots realitzant-les. Nosaltres pretenem sortir de la norma mitjançant l’ús d’un robot per a

pintar un grafiti. La motivació per a aconseguir-ho convergeix en la formulació de dues preguntes: ”Quin

és el volum de treball d’un robot, quan l’orientació del seu efector final està fixada?” i ”Donat un pla

arbitrari, quina és la major àrea de treball lliure de singularitats en aquest?”

Aquesta tesi proposa un mètode per a l’obtenció de les singularitats de posició en un pla qualsevol

d’un manipulador serial amb un canell esfèric. El mètode s’ha obtingut mitjançant la combinació d’un

mètode de determinació de singularitats de posició, el qual està basat en una tècnica per al decoplat

de manipuladors que presenten un canell esfèric, i un algorisme branch-and-prune per a la resolució de

sistemes d’equacions.

S’ha obtingut el volum de treball d’un manipulador serial de 7 graus de llibertat a través d’un enfocament

de cinemàtica directa. Es presenta una metodologia per a obtenir el volum de treball del manipulador

serial quan el seu efector final té l’orientació constant i s’aplica per a obtenir aproximacions per al cas de

certes orientacions.

Es mostra com les singularitats poden ser analitades a través de separar-les en singularitats de posició i

d’orientació. el mètode proposat formula i resol les equacions que determinen les singularitats de posició.

Pel que fa a les singularitats d’orientació, es mostra que poden ser evitades sense perdre una quantitat

significant de volum de treball, des del punt de vista de la posició.

Paraules clau: Volum de treball, singularitas, efector final, manipulador amb canell esfèric.

Codi de classificació de la American Mathematical Society : [70b10].
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Chapter 1

Introduction

Since the first robots emerged, these have been playing an important role in typical human working

environments. Throughout the years, more and more machines have been designed to overtake all kind

of tasks in the industry. They are even involved in everyday tasks in order to make human’s life easier.

Robots are usually focused on performing repetitive tasks to execute them more efficiently than humans

do. But can they be used in a more creative way and be involved in art projects? Can they reproduce

a piece of art created by a human or even elaborate one of their own? The work done in this thesis is

motivated by the purpose of painting graffitis with robots.

This thesis proposes a method for the computation of the singularities of the position of the wrist center

for a wrist-partitioned manipulator in a given plane. The method is the result of the combination of

already developed methods. First, the singularities are decoupled into position and orientation singulari-

ties. By applying this decoupling techniques, the equations determining the singularities are obtained in

an easier way. The resulting system of equations is solved with a branch-and-prune algorithm.

The main goal of this thesis is the determination of the workspace and singular configuration of a 7-

DoF wrist-partitioned manipulator. The motivation for achieving this goal is that we pretend to deter-

mine the largest singularity-free surface in a certain plane of action in order to apply it to graffiti painting.

First, some basic notions on robot manipulation and control will be introduced. These will result neces-

sary for a good comprehension of the thesis’ work.

Then, we will analyze the workspace of a serial, i.e. the set of poses that the end-effector’s reference

point can reach. We will define different types of workspaces. Related work done before on the deter-

mination of the workspace of a manipulator and its boundaries will be presented. We will give our own

approach of this problem for our manipulator and visualize the obtained results.

We propose a method to determine the constant orientation workspace. Graffitis are painted on walls,

1
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which we can imagine as planes, this is the reason why it is convenient that the end-effector is always

facing to the direction of the normal vector of the wall. We show our approximation of the constant

orientation workspace for some given orientations.

We will see how a wrist-partitioned manipulator can be decoupled into two systems: the forearm and

the wrist. By decoupling the manipulator, the singularity analysis can be separated into the analysis of

position singularities and orientation singularities. After the decoupling, the conditions for position and

orientation singularities are given. From this conditions, equations that determine the singularity sets

can be formulated.

A previously developed branch-and-prune algorithm for the resolution of systems of equations is pre-

sented. By applying this algorithm to the equations that determine the singularity sets, we can obtain

the joint configurations for which the manipulator is at a singular configuration.

We show how to compute the calculations required for applying the proposed method and the visu-

alization of the solutions, by using the set of applications CuikSuite.

To apply the proposed methods and obtain results, we will be working with a Fetch Mobile Manip-

ulator, which will be referred to as Fetch throughout the thesis for simplicity reasons. The Fetch is

composed of a 7-DoF wrist-partitioned arm, a torso lift and a non-steered wheeled base. Only the joints

of the arm will be taken into account for the application of the methods.

In the last chapter, we propose some ideas for further work related to the one done in this thesis.



Chapter 2

Basic concepts

In this chapter, we will introduce some fundamentals that are commonly used in robotic manipulation,

planning and control and will be useful for this thesis. These notions will be based on the theory

introduced in Lynch and Park’s book [23] and Dr. Frank Dellaert’s notes for a Mobile Manipulation class

imparted at the Georgia Institute of Technology.

2.1 Configuration space and degrees of freedom

The most fundamental thing, that can be considered when working with a robot, is the answer to the

question ”Where is it?”. This first question is answered by the robot’s configuration. The configuration

of a robot is a complete specification of all the positions of the robot. The configuration space (C-space)

of a robot is the set of all configurations of the robot. The dimension n of the C-space is known as the

degrees of freedom (DoF) of the robot. The DoF of a robot can also be defined as the minimum number

of real-valued coordinates needed to represent the robot’s configuration. For example, the configuration

of an elevator can be represented by the height of its base (1-DoF). A point in a plane has two DoF,

since just two coordinates (x, y) are needed to represent its configuration. And, finally, the C-space of a

rigid-body in space has dimension 6, where three DoF correspond to the representation of the position

and the other three to the representation of the orientation.

2.2 Three-dimensional Geometry

The rotation of a point in space around the origin of a moving body frame B to a base frame S can be

expressed as

ps = Rsbp
b, (2.1)

where Rsb is an orthonormal rotation matrix. Sub- and superscripts indicate the source and destination

frames, respectively. The columns of Rsb , {x̂sb, ŷsb , ẑsb}, represent the axes of frame B in the S coordinate

frame. Throughout this thesis all reference frames are right-handed, i.e. the unit axes {x̂, ŷ, ẑ} always

satisfy x̂× ŷ = ẑ.

3
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2.2.1 Rotation matrices

Let R ∈ R3×3 be a rotation matrix as in equation (2.1). Then, the columns of R correspond to the axes

of a orthonormal base. Therefore, the following conditions must be satisfied.

i. The unit norm condition: x̂sb, ŷ
s
b and ẑsb are unit vectors.

ii. The orthogonality condition: 〈x̂sb, ŷsb〉 = 〈x̂sb, ẑsb 〉 = 〈ŷsb , ẑsb 〉 = 0, where 〈·, ·〉 denotes the scalar

product.

These two conditions can be compacted into a single equation:

RTR = RRT = I, (2.2)

where RT denotes the transpose of R and I the identity matrix.

Moreover, the fact that the base is right-handed leads to one more constraint:

detR = 1. (2.3)

Definition 2.2.1. The special othogonal group SO(3) ⊂ R, is the set of all 3× 3 real matrices that

satisfy equations (2.2) and (2.3).

The set of rotation matrices SO(3) satisfy the properties of a mathematical group. A mathematical group

consists of a non-void set of elements G and an inner operation ·. If A,B,C ∈ G are elements of the set,

the following properties are satisfied:

i. Closure: A ·B ∈ G.

ii. Associativity: (A ·B) · C = A · (B · C).

iii. Identity element existence: There exists an element I ∈ G, such that A · I = I ·A = A.

iv. Inverse element existence: for each element of the set A ∈ G there exists an element A−1 ∈ G

, such that A ·A−1 = A−1 ·A = I.

Note that the inverse of a rotation matrix R ∈ SO(3) is its transpose, i.e. R−1 = RT . A proof to this

claim and the rotation matrices satisfying the mathematical group properties are given in [23].

2.3 Homogeneous transformation matrices

A point on a moving body in space can be expressed in a fixed frame S by a rigid transform, which is a

rotation as in equation (2.1) followed by a translation,

ps = Rsbp
b + tsb, (2.4)

where Rsb ∈ SO(3) and tsb ∈ R3.
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Definition 2.3.1. The special Euclidean group SE(3) ⊂ R4×4, also known as homogeneous trans-

formation matrices in R3, is the set of 4× 4 real matrices of the form,

T =

R t

0 1

 , (2.5)

where R ∈ SO(3) is the rotation and t ∈ R3 is the translation. It is frequently represented as T = (R, t).

The elements of SE(3) satisfy the properties of a mathematical group and preserve distances and angles.

A proof is given in [23].

By adding a fourth coordinate to ps equation (2.4) can be expressed asps
1

 =

Rsb tsb

0 1

pb
1

 = T sb

pb
1

 (2.6)

For any point ps of the space expressed as in equation (2.6) the columns of the rotation matrix Rsb

represent its orientation and the translation vector tsb its position in the reference frame S as illustrated

in figure 2.1.

Figure 2.1: Mathematical description of position and orientation Source: [23].

We will see one last useful property of the homogeneous transformation matrix.

Proposition 2.3.1. The inverse of an homogeneous transformation matrix T ∈ SE(3) is also a trans-

formation matrix. Its expression is given by

T−1 =

RT −RT t

0 1

 (2.7)

The fact that the inverse also belongs to SE(3) is obvious because, as we said, SE(3) is a mathematical

group. The expression can be obtained with very simple calculations by using the properties of the

rotation matrices.
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2.4 Spatial twists

Let us now consider the spatial trajectory that the point pb of the body frame B describes in the base

frame S in time. Using equation (2.6) the trajectory can be written as:ps(t)
1

 =

Rsb(t) tsb(t)

0 1

pb
1

 = T sb (t)

pb
1

 , (2.8)

where t ∈ R denotes the time.

We will consider linear and angular velocities of point in the base reference S. To obtain their expression

we will derive equation (2.7) with respect to time.ṗs(t)
0

 =

Ṙsb(t) ṫsb(t)

0 0

pb
1

 = Ṫ sb (t)

pb
1

 , (2.9)

From equation (2.6), it’s obvious that pb
1

 = (T sb )−1

ps
1

 (2.10)

Now, combining equations (2.7), (2.9) and (2.10) we obtainṗs
0

 = Ṫ T−1

ps
1

 =

Ṙ ṫ

0 0

RT −RT t

0 1

ps
1


=

ṘRT ṫ− ṘRT t

0 0

ps
1

, (2.11)

where all are time functions and the indexes in R = Rsb , t = tsb and T sb referring to the origin and desti-

nation frames were omitted for simplicity of the expression.

Let us introduce the mathematical concept of the skew-symmetric matrix representation of a real three-

dimensional vector in order to analyze the factors of the product Ṫ T−1.

Definition 2.4.1. Given a real three-dimensional vector x = [x1, x2, x3]
T ∈ R3 its skew-symmetric

matrix representation is

[x] =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 (2.12)

In [23], it is proven that the angular velocity ωs ∈ R3 of the the point int the reference frame S can be

obtained from the first factor of the product Ṫ T−1 as

[ωs] = ṘRT . (2.13)
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Also according to [23], the second factor is the instantaneous velocity of the point on the body currently

at the origin of the reference frame S, expressed in the reference frame.

vs = ṫ− ωs × t (2.14)

Now, we are able to define the spatial twist of a point that describes a spatial trajectory like in equation

(2.8) as a six-dimensional vector that assembles ωs and vs:

Vs :=

ωs
vs

 ∈ R6 (2.15)

Given a six-dimensional vector written as V = (ω, v) ∈ R6, where {ω, v} ∈ R3, we define the operation [·]

as:

[·] : R6 → R4×4

V = (ω, v) 7→

[ω] v

0 0

 .
So, now we have that the spatial twist Vs = (ωs, vs) is given by

[Vs] =

[ωs] vs

0 0

 = Ṫ T−1. (2.16)

To close this section, we introduce the concept of a spatial unit twist, since it will be useful later.

Definition 2.4.2. Let S = (ω, v) ∈ R6, where ω ∈ R3 is a unit vector representing an axis of rotation or

ω = 0 and v ∈ R3 represents a linear motion. Then, S is a three-dimensional unit twist.

2.5 Serial link manipulators

A serial link manipulator has several links, numbered 0 to n. Each pair of consecutive links is connected

by joints, numbered 1 to n. Joint j connects link j − 1 to link j. A serial manipulator that presents n

joints has n DoF. There exist many different types of joints. We will just consider revolute and prismatic

ones, since we won’t work with other types.

Revolute and prismatic joints can be lumped together by introducing the concept of a generalized joint

coordinate q and specifying the joint type using a string. For example, the Fetch’s arm is 7R and the

group torso-arm can be seen as P-7R. q ∈ Q is an n-dimensional vector, where the j-th coordinate, qj ,

corresponds to the value of the j-th joint and Q is known as the joint space of the manipulator.
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2.6 Forward Kinematics

We will define two frames. The first one is the reference frame S, which origin is normally located at the

base of the manipulator. The other frame B is known as the tool frame. Its origin is usually located at

the end-effector’s center, in which case is called the end-effector’s frame.

The objective of the forward kinematics is to calculate configuration of the tool frame relative to the

reference frame given a vector of joint values q ∈ Q. This means, that we will obtain the transformation

matrix representing the B in the S as a function of the joint values, T sb (q) ∈ SE(3).

There are several ways to proceed in order to obtain the expression of T sb (q). In some basic cases

the formula can be found by using very simple trigonometry calculations. In general, though, the struc-

ture for spatial serial manipulators is complex and requires a more systematic method for the forward

kinematics. One can define a frame attached to each link from 1 to n. Then the expression of T sb (q) can

be obtained as a product of transformation matrices as shown in the next equation.

T sb (q) = T s1 (q1)

n∏
j=2

(T j−1
j (qj))T

n
b (2.17)

Where T s1 (q1) is the configuration of the frame of the first link relative to the reference frame, Tnb expresses

the tool frame relative to the reference of the last link and each T j−1
j (qj) represents the configuration of

the j-th link’s frame relative to the frame of its previous link and just depends on the j-th component,

qj , of the vector of joint values q.

In the following subsection, we will present the Product of Exponentials Formula. By applying this

method, we will be able to avoid all the intermediate joint frames, as it only requires the reference and

the tool frames.

2.6.1 Product of Exponentials Formula

As we previously said, to use the Product of Exponentials Formula we just need to define two frames,

the reference frame S and the tool frame B. Then, we also have to define a configuration for the joint

values corresponding to the home or zero position and a spatial unit twist for each joint.

Let 0 ∈ Q be the vector of joint values corresponding to the home position. Then, we define M = T sb (0),

as the transformation matrix that expresses the tool frame in the reference frame when the manipulator

is at its zero position.

Now we have to define the 3D unit twists for each joint. We study the particular cases for a revo-

lute joint and a prismatic joint.
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For a revolute joint, the unit twist is defined by a unit vector, ω ∈ R3, denoting the axis of rotation

expressed in the reference frame S and any point, p ∈ R3, that lies in the axis of rotation, also relative

to the S reference. The unit twist is given by S = (ω, p× ω).

For a prismatic joint, the unit twist is just defined by a unit vector, v ∈ R3, denoting the direction

of motion expressed in the reference frame S. The unit twist is given by S = (0, v).

Once the unit twists, Sj , are determined for all the joints, we suppose that all joints are fixed at its

zero value except for the last one. By allowing the motion just for the last joint the end-effector’s frame

is then represented with the form

T = e[Sn]qnM. (2.18)

Now, if we also allow the motion for the (n − 1)-th joint the expression of the transformation matrix

undergoes of the form

T = e[Sn−1]qn−1(e[Sn]qnM). (2.19)

So, if we allow the rest of the joints to vary, as illustrated in Figure 2.2, we will finally obtain the T sb (q)

as the following product of exponential matrices

T sb (q) =

n∏
j=1

(e[Sj]qj )M. (2.20)

Figure 2.2: Illustration of the process used to obtain the Product of Exponentials Formula. Source: [23]

Now that we have the expression for the Product of Exponentials Formula, the last remaining thing to do,

is to give the expression for the exponential matrices. Given the three-dimensional unit twist associated

to the j-th joint, Sj = (ωj , vj) and its joint value, qj , the expression of its exponential matrix is given by

e[Sj]qj =

e[ωj]qj (Iqj + (1− cos qj)
[
ωj
]

+ (qj − sin qj)
[
ωj
]
)vj

0 1

 . (2.21)
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2.7 The Jacobian manipulator

In this section we want to find the relationship between the end-effectors spatial twist, Vs, and the joint

velocities, q̇. This relationship is given by the Jacobian matrix, as we will see here below.

Let us consider that the configuration of the end-effector is represented by a minimal set of coordi-

nates x ∈ Rm. Then, the end-effector’s velocity is given by ẋ = dx
dt ∈ Rm. As we have mentioned in the

previous section, the forward kinematics problem gives an expression of the end-effector’s configuration

as a function of the joint values, q ∈ Q ⊂ Rn. So, we define the function

f : Q ⊂ Rn → Rm

q 7→ x.

Now, the forward kinematics can be written as

x(t) = f(q(t)). (2.22)

Then, by the chain rule, the time derivative at time t of the end-effector’s coordinates is

ẋ = ẋ(t) =
∂f(q(t))

∂q

dq(t)

dt
=
∂f(q)

∂q
q̇ = J(q)q̇, (2.23)

where J(q) ∈ Rm×n is called the Jacobian matrix. The Jacobian matrix is a representation of the linear

sensitivity of the end-effector’s velocity to the joint velocities.

Before we obtain an expression for the Jacobian matrix of an n-link serial manipulator, we will intro-

duce the concept of the adjoint transformation associated with an homogeneous transformation matrix

T ∈ SE(3).

Definition 2.7.1. Given an homogeneous transformation matrix T = (R, t) ∈ SE(3), its adjoint repre-

sentation is

AdT =

 R 0

[t]R R

 ∈ R6×6 (2.24)

As we have seen in the previous section, forwards kinematics of an n-link serial manipulator can be

obtained with the Product of Exponentials Formula as in equation (2.20). From equation (2.16), we

recall that the spatial twist of the end-effector Vs = (ωs, vs) is given by [Vs] = Ṫ sb (T sb )−1. By expanding

this equality, it is proven in Lynch and Park’s book [23], that

Vs =
[
Js1 Js2 (q) . . . Jsn(q)

]

q̇1

...

q̇n

 = Js(q)q̇ (2.25)
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where Js1 and Jsj (q) = Ad∏j−1
i=1 e

[Si]qiSj , for j = 2 . . . n.

The manipulator Js(q) ∈ R6×n is called the space Jacobian, is a function of the joint values q and

offers the relationship between the velocities of the end-effector and the joints that we were looking for.

Each column Jsj = (ωsj , v
s
j ) ∈ R6 is a spatial twist.

2.8 Singularities

In this section, we are going to introduce the concept of kinematic singularity. As we will see, the singu-

larities are very important in this thesis and will be analyzed in detail.

There are some configurations of the manipulators at which its end-effector loses the ability to move

instantaneously in one or more directions. This kind of configuration are known as kinematic singulari-

ties. For example, consider a 3R planar manipulator, when it is fully stretched out as in Figure 2.3. For

this specific configuration, rotation at any joint produces only vertical velocity at the end-effector. As no

horizontal velocity can be achieved, the manipulator is at a singular configuration.

Figure 2.3: 3R planar manipulator at a singular configuration. Only vertical movement for the end-

effector is possible.

A proper analysis of the Jacobian manipulator will allow us to identify the set of configurations for which

the serial manipulator is at a singularity. From equation (2.25), we can deduce that the twist Vs can be

obtained as a linear combination of the Jsj . So, the manipulator will lose the ability to produce velocity

at the end-effector in one or more directions when the Jacobian matrix isn’t full rank. For the spatial

case and an n-link manipulator, we have that the Jacobian matrix is Js ∈ R6×n. So, the robot will reach

a singularity if rank(Js) < min(6, n).

Singularities are independent of the choice of the reference and the end-effector’s frame. They just

depend on the set of joint values. Let us prove it. Consider two different reference frames, the original
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frame S and the relocated frame S′. The forward kinematics for each frame are respectively T and

T ′ = TP , where P ∈ SE(3) is constant. We already now that the space Jacobian Js is obtained from

[Vs] = Ṫ T−1. We have that

Ṫ ′(T ′)−1 = ˙(TP )(TP )−1 = ṪP (P−1T−1) = Ṫ (T )−1, (2.26)

therefore, Js
′

= Js.

2.9 Inverse Kinematics

In section 2.6, we have declared the forward kinematics problem as: Given a set of joint values q ∈ Q ⊂ Rn,

determine the end-effector’s pose T sb (q) ∈ SE(3) relative to the reference frame S. Now, we want to solve

the problem in the other way. The inverse kinematics problem can be stated as follows: Given a desired

end-effector’s pose X ∈ SE(3), find the joint configurations q ∈ Q ⊂ Rn that are a solution of the

equation T sb (q) = X.

The main difference between the forward kinametics problem and the inverse kinematics problem in-

volves their existence and number of solutions. While the forward kinematics problem always presents a

unique solution T sb (q) ∈ SE(3) for any given q ∈ Q, the inverse kinematics problem, may present zero, one

or multiple joint configurations q ∈ Q that achieve the desired end-effector’s configuration X ∈ SE(3).

This fact is shown with a basic planar example in Figure 2.4. There are two approaches to solve the

Figure 2.4: Illustration of reachability of different desired positions by a 2R planar manipulator. The red

position can’t be achieved (no inverse kinematics solution), the blue position can be reached

just by the configuration where the manipulator is fully stretched out (black links) and the

green position presents two different inverse kinematics solutions (gray links).

inverse kinematics problem. In some cases, an analytic closed-form solution can be found to the nonlinear

equations. Typically, these solutions are obtained by taking advantage of the particular structure of the

manipulator. For arbitrary manipulators, however, an analytical solution may not exist. For these cases

the second approach is applied, the iterative numerical methods. These methods require an initial guess

q0 ∈ Q, then they iteratively lead the initial guess towards a solution qsol ∈ Q, if it exists. Unlike the
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analytic closed-form, this approach will only find one possible solution derived from the initial guess, not

all possible solutions, but can be applied to any arbitrary manipulator.

2.10 Redundant and wrist-partitioned manipulators

The Fetch is a redundant and wrist-partitioned manipulator. In this section, we will define both properties

and comment some aspects related to them.

2.10.1 Redundant manipulators

A redundant manipulator is one that has more DoF than the number of coordinates that are necessary

to completely describe the configuration of the end-effector. For example, a manipulator needs to have

at least 6 DoF to freely position and orient ist end-effector in the 3D space. So, serial manipulators

with 7 joints, like the Fetch’s arm, or more are redundant if they are used to manipulate objects in the

three-dimensional space.

Redundant manipulators are able to perform self-motion without changing the end-effector’s pose. This

property makes the manipulator more flexible, because the extra joint can be used to avoid joint limits

and even singularities. But it also makes them more complex to control, since a fixed end-effector’s pose

doesn’t unambiguously determine the joint values and some extra parameters are required in order to

relate and end-effector’s pose with a unique set of joint values.

2.10.2 Wrist-partitioned manipulators

Wrist-partitioned manipulators are those whose last three joint axes intersect in a single point. The arm

of the Fetch presents this property.

In wrist-partitioned manipulators, position and orientation can be studied separately. This can be very

helpful, since it facilitates simplifications in the workspace and singularity analysis. In one of the following

chapters, we will see what considerations we can make, in order to take advantage of this property.



Chapter 3

Workspace

We will begin with a study of all the positions, that the end-effector can reach. This set of points composes

the arm’s workspace. The analysis will be done by supposing that wheels and torso aren’t actuated. To

get the workspace of the group arm-torso, we can simply displace the results obtained for the arm along

the z-axis by the distance that the torso-lift allows.

3.1 Definition and categories

The workspace of a manipulator is the region that can be reached by a reference point on the manipulator.

Usually, this point is fixed in the center of the manipulator’s end-effector. There are various subsections in

the whole workspace, whose analysis may be of interest depending on which goal one wants to accomplish.

In [7], these subworkspaces are classified as the following:

• The reachable workspace is the set of poses that the reference point is able to reach in at least one

orientation. It may be seen as the whole workspace.

• The constant orientation workspace is the set of locations that can be reached by the reference

point with a scpecific orientation. It is also known as the funtional workspace.

• The total orientation workspace is the group of positions that can be reached by the reference point

in all the different orientations for a given set orientations. This region is the intersection of all the

different functional workspaces that each orientation of the set defines.

• The dexterous workspace is the set of all the possible poses that the reference point can reach in

every single orientation.

• The orientation workspace is the set of orientations that can be reached with the reference point

fixed at a certain location.

Figures 3.1, 3.2 and 3.3 show the different workspace types for an exemplary planar RR manipulator.

14
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Since the to-be-painted wall can be seen as a fixed plane in the space, our intention is that the end-

effector always points to a constant direction, the direction of the normal vector of the wall. This is the

reason why we are interested in the study of the functional workspace of the Fetch’s arm.

Figure 3.1: Reachable (green) and dexterous (blue) workspace for a planar manipulator with two revolute

joints. Source: [22].

Figure 3.2: Constant orientation workspace for two different orientations (blue and green) and total

orientation workspace (violet) for a planar manipulator with two revolute joints. Source:

[22].

3.2 Workspace determination

As we said earlier, we are interested in obtaining all the positions that the end-effector can reach with a

constant orientation. But, before we proceed with the analysis of the constant orientation workspace, we

will determine the reachable workspace of the Fetch’s arm. This will allow us to get a first idea of the

manipulating volume, that we are dealing with.
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Figure 3.3: Orientation workspace for a fixed location of the end-effector of a planar manipulator with

two revolute joints. Source: [22].

3.2.1 Workspace determination methods

To get a complete representation of the workspace, we need a six-dimensional space (three dimensions

for the position and three for the orientation). However, a graphical representation is not possible for six

dimensions. For this reason, we will focus on the visualization of the positions that are reachable for the

end-effector, without taking the orientation into account.

There are various ways to obtain a determination of the workspace. A lot of work has been previ-

ously done in this field. The proposed processes to determine the workspace can be classified in five main

methods [22].

3.2.1.1 Volume sweeping

The idea of this method is to sequentially chain the relative movement of the end-effector about the

different joint axes in order to obtain a description of the workspace. The method first supposes that all

joints are fixed except for the last one. Then, it analyzes the curve described by the end-effector while

rotating about the last joint’s axis. The next step is to rotate this curve about the axis of the second last

joint to obtain a surface. The surface is then swept along the axis of the third last joint and a volume is

obtained. One must keep sweeping the volume generated by the following joints about the axis of each

of the remaining joints to obtain the whole accessible workspace. Figure 3.4 illustrates how this method

works.

Ceccarelli [8] deduces a recursive algorithm to obtain the boundary of rings and hyper-rings by using

the geometry of the generation process by revolving a figure about an axis. This algorithm is used to

describe the boundaries of the workspace of n-R serial manipulators.

Hansen et al. [14] present an algorithm based on volume sweeping to determine the workspace of a

general n-R manipulator by using polar coordinate systems. They apply some techniques to reduce

the number of stored points, so that the algorithm becomes computationally feasible. The workspace
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Figure 3.4: Volume sweeping example for the last three joints of a spacial manipulator. Source: [22].

is evaluated by analyzing directions and lengths from which any point in the workspace can be approached.

Chirikjian and Ebert-Uphoff [10, 11] determine the workspace of discretely actuated manipulators by

applying the concept of a convolution product of real-valued functions on the Special Euclidean Group

SE(n). They partition the manipulator into segments and approximate the workspace of each segment as

a density function. The whole workspace is approximated as the convolution of all the density functions.

3.2.1.2 Forward kinematics

This method consists on sampling in the joint space to obtain a reasonable number of different joint

angles configurations. Then, the forward kinematics are computed for each configuration to obtain its

corresponding pose and/or orientation. The sampling can be done equidistantly or randomly (e.g. Monte

Carlo method is a frequently used option). Figure 3.5 shows the idea behind this method.

There are two ways to proceed depending on what has a higher priority, precision or time. If one is

looking for precise results, then each single point should be used by separate for the visualization of the

workspace. If the faster option is preferred, one may divide the Cartesian space in grids and check, for

each grid, if there’s any point that lies on it.

Castelli et al. [7] sample the joint intervals of serial and parallel manipulators equidistantly. They divide

the Cartesian space into cubic cells. After computing the forward kinematics for each joint configuration,

they count how many points lie on each cell. They apply a filter to the resulting volume to obtain the

boundary surface of the manipulators. The results for a serial manipulator are illustrated in Figure 3.6.

There are many approaches that use the Monte Carlo method. Guan and Yokoi [13] use this method to

randomly sample applicable joint angles for a humanoid robot. For each set of joint angles, they compute

forward kinematics and store the results in a cell database. Wang et al. [35] as well apply Monte Carlo’s

method to obtain a general representation of the manipulator’s workspace taking into account indepen-

dent joint variable constraints, inequality constraints (these include self collision avoidance constraints)

and equality constraints (these express any special requirements needed). Cao et al. [5, 6] also choose
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Figure 3.5: Illustration of the idea behind determining the workspace by computing forward kinematics.

Source: [22].

Figure 3.6: Results obtained by Castelli et al. [7] for a 6-DOF serial manipulator. (a) shows the whole

workspace and (b) a slice of the resulting boundary surface after applying the filter.

a Monte Carlo based algorithm to do the joint angle sampling and generate a cloud of points. Then,

they obtain the boundary surface of the serial manipulator’s workspace and use the commercial software

Solidworks to visualize it as shown in Figure 3.7.

3.2.1.3 Inverse kinematics

In this case, the Cartesian space is sampled instead of the joint space. It is divided in small grids. For

each grid, it is checked if its centre has a solution for the inverse kinematics problem. If a solution is

found, the whole grid is considered to lie within the workspace. Therefore, the smaller the grids are, the
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Figure 3.7: Boundary surface of the workspace of a 5R manipulator obtained by Cao et al. [6].

more precise the results will be. To obtain a more accurate visualization of the boundary of the hull,

some interpolation methods can be applied to the grids that have a solution that are adjacent to grids

that don’t. An illustration of the employment of this method is shown in Figure 3.8.

Figure 3.8: Illustration of the idea behind determining the workspace by computing inverse kinematics.

Source: [22].

Kunze [22] proposes his own inverse kinematics algorithm for a spherical shoulder - elbow - spherical

wrist manipulator. He presents a cost function based on the end-effector’s current pose and the elbow’s

position to avoid joint limits and singularities. He associates a scalar value to each node of the mesh,

instead of classifying them binary (lies in the workspace or not), to smooth the boundary surface. His

results are shown in Figure 3.9.
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Figure 3.9: Workspace visualization for a spherical shoulder - elbow - spherical wrist manipulator after

smoothing the boundary surface. Source: [22].

Çavusoglu et al. [37] compare different manipulators for performing teleoperated suturing tasks. Pre-

determined trajectories based on suturing performances of experienced surgeons are given. It is checked

by computing the inverse kinematics if each point on the trajectories is accessible without taking into

account the joint limits. If all points present an inverse kinematics solution, then a continuous trajectory

can be generated. So, they store all the joint angle values to determine which range should have each

joint so that the manipulator traced the trajectories in a continuous way.

As well as the joint angles, the Cartesian coordinates of the position can be sampled randomly. Rastegar

and Fardanesh [26] apply the Monte Carlo method to get an approximation of the workspace volume

of a serial manipulator. They consider a parallepiped that contains the whole workspace and randomly

sample points in this volume. Then, they check how many of the sampled points present an inverse kine-

matics solutions, to determine if they lie in the workspace or not. They approximate the ratio between

the workspace volume and the parallepiped’s volume as the quotient between points with an inverse

kinematics solution and the number of total generated points.

3.2.1.4 Geometrical and analytical boundary determination

Kunze [22] clusters different methods in this group. He argues that they cannot be separated in other

classes and they all have the same ground idea. They are based in the fact that the workspace boundary

is a surface where joint limits and singularities are reached. In some cases, researchers take advantage of

the search of these singular configurations to divide the workspace in different regions. Here, we review

the geometrical, analytical and numerical methods that seem to be more interesting and useful for our
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case of study.

Kohli and Spanos [19] use displacement polynomials and their discriminant to obtain the workspace

boundaries for wrist-partitioned robots (i.e. the axes of the last three joints, which are rotational,

intersect at one point). They obtain an analytical expression for the boundary surfaces in Cartesian co-

ordinates. In [28], they apply this method to all different wrist-partitioned manipulators with six joints.

The joint type for the first three joints is selected between rotational and prismatic. They also divide the

workspace in regions with different accessibilities. Where they understand as accessibility as the number

of solutions that a point presents for the inverse kinematics problem. However, they conclude that the

higher order of the displacement polynomial for robots with more then six joints turns the algebra in

obtaining the discriminants prohibitive. Figure 3.10 shows the results obtained by Kohli and Spanos.

Figure 3.10: Visualization of the results obtained by applying the method presented by Kohli and Spanos

[19]. Regions with different accessibilities are visible. The dots between regions represent

the surfaces that separate them. Each surface has as an accessibility number the mean of

the accessibilities of the regions that separate.

Tsai and Soni [34] develope an algorithm to determine the workspace of a robot with an arbitrary number

of revolute joints for any given plane. The algorithm is based on a linear optimization technique applied

to the coordinate-transformation equations using small increments for the joint displacements. First, a

point in the boundary is searched, from which the contour is traced. They notice that the algorithm

presents limitations when it is applied to manipulators with sub-workspaces corresponding to different

configurations. The results obtained by applying this algorithm to a 6-R robot in two different planes
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are shown in Figure 3.11.

Figure 3.11: Boundary of the workspace of a 6-R manipulator in the sagittal (left) and horizontal (right)

planes obtained by applying Tsai and Soni’s algorithm [34].

Several algorithms for the determination of the bounding surface of the workspace for mechanical ma-

nipulators with rotatory joints have been developed based on two theorems [31, 21, 27]. Both theorems

are proven in [31]. The first theorem claims that all intermediate joint axes of a robot arm with an arbi-

trary number of joints intersect an extreme distance line between an arbitrary base point and the center

point of the end-effector. The second one claims that all intermediate joint axes intersect an extreme

perpendicular distance line from the center point of the end-effector to any arbitrary line of the space.

Sugitomo and Duffy [31] say that their algorithm fails in some cases when the robot arm is in special

configurations. They present a study of these cases in [32].

3.2.1.5 Learning-based approaches

The learning based approaches are those, where the manipulator can learn a representation of its own

workspace through training. Here, an important advantage is the general applicability of the concepts.

However, the solutions aren’t as accurate as the ones that are obtained by applying other methods.

Jamone et al. [18] propose an innovative bio-inspired approach to build a map of the workspace. They

describe how a humanoid robot acquires autonomously a kinematic model of its body through exploration

of the motor space. Training data can be created to learn the workspace map. Once it has learned the

map, the robot can use it to estimate the reachability of a detected object. The position of a point in

space is defined by the gaze configuration, i.e. the motor positions of the head and eyes when the robot

is fixating that point.

Stulp et al. [30] combine analytic models, imitation and learning-based approaches in order to obtain

a model of the reachability for mobile manipulation grasping tasks. First, an analytical model for the

manipulator’s task is designed. Then, the robot learns the model by imitating the human’s behaviour.

They use capability maps as analytic models and a human model of reachability from human motion



3.3. OWN APPROACH AND RESULTS 23

data to acquire the training data the learning-based approach.

3.3 Own approach and results

For the approach of the workspace of the arm of the Fetch, we have decided to apply a forward kinematics’

method, where the sampling of the joint space will be done equidistantly for each interval of the joint

values. Our goal here is to obtain a first idea of the aspect and dimensions of the reachable workspace and

the constant orientation workspace of our manipulator. For this purpose, a forward kinematics approach

is accurate enough and is more simple to apply and less computationally expensive than other methods.

3.3.1 Forward kinematics model

To compute the forward kinematics model of the Fetch’s arm, we will apply the Product of Exponentials

Formula (2.20) previously introduced. We need to define the reference frame S0 and the end-effector’s

frame B. Both frames have the same orientation. The origin of the S0 is placed at the first joint and the

origin of the frame B at the center of the end-effector as illustrated in the visualization of the Fetch robot

obtained with the 3D visualization tool rviz in Figure 3.12. We will additionally define a third frame S

with its origin at the base of the Fetch and the same orientation as the other two frames.

Figure 3.12: 3D visualization of the Fetch Mobile Manipulator using rviz. The base frame, the first link’s

frame and the end-effector’s frame are illustrated. The red axes are the x-axes, the green

axes are the y-axes and the blue axes are the z-axes.

By applying the Product of Exponentials Formula with S0 as the reference frame and B as the tool

frame, we will obtain a complete description of the end-effector’s pose relative to the first joint T s0b (q).
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Then, the pose of the end-effector telative to the robot’s base will be given by

T sb (q) = T ss0T
s0
b (q) = T ss0

7∏
j=1

(e[Sj]qj )M, (3.1)

where T ss0 ∈ SE(3) is constant and changes coordinates from frame S0 to frame S.

We will simplify equation (3.1), by making a little adjustment. We have noticed that a variation on

q7 doesn’t result in a change of the position of the origin of the end-effector’s frame. Since we are

interested in visualizing all the possible positions of the end-effector without taking into account its ori-

entation, we will not add the last joint in the Product of Exponentials Formula. This will reduce the

number of sampled configurations, but won’t imply a loss of any information, because we wouldn’t get

any new position of the end-effector. So, the resultant forward kinematics model is

T sb (q) = T ss0

6∏
j=1

(e[Sj]qj )M, (3.2)

Figure 3.13: Representation of the structure of the arm of the Fetch robot, its variables and the defined

right-handed frames.

So, in order to have an explicit expression of the pose of the end-effector relative to the base of the robot

as a function of the joint angles, all we have to do is define T ss0 , Sj for j = 1, . . . , 7 and M . Remember,

that for revolute joints each unit twist Sj = (ωj , pj × ωj) ∈ R6 is determined by the axis of rotation

ωj ∈ R3 and any point in it pj ∈ R3 expressed in the frame S0, which are given in Table 3.1. All variables

are illustrated in Figure 3.13 and defined in Table 3.2. The homogeneous transforms T ss0 and M are the
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following:

T ss0 =


1 0 0 −x0

0 1 0 0

0 0 1 z0

0 0 0 1

 (3.3)

M =


1 0 0 (l1 + l2 + l3 + l4 + l5 + l6 + lee)

0 1 0 0

0 0 1 d1

0 0 0 1

 (3.4)

Joint ωj pj

1 (0, 0, 1) (0, 0, 0)

2 (0, 1, 0) (l1, 0, d1)

3 (1, 0, 0) (0, 0, d1)

4 (0, 1, 0) (l1 + l2 + l3, 0, d1)

5 (1, 0, 0) (0, 0, d1)

6 (0, 1, 0) (l1 + l2 + l3 + l4 + l5, 0, d1)

7 (1, 0, 0) (0, 0, d1)

Table 3.1: Values of the components of the unit twist Sj of each joint of the Fetch’s arm.

Variable name Values (m)

x0 0.0338

z0 0.98

d1 0.06

l1 0.117

l2 0.219

l3 0.133

l4 0.197

l5 0.125

l6 0.139

lee 0.166

Table 3.2: Values of the length variables of the structure of the Fetch’s arm.
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3.3.2 Sampling

The sampling of the joint space has been done by discretizing the joint values intervals in an equidistant

way. Let m ∈ N be the number of values taken in each interval. Then, the number of total sampled

configurations is N = m7. We consider that, with m = 15, we should have enough different configurations

to obtain a good approach. Note that each sampled value of the j-th joint will be
qmax
j −qmin

j

m−1 units away

from their adjacent values. The lower and upper limits of the j-th joint angle, qminj and qmaxj , are defined

in Table 3.3.

Joint qminj qmaxj

1 −π/2 π/2

2 −1.22 2.25

3 −π π

4 −2.25 2.25

5 −π π

6 −2.16 2.16

7 −π π

Table 3.3: Lower and upper joint limits of each joint on the Fetch’s arm.

Before obtaining the Cartesian coordinates of the end-effector’s position, we have reduced the number

of total configurations by eliminating the ones that correspond to a configuration in self-collision. This

process has been done by using the MoveIt Motion Planning Framework (MoveIt for short). For a given

set of joint values q ∈ Q, MoveIt allows us to check if the different robot parts are hitting each other in the

resultant configuration. Therefore, by repeating this test for each one of the sampled joint configurations,

we are able to discard the ones that would result in a self-collision state.

3.3.3 Reachable workspace

Now that we have our sampled set of joint configurations Qs ⊂ Q, we can obtain the pose of the end-

effector relative to the base frame for each configuration by substituting each q ∈ Qs in equation (3.2).

The result is an homogeneous transform represented as T sb = (Rsb , t
s
b) ∈ SE(3). To visualize the position

workspace in the Cartesian space, we have to plot each tsb = (t1, t2, t3) ∈ R3. The results are shown in

Figures 3.14, 3.15, 3.16 and 3.17.

To visualize the boundary of this cloud of sampled points, we have used pyvista and pygeo to generate

a 3D Triangulation mesh of the boundary. The resulting visualization of the workspace is illustrated in

Figures 3.18 and 3.19. Note that we can even perceive the robot’s silhouette.
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Figure 3.14: A general view of the workspace representation of the Fetch’s arm expressed in the base

frame S.

Figure 3.15: Top view of the workspace representation of the Fetch’s arm expressed in the base frame S.

3.3.4 Constant orientation workspace

In this section, we will explain how to get an approach of the constant orientation workspace for an

arbitrary orientation of the end-effector and give the results for some specific orientations.

To visualize the constant orientation workspace in the Cartesian space, we have to select the end-effector’s
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Figure 3.16: Front view of the workspace representation of the Fetch’s arm expressed in the base frame

S.

Figure 3.17: Side view of the workspace representation of the Fetch’s arm expressed in the base frame S.

poses T sb = (Rsb , t
s
b) ∈ SE(3) obtained in the previous section, whose Rsb ∈ SO(3) correspond to the goal

orientation and, then, plot the corresponding tsb = (t1, t2, t3) ∈ R3. Let x̂ee, ŷee, ẑee ∈ R3 be three unit

orthogonal vectors, such that x̂ee×ŷee = ẑee, denoting an arbitrary wanted orientation of the end-effector.

Then, the columns {r1, r2, r3} of the rotation matrix Rsb have to be:


r1 = x̂ee

r2 = ŷee

r3 = ẑee

(3.5)
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Figure 3.18: Front view of the workspace’s boundary representation of the Fetch’s arm obtained with

pyvista and pygeo.

Figure 3.19: Side view of the workspace’s boundary representation of the Fetch’s arm obtained with

pyvista and pygeo.
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For our case, we will take two considerations into account to select which poses present a correct ori-

entation. First, we will only analyze the direction of the x-axis of the end-effector’s frame B relative

to the base frame S. The study will be focused on x̂sb, because this is the direction towards which the

end-effector is pointing. We will lose control over ŷsb and ẑsb . But this will not be a problem, since the

last joint presents a full 360o rotation and a change on its value doesn’t change neither the end-effector’s

position nor x̂sb. So, with the origin and the x-axis fixed, we will be able to manipulate the last joint’s

angle to adjust the frame B as we want.

The second consideration that we are making is to allow some deviation of the end-effector’s sampled

orientations from the actual goal orientation. We have obtained the different joint configurations by

sampling, so the joint space is discretized. This makes very unlikely to result in the exact orientation

that we are looking for. So, we will approximate the constant orientation workspace by selecting all the

poses in which the end-effector’s pointing direction forms an angle with the desired direction less than or

equal to a limiting angle α.

To apply the idea of the limiting angle, we will use basic mathematics. It is well known, that given

two vectors u, v ∈ R3, the angle that they form can be obtained by the operation

·̂ : R3 × R3 → (−π, π]

(u, v) 7→ ûv = arccos
〈u, v〉
‖u‖‖v‖

,

where 〈·, ·〉 and ‖ · ‖ are the common scalar product and Euclidean norm of R3.

Now, we can establish the conditions that a Cartesian pose has to satisfy to be selected for our con-

stant orientation workspace approach. Let ω ∈ R3 be the desired pointing orientation of the end-effector

and α the limiting angle defined previously. Then, from equation (3.5) and the considerations that we

have made, an end-effector’s pose T sb = (Rsb , t
s
b) will be classified as valid for our constant orientation

workspace visualization if, and only if,

∣∣ω̂r1

∣∣ ≤ α (3.6)

is satisfied.

We have tested this process for different orientations with various limiting angles. The results for three

orientations with a limiting angle of α = 15o are presented. The plots correspond to the configurations

where the end-effector is facing forwards (Figure 3.20), to the left (Figure 3.21) and downwards (Figure

3.22).
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Figure 3.20: Representation of the constant oriented workspace of the Fetch’s arm with the end-effector

facing forwards.

Figure 3.21: Representation of the constant oriented workspace of the Fetch’s arm with the end-effector

facing to the left.

Since our final goal is to choose the plane with a larger working surface of action given a direction for

the end-effector to face to, we will analyze the workspace in the planes, whose normal vector is equal to

the specified direction.

Like in the case of the orientation, we will allow a small error δ, that quantifies the maximum dis-

tance between a point and the studied plane, so that the point is considered to lie in the plane. The

reason to tolerate this error is the same as before: to work with a sampled cloud of points makes unlikely

that many points lie exactly in a concrete plane.

For each studied constant orientation workspace, we have intersected the cloud of points with several par-

allel planes, whose normal vector has the same direction as x̂sb and counted the number of included point
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Figure 3.22: Representation of the constant oriented workspace of the Fetch’s arm with the end-effector

facing downwards.

by admitting the small error δ. The planes that present the largest number of points, with δ = 0.015 cm,

are illustrated in Figure 3.23 (end-effector facing forwards), Figure 3.24 (end-effector facing to the left)

and Figure 3.25 (end-effector facing downwards). A larger number of points doesn’t necessarily imply

that the area of work is also larger, but by looking at Figures 3.20, 3.21 and 3.22 we can check that these

planes present one of the largest achievable areas.

Figure 3.23: Representation of the constant orientation workspace when the end-effector is facing forwards

in two planes when the allowed errors are α = 15o and δ = 0.015 m.
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Figure 3.24: Representation of the constant orientation workspace when the end-effector is facing to the

left in two planes when the allowed errors are α = 15o and δ = 0.015 m.

Figure 3.25: Representation of the constant orientation workspace when the end-effector is facing down-

wards in two planes when the allowed errors are α = 15o and δ = 0.015 m.



Chapter 4

Singularity analysis and visualization

Throughout the years, scientists have experienced issues when working with robots due to singularities.

For this reason, singularity states are undesired situations.

As we have announced in a previous chapter, manipulators lose at least one DoF when they reach

singularities. This is troublesome because velocities of the end-effector in some directions are not possi-

ble and may cause the robot to get stuck. Even when the manipulators are at configurations, that are

near to singularities, problems may appear, bacause very large joint motions are required to produce rel-

atively small end-effector’s displacements. Also, in the lab, we have experienced unexpected issues when

performing calligraphy and painting experiments with the manipulators, such as vibrations or weird and

apparently inefficient trajectories to move from a point to another that is very close to it.

In this chapter, we will analyze singularities for wrist-partitioned manipulators and present a method

to visualize them in a given plane.

4.1 Related work

An exhaustive research has been done on the previously done work related to singularity analysis of

manipulators. In this section, we present the part of this related work that is more useful for our purpose.

Kreutz-Delgado et al. [20] present a kinematic analysis of a 7R serial manipulator. To uniquely de-

termine the joint angles for a given end-effector’s pose, they introduce a parameter defined by the angle

between the arm plane and a reference plane. They give singularity conditions based on the values of

two scalar measures and classify the singular configurations depending on these conditions.

Tourassis and Ang [33] analyze the interplay between arm and wrist singularities and develop an in-

tuitive method for obtaining the manipulator’s singularities from the arm and wrist singularities. First

they decouple the singularities into the systems arm and wrist. They analyze both systems’ singulari-

34
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ties separately and, then, obtain a formula that defines the manipulator’s singularities in terms of the

singularities of both systems. They conclude that singularities represent the boundaries between regions

with different number of solutions for the inverse kinematics problem. Their analysis leads to an efficient

method to identify the singularities of a 6R manipulator.

Decoupling the singularities of a wrist-partitioned manipulator into position and orientation singular-

ities is a frequently used way to determine the singularity sets. In the following sections, we will analyze

this method in detail. The main advantage of this method, is that, by choosing the end-effector’s frame

properly, the analysis can be simplified. Hayes et al. [16] decouple the singularities to analytically de-

scribe and classify the singularities of wrist-partitioned 6R serial manipulators in general and apply it

to a specific robot. Cheng et al. [9] also apply the decoupling method to analyze the singularities of

redundant 7-DoF manipulators. They give conditions on the joint values and classify the singularities.

Additionally, they compare singularity avoidance methods and present their own. Unlike other existing

method, their method considers the position singularities and the orientation singularity separately and

it can avoid escapable singularities of redundant manipulators efficiently and effectively. Xu et al. [36]

combine the singularity decoupling method with a damped reciprocal method, in order to manipulate a

spacecraft with a wrist-partitioned manipulator.

Goyal and Sethi [12] and Abdel-Malek et al. [1] present methods to determine the position singularities

of serial manipulators that present joint limits. They create three singularity compound of joint configu-

rations sets by applying a row-rank deficiency criterion and considering the joint limits. To parametrize

the position singularity surfaces they substitute the singularity sets into the forward kinematics formula.

Bedrossian [3] presents a method for the analysis of singularities of redundant manipulators. He classifies

the singularities according to whether reconfiguration into a non-sigular posture is possible using null

motion, i.e. a motion that doesn’t disturb the end-effector’s location. He gives necessary and sufficient a

null vector has to satisfy to be admissible.

Haug et al. [15] analyzes the singularities of planar and spatial manipulators by using first and second

order Taylor approximations of the output variables in selected directions as functions of manipulator

input variables. They classify the singularities into boundary barriers, interior barriers and crossable

singularities.

4.2 Directly accessible workspace

In his thesis [22], Kunze defines the directly accessible workspace. Unlike the reachable workspace, which

is the set of all poses that the end-effector can achieve, the directly accessible workspace is the set of

poses that the end-effector can reach from its current pose in a straight motion.
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This concept may help us understand the source of the unexpected behaviour of the robot, when per-

forming not intuitive movements to move between to points that are very close to each other. Sometimes,

a position may be very close to the end-effector’s current position, but not lie in the directly accessible

workspace. It is in these cases, when the manipulator requires to perform a large reconfiguration to

reach the goal end-effector’s pose. The simple 2R planar example in Figure 4.1 may be helpful in the

comprehension of these situations.

Figure 4.1: Illustration of the directly accessible workspace (green) and the reachable workspace (light

red) of a 2R planar manipulator with joint limits. The blue cross is the goal position. It

is very very close to the current end-effector’s position, but it does not lie in the directly

accessible workspace. The manipulator needs a large reconfiguration to reach the goal pose.

Source: [22].

Kunze presents a method to approximate the directly accessible workspace. He samples directions in

the three-dimensional Euclidean space and traces rays from the end-effector’s position in each sampled

direction. Then, he samples points in each ray. The distance between two consecutive points is directly

proportional to their distance to the end-effector. For each ray, he computes the inverse kinematics prob-

lem for the closest point to the end-effector. If there is not a solution or a joint limit is hit the point will

be considered as the last feasible one. If none of these conditions is satisfied the process is repeated for

the next ppoint in the ray. Finally the boundary of the directly accessible workspace is approximated

with the last feasible point of each ray. Again, to facilitate the comprehension of how the method works,

a 2R planar example is illustated in Figure 4.2.
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Figure 4.2: Illustration of the approximation of the directly accessible workspace (green) obtained with

Kunze’s method and the actual directly accessible workspace(light green). The rays are traced

in the sampled directions and points are sampled in each ray. The the set of last feasible

points on each ray delimits the boundary of the approximation. Source: [22].

4.3 Decoupling of wrist-partitioned manipulators

In this section, we will see how we can simplify the analysis of singularities of wrist-partitioned manipu-

lators by using the workspace decomposition method presented in [29].

Hollerbach and Sahar [17] and Megahed [24] analyze the kinematics of wrist-partitioned manipulators.

The present a method to obtain the inverse kinematics position of the end-effector by decoupling the

wrist-partitioned manipulator into the forearm and the wrist. The 1st and 2nd time derivatives of the

obtained models by Megahed give more accurate inverse kinematic velocity and acceleration models than

numerical differentiation. The method consists of the following steps:

1. Find the wrist position.

2. Find the joint angles of the forearm.

3. Find the orientation of the end-effector relative to the forearm.

4. Find the wrist joint angles.

Cheng et al. [9] use the workspace decomposition method to decouple analyze the singularities of a 7

DoF redundant manipulator. The singularities are decoupled into position singularities and orientation
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singularities. Then, the joints are divided into two sets: the forearm (first four joints) and the wrist (last

three joints).

The key to decouple the singularity into position singularities and orientations singularities is to se-

lect the velocity reference point at the center of the wrist. Remember that the relationship between the

joint rates q̇ and the end-effector velocities V is given by the Jacobian manipulator J(q):

Vee = J(q)q̇ (4.1)

Unlike we have done before, in [29] and [9], the end-effector’s twist is defined as

Vee =

vee
ωee

 ∈ R6. (4.2)

Since the results are independent of the twist’s definition, we will adopt theirs.

In [29], it is proven that, if the velocity reference point is selected at the wrist center, the resulting

Jacobian matrix has the form

JW =

J11 0

J21 J22

 (4.3)

where, for a 7 DoF manipulator, J11, J21 ∈ R3×4 and J22 is a square matrix of order 3.

The resulting singularity sets will be the same, since, as we have already seen, the singularity condi-

tion is that the Jacobian matrix isn’t full-rank and the rank of the Jacobian does not depend on the

chosen velocity reference point.

Now, if we define

q̇ =

q̇fa
q̇w

 (4.4)

where,

q̇fa =


q̇1

q̇2

q̇3

q̇4

 (4.5)

and

q̇w =


q̇5

q̇6

q̇7

 , (4.6)
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then the relationship between joint rates and the wrist’s velocities can be rewritten as

VW =

vw
ωw

 = JW q̇ =

J11 0

J21 J22

q̇fa
q̇w

 (4.7)

Intuitively, it can be seen as the incapability of the last three joints to change the wrist center’s position.

The condition for the manipulator to be in a singularity state is

rank(JW ) < 6. (4.8)

But, now that we have rewritten the problem, the whole set of singularities can be divided into posi-

tion singularities and orientation singularities. We will present this singularity types in the following

subsections.

4.3.1 Position singularities

As the linear velocities vw are only affected by the forearm (4.7), the position singularites only depend

on the first four joints. Hence, the conditions for the position singularities will be given by

det(J11J
T
11) = 0. (4.9)

But, equation (4.9) doesn’t take joint limits into account. Goyal and Sethi [12] and Abdel-Malek et al. [1]

propose two very similar methods to determine the reachable workspace and the singularity surfaces by

also considering joint limits. They obtain three different singularity sets with the correspondent conditions

on the joint values. Then, they parameterize the singularity surfaces by substituting the singularity sets

into the kinematic constraint equations. The results obtained by Abdel-Malek et al. for a RPRP forearm

are shown in Figures 4.3 and 4.4.

Figure 4.3: Representation of the singularity and boundary surfaces obtained by Abdel-Malek et al. for

a RPRP manipulator. Source: [1]
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Figure 4.4: Cross-section of the singularity surfaces illustrated in Figure 4.3 with the first quadrant of

the sagittal plane. Source: [1]

The process of the method is the following. By computing the forward kinematics of the position of the

wrist and for a given wrist center’s position (x, y, z) ∈ R3, they define the equation

Φ(q) =


px(q)− x

py(q)− y

pz(q)− z

 = 0. (4.10)

Then, they obtain the so called Jacobian of the position vector , which we know as J11(q), by finding the

derivative of Φ(q) with respect to the joint values.

J11(q) =

[
∂Φ(q)
∂qj

]
(4.11)

They classify the singularity conditions for the joint values into three sets: the rank-deficiency singularity

set, the rank-deficiency of reduced-order accessible set and the constraint singularity set. There may exist

intersections between the three set. The total singularity set is the union of the three sets.

The rank-deficiency singularity set is compound by all the combinations of the joint values that make

that J11 is not a full-rank matrix. This condition is the same as in equation (4.9) presented by Cheng et

al. as the condition for the position singularities.

To compute the rank-deficiency of reduced-order accessible set, one joint value qj = qfixj is fixed at

one its limits. Then, the reduced set of joint values q∗ is obtained from q = (q∗, qj). The reduced

Jacobian can be obtained as

J∗11(q∗) =

[
∂Φ(q∗,qfix

j )

∂q∗j

]
. (4.12)

Now, the process required to get this set of conditions is the same done to get the rank-deficiency set,

but instead of working with J11, we work with J∗11. To obtain the whole rank-deficiency of reduced-order
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accessible set, the process must be repeated for all the joints that present joint limits.

The constraint singularity set is formed by all the combinations of q = (q∗∗, qfixi , qfixj ), ∀i, j ∈ N, such

that 1 ≤ i < j ≤ n, where n is the number of joints in the forearm and the i-th and the j-th joint are

fixed at one of their limits.

Once all the sets are created, they are substituted in equation (4.10) to obtain a parameterization of

the singularity surfaces and, finally, visualize them.

4.3.2 Orientation singularities

The angular velocity ωw is affected by both the forearm and the wrist (4.7). Hence, the conditions for

the orientation singularities are determined by

rank
( [
J21 J22

] )
< 3. (4.13)

Equation (4.13) is subject to the following three subconditions:

i. Forearm orientation singularity:

det(J21J
T
21) = 0. (4.14)

ii. Wrist orientation singularity or simply wrist singularity:

det(J22) = 0. (4.15)

iii. Combined orientation singularity: Even if the first two subconditions are satisfied, there may still

be the chance to find 3 independent columns between J21 and J22. By not allowing this possibility,

we get the combined orientation singularity condition.

It is important to know, that the manipulator will be at an orientation singularity state when the three

subconditions are satisfied simultaneously.

4.4 Visualization

For the visualization of the singularity sets we will use the CuikSuite [25]. The CuikSuite is a set of

applications to solve position analysis and path planning problems with applications mainly to robotics,

such use the computation and visualization of singularities in both the joint space and the Cartesian space.

The CuikSuite’s computation and visualization of the singularity sets is done by applying the methods

presented by Bohigas in his PhD thesis [4]. The proposed method for the computation of the singularities

is a branch-and-prune method.
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We will now see, how Bohigas addresses the kinematic analysis of a manipulator. All the possible

configurations of a manipulator can be characterized by a non-linear system of equations that expresses

the assembly constraints imposed by the joints,

Φ(q) = 0. (4.16)

Additionally, for a given configuration it is possible to find a velocity equation,

L(q) m = 0, (4.17)

that gives all possible motions of the manipulator for that configuration. m is a velocity vector, which

globally characterizes the velocity state of the manipulator. Bohigas distinguishes three subvectors in

m =
[
mu,mv,mp

]
. mu are the output velocities (typically the end-effector’s twist), mv the input veloci-

ties (i.e. the velocities of the actuated joints) and mp the passive velocities.

Bohigas classifies the whole set of singular configurations into forward singularities and inverse singu-

larities. The forward instantaneous kinematics problem (FIKP) consist on finding the velocity vector,

m, given an input velocity vector, mv. On the other hand, the inverse instantaneous kinematics problem

(IIKP) consist on finding the velocity vector, m, given an ouput velocity vector, mu. Forward and inverse

kinematics are given when these problems become indeterminate.

Bohigas shows, that the forward and inverse singularities can be characterized by the following systems

of equations:


Φ(q) = 0

Ly(q) ξ = 0

‖ξ‖2 = 1

, (4.18)


Φ(q) = 0

Lz(q) ξ = 0

‖ξ‖2 = 1

. (4.19)

The first line in the systems of equations (4.18) and (4.19) constrains the joint values vector q to be a

valid configuration. The last two lines, impose the rank-deficiency of the matrices Ly(q) and Lz(q). Ly(q)

and Lz(q) are obtained from the matrix L(q) in equation (4.17), by removing the removing the columns

corresponding to mv and mu, respectively.

Bohigas proposes to use a branch-and-prune method for the resolution of the systems of equations (4.18)

and (4.19). These methods are based on exclusion. An initial box bounding the whole set of solutions

B is required. Then, they iteratively remove portions of B that don’t contain any solutions, until the

remaining boxes are considered to be a fine enough approximation of the solution.
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To converge to all the solutions, the algorithm recursively applies two operations on B: box shrink-

ing and box splitting. The boxes are shrinked by narrowing some of their defining intervals and portions

of B that don’t present any solution are excluded. The shrinking process is repeated until either the

box is reduced to an empty set (i.e. it contains no solution), or the box is considered sufficiently small

and, therefore, a solution box (i.e. it is considered as a fine enough approximation of a solution) or the

box cannot be “significantly” reduced, in which case the splitting box operation is applied to bisect the

largest interval of the box and splits the box into two sub-boxes. The progression of the algorithm on

finding the solutions to an example equation is illustrated in Figure 4.5.

Figure 4.5: Progression of the branch-and-prune algorithm on finding the solutions to the equation y4 =

y2 − x2. The initial box is the bounding box cointaining the solutions and the solutions are

given by the curve described by the small solution boxes. Source: [4].

Before applying the branch-and-prune algorithm to the systems of equations (4.18) and (4.19), Bohigas

shows that they can be rewritten as a larger system of equations


Λ(x) = 0

Ω(x) = 0

, (4.20)

where Λ(x) is a sub-system of linear equations and Ω(x) is a sub-system of quadratic equations. Once

the problem is rewritten as the system of equations (4.20), the algorithm is more easily applied to find
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their solutions.

The CuikSuite presents applications to apply the methodology introdued by Bohigas. For a given ma-

nipulator, it allows to directly obtain the system of equations (4.20), by just giving a definition of the

manipulator’s environment and structure. Then, the branch-and-prune algorithm can be applied to ob-

tain the set of solution boxes. Finally, the solutions can be visualized either in the joint space or the

output space.

4.5 Own approach and results

We propose a method to analyze and compute the singularities of a wrist-partitioned manipulator that

combines the singularity decoupling method for wrist-partitioned manipulators and the branch-and-prune

algorithm presented by Bohigas [4] to compute the resolution of the position singularity system of equa-

tions.

By decoupling the Fetch into forearm and wrist, we can separate the joint values into qfa = [q1, q2, q3, q4]
T

and qw = [q5, q6, q7]
T

. From section 4.3, we know that the study of position singularities will be restricted

to qfa, while the study of the orientation singularities will consider all the joints.

4.5.1 Position singularities

The first step of our method is to compute the forward kinematics of the forearm. We define the reference

frames S and the wrist frame W , both with the same orientation. The origin of the S frame is located

at the first joint and the origin of W is located at the wrist center. S and W are shown in Figure 4.6.

Again, we obtain the forward kinematics by applying the Product of Exponentials Formula

T sw(qfa) =

4∏
j=1

(e[Sj]qj )MW , (4.21)

where

M =


1 0 0 (l1 + l2 + l3 + l4 + l5)

0 1 0 0

0 0 1 d1

0 0 0 1

 , (4.22)

and the structure parameters, the joint limits and the components of the unit twists are the same pre-

sented in Table 3.2, in Table 3.3 and Table 3.1, respectively.
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Figure 4.6: 3D visualization of the Fetch Mobile Manipulator using rviz. The reference frame and the

wrist frame are illustrated. The red axes are the x-axes, the green axes are the y-axes and

the blue axes are the z-axes.

By using the obtained position of the wrist we can write the assembly constraints as

Φ(q) =


tx(q)− x

ty(q)− y

tz(q)− z

 = 0. (4.23)

Then, Φ(qfa) can be derived with respect the forearm joint values to obtain the matrix J11. The system

of equations with which Bohigas characterizes the singularities, in our case can be written as


Φ(qfa) = 0

J11(qfa) ξ = 0

‖ξ‖2 = 1

. (4.24)

Since we want to visualize the position singularities in a given plane of action of the wrist, we will add

the equation of the plane to the system to constrain the position of the wrist to the mentioned plane.

The resulting system of equations is



Φ(qfa) = 0

J11(qfa) ξ = 0

‖ξ‖2 = 1

ax+ by + cz + d = 0

. (4.25)
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The next step is to extend this system of equation into a system of linear and quadratic equations like

Bohigas does.

Finally, the branch-and-prune algorithm is applied to the system of linear and quadratic equations to

obtain the solutions of the system, and, therefore the set of joints values that correspond to a position

singularity state in the specified plane. To obtain the Cartesian coordinates of these singularities, the

forward kinematics (4.21) have to be computed.

In order to obtain the system of equations (4.24), we have defined the structure and environment of

the Fetch’s forearm. The CuikSuite is able to obtain the system of equations. Then, we can add the

plane’s equation to the system and use CuikSuite to apply the branch-and-prune algorithm to find its

solutions. Finally, after the solutions have been generated, CuikSuite allow us to visualize them.

Unfortunately, the computation of this algorithm is very expensive and so is the required memory. Due to

the current situation that we are living because of the COVID-19 world pandemic, we don’t have access

to an enough powerful computer. The program breaks will running during memory issues when we run

it in our computer.

To show the potential of the CuikSuite, we will visualize the singularities of a simpler manipulator:

Figure 4.7 shows the obtained singularities of a planar 3R manipulator. In Appendix A, it is shown how

the .world files have to be in order to define serial manipulators and the CuikSuite’s commands that have

to be run to visualize their singularities.



4.5. OWN APPROACH AND RESULTS 47

Figure 4.7: Visualization of the singularities of a 3R planar manipulator obtained by using CuikSuite to

apply the branch-and-prune algorithm.

4.5.2 Orientation singularities

Visualizing the orientation singularities may not give a clear intuition of what it is the behaviour of

these singularities and require a more complex computation than the position. For this reason, instead

of visualizing them, we will give some conditions to avoid the orientation singularities and see if their

avoidance influences in the total reachable workspace of our manipulator.

In the subsection 4.3.2, we have seen that, if the manipulator is at an orientation singularity config-

uration, then three subconditions have to be satisfied. Therefore, the orientation singularities can be

avoided if we avoid one of these three subconditions. We recall them for the reader’s convenience:

i. Forearm orientation singularity:

det(J21J
T
21) = 0. (4.26)

ii. Wrist orientation singularity or simply wrist singularity:

det(J22) = 0. (4.27)

iii. Combined orientation singularity: Even if the first two subconditions are satisfied, there may still

be the chance to find 3 independent columns between J21 and J22. By not allowing this possibility,

we get the combined orientation singularity condition.
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We will see how we can avoid the wrist singularity. In [29], it is proven that the wrist singularity happens

when the unit vectors describing the rotation axes of the wrist joints are linearly dependent. This situation

can only be given when the first and the last joint (z5 and z7 in our case) are collinear. This just happens

when the wrist flex joint value is zero (q6 = 0 in our case). Figure 4.8 illustrates the configuration of the

wrist in the wrist singularity state.

Figure 4.8: Wrist singularity configuration. The rotation axes z5 and z7 are collinear. z6 is the axis of

rotation of the wrist flex joint.

Our question now is if we are able to avoid the orientation singularities without losing volume of workspace.

In order to avoid the wrist singularity, and consequently the orientation singularities, we will constraint

the wrist flex joint q6 to strictly positive or strictly negative values. Figures 4.9 and 4.10 show the resulting

workspace of the Fetch by applying this restrictions. By comparing both figures, we can see how the

generated workspace is very similar. By comparing them with Figure 3.18, the workspace also looks

similar. So, we can conclude that we can avoid the orientation singularities without losing a significant

amount of the workspace’s volume, from the point of view of the position, in the process.
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Figure 4.9: Workspace of the Fetch with the wrist flex joint constrained only to negative values.

Figure 4.10: Workspace of the Fetch with the wrist flex joint constrained only to positive values.



Chapter 5

Conclusions

In this thesis, several methods for workspace determination of a serial spatial manipulator have been

presented. The visualization of the workspace of a 7-DoF wrist-partitioned manipulator has been succes-

sively achieved through a forward kinematics approach.

A methodology to obtain the constant orientation workspace of a serial manipulator has been presented.

An approximation of the constant orientation workspace of a wrist-partitioned redundant manipulator

has been obtained and visualized, for some specific orientations.

A method to compute the position singularities of a wrist-partitioned manipulator in a specific plane

has been presented, motivated by the need of finding the largest singularity free surface on the given

plane. The method is the result of a combination of a decoupling singularity method and a branch-

and-prune method for the resolution of systems of equations. Unfortunately, the visualization of the

singularity sets obtained by the method has not been achieved, due to the lack of a powerful enough

computer.

A way to avoid the orientation singularities of a wrist-partitioned manipulator by avoiding the wrist

singularity type has been presented. It has been shown, that the set of positions that the end-effector

can reach is not significantly reduced, when avoiding the orientation singularities.
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Chapter 6

Future work

In this chapter, some further research directions that can be useful to extend the desired working area in

a given plane of action and in the graffiti painting project.

6.1 Test results on the physical robot

Unfortunately, the outbreak of the COVID-19 world pandemic has precluded us to test our results with

the actual Fetch robot. So the first thing to do in the future would be to constrain the movements of the

Fetch with our results and check if we have avoided the vibrations and weird trajectories.

6.2 Mobile manipulation

A very intuitive idea to extend the workspace of a manipulator, is to mount it on a mobile platform.

The wheels would allow the base of the robot to move along the ground plane. If the reference frame is

attached to the mobile, the singularity analysis problem for the manipulator would be the same at each

instant of time, just that the workspace would be displaced.

For the graffiti painting case, the wheeled base could be used to move parallel to the wall. In this

way, the plane of action could be infinitely extended, with the movement of the manipulator still con-

straint in a singularity free region. For example, the Fetch has non-steered wheels. So if the end-effector

is facing side wards, the Fetch would be able to move back and forth while painting without having to

rotate about itself.

6.3 Crossable and non-crossable singularity sets

Work has been done related to the analysis of the crossability of the singularity sets [15, 2]. Some of

the singularity sets allow motion across them in any direction, these singularities are called crossable

singularities. The rest of singularities are non-crossable. A clear example for a non-crossable singularity

51
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would be the boundary surface, since it is obvious that the end-effector can’t cross it and reach a point

out of the workspace.

A complete classification of all singularities into crossable and non-crossable may result in a larger work-

ing area of work if we are willing to freely move over the crossable singularities. But a more detailed

study would be required, because even if they are crossable, they are still singularities as their name

suggests.

6.4 Spray can manipulation

Since the work done in this thesis has been part of a graffiti painting project, it would be interesting to

study how we could grasp efficiently a spray can with the Fetch manipulator and manipulate it properly,

in order to paint quality graffitis.
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Appendix A

The CuikSuite

In this appendix, it will be shown how the CuikSuite can be used in order to visualize the singular

configurations of a manipulator.

A.1 Description and examples of .world files

Before we are able to use the CuikSuite to compute the singularity equations of a manipulator and visu-

alize their solutions, it is required that we define the environment and the structure of the manipulator.

All this information is gathered in the .world files.

The .world files are used to describe the links and joints of the manipulator and to establish the re-

lationship between them. In Listings A.1 and A.2, these type of files for the 3R planar manipulator’s and

the Fetch’s forearm’s cases are presented .

1 [CONSTANTS]

2

3 l1:=4

4 l2:=2

5 l3:=1

6

7 range1_low :=-pi/3

8 range2_low :=-pi/3

9 range3_low :=-pi/3

10

11 range1_up :=pi/3

12 range2_up :=pi/3

13 range3_up :=pi/3

14

15 [LINKS]

16

17 base: sphere 0.1 (0,0,0) red
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18

19 link1: color (0.9 ,0.9 ,0.9)

20 cylinder 0.05 (0,0,0) (l1 ,0,0)

21 sphere 0.1 (l1 ,0,0) red

22

23 link2: color (0.1 ,0.1 ,0.1)

24 cylinder 0.05 (0,0,0) (l2 ,0,0)

25 sphere 0.1 (l2 ,0,0) red

26

27 link3: color (0.9 ,0.9 ,0.9)

28 cylinder 0.05 (0,0,0) (l3 ,0,0)

29

30 end_effector: sphere 0.1 (0,0,0) green

31

32 [JOINTS]

33 revolute: base (0,1,0) (0,-1,0) % P_1 and Q_1 defining the rotation

34 % axis in the ground frame

35 link1 (0,1,0) (0,-1,0) % P_2 and Q_2 defining the rotation

36 % axis in the link1 frame

37 range [range1_low ,range1_up] % Joint limits

38 +(1,0,0) +(1,0,0) % Two points R_1 and R_2 defining two

39 % vectors P_1 ->R_1 P_2 ->R_2 that coincide

40 % when the rotation is 0

41

42 revolute: link1 (l1 ,1,0) (l1 ,-1,0)

43 link2 (0 ,1,0) (0 ,-1,0)

44 range [range2_low ,range2_up]

45 +(1,0,0) +(1,0,0)

46

47

48 revolute: link2 (l2 ,1,0) (l2 ,-1,0)

49 link3 (0 ,1,0) (0 ,-1,0)

50 range [range3_low ,range3_up]

51 +(1,0,0) +(1,0,0)

52

53 fix: link3 end_effector

54 Tx(l3)

Listing A.1: .world of the 3R planar manipulator.

Now, we will see how to define links and joints in the .world files. Links are represented by a geometrical

figure. For example, in the 3R planar case, they are represented by a cylinder. The diameter and the

beginning and ending points of the cylinder define a link. The spheres attached to each link are a visual

representation of the joint. To define the joints their limits and three pairs of points are required. The

first pair (P1 and Q1 in Listing A.1), define the axis of rotation in the frame of the parent link. The

second pair (P2 and Q2 in Listing A.1), define the axis of rotation in the frame of the child link. The last

pair of points (R1 and R2 in Listing A.1) are used to establish when the rotation is null. The segments
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P1Q1 and P2Q2 have to be perpendicular to the segments P1R1 and P2R2, respectively. P1R1 and P2R2,

have to coincide when the joint value equals 0. A representation of this conditions is shown in Figure

A.1. Finally, the last line in the file, fixes the end-effector to the end of the last link.

Figure A.1: Illustration of the points required to define joints in a .world file and the conditions that

have to be satisfied. The parent link (orange) and child link (green) frames are represented.

1 [CONSTANTS]

2

3 l1 :=1.17

4 l2 :=2.19

5 l3 :=1.33

6 l_w :=3.3

7

8 range1_low :=-pi/2

9 range2_low := -1.22

10 range3_low :=-pi

11 range4_low := -2.25

12

13 range1_up :=pi/2

14 range2_up :=1.52
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15 range3_up :=pi

16 range4_up :=2.25

17

18 [LINKS]

19

20 base: sphere 0.1 (0,0,0) red

21

22 link1: color (0.9 ,0.9 ,0.9)

23 cylinder 0.05 (0,0,0) (l1 ,0,0)

24 sphere 0.1 (l1 ,0,0) red

25

26 link2: color (0.1 ,0.1 ,0.1)

27 cylinder 0.05 (0,0,0) (l2 ,0,0)

28 sphere 0.1 (l2 ,0,0) red

29

30 link3: color (0.9 ,0.9 ,0.9)

31 cylinder 0.05 (0,0,0) (l3 ,0,0)

32 sphere 0.1 (l3 ,0,0) red

33

34 link4: color (0.9 ,0.9 ,0.9)

35 cylinder 0.05 (0,0,0) (l_w ,0,0)

36

37 wrist: sphere 0.1 (0,0,0) green

38

39 [JOINTS]

40 revolute: base (0,0,0) (0,0,1)

41 link1 (0,0,0) (0,0,1)

42 range [range1_low ,range1_up]

43 +(1,0,0) +(1,0,0)

44

45 revolute: link1 (l1 ,0,0) (l1 ,1,0)

46 link2 (0,0,0) (0,1,0)

47 range [range2_low ,range2_up]

48 +(1,0,0) +(1,0,0)

49

50

51 revolute: link2 (l2 ,0,0) (l2+1,0,0)

52 link3 (0,0,0) (1,0,0)

53 range [range3_low ,range3_up]

54 +(0,1,0) +(0,1,0)

55

56 revolute: link2 (l3 ,0,0) (l3 ,1,0)

57 link3 (0,0,0) (0,1,0)

58 range [range3_low ,range3_up]

59 +(1,0,0) +(1,0,0)

60

61 fix: link4 wrist
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62 Tx(l_w)

Listing A.2: .world of the Fetch’s forearm.

A.2 Singularity determination commands

In this section, we will see the commands that we have to run in order to visualize the singularities of a

manipulator. In particular, we will show the commands used to obtain the results shown in 4.7.

We will suppose that the file is called 3R.world and it is located in a folder named Manipulators. The

commands are shown in Listing A.3. To run first command it is important that in the .param file it

is specified that the representation is done by links with the line REPRESENTATION = LINKS. The

.param also contains other parameters, such as the ones used by the btanch-and-prune algorithm.

1 $ cuiksingequations Manipulators /3R

2 $ cuiksimplify Manipulators /3 R_sing

3 $ cuikaddjacobian Manipulators /3 R_sing_simp end_effector_r_x end_effector_r_z

4 $ cuik Manipulators /3 R_sing_simp_J

5 $ cuikplot3d Manipulators /3 R_sing_simp_J 9 11 10 0 workspace3R

6 $ cuikmove Manipulators /3R

Listing A.3: CuikSuite commands used to obtain the results shown in Figure 4.7.

The first three commands generate a .cuik file containing the singularity system of equations. The cuik

command creates a .sol file containing the solutions to the system of equations. A .gcl file containing a 3D

representation of the solutions is created with the cuikplot3d command. Finally, the cuikmove command

can be used to visualize and move the manipulator with visualizer geomview and the singularities can be

visualized by loading the generated file workspace3R.gcl.
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