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Abstract. The paper gives an overview of the recent developments on the application of 
homogenized, non-classical beam theories used to predict the micro- and macrostructural 
stresses in the design of marine structures. These theories become important when ultra-
lightweight marine structures are developed and one needs to explore the regions where the 
length scales of beam openings are in the range of the characteristic lengths of the beams or 
when lattice/frame-type beams are used to reduce the weight of ship structures. The 
homogenized beam models are based on non-classical continuum mechanics that allow local 
bending inside the beams. This added feature allows the treatment of size effects with great 
accuracy. The resulting analytical and finite element models have special features in terms of 
shape functions and iterative solutions in non-linear problems. Non-classical beam models 
enable localization processes that recover the microstructural effects from homogenized 
solutions accurately and the models are able to handle limit states of serviceability and ultimate 
strength. The non-classical models are validated by experiments and 3D FE simulations of 
periodic beams and plates. The non-classical beam theories converge to the physically correct 
solutions for wider range of beam parameters than the classical beam theories do.  
 
1 INTRODUCTION 

Thin-walled structures form the basis of transportation of people and goods as they are 
widely used in different length-scales in vehicles, containers and tanks, in packaging and they 
are used even in the microelectronics to control vehicles’ operation; see Figure 1. The thin-
walled structures contribute significantly to the overall weight of a vehicle itself and to the 
payload. Structural performance is measured by the ratio between the payload and the structural 
weight. We aim to build increasingly lighter vehicles, to diminish the environmental impact of 
transportation. However, the limits to which we can push the structural performance ratio are 
defined by safety and further by the probability of failure of the transportation system, of the 
vehicles, and of their structures all the way to the materials.  

The probability of failure is defined by the relation between the demand (load) and the 
capacity (strength) of the structure. Demand results from operations in random environments, 
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whereas capacity stems from structural design, manufacturing, materials and operations. Since 
both of them have a statistical nature, the definition of uncertainty and the acceptable levels for 
the probability of failure are to a great extent affected by computational modelling. Due to 
global warming, the random environments are proven more aggressive which increases the 
loads and further the probability of failure. Simultaneously, new ultra-lightweight materials and 
lattice structures are introduced to small length-scales via advanced manufacturing methods 
such as additive manufacturing and laser-welding, see Figure 1 and Ref. [1].  

 
Figure 1: Lightweight design of marine structures through hierarchical structures with finite scale separation 

based multi-scale modelling. Classical length-scales range from ship hull girder (primary response) to bulkheads 
(secondary response) and further to stiffened panels (tertiary response). Modern manufacturing and materials 

technology is enabling additional length-scales with geometrical and material non-linearity.  

The ultra-lightweight features are obtained by applying to ever smaller scales the ideas of 
civil engineers (e.g. Eiffel tower), bridge-builders (e.g. Vierendeel frames), off-shore engineers 
and naval architects (e.g. 3D-truss-structures, side shells with balcony openings), and 
aeronautical engineers (e.g. wing-spars) who have over long time found these feasible solutions 
to very complex problems where different length-scales interact. The ultra-lightweight 
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materials and structures have relative densities, rmat/rbulk, often as low as 0.1-0.2, but stiffness-
to-strength values are not reduced as much. However, the material reserve in terms of plastic 
capacity with respect to the elastic limit (design point) is significantly reduced especially when 
the material contains flaws or perforations, see Figure 1. This forces designers to impose larger 
safety factors for these ultra-lightweight builds. Thus, even though we gain better performance 
in the material scale, we tend to suffer larger overall uncertainty in structural scale as the 
integration into structural systems contains increasing complexity and layers of advanced 
structures. This uncertainty originates partly from production challenges, such as the 
positioning of laser-welds, initial imperfections and residual stresses, but more importantly 
from the limitations of the current strength-assessment methods which need to evaluate 
response and strength at all relevant length-scales simultaneously. 

This paper gives an overview of the recent developments on the application of homogenized 
beam theories based on non-classical continuum mechanics used to predict the micro- and 
macrostructural stresses in the design of marine structures. The paper is organized so that we 
first present the main assumptions introduced by homogenization and localization and discuss 
their relevancy in terms of marine structures. Then we move to the resulting differential 
equations and discuss their analytical and numerical solutions in linear elastic problems, 
eigenvalue vibration and buckling problems and in a problem where geometrical non-linearity 
is faced in micro and macroscales. In order to demonstrate the gains and remaining challenges 
we present case studies where comparison to experiments and high-fidelity finite element 
simulations are performed.  

2 HOMOGENIZATION AND LOCALIZATION 
In the assessment of structural performance, the response is needed to ensure that the load-

carrying mechanism is correct within a complex structure and strength is needed to ensure 
capacity. In terms of solid mechanics, the response is effectively determined by using 
homogenized continuum models, while strength requires localization and understanding of how 
damage spreads in the structure in a realistic manner. The challenge between the two 
approaches is the scale-transition so that the energy, stresses and strains are all kept in balance 
between the continuum model and the sub-model where localization and strength are defined. 
This difference between the two approaches is presented here by an example of periodic, linear 
elastic web-core sandwich beam for which the accurate solution can be derived by assuming 
that the faces and webs bend locally as Euler-Bernoulli beams; we consider this here as 
Assumption 0 for the reason that more advanced local deformation models can be developed 
easily by more advanced beam models or superelements. The beam deflection by using 
discontinuity functions [2] is given as: 

𝑤𝑤"#$%(𝑥𝑥) = 𝑤𝑤*,,%-.(𝑥𝑥) + 𝑤𝑤0,,%-. (1a) 
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where wl,bend is the local deflection of the face due to point forces and moments and 
distributed external and internal loads applied directly to the face and wg,bend is the global 
deflection caused by elongation of the faces to opposite directions. w0 and q0 are the local and 
global transverse displacement and rotation boundary conditions, respectively. Symbols a 
indicate the locations of the point moments (superscript M), forces (superscript F) and uniform 
distributed loads (superscript q). H is the Heaviside function with first and second derivative 
being Dirac’s delta and unit doublet functions respectively.  

 
Figure 2: Two-scale modeling of web-core beam with discontinuity functions and an assumption of 

microstructural Euler-Bernoulli beam behavior.  

This solution is accurate, but needs to be solved for each location of flexible core members 
(including joint rigidity) along x-axis resulting in 3L+4 equations, where L is the number of 
web-plates in the beam [1]. The solution can be simplified towards a homogenized solution by 
neglecting distributed loads and moving all loads to the locations of webs; this is Assumption 1 
that currently limits the use of continuum models to the cases of finite length-scale ratio. The 
result is: 
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When in localization the peak response at the location of high gradients must be assessed, 
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we can use Taylor-series expansion around point a as 

𝑤𝑤(𝑥𝑥) = 𝑤𝑤1(𝑎𝑎) +
𝑤𝑤B(𝑎𝑎)
1! (𝑥𝑥 − 𝑎𝑎) +

𝑤𝑤=(𝑎𝑎)
2!

(𝑥𝑥 − 𝑎𝑎)= +⋯ 
(3) 

The comparison of Eqs. (1)-(3) reveals that the (x-a)n-terms are maintained to various 
degrees and the accuracy around the point of interest can be maintained by including enough 
terms in the Taylor series to compensate for the neglection of the Heaviside operator. In the 
case of an entire beam, we end up with the same number of terms as in the accurate solution 
given by Eq. (1). Thus, this expansion is useful, but should be only performed locally. In order 
to approximate the response in smooth, periodic, fields of deformation away from high 
gradients, the homogenization theory can be used, where the two length-scale asymptotic 
expansion is used instead to give: 

𝑤𝑤I(𝑥𝑥) = 𝑤𝑤1(𝑥𝑥, 𝑦𝑦) + 𝑘𝑘B𝑤𝑤B(𝑥𝑥, 𝑦𝑦) + 𝑘𝑘=𝑤𝑤=(𝑥𝑥, 𝑦𝑦) + ⋯ 
(4) 

𝑘𝑘 =
𝑙𝑙^5$_`

𝑙𝑙^#$_`
≪ 1 

(5) 

𝑤𝑤I(𝑥𝑥, 𝑦𝑦) = 𝑤𝑤I(𝑥𝑥, 𝑦𝑦 + 𝑙𝑙^5$_`) 
(6) 

where the microlevel coordinate y=x/k is the local coordinate which is assumed to be 
infinitely small in comparison to x. In Eq. (4), the (x-a)n-terms are approximated with xn-terms 
multiplied by powers of the length-scale ratio, k, Eq. (5). The microscale responses are assumed 
to be fully periodic, Eq. (6) and these should be recoverable from the macroscale responses. 
Thus, the actual positioning of the unit cell along the beam is not considered and the continuity 
conditions on deflection and its derivatives at the edges of unit cell are used to secure that 
microscale responses do not transfer through unit cell edges, except through macro-scale 
phenomena; this is Assumption 2 that limits the use of continuum theories. 

The Assumption 3 that the length-scale ratio is infinitely small is never true. Especially when 
applied to ultra-lightweight structures, the geometrical and physical characteristic lengths of 
the vehicles themselves (e.g. hull girder of the ship, l1~300m), the secondary structures (e.g. 
bulkheads and decks, l2~30m) and the tertiary structures (e.g. stiffened or corrugated sandwich 
panels, l3~3m) can be close. The approximation can be improved when more terms are included 
in the asymptotic expansion especially close to the locations of high gradients. These additional 
terms, however, increase the computational costs. These different approaches have very similar 
form. While the asymptotic expansion with increasing terms aims to model with continuum the 
discrete structure, the Taylor series aims to do this from the discrete structure towards 
continuum. When and how these two approaches meet for finite length scale ratio is a grand-
challenge. Analytical solutions exist for the simplest of cases. However, these solutions have 
very little practical relevance. An alternative is to use the fine mesh finite element method, but 
this is not a sustainable solution in the long run, since we expect new emerging length scales in 
future structures developed with novel manufacturing technologies and materials, see Figure 1. 
In these FEM models, the element size is defined by the smallest detail that affects strength. 
For the limit state of fatigue, the size of such detail can be 10-6 m, which calls for a mesh size 
at least 5-10 times smaller. This scale difference of 109 m in ship structures results in enormous 
computational models beyond current and near future computational capabilities. Therefore, 
the natural choice of computational approach is the extended non-classical continuum 
description. Here we focus on two sub-classes of namely those based on strain-gradient/couple 
stress and micropolar models; extensive review of different models is given by Srinivasa and 
Reddy [3]. 
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Figure 3: Taxonomy of continuum mechanics as described by Srinivasa and Reddy [3]. 

3 DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS 

3.1 Beam formulations based on micropolar and couple-stress models 
The displacements for a micropolar Timoshenko beam can be written as [4-7] 

𝑢𝑢(𝑥𝑥, 𝑦𝑦) = 𝑢𝑢c(𝑥𝑥) + 𝑦𝑦𝑦𝑦(𝑥𝑥), 𝑤𝑤(𝑥𝑥, 𝑦𝑦) = 𝑤𝑤(𝑥𝑥),Ψ(𝑥𝑥, 𝑦𝑦) = 𝜑𝜑(𝑥𝑥) (7) 

where the classical displacements u and w and rotation q are complemented by a non-classical 
microrotation 𝜑𝜑. In the micropolar formulation the microrotation enters the beam through strain 
formulation as [4-5] 

𝜀𝜀c =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 , 𝜀𝜀ch =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 −Ψ, 𝜀𝜀hc =

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 +Ψ, 𝜅𝜅cj =

𝜕𝜕Ψ
𝜕𝜕𝜕𝜕  

(7) 

which ultimately means that the shear strain will consist of symmetric and antisymmetric parts 
and there is an additional curvature 𝜅𝜅cj that can be used to describe local bending. In a couple 
stress based approach the strains read [6-7] 

𝜀𝜀c =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 , 𝛾𝛾 = 𝜃𝜃 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 , 𝜒𝜒ch =

1
4W

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 −

𝜕𝜕=𝑤𝑤
𝜕𝜕𝜕𝜕=X 

(7) 

Thus, instead of formulating shear into antisymmetric and symmetric parts, average shear strain 
is used and non-classical, local bending features are introduced through curvature 𝜒𝜒ch. By 
employing a constitutive model and variational principles, one obtains the governing equations 
for the micropolar and couple stress beam models.  

3.2 Analytical and Finite Element Solutions 
The fact that the beam strains include microrotations or gradients of local rotations increases 

the total differential order of the governing beam differential equations. This means that the 
analytical solutions will include higher-order terms that appear as exponential or hyperbolic 
functions. Such terms are significant in the vicinity of strain gradients and in structures where 
internal stiffness of the microstructure is significant in comparison to macroscale strain 
gradients. In analytical solutions this effect is of course directly included to the solution and 
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does not require special attention. However, in finite element approximations it creates a need 
to include higher-order polynomials to shape function approximations. Karttunen et al. [8] 
derived also exact shape functions which do not suffer from convergence issues due to 
numerical procedures. However, these elements have been tested only for linear elastic cases.  

3.3 Scale Interaction 
The scale transition is needed between micro- and macroscale analyses, see Figure 4 (couple 

stress approach). Up-scaling results in homogenized stiffness properties for which in addition 
to classical in-plane, bending, membrane-bending and shear stiffness, the local unit cell 
stiffness in terms of strain gradients are needed. This process can be linear or non-linear in 
terms of geometry. The inverse-process of homogenization, i.e. down-scaling/localization 
instead results periodic stresses that can be used to assess the stress peaks inside microstructure. 
This improves to a great extent the strength predictions essential in marine structures.  

 
Figure 4: Top. Derivation of homogenized stiffness properties for in-plane, bending, shear and couple stresses. 

Localization of microstresses from homogenized solution. [6]. 

4 LIMIT STATES 

4.1 General 
In the following examples we demonstrate the different aspects of non-local beam theories 

in terms of gains in accuracy and remaining challenges. These have been collected from various 
sources and presented here to give insight to the current state of the art. The limit states selected 
are those categorized as by International Ships and Offshore Structures Congress (ISSC); 
serviceability, ultimate, fatigue and accidental. 

4.2 Serviceability 
The functionality of a ship structure is crucial in terms fulfilling the mission needs. This 

means that the deformation/stress levels, stiffness and vibratory (e.g. comfort) need to be within 
the design limits. Figure 5 shows examples from Refs. [4, 9], that demonstrate clearly the main 
benefits of the non-classical formulations and the challenges faced due to homogenization for 
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the linear-elastic, static case. Figure 6 presents this for the eigenvalue vibratory responses. In 
this example the homogenous core sandwich panels with thick-faces and the discrete web-core 
sandwich panels are considered both with couple stress and micropolar frameworks 
respectively.  

 
Figure 5: Top. Comparison between developed micropolar method [4] and high-fidelity FEA with the envelope 

curves for maximum stress from localization. Bottom. Effect of different unit cell positioning on observed 
discrete and envelope curve stress distributions [9]. 
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Figure 6: Comparison of beam solutions for eigenfrequency analysis. Top: 1-D Couple stress, Middle: 2-D FE 

frame example Bottom: 1-D Micropolar. [6,7]. 

Figure 5 shows that for beams with length-scale aspect ratio of lmicro/lmacro=1/12 the 
deflection can be obtained very accurately with the micropolar model. It is shown that the 
agreement between the high-fidelity Finite Element Analysis is perfect for various joint rotation 
stiffness values between the face and web-plates. In the case of classical Timoshenko theory, 
the results are in agreement with FEA in the cases of high rotation stiffness, but start to deviate 
as the rotation stiffness approaches zero. This means that micropolar model is able to converge 
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to physically correct behavior for the entire rotation stiffness range as long as the microstructure 
is periodically regular over beam span. The accuracy of the method is further highlighted in the 
top surface normal stress comparison. The surface stress is very important when for example 
fatigue strength is assessed. It is also shown that the strain/stress localization can be approached 
with envelope curve capturing the maximum stresses from each unit cell. This results in a 
continuous curve far above the floating unit cell average, indicating that in these structures with 
high length-scale aspect ratio, stress localization is more important design criterion that 
stiffness. It is also seen that the unit cell positioning with respect to beam boundaries has 
significant effect on single stress peaks near the boundaries. In these cases, the application of 
the Taylor series would become important to consider in localization process, i.e. Assumption 
1 should be relaxed.  

Figure 6 shows that the influence of non-classical continuum mechanics become important 
when the faces of sandwich panels have significant local bending stiffness in relation to bending 
and shear deformations. The fact that these non-classical solutions are considering the finite 
curvature of microstructure stiffens the structure and it can be seen that the agreement with 3D-
FEA is excellent. As the formulation is continuum-based, the local vibrations at the unit cell 
level cannot be properly assessed. In terms of beam theories based on classical continuum 
corrections have been proposed for this issue recently, thus there is possibilities to correct this 
also in non-classical setting.  

4.3 Ultimate, Accidental and Fatigue Strength 
Ultimate, accidental and fatigue strength are important strength criteria for design of marine 

structures as they define the maximum stresses that the structure can tolerate. Figure 7 presents 
results of ultimate strength assessment based on classical one-scale and non-classical two-scale 
geometrical nonlinearity and the influence of rotation stiffness to the linear elastic response 
used to assess the fatigue strength.  

Figure 7 shows clearly that conducting a two-scale geometric non-linear analysis coupled 
with a non-classical model is very important in predicting the non-linear buckling load of 
sandwich beams regardless of the core type. The microscale effect is larger in stretch-dominated 
cores, where a rapid decrease of the beam stiffness properties occurs after local buckling and 
the macroscale load carrying mechanism changes. In case of bending-dominated cores such as 
web-core panels, the geometric non-linearity is only relevant at the macroscale and described 
through the von Kármán term. Differences between the classical and non-classical solutions are 
due to the incorporation of an additional scale in stretch-dominated cores, whereas in bending-
dominated cores the effect is similar to the one observed in the linear case. Figure 7 also shows 
that as rotation stiffness of the joint connecting the core and face plates changes, the dominating 
deformation modes change rapidly. The rotation stiffness can change for example through 
plasticity induced by high-level monotonic loading or by propagating fatigue cracks trough the 
laser-welds. Here it should be recognized that the beam theories based on classical continuum 
mechanics fail to predict the response accurately on the low rotation stiffness values due to lack 
of inclusion of the finite curvature condition to the beam formulation. When the couple stress 
or micropolar formulations are used, the responses are accurately captured. The reason is better 
illustrated through spectral analysis of the deformation wave-lengths which reveals that the 
deformation amplitude is dominated by the response at the level of characteristic length of the 
beam, while the second most important average length corresponds to that of the unit cell. The 
spectral analysis also reveals that there is significant characteristic length amplitude between 
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these two wave lengths which is associated with the strain gradient. The amplitudes of these 
different characteristic wave lengths are related to the T-joint rotation stiffness. This means that 
in principle it should be possible to extract damage from the panels by analysis the deformation 
mode changes in the structure over the lifetime. However, in this case it should be recognized 
that the continuum assumption cannot handle the variation of beam stiffness properties along 
beam length. This influence is especially important that the closeness of boundaries where for 
example shear response can be very different between consecutive unit cells due to variation of 
laser-weld positioning. 

 
Figure 7: Beam solutions ultimate strength. 
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5 CONCLUSIONS 
The paper gave an overview of the recent developments on the application of homogenized, 

non-classical beam theories used to predict the micro- and macrostructural stresses in the design 
of marine structures. These theories are important when ultra-lightweight marine structures are 
developed and one needs to explore the regions where the length scales of beam openings are 
in the range of the characteristic lengths of the beams or when lattice/frame-type beams are 
used to reduce the weight of ship structures. The homogenized beam models are based on non-
classical continuum mechanics that allow local bending inside the beams. This added feature 
allows the treatment of size effects with great accuracy. The resulting analytical and finite 
element models have special features in terms of shape functions and iterative solutions in non-
linear problems.  

The non-classical beam theories converge to the physically correct solutions for wider range 
of beam parameters than the classical beam theories do. The investigations show that the 
localization of stresses is accurate for cases where the periodic continuum type of boundary 
conditions for the unit cells ae valid. The theories should be developed that allow random 
positioning in order to satisfy the needs of maritime solutions. For the vibratory response the 
eigenfrequencies and -modes are predicted with much better accuracy than for classical models. 
However, the coupling between local and global modes should be developed and analyses 
should be extended to allow assessment of forced vibrations. In ultimate strength analysis 2-
way coupling accounting geometrical non-linearity have been developed and it shows excellent 
agreement with 3D high fidelity FEA. These successes should be extended to cover material 
non-linearity and formulations for plates and shells.  
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