

Remote robot control from
Docker

Irene Campo Prieto

Faculty of Health, Science and Technology

Computer Science
30HP (ECTS)
Supervisor: Andreas Kassler
Examiner: Sebastian Herold
Date: 281020

Computer Science

Irene Campo Prieto

Remote robot control from Docker

Abstract

Currently, we witness a new phase of digitization which is fueled by the development of

Internet-connected smart sensors (Internet of Things - IoT). Also, about the processing

of large data volumes that they create using Big Data analytics, leveraging the compute

resources from the Cloud and Edge-based systems. For data exchange in the IoT world,

typically lightweight communication protocols such as Message Queuing Telemetry Trans-

port (MQTT) are used which are based on publisher/subscriber communication pattern

where a broker mediates data among interested parties.

In order to provide reliable communication, MQTT provides different Quality of Service

(QoS) mechanisms. MQTT publishers, subscribers and brokers can be deployed inside

containers on virtualized infrastructure to facilitate large-scale virtualized compute frame-

works from the cloud for scalable data analytics. However, each docker containers requires

a specific amount of resources to provide the required response time.

In this thesis, we evaluate the impact of resource sharing due to the virtualized deployment

of MQTT components on latency and response time of IoT applications. We deploy a

testbed of Arduino and Raspberry Pi devices that host MQTT clients to pull sensor data

towards MQTT clients inside the cloud. We also evaluate the impact of different QoS levels

at the MQTT protocol on latency. Our results indicate that proper resource allocation and

QoS parametrization is important for maintaining low and stable latency.

i

Resumen

Actualmente, somos testigos de una nueva fase de digitalización que es alimentada por

el desarrollo de sensores inteligentes conectados a Internet (Internet de las Cosas - IoT).

También, el procesamiento de grandes volúmenes de datos que crean usando análisis de

Big Data, aprovechando los recursos de computación de los sistemas basados en la Cloud

y Edge-based. Para el intercambio de datos en el mundo del IoT, se utilizan protoco-

los de comunicación t́ıpicamente ligeros como el Message Queuing Telemetry Transport

(MQTT) que se basan en el patrón de comunicación editor/suscriptor en el que un inter-

mediario media los datos entre las partes interesadas.

Con el fin de proporcionar una comunicación fiable, MQTT proporciona diferentes mecan-

ismos de Quality of Service (QoS). Los editores, suscriptores y brokers de MQTT pueden

desplegarse dentro de contenedores en una infraestructura virtualizada para facilitar mar-

cos de computación virtualizados a gran escala desde la nube para el análisis de datos

escalables. Sin embargo, cada contenedor Docker requiere una cantidad espećıfica de re-

cursos para proporcionar el tiempo de respuesta necesario.

En esta tesis, evaluamos el impacto de compartir recursos debido al despliegue virtualizado

de los componentes MQTT en la latencia y el tiempo de respuesta de las aplicaciones

de IoT. Implementamos un banco de pruebas con los dispositivos Arduino y Raspberry

Pi, que albergan clientes MQTT para atraer los datos de los sensores hacia los clientes

MQTT dentro de la nube. También evaluamos el impacto de los diferentes niveles de QoS

en el protocolo MQTT sobre la latencia. Nuestros resultados indican que una adecuada

asignación de recursos y parametrización de la QoS es importante para mantener una

latencia baja y estable.

ii

Acknowledgements

I would like to express my gratitude to my advisor Enrica Zola who has given me the

opportunity to do this thesis.

I would also like to thank my co-advisor Andreas Kassler for his assistance during the

project. A special thanks goes also to the University of Karlstad, for all the support, even

though the special situation of the Covid-19.

And last but not least, I would like to thank my mother for all the confidence and support

that she has given me at all moments, not only during this project but throughout my

studies.

iii

Contents

1 Introduction 1

1.1 Objectives and goals . 3

1.2 Evaluation . 3

1.3 Ethics and sustainability . 3

1.4 Contribution . 4

1.5 Structure . 4

2 Background and Related Work 5

2.1 Docker . 5

2.2 IoT . 6

2.3 MQTT . 7

2.3.1 What is it? . 7

2.3.2 How does it works? . 7

2.3.3 Quality of Service . 8

2.4 Related works . 10

3 System Design 12

3.1 Communication Protocols . 12

3.2 Hardware . 12

3.2.1 mBot Ranger - Arduino . 12

iv

3.2.2 Raspberry Pi 4 . 14

3.2.3 Communication Raspberry Pi + Arduino 15

3.3 Software . 15

3.3.1 MQTT Broker . 16

3.3.2 MQTT Clients . 16

3.4 Summary . 17

4 Implementation 18

4.1 MQTT Broker container installation . 18

4.1.1 MQTT Broker container with prioritisation 18

4.2 MQTT Client container installation . 19

4.2.1 MQTT Client container with prioritisation 20

4.3 MQTT Client installation in RPi . 20

4.4 Summary . 22

5 Evaluation 23

5.1 Evaluation Scenario 0 – No Arduino . 25

5.2 Evaluation Scenario 1 – Arduino 57600bps 26

5.3 Evaluation Scenario 2 – Docker Stress . 28

5.4 Evaluation Scenario 3 – Docker Stress without Arduino 30

5.5 Evaluation Scenario 4 – MQTT Broker Prioritisation 32

v

5.6 Evaluation Scenario 5 – MQTT Broker and MQTT Docker Client Prioriti-

sation . 35

5.7 Evaluation Scenario 6 – MQTT Broker Prioritisation without Arduino . . . 37

5.8 Evaluation Scenario 7 - MQTT Stresser . 39

5.9 Evaluation Scenario 8 - MQTT Stresser with MQTT Docker Client Prior-

itsation . 40

5.10 Summary . 43

6 Results Analysis 44

6.1 Arduino 57600 vs No Arduino . 44

6.2 Arduino 57600 + Docker Stress vs No Arduino + Docker Stress 45

6.3 Arduino 57600 vs Arduino 57600 + Docker Stress 47

6.4 Arduino 57600 + Docker Stress vs MQTT Broker Prioritisation vs MQTT

Broker and MQTT Docker Client Prioritisation 48

6.5 No Arduino + Docker Stress vs No Arduino + MQTT Broker Prioritisation 49

6.6 Summary . 51

7 Conclusion and Future Work 52

References 53

A Appendix - Scripts 56

vi

List of Figures

2.1 Scheme of the functioning of an MQTT scenario. 8

3.1 Image of mBot Ranger . 13

3.2 Image of RPi 4 . 14

3.3 Code for Serial communication at RPi 4 15

3.4 Code for Serial communication at Arduino 15

3.5 System design overview . 17

4.1 Command to download the last image of Docker 18

4.2 Execution to create the Broker’s container 18

4.3 Execution to create the Broker’s container with prioritisation 19

4.4 Command to download the last Docker image and execution to create the

Client’s container . 19

4.5 Execution to install python package . 19

4.6 Execution to install paho.mqtt.python . 20

4.7 Execution to run the Client’s container with prioritisation 20

4.8 Execution to install MQTT Client in RPi 21

4.9 Execution to install paho.mqtt.python . 21

4.10 Configuration of the file mosquito.conf . 21

5.1 Diagram of the full setup with the evaluation metrics 23

5.2 Diagram of the scenario without Arduino 25

vii

5.3 Diagram of scenario 1 . 27

5.4 Diagram of scenario 2 . 29

5.5 Diagram of scenario 3 . 31

5.6 Diagram of scenario 4 . 33

5.7 Diagram of scenario 5 . 35

5.8 Diagram of scenario 6 . 38

5.9 Diagram of scenario 7 . 41

5.10 Diagram of scenario 8 . 42

6.1 CDF graph comparing latencies of Scenarios 0 and 1 44

6.2 CDF graph comparing comparing latencies of Scenarios 2 and 3 46

6.3 CDF graph comparing latencies of Scenarios 1 and 2 47

6.4 CDF graph comparing latencies of Scenarios 2, 4 and 5 49

6.5 CDF graph comparing latencies of Scenarios 3 and 6 50

A.1 Docker MQTT Client Publishing Script . 56

A.2 Docker MQTT Client Subscribing Script with QoS 57

A.3 Docker MQTT Client Subscribing Script 58

A.4 RPi MQTT Client Subscribing-Publishing Script 59

viii

List of Tables

5.1 Description of the evaluation metrics and timestamps 24

5.2 Table of the latencies gathered in Scenario 0 26

5.3 Table of the latencies gathered in Scenario 1 27

5.4 Table of the latencies gathered in Scenario 2 29

5.5 Table of the latencies gathered in Scenario 3 31

5.6 Table of the latencies gathered in Scenario 4 34

5.7 Table of the latencies gathered in Scenario 5 36

5.8 Table of the latencies gathered in Scenario 6 38

5.9 Table of the latencies gathered in Scenario 8 42

ix

1 Introduction

The term ”Internet of things” concerns the connection of devices to each other and to

humans throughout the Internet. This interaction makes it possible to create more in-

telligent objects and connect them to the intelligent network, which makes it possible to

detect and control the physical world remotely. This remote control has made the Inter-

net of Things (IoT) so important, as it permits different sensors/devices to be connected

through the network, sending millions of data in real-time to interpretation and analysis

centres for analysis and decision making.

Above all, IoT is now becoming very popular for the control and automation of household

appliances and devices at home. However, it is also starting to be used in other cases

such as communication between autonomous vehicles, monitoring of machinery in factories

(Industry 4.0) and drones with search and rescue operations.

In order for the devices in an IoT system to be able to communicate through the Inter-

net, different communication protocols are used, depending on the application and the

environment in which it is located. Message Queuing Telemetry Transport (MQTT) is a

lightweight IoT communication protocol that can be implemented in devices connected to

networks with limited bandwidth and also provides flexibility that can support several ap-

plication scenarios for IoT devices and services. Besides, it uses a communication pattern

based on publisher/subscriber, which requires a central server where MQTT Clients con-

nect. This server is the MQTT Broker and is in charge of managing the communications

between the clients. MQTT has become the standard for IoT communications.

Quality of Service (QoS) is a mechanism used to ensure traffic prioritisation and guarantee

minimum bandwidth. In MQTT, the QoS level is an agreement between the sender and

the receiver (MQTT Client and MQTT Broker) that defines what guarantee of delivery

1

there is for a specific message. Two parts must be considered to understand how this

service works. In one hand, the message delivered from Publishing Client to Broker, and

on the other hand, the message delivered from the Broker to the Subscribing Client.

Many IoT devices have limited computing and communication resources. In order to be

able to control it, a resource management approach is required. Virtualisation is a technol-

ogy that enables the creation of useful IT services through resources that are traditionally

tied to hardware. It is one of the approaches that lead to better optimisation and efficient

resource management. In addition, the excessive amount of data generated by IoT devices

also causes them to be more resource-constrained. Therefore, virtualisation plays a crucial

role in IoT applications with resource limitations. Docker is an Open Source tool that

allows lightweight virtualisation. It is designed to make the creation, implementation and

execution of applications easier through lightweight and portable containers.

A container is a standard unit of software that packages the code and all its dependencies

so that the application can run quickly and reliably from one environment to another. By

default, a Docker container has no resource restrictions but allows different resource control

policies to be applied to the containers. Through the establishment of flags, it can control

how much memory or CPU the container is entitled to use. Moreover, some flags allow

CPU scheduler of the Operating System, enabling real-time use case for Docker containers.

Going deeper into the performance of an IoT system, the devices communicate over the

Internet with the cloud, just like any other device does. The cloud acts as an application

service provider to exchange data and control message traffic. Once the data reaches the

cloud, the software processes it and then can decide to implement an action, such as sending

an alert or automatically setting the sensors.

2

1.1 Objectives and goals

The main idea in this thesis is to evaluate how network performance and resource sharing

due to virtualisation impact the control cycle in IoT applications when control actions are

outsourced to Docker containers. So, it has been designed and implemented an IoT system

that allows remote control through Docker, using MQTT as a communication protocol.

The MQTT Broker, hosted in Docker, will perform the function of the cloud and will be

in charge of controlling the message traffic and processing them.

1.2 Evaluation

In order to carry out an evaluation of the system, an MQTT Client connected to an

Arduino and another one hosted in Docker have been created, and, also, a loop control

has been implemented. From here, a testbed has been created, and the latency time of the

loop control has been evaluated. This latency time will be referred to the time it takes for

a message to be published by an MQTT Client hosted in Docker, reaches the sensor (at

the Arduino) by passing through Broker and until the response message makes the return

path. The interval time between messages within the loop has been varied in order to

make the evaluation more complete. All these comparisons will be shown through CDF

(Cumulative distribution function) graphs.

Besides, the scenarios with different communication protocol QoS values have been com-

pared in order to complete the evaluation.

1.3 Ethics and sustainability

As mentioned above, Docker allows the creation, implementation and execution of appli-

cations through portable containers. This facility, if considered from the point of view of

3

sustainability, is outstanding as it allows applications to be implemented consistently with

little concern for the configuration of the underlying hardware or software. In other words,

it gives the opportunity to ”create” a new robot by updating the container without the

need to manufacture a new robot. This reuse of hardware has privacy issues, as the new

container can have access to confidential host information.

1.4 Contribution

The main contribution of this project is the demonstration that there is a significant impact

on latency when other containers are deployed on the same hosts that exert stress on the

MQTT Broker’s container. A further contribution has been the creation of a loop control

application, with which it has been possible to configure a test bench and analyse the

latency time. Finally, there is also a contribution to the design of different scenarios of the

IoT system that have allowed, through the comparison of their latency times, to make a

complete system evaluation.

1.5 Structure

This document is structured as follows. Section 2 presents a description of all the main

concepts used in the system and some related work. In Section 3, all the elements of the

system are described and how they are connected. Moreover, how these elements have

been configured as described in Section 4.

The design of all analysis scenarios is explained in Section 5, and in Section 6, are the

analyses with their CDF plots.

Finally, in Section 7, are the overall conclusions and possible extensions of the work.

4

2 Background and Related Work

2.1 Docker

Docker is an open-source tool designed to make the creation, implementation and execution

of applications easier through lightweight and portable containers [2]. It allows packing

an application, with all its necessary parts (such as libraries, system tools, execution time

and other dependencies) in standardized units called containers. Besides, Docker allows

to deploy and scale the application to any environment, knowing that the code is going to

run.

In a certain way, Docker is a bit like a virtual machine, but with the difference that

instead of creating a whole virtual operating system, Docker allows applications to use the

same kernel as the system they are running on. This results in a significant increase in

performance and a reduction in the size of the application.

The essential elements of Docker are the images and the containers [1]:

• Images

Docker images are the static representation of the application or service with its

configuration and dependencies. In other words, it is a kind of template that cap-

tures the state of a container. The images are used to create new containers, and

they never change.

In Dockerhub, there are many public images with primary elements that can be

5

downloaded and used. If the image wanted is not found here, it can be created

through the DockerFile configuration file. In this file, it is specified what needs to be

contained in the image and the installation tool commands.

• Containers

Containers are instances that execute an image, meaning the ones in charge of running

the commands and the application. As opposed to images, containers can change.

Docker tracks these changes as a version control tool.

2.2 IoT

The Internet of Things, or better know as IoT, has the basic premise and goal to ”connect

the unconnected”[18]. This means being able to communicate objects that are not con-

nected to the Internet and be able to interact them with people and other objects. This

interaction makes it possible to create smarter objects and connect them to the intellectual

network [15], allowing us to detect and control the physical world remotely. This point

enables closer integration between the physical world and equipment by improving in the

areas of efficiency, accuracy, automation, and enablement of advanced applications.

The IoT world is vast and encompasses a lot of protocols and components, which is why

it must be considered as the combination of various concepts, protocols and technologies.

In 1999, pioneering British technologist Kevin Ashton [14] introduced the term Internet of

Things to describe the ability to connect sensors to the Internet for new features.

In an IoT ecosystem, smart devices share the different data that sensors collect and can

be analysed in the cloud or on-premises. Sometimes these devices communicate with other

related devices and act on the information they get from [16] each other. As can be

6

understood, these devices are the ones that do most of the work, without the need for

human intervention.

2.3 MQTT

2.3.1 What is it?

MQTT (Message Queuing Telemetry Transport) is a lightweight messaging protocol that

uses a publish/subscribe communication pattern [19]. Typical it is used for machine-to-

machine (M2M) communication and in the types of Internet of Things connections. This

protocol is a good option when the connections of the devices are with unreliable networks

or networks with limited bandwidth resources.

2.3.2 How does it works?

As explained above, MQTT has a push messaging service operation with a publisher/subscriber

pattern. This type of infrastructure is form by a central server where the clients connect.

The server is called Broker and is in charge of receiving communications from the clients

and sending these communications to the other clients. As we can see, clients can only

communicate with each other through the Broker [3]. The Client - Broker connection,

which is TCP/IP, is made through port 1883 (or port 8883 when it is TLS) and remains

open until the client closes it [12].

As shown in Figure 2.1, MQTT Clients can be a publisher, a subscriber or both. The

publisher is the Client that wants to send data to the Broker. On the other hand, the

subscriber is the Client that wants to receive the data from another Client.

Another element reflected in the scheme, and that is important in an MQTT scenario, are

7

Figure 2.1: Scheme of the functioning of an MQTT scenario.

the Topics. A Topic [10] is a kind of filter that MQTT - Broker uses with the received

messages in order to discriminate to which subscribing customers it should be delivered.

It is essential to have clear the following points: Broker accepts all Topics, Clients can

subscribe to one or more Topics (by establishing several subscriptions)and Clients publish

messages indicating a single Topic.

Therefore, the Broker receives the message and, if he has a subscription that matches the

Topic filter, the message is transmitted to the subscribed customers.

2.3.3 Quality of Service

Quality of Service (QoS) is a mechanism used to ensure traffic prioritisation and guarantee

minimum bandwidth. QoS measures bandwidth and prioritises packets based on priority

queues [20].

8

In MQTT, the QoS level is an agreement between the sender and the receiver (MQTT

Client and MQTT Broker) that defines what guarantee of delivery there is for a specific

message. Two delivery parts of the package must be considered to understand how this

service works.In one hand, the message delivered from Publishing Client to Broker, and on

the other hand, the message delivered from the Broker to the Subscribing Client.

When the Client who publishes the Broker sends him a message, he defines the level of

QoS. The Broker transmits this message to the subscribed Clients, but with the QoS level

they have subscribed to [9]. That is to say, if the Client subscribes with a lower QoS level

than that of the publication, the Broker will transmit the message with the same level.

There are three levels of QoS defined (0, 1 and 2). Each one of them and its function, are

detailed below:

• QoS Level 0 - at most once

This is the minimum level of service, the simplest and the least overloaded by sending

a message. There is no guarantee of delivery. The Customer posts the message, and

the Broker does not reply with an acknowledgement of receipt[11].

• QoS Level 1 - at least once

This level ensures that the message will be transferred correctly to the Broker. The

Client keeps the message until it receives an acknowledgement from the Broker (PUB-

ACK). If, after a reasonable time, he does not receive the PUBACK, he publishes

the message again. Repeat this so many times until it receives confirmation of re-

ceipt. The Broker does not send the PUBACK until it has transferred it to all the

9

subscribers. Therefore, at this level, the sending is guaranteed, although the Broker

may receive the message more than once[11].

• QoS Level 2 - exactly once

Is the highest level of service, the safest and the slowest. It guarantees that the

recipient receives the message only once through a package identifier from the origi-

nal Publish message. At this level, a sequence of 4 messages is produced.

First, the Client makes a Publish and waits for the Broker to reply with an ack

(PUBREC). If after a reasonable time it does not respond, resends the message with

the duplicate Packet Flag. Second, once the Client receives PUBREC it sends a mes-

sage saying that the Publish message can be removed from the queue (PUBREL).

Third, the Doker receives PUBREL, which means that they can now send it to all

subscribers. Fourth and last, the Publish Client receives a message from Broker

(PUBCOMP) with confirmation of the entire process[11].

2.4 Related works

In recent years, there have been many research and development efforts to incorporate

the Internet of Things into everyday life. Since the focus of this work is the evaluation of

remote control of a robot through Docker, two related research works are detailed in this

section.

”Benchmarking and Profiling 5G Verticals’ Applications: An Industrial IoT

Use Case”[13]

This article was introduced at the IEEE Conference on Network Softwarization, NetSoft

10

2020.

The document details an integrated solution for 5G-oriented benchmarking and vertical

applications at profiling, accompanying with a use case study in a smart manufacturing

industry. It combines the design and execution of evaluation experiments, as well as the

analysis of the extracted data.

As future work, based on the results of efficiency analyses, they plan to work on the

development and evaluation of models that can help the management of VNF escalation

actions.

A scalable and low-cost MQTT broker clustering system [17]

This article was introduced at the 2nd International Conference on Information Technology

(INCIT), in 2017

In this document, they intend to build a scalable MQTT Broker by combining the Rasp-

berry Pi and an open-source broker software. They propose a scalable and low cost, but

high-performance MQTT Broker scenario.

11

3 System Design

3.1 Communication Protocols

As the system communication protocol, it has been configured the MQTT protocol (defined

in the section 2.3).

The central highlight of this protocol is that the publisher and subscriber do not need to

know each other, as the protocol has a star topology. For this reason, an MQTT Broker

has been created and hosted in Docker. This peculiarity will allow to easily add or replace

any component of the system without the need to modify the other parts.

3.2 Hardware

The hardware involved in the system consists of an Raspberry Pi 4 connected in serial with

the Arduino inside the mBot Ranger robot. All the elements are detailed in the following

sections.

3.2.1 mBot Ranger - Arduino

MBot Ranger is a kit that permits the construction of a robot. It consists of:

• Arduino Mega 2560 as a motherboard with 10 expansion ports.

• Motors with encoder for precise motion control

• Wireless communication via bluetooth/2.4G

• Module with 12 RGB LEDs

12

• 6 sensors:

Sensor line following

Ultrasonic obstacle sensor

Light sensor

Sound sensor

Temperature sensor

Gyroscopic

• Powered by USB cable or 6 AA batteries

Figure 3.1: Image of mBot Ranger

This robot is in charge of consulting the data to the sensors. Although six different types

of sensors have been detailed, only the temperature sensor has been used in this project

since one sensor is enough to calculate the latency of the whole system.

A Raspberry Pi 4 has been connected in series to allow the mBot Ranger to communicate

through the MQTT Protocol.

13

3.2.2 Raspberry Pi 4

As commented in the previous section, the Raspberry Pi 4 was used to allow the mBot

Ranger to communicate through the MQTT protocol with the MQTT Broker. In that

way, Raspberry Pi 4 receives the messages from the Broker by MQTT and transmits it to

the Arduino through the serial connection.

Figure 3.2: Image of RPi 4

Raspberry Pi 4 (Figure 3.2) is a Single Board Computer with 64-bit ARM architecture

with the following characteristics [7]:

Processor: Broadcom BCM2711, quad-core Cortex-A72 (ARM v8)
64-bit SoC @ 1.5GHz

Memory: 4GB LPDDR4

Connectivity: 2.4 GHz and 5.0 GHz IEEE 802.11b/g/n/ac wireless
LAN, Bluetooth 5.0, BLE
Gigabit Ethernet
2 USB 3.0 ports
2 USB 2.0 ports

14

A 16GB Micro-SD card has been used to install the operating system and as primary

storage.

3.2.3 Communication Raspberry Pi + Arduino

As explained above, MBot and Raspberry Pi 4 are connected via a serial connection. For

this purpose, a USB cable has been connected between both.

For the Raspberry Pi, has been used a USB connector connected to one of the 3.0 ports.

Also, as shown in the image, the Serial library and Arduino variable have been added to

the script.

Figure 3.3: Code for Serial communication at RPi 4

For the Arduino, has been used the USB for uploading the code (from the computer to

the board). First, the code has been upload from the computer, including the part of the

code shown in Figure 3.4, and then connected to the Raspberry Pi.

Figure 3.4: Code for Serial communication at Arduino

3.3 Software

The following section details the different Docker containers and services that will be

executed to create our system.

15

3.3.1 MQTT Broker

As commented in Section 3.1, a Broker is needed for the implementation of the MQTT

protocol.

Eclipse Mosquitto [6] is an open-source (EPL/EDL licensed) message broker that imple-

ments the MQTT protocol versions 5.0, 3.1.1 and 3.1. Mosquitto is designed for use on

low-resource equipment, because it is lightweight and can be used on all devices, from

low-power single-board computers to complete servers.

Also in DockerHub, there is available an official image of eclipse-mosquitto [4] which has

been used to create the MQTT Broker.

3.3.2 MQTT Clients

The scenario has two MQTT Clients. A publisher/subscriber Client in Docker and another

publisher/subscriber Client in RPi.

• MQTT Client - Docker

This client is hosted in Docker and is in command of Publish that it wants to know

the temperature and to Subscribe to the topic to receive the temperature. As for the

MQTT Broker, there is an image available in DockerHub [5] from mosquitto Client

that has been used.

• MQTT Client - RPi 4

The MQTT Client hosted in the RPi 4 is in command of Subscribe to the topic that

the MQTT Client hosted in Docker publishes and thus request the Arduino. Also,

in Publish the value that the Arduino transfers to it. The RPi 4 has been configured

with Raspberry Pi OS, and the mosquitto-customer package has been installed.

16

3.4 Summary

To summarise, the system is formed by an MQTT Broker, two MQTT Clients and the

Arduino incorporated in the mBot Ranger. The different steps that proceed are as follows.

Figure 3.5: System design overview

First, MQTT Client in Docker does a publish that wants to know the temperature. Second,

MQTT Client in RPi 4 subscribes to the MQTT Client topic in Docker, and then MQTT

Broker transmits the MQTT Client consultation in Docker to MQTT Client in RPi 4.

Below, the RPi 4 sends the request by serial connection to the Arduino, and it queries the

sensor and returns the value to the RPi 4 by serial connection. Then, MQTT Client in RPi

4 Publishes temperature value. Finally, MQTT Client in Docker subscribes to the MQTT

Client topic in RPi 4, and MQTT Broker transmits the MQTT Client in RPi 4 response.

In Figure 3.5, there is an overview of the system.

17

4 Implementation

In this section are detailed how the MQTT elements of the system are installed and con-

figured.

4.1 MQTT Broker container installation

First, the last version of the Dockerhub image is pulled. Then, the image has been run.

Figure 4.1: Command to download the last image of Docker

Figure 4.2: Execution to create the Broker’s container

The argument -p 1883:1883 assigns MQTT’s default port to the localhost (127.0.0.1) port

1883. No further configuration has been made, the Broker is now ready.

4.1.1 MQTT Broker container with prioritisation

For some scenarios, as is described in the next section, the Broker container with prioritisa-

tion has been used. For this reason, another Docker container has been created, following

the same steps.

18

Figure 4.3: Execution to create the Broker’s container with prioritisation

In this case, two flags have been assigned [8]:

–ulimit rtprio=90 : Maximum real-time priority allowed for the container.

–cap-add=sys nice : Allows the container to raise process nice values, set real-
time scheduling policies, set CPU affinity and other opera-
tions.

4.2 MQTT Client container installation

First, pull the last version of the Dockerhub image and run the image.

Figure 4.4: Command to download the last Docker image and execution to create the
Client’s container

In this image, the package paho.mqtt.python has been installed. To install it, you have

first logged into the container as root and installed the python package. Also, has been

Figure 4.5: Execution to install python package

19

added the folder paho.mqtt (cloned of Github) to the container and executed the following

command:

Figure 4.6: Execution to install paho.mqtt.python

Paho.mqtt.python is a python package that allows the MQTT Client to publish and sub-

scribe through a python script.

4.2.1 MQTT Client container with prioritisation

As it happens with the Broker container, some scenario has also been used with the Client

container with priority. Therefore, the priMQTTC container has been created:

Figure 4.7: Execution to run the Client’s container with prioritisation

To this new container, has also been installed the package paho.mqtt.python in the same

way that has been commented before.

4.3 MQTT Client installation in RPi

Through the terminal, the mosquitto-clients package has been installed in the RPi. This

package is built into the Raspbian operating system.

As in the Docker-hosted Client, the package paho.mqtt.python is installed.

20

Figure 4.8: Execution to install MQTT Client in RPi

Figure 4.9: Execution to install paho.mqtt.python

In order to finish the setup, the configuration file etc/mosquitto/mosquitto.conf has been

customised as follows in Figure 4.10. Then, the RPi has been configured for local use, and

it will listen through port 1883.

Figure 4.10: Configuration of the file mosquito.conf

21

4.4 Summary

To sum up, in this section, we have seen how easy it has been to configure the system

thanks to the Dockerhub images for the Docker containers. Two containers have been

created for the Broker, and two for the Client hosted in the Docker, configuring one of

each with container priority.

On the other hand, setting up the MQTT Client on the RPi has also been easy since it

has only meant installing a package of the Raspbian OS.

22

5 Evaluation

The purpose of this section is to carry out an evaluation of the system. This section aims

to be able to identify whether the prioritisation of Docker containers or MQTT message

QoS have an impact on latency. For this reason, a distributed application that implements

a control loop between a sensor and an actuator. The system has been used to evaluate the

impact of different resource sharing strategies of the docker system and MQTT message

prioritisation on the cycle time of the control loop application.

Figure 5.1: Diagram of the full setup with the evaluation metrics

The application performs a loop that ensures that the MQTT Client hosted in Docker

publishes 100 messages to a given topic. Between each message, different interval times

have been used (100ms, 50ms, 20ms, 10ms) where the publisher sleeps to issue the next

publication message. The MQTT Client in the RPi is subscribed to the topic. When

23

the MQTT Client in the RPi receives the publish message from the Broker in a different

docker container, it retrieves the corresponding sensor values from the Arduino through a

serial connection. Then the MQTT Client in the RPi publishes the values in the topic An-

swer. The MQTT Client in Docker subscribes to the topic Answer and receives the publish

response message from the Broker. A testbed has been created, which is configured differ-

ently for each test scenario in order to study the impact of different system configurations

on the control loop cycle time. The MQTT client repeats 10 times the execution of the

100 different publishing cycles, thus obtaining 1000 latency samples.

Table 5.1: Description of the evaluation metrics and timestamps
Timestamp Metric Description

T1: Initial time when the MQTT Client in Docker send
the publishing message at the application layer.

T2: End time of when the MQTT Client in Docker receives
the response message at the application layer.

T=T2-T1 Total response time.
R1: Initial time when the MQTT Client hosted in RPi re-

ceives the publish message at the application layer.
R2: End time of when the MQTT Client hosted in RPi

send the publishing response message at the applica-
tion layer.

R=R2-R1 Time to get the sensor measurement from Arduino.
O=T-R MQTT processing and transmission time plus Docker

overhead.

To correctly evaluate the latency time, the evaluation metrics and timestamps shown in

the Table 5.1 have been defined. In the following section, the previously defined metrics

of the entire system have been evaluated in the 9 scenes shown below. In each scenario

different performance conditions are represented and studied.

24

5.1 Evaluation Scenario 0 – No Arduino

The aim of Scenario 0 is to abstract the processing of the Arduino emulating its ideal

behaviour so that when the RPi receives the messages, it directly returns a random message.

In such case, the processing time needed to gather the measurement from the sensor is not

considered, thus the minimum time needed by the MQTT client to gather a response can

be estimated. Therefore, this scenario has been created to evaluate the latency of the

control loop which is referred to the time it takes for a message to be published by the

MQTT Client hosted in Docker, to reach the MQTT Client hosted in the RPi passing

through Broker and until the response message makes its way back to the MQTT Client.

Figure 5.2: Diagram of the scenario without Arduino

This scenario, as shown in Figure 5.2, is composed of the MQTT Client hosted in Docker,

the Broker hosted in a different Docker container and the MQTT Client hosted in RPi,

which is the part of the system that works with the MQTT protocol.

25

Table 5.2: Table of the latencies gathered in Scenario 0
Interval time 100ms 50ms 20ms 10ms

T(min) [us] 8419 7337 7202 6740
T(max) [us] 21863 20245 26275 23668
T(avg) [us] 10265.67 9902.17 9777.08 10524.91
O(min) [us] 6684 7262 7141 6684
O(max) [us] 23610 20175 26207 23610
O(avg) [us] 10465.78 9827.79 9708.78 10465.78
R(avg) [us] 76.14 74.37 68.30 59.13

An overview of all latency times for this scenario is shown in the Table 5.2. The minimum

total response time (T(min)) shows that the shorter the interval time between sending the

publishing messages, the shorter the latency time. On the other hand, the average response

time from MQTT protocol (O(avg)) represents the MQTT protocol latency time for this

scenario is observed.

5.2 Evaluation Scenario 1 – Arduino 57600bps

The aim of Scenario 1 is to observe the latencies of the full setup. This scenario has

been created in order to measure the latency referred to the time it takes a message to

be published by the MQTT client hosted in Docker, to reach the sensor hosted in the

Arduino passing through the Broker and until the response message makes its way back

to the MQTT Client.

This scenario, as shown in Figure 5.3, it is composed by the MQTT Client hosted in

Docker, the Broker, the MQTT Client hosted in the RPi and the Arduino with a baud

rate of 57600bps.

An overview of all the evaluation metrics for this scenario is shown in Table 5.3.the average

response time from Arduino R(avg) shows that the Arduino takes about 4ms to receive,

26

process and respond to the request issued by the Raspberry Pi. By comparing with the

configuration that emulates the behaviour of the Arduino (see section 5.1), the contribution

of the Arduino to the total latency can be seen.

Figure 5.3: Diagram of scenario 1

Table 5.3: Table of the latencies gathered in Scenario 1
Interval time 100ms 50ms 20ms 10ms

T(min) [us] 11523 10974 11178
T(max) [us] 27125 26636 29049
T(avg) [us] 13865.49 13394.78 13024.8 Loss
O (min) [us] 7159 6385 6858 of
O(max) [us] 22856 22291 24667 packets
O(avg) [us] 9560.85 9105.1 8744.7
R(avg) [us] 4304.64 4289.67 4280.1

It has also been observed, that when 100 messages are published with a 10ms interval,

the MQTT Client hosted in Docker receives fewer responses than sending out publishing

27

messages. By careful examination of the log files, we found that messages queued up in

the system as the minimum processing and transmitting time for the whole control loop

is larger than 10 ms. As messages are arriving faster than can be processed, the Arduino

answered several times multiple requests, leading to the situation where we received fewer

responses as some have been skipped. We indicate those in the Table 5.3 as packet loss.

For this reason, it is concluded that in this situation, there is packet loss.

5.3 Evaluation Scenario 2 – Docker Stress

The aim of Scenario 2 is to see CPU stress on the MQTT Broker. Another container de-

noted as Stress has been deployed on the Docker host where the MQTT Broker is deployed.

Therefore, the scenario has been created to be able to calculate the latency referred to the

time it takes for a message to be published by the MQTT Client hosted in Docker, to

reach the sensor hosted in the Arduino passing through the Broker and until the response

message makes its way back to the MQTT Client when there is stress in the system.

This scenario, as shown in Figure This scenario, as shown in Figure 5.4, it is composed

of the MQTT Client hosted in Docker, the Broker, the MQTT Client hosted in RPi, the

Arduino with a baud rate of 57600bps and, in addition, another Docker container has been

added that shares CPU with the rest of the containers. The impact that this new container

generates is a pressure in the CPU of the Docker behaviour, causing stress in the system.

This stress container has been created by executing the command docker run progrium/stress

and configuring the following options:

-cpu 3 : spawn 3 workers spinning on sqrt().

-io 3 : spawn 3 workers spinning on sync().

28

-vm 5 : spawn 5 workers spinning on malloc()/free().

-vm-bytes 128M : malloc 128M bytes per vm worker.

-timeout 4000s : timeout after 4000s seconds.

It has therefore been generated as follows: docker run –rm -it progrium/stress –cpu 3 –io

3 –vm 5 –vm-bytes 128M –timeout 4000s

Figure 5.4: Diagram of scenario 2

Table 5.4: Table of the latencies gathered in Scenario 2
Interval time 100ms 50ms 20ms 10ms

T(min) [us] 12176 12547 11904
T(max) [us] 85065 65884 50272
T(avg) [us] 16780.93 17418.42 18032.59 Loss
O(min) [us] 7807 8254 7606 of
O(max) [us] 80739 61643 46028 packets
O(avg) [us] 12507.46 13124.32 13747.89
R(avg) [us] 4273.46 4294.1 4284.7

29

An overview of all evaluation metrics for this scenario is shown in the Table 5.4. By

looking at the O(avg) time, it can be seen that the average latency of the processing and

transmission of the MQTT publish and subscribe messages is 13ms. This latency time is

very high, by comparing with the full setup, when not under CPU pressure (see section

5.2), and considering that this is a lightweight messaging protocol. The large jitter in the

message processing is due to CPU stress on the Broker and the MQTT client, which leads

to overall large and varying MQTT protocol processing latency. However, observing the

R(avg) time, it can be seen that the time it takes Arduino to receive, process and respond

to the request is 4ms, and therefore the stress, as expected, is not affecting it.

Besides, it has been observed that when 100 messages are published with a 10ms interval,

the MQTT Client hosted in Docker receives fewer responses than sending out publishing

messages. By careful examination of the log files, we found that messages queued up in

the system as the minimum processing and transmitting time for the whole control loop

is larger than 10 ms. As messages are arriving faster than can be processed, the Arduino

answered several times multiple requests, leading to the situation where we received fewer

responses as some have been skipped. For this reason, it is concluded that in this situation,

there is packet loss.

5.4 Evaluation Scenario 3 – Docker Stress without Arduino

The aim of Scenario 3 is to see how stress affects the system when the processing of

the Arduino is abstracted emulating its ideal behaviour, thus when the RPi receives the

messages it directly returns a random message. Therefore, this scenario has been created

to calculate the latency referred to the time it takes for a message to be published by the

MQTT Client hosted in Docker, to reach the MQTT Client hosted in the RPi passing

through Broker and until the response message makes its way back to the MQTT Client

when there is stress in the system.

30

This scenario, as shown in Figure 5.5, it is composed of the MQTT Client hosted in the

Docker, the Broker, the MQTT Client hosted in the RPi and, in addition, another Docker

container has been added that shares CPU with the rest of the containers. The impact that

this new container generates is a pressure in the CPU of the Docker behaviour, causing

stress in the system. This stress container has been created as in Scenario 2 (section 5.3).

Figure 5.5: Diagram of scenario 3

Table 5.5: Table of the latencies gathered in Scenario 3
Interval time 100ms 50ms 20ms 10ms

T(min) [us] 9926 8535 7499 7550
T(max) [us] 115348 117048 50147 47490
T(avg) [us] 18171.98 12409.14 11597.95 13884.73
O(min) [us] 9847 8459 7431 7500
O(max) [us] 115269 116924 50072 47433
O(avg) [us] 18094.90 12334.70 11527.55 13825.51
R(avg) [us] 77.08 74.44 70.40 59.22

31

An overview of all evaluation metrics for this scenario is shown in the Table 5.5. By looking

at the O(avg) time, it can be seen that the average MQTT processing and transmission time

of the MQTT protocol reaches 18ms. This latency time is very high, by comparing with the

configuration that emulates the ideal behaviour of the Arduino where there is no stress in

the system (see section 5.1) and considering that this is a lightweight messaging protocol.

The main reason for the large and varying latency is the concurrent stress container that

issues CPU pressure on the MQTT broker and MQTT client in the docker system. The

stress causes this that the Docker environment is submitted.

Besides, by looking at the R(avg) time, it can be seen that since there is no Arduino in this

scenario, it takes about 0.7ms for the RPi to receive and respond with a random message

to the request, and therefore the stress, as expected, is not affecting it.

5.5 Evaluation Scenario 4 – MQTT Broker Prioritisation

The aim of Scenario 4 is to see how the prioritisation of the Broker’s container reacts to a

system under stress. For this reason, the scenario has been created to be able to evaluate

the latency referred to the time it takes for a message to be published by the MQTT Client

hosted in Docker, to reach the sensor hosted in the Arduino passing through the Broker

and until the response message makes its way back to the MQTT Client when there is

stress in the system.

This scenario, as shown in Figure 5.6, is composed of the MQTT Client hosted in Docker,

the Broker with priority in Docker, the MQTT Client hosted in the RPi, the Arduino with

a baud rate of 57600bps and, in addition, another Docker container denoted as Stress has

been added that shares CPU with the rest of the containers. The impact that this new

container generates is a pressure in the CPU of the Docker behaviour, causing stress in the

system. This stress container has been created as in Scenario 2 (section 5.3).

32

The prioritisation has been achieved configuring the following flags to the docker run

command of the Broker container:

–ulimit rtprio=90 : Maximum real-time priority allowed for the container.

–cap-add=sys nice : Allows the container to raise process nice values, set real-
time scheduling policies, set CPU affinity and other opera-
tions.

It has therefore been achieved as follows: docker run -it –ulimit rtprio=90 –cap-add=sys nice

-name priMQTTB eclipse-mosquitto

Figure 5.6: Diagram of scenario 4

An overview of all the evaluation metrics for this scenario is shown in Table 5.6. By

looking at the O(avg) time, it can be seen that the average MQTT message processing and

transmission are around 11ms. This latency time is high, by comparing with the full setup

(see section 5.2) and considering that it is a light messaging protocol. Nevertheless, by

33

comparing with the full setup with stress (see section 5.3), it can be seen that the system

is more stable as the result of the average latency times in the three intervals are similar,

thanks to the prioritisation of the Broker’s container. Also, the maximum latency is still

higher compared to when no stress is exercised, which may be due to the non-prioritisation

of the MQTT client container.

Table 5.6: Table of the latencies gathered in Scenario 4
Interval time 100ms 50ms 20ms 10ms

T(min) [us] 11067 10712 10845
T(max) [us] 46398 45772 41477
T(avg) [us] 15400.99 15252.33 15448.03 Loss
O(min) [us] 6726 6372 6630 of
O(max) [us] 42097 41217 37184 packets
O(avg) [us] 11106.4 10964.30 11157.39
R(avg) [us] 4294.59 4287.87 4290.64

Moreover, it has been observed that when 100 messages are published with a 10ms interval,

the MQTT Client hosted in Docker receives fewer responses than sending out publishing

messages. By careful examination of the log files, we found that messages queued up in

the system as the minimum processing and transmitting time for the whole control loop

is larger than 10 ms. As messages are arriving faster than can be processed, the Arduino

answered several times multiple requests, leading to the situation where we received fewer

responses as some have been skipped. For this reason, it is concluded that in this situation,

there is packet loss. However, observing the R(avg) time, it can be seen that the time it

takes Arduino to receive, process and respond to the request issued by the Raspberry Pi

is 4ms, and therefore the stress, as expected, is not affecting it.

34

5.6 Evaluation Scenario 5 – MQTT Broker and MQTT Docker

Client Prioritisation

The aim of Scenario 5 is to see how if the MQTT Client and Broker prioritisation impact

the latency of the control loop when the system is under stress. For this reason, the

scenario has been created to be able to calculate the latency referred to the time it takes

for a message to be published by the MQTT Client hosted in Docker, to reach the sensor

hosted in the Arduino passing through the Broker and until the response message makes

its way back when there is stress in the system.

Figure 5.7: Diagram of scenario 5

This scenario, as shown in Figure 5.7, it is composed of the MQTT Client hosted in Docker

with container prioritisation, the Broker with container prioritisation, the MQTT Client

hosted in the RPi, the Arduino with a baud rate of 57600bps and, in addition, another

Docker container has been added that shares CPU with the rest of the containers. The

35

impact that this new container generates is a pressure in the CPU of the Docker behaviour,

causing stress in the system. This stress container has been created as in Scenario 2 (section

5.3).

The container prioritisation has been achieved following the explained flags in scenario 4

(section 5.5). It has therefore been achieved for the Broker as follows: docker run -it –ulimit

rtprio=90 –cap-add=sys nice -name priMQTTB eclipse-mosquitto . And has been achieved

for the MQTT Client as follows: docker run -it –ulimit rtprio=90 –cap-add=sys nice -name

priMQTTC efrecon-mqtt-client

Table 5.7: Table of the latencies gathered in Scenario 5
Interval time 100ms 50ms 20ms 10ms

T(min) [us] 11307 5828 11203
T(max) [us] 45534 57113 37628
T(avg) [us] 15732.84 15264.91 15345.23 Loss
O(min) [us] 7052 1300 6910 of
O(max) [us] 41278 52784 33303 packets
O(avg) [us] 11439.44 10978.75 11059.27
R(avg) [us] 4293.40 4286.26 4285.96

An overview of all evaluation metrics for this scenario is shown in the Table 5.7. By looking

at the O(avg) time, it can be seen that the average of the MQTT message processing

and transmission time is around 15ms. This latency time is very high, by comparing

with the full setup (see section 5.2) and considering that it is a light messaging protocol.

Nevertheless, by comparing with the full setup with stress (see section 5.3), it can be seen

that the system is more stable as the result of the average latency times in the three

intervals are similar, thanks to the prioritisation of the Broker’s and the MQTT Client’s

containers.

By comparing with the evaluation metrics with the ones in the Table 5.6 of Scenario 5, it

can be seen that practically the same latency times are obtained. Therefore, no benefit

36

has been obtained by prioritising the MQTT Client container, since the maximum latency

is still higher compared to when no stress is exercised.

Moreover, it has been observed that when 100 messages are published with a 10ms interval,

the MQTT Client hosted in Docker receives fewer responses than sending out publishing

messages. By careful examination of the log files, we found that messages queued up in

the system as the minimum processing and transmitting time for the whole control loop

is larger than 10 ms. As messages are arriving faster than can be processed, the Arduino

answered several times multiple requests, leading to the situation where we received fewer

responses as some have been skipped. For this reason, it is concluded that in this situation,

there is packet loss. However, observing the R(avg) time, it can be seen that the time it

takes Arduino to receive, process and respond to the request is 4ms, and therefore the

stress, as expected, is not affecting it.

5.7 Evaluation Scenario 6 – MQTT Broker Prioritisation with-

out Arduino

The aim of Scenario 6 is to see if the Broker prioritisation impacts the latency of the control

loop when the system is under stress and, when it abstracts the processing of the Arduino

emulating its ideal behaviour; thus when the RPi receives the messages, it directly returns

a random message. Therefore, the scenario has been created to be able to measure the

observed latency referred to the time it takes for a message to be published by the MQTT

Client hosted in Docker, to reach the sensor hosted in the Arduino passing through the

Broker and until the response message makes its way back when there is stress in the

system.

This scenario, as shown in Figure 5.8, it is composed of the MQTT Client hosted in

Docker, the Broker with container prioritisation, the MQTT Client hosted in the RPi and,

37

Figure 5.8: Diagram of scenario 6

in addition, another Docker container has been added that shares CPU with the rest of

the containers. The impact that this new container generates is a pressure in the CPU of

the Docker behaviour, causing stress in the system. This stress container has been created

as in Scenario 2 (section 5.3).

Table 5.8: Table of the latencies gathered in Scenario 6
Interval time 100ms 50ms 20ms 10ms

T(min) [us] 7853 8667 7730 7249
T(max) [us] 36828 33758 32276 34296
T(avg) [us] 12073.55 13308.27 11271.43 11903.02
O(min) [us] 7789 8600 7655 7195
O(max) [us] 36701 33632 32196 34171
O(avg) [us] 11995.12 13235.7 11202.51 11845.06
R(avg) [us] 78.42 72.56 68.91 57.95

An overview of all latency times for this scenario is shown in the Table 5.8. By looking

38

at the O(avg) time, it can be seen that the MQTT protocol latency time is around 12ms.

This latency time is high, by comparing with the same setup but without stress (see section

5.1) and considering that it is a light messaging protocol. Nevertheless, by comparing with

the setup with stress but without Arduino (see section 5.4), it can be seen that the system

is more stable as the result of the latency times in the three intervals are similar, thanks

to the prioritisation of the Broker’s container.

Besides, by looking at the R(avg) time, it can be seen that since there is no Arduino in this

scenario, it takes about 70us for the RPi to receive and respond with a random message

to the request, and therefore the stress, as expected, is not affecting it.

5.8 Evaluation Scenario 7 - MQTT Stresser

The aim of Scenario 7 is to see how the Broker’s stress affects the system. For this reason,

the scenario has been created to be able to evaluate the latency referred to the time it

takes for a message to be published by the MQTT Client hosted in Docker, to reach the

sensor hosted in the Arduino passing through the Broker and until the response message

makes its way back to the MQTT Client when there is stress in the system.

This scenario, as shown in Figure 5.9, it is composed of the MQTT Client hosted in Docker,

the Broker, the MQTT Client hosted in the RPi, the Arduino with a baud rate of 57600bps

and, in addition, another Docker container has been added which generates stress to the

Broker. In contrast to Scenario 2, where the stress container only created CPU pressure

on the MQTT Broker and MQTT Client, this time we used a container which creates an

MQTT stress test by sending many MQTT messages to the Broker in short time to stress

the MQTT messaging system.

This new container that generates stress in the Broker has been created by executing the

39

command run inovex/mqtt-stresser and configuring the following options:

-broker tcp://192.168.0.107:1883 : Define Broker URL (IP and access port)

-num-clients 100 : Number of concurrent clients

-num-messages 10 : Number of messages shipped by Client

-rampup-delay 1s : Time between batch rampups

-rampup-size 10 : Size of rampup batch

-global-timeout 180s : Timeout spanning all operations

-timeout 20s : Timeout for pub/sub loop

It has therefore been generated as follows: run inovex/mqtt-stresser -broker

tcp://192.168.0.107:1883 -num-clients 100 -num-messages 10 -rampup-delay 1s

-rampup-size 10 -global-timeout 180s -timeout 100s

In this set of experiments, the MQTT client sends messages every 20 ms only. What hap-

pened during the experiment is that the connection was lost before sending 100 consecutive

messages. The reason is that the new container has caused the Broker to be under much

stress and not responding.

5.9 Evaluation Scenario 8 - MQTT Stresser with MQTT Docker

Client Prioritsation

The aim of Scenario 8 is to see how the prioritisation of the MQTT Client’s container and

the different QoS values affect the system when there is stress in the Broker. Therefore,

the scenario has been created to be able to calculate the latency referred to the time it

40

Figure 5.9: Diagram of scenario 7

takes for a message to be published by the MQTT Client hosted in Docker, to reach the

sensor hosted in the Arduino passing through the Broker and until the response message

makes its way back when there is stress in the system.

This scenario, as shown in Figure 5.10, is composed of the MQTT Client hosted in Docker

with priority, the Broker, the MQTT Client hosted in the RPi, the Arduino with a baud rate

of 57600bps and, in addition, another Docker container has been added which generates

stress to the Broker. This stress container has been created as in Scenario 7 (section 5.8).

The experiment with this scenario has been to send messages to every 20ms and changing

the QoS value. An overview of all of evaluation metrics for this scenario is shown in

the Table 5.9. It can be seen that when QoS is set to 0, both the client and MQTT

stress container issues messages having the same priority. Consequently, as the MQTT

stress tester floods the Broker with messages, the MQTT Client, which implements the

control loop, loses the connection. On the other hand, when the MQTT client prioritises

41

Figure 5.10: Diagram of scenario 8

the MQTT messages using QoS =1 or 2, the MQTT clients messages are prioritised at

the brokers MQTT stack. Therefore, in those scenarios, the average MQTT message

processing and transmission times are much smaller and stable, showing the benefit of

QoS prioritisation.

Table 5.9: Table of the latencies gathered in Scenario 8
QoS 0 1 2

T(min) [us] 11336 22450
T(max) [us] 71455 89561
T(avg) [us] Loss 16082.64 36286.04
O(min) [us] of 7061 18124
O(max) [us] packets 67217 85305
O(avg) [us] 11829.24 31997.53
R(avg) [us] 4285.52 4288.51

Additionally, as the Client waits to send the next message to receive the acknowledgement,

much higher latencies are obtained. By looking at the O(avg) time, it can be seen that the

42

latency time when QoS is 2 is much higher than when it is 1. This delay is because with

QoS 2, for each Publish message, a sequence of 4 messages is sent since is the highest level

of service and the safest.

5.10 Summary

To summarise, nine different scenarios have been set up to evaluate the MQTT protocol.

In the scenarios that include Arduino, it can be seen that it has a latency time of about

4ms. Also, when publications are sent every 10ms, queues are building up leading to a

situation where the MQTT messages are combined, leading to packet loss.

Furthermore, two different types of stress have been evaluated: stress for the Docker en-

vironment and stress that affects the MQTT system, more specifically to the Broker. On

the one hand, it has been observed that in order to try to minimise a little the effect of

stress in the Docker environment, priority should be given to the Broker’s container or the

MQTT Client’s. On the other hand, in order for the system to continue working when the

Broker is under much stress, QoS has had to be configured to prioritise MQTT messages

of the Client implementing the control loop, and the MQTT Client hosted in the Docker

must also be prioritised. This configuration has not reduced the latency times, due to the

acknowledgement, but it provides reliability to the system, guaranteeing that no message

is lost.

43

6 Results Analysis

The purpose of this section is to compare the different scenarios, explained in the Section

5. In this way, it will be possible to analyse whether Arduino’s behaviour or prioritising

Docker containers has an impact on the performance of the MQTT protocol.

In order to carry out the analysis, 5 cumulative distribution function (CDF) graphs have

been created, in which it has been attempted to isolate these performance aspects.

6.1 Arduino 57600 vs No Arduino

Figure 6.1: CDF graph comparing latencies of Scenarios 0 and 1

This analysis aims to compare scenario 0 (section 5.1) with scenario 1 (section 5.2) to be

able to analyse the impact of the Arduino’s contribution on the behaviour of the MQTT

protocol.

44

By looking at the R metric of the scenario with Arduino in the Figure 6.1, observing the R

metric of the scenario with Arduino, it can be seen how 100% of the messages the Arduino

takes 4ms to receive, process and respond to the request issued by the Raspberry Pi. On

the other hand, by looking at the R metric of the scenario without Arduino, it can be seen

how 100% of the messages the Raspberry Pi takes about 70us in response to the request

issued. Therefore, it can be seen how the Arduino contributes to the total latency

However, by looking at O metric, it can be seen how the MQTT protocol takes less than

8ms to process in 20% of the messages, for both scenarios. On the other hand, from this

point, the observation that can be made is that the latency times of the MQTT protocol

were generally lower in the scenario with physical Arduino compared to the scenario that

simulates its ideal behaviour. This is because thanks to the processing time of Arduino

consulting the sensor, the Broker has more time between each response message.

6.2 Arduino 57600 + Docker Stress vs No Arduino + Docker

Stress

The objective of this analysis is to compare scenario 2 (section 5.3) with scenario 3 (section

5.4), in order to analyse the impact of the Arduino’s contribution on the behaviour of the

MQTT protocol when there is a new container that generates a pressure on the CPU from

the Docker’s behaviour, causing stress in the system.

By looking at the R metric of the Arduino scenario in the Figure 6.2, it can be seen

how 100% of the messages the Arduino takes 4ms to receive, process and respond to the

request issued by the Raspberry Pi. On the other hand, by looking at the R metric of the

scenario without Arduino, it can be seen how 100% of the messages the Raspberry Pi takes

about 70us in response to the request issued. Therefore, it can be seen how the Arduino

contributes to the total latency.

45

Figure 6.2: CDF graph comparing comparing latencies of Scenarios 2 and 3

However, by looking at the O metric, it is possible to see how the MQTT protocol takes

less than 10ms to process in 60% of the messages, for the scenario with Arduino. On the

other hand, in the scenario without Arduino, it can be seen how the MQTT protocol takes

less than 15ms to process in 60% of the messages. From these data, the observation that

can be made is that the latency times of the MQTT protocol were generally lower in the

scenario with physical Arduino compared to the scenario that simulates its ideal behaviour.

It is because thanks to the processing time of Arduino consulting the sensor, the Broker

has more time between each response message.

46

6.3 Arduino 57600 vs Arduino 57600 + Docker Stress

This analysis aims to compare scenario 1 (section 5.2) with scenario 2 (section 5.3) in order

to analyse the impact on the MQTT protocol of system stress caused by CPU pressure

from Docker’s behaviour.

Figure 6.3: CDF graph comparing latencies of Scenarios 1 and 2

By looking at the O metric of the Arduino scenario in the Figure 6.3, it can be seen how

the MQTT protocol takes less than 9ms to process in 80% of the messages, in the scenario

that there is no stress. On the other hand, in the scenario with stress, it can be seen how

the MQTT protocol takes less than 15ms to process in 80% of the messages. From these

values and from the inclination of the graphs, the observation that can be made is that

47

the latency times of the MQTT protocol were generally lower in the no-stress scenario

compared to the stress scenario. As in Docker the Broker’s container and the MQTT

Client’s one are located, it happens that both are affected by stress, having a pressure in

the CPU, causing them to be slower processing the messages.

6.4 Arduino 57600 + Docker Stress vs MQTT Broker Prioriti-

sation vs MQTT Broker and MQTT Docker Client Prioriti-

sation

This analysis aims to analyse the impact on the MQTT communication protocol of the

prioritisation of the Broker and MQTT Client containers, when there is a new container

that generates a pressure on the CPU of the Docker’s behaviour, causing stress in the

system. To this end, scenarios 1 (section 5.2), 2 (section 5.3), 4 (section 5.5) y 5 (section

5.6) have been compared.

By looking at the Figure 6.4, it can be seen how the MQTT protocol takes less than 9.5ms

to process in 85% of the messages, in the scenario that there is no stress. In the scenario

with stress, it can be seen how the MQTT protocol takes less than 19.5ms to process in

85% of the messages. On the other hand, in the scenario with stress but with the MQTT

containers hosted in Docker prioritised, the MQTT protocol takes less than 14.5ms in 85%

of the messages. In other words, when MQTT containers have prioritisation, the inclination

in the graphic is more similar to when there is no stress action, meaning that the stress

affectation is reduced and a faster protocol latency time is achieved.

On the other hand, it is also observed that prioritising the two MQTT containers at the

same time, shows little difference to prioritising only one of the two containers. In other

words, it means that prioritising both containers does not provide any more benefit than

48

Figure 6.4: CDF graph comparing latencies of Scenarios 2, 4 and 5

prioritising only the Broker’s container. Therefore, prioritising only the Broker’s container

is enough to improve the system’s performance.

6.5 No Arduino + Docker Stress vs No Arduino + MQTT Bro-

ker Prioritisation

This analysis aims to compare scenario 3 (section 5.4) with scenario 6 (section 5.7) in order

to analyse the impact on the MQTT communication protocol of the prioritisation of the

Broker’s container when there is a new container that generates a pressure on the CPU

from the Docker’s behaviour, causing stress in the system. Also, there is no contribution

from the Arduino 6.5 is obtained.

By looking at the Figure 6.5, it can be seen how the MQTT protocol takes less than 10ms

49

Figure 6.5: CDF graph comparing latencies of Scenarios 3 and 6

to process 70% of the messages, in the scenario that there is no stress. In the scenario

with stress, it can be seen how the MQTT protocol takes less than 15ms to process in 70%

of the messages. Moreover, on the other hand, in the scenario with stress but with the

MQTT Broker’s container hosted in a prioritised Docker, the MQTT protocol takes less

than 12.5ms to process in 70% of the messages. In other words, when the MQTT Broker

container has prioritisation, the inclination in the graph is more similar to when there is no

stress action, meaning that the stress affectation is reduced and a faster protocol latency

time is achieved.

In this analysis, the scenario with both MQTT containers prioritised has not been included

since, as it has been observed in the Analysis 6.4, it does not show any benefit in the system

behaviour.

50

6.6 Summary

To sum up, there have been five analyses of the system in this section, in which it has

been possible to see that the MQTT protocol tends to act more quickly when the physical

Arduino exists and does not emulate its ideal behaviour.

In addition, it has also been concluded that when there is a new container that generates

a pressure on the CPU from the Docker’s behaviour, causing stress in the system, it is

possible to see how the MQTT protocol has higher latency times. However, in order to at

least reduce the impact of stress on the system, it has been seen that the Broker’s container

must be prioritised and then a faster communication protocol latency time is achieved.

51

7 Conclusion and Future Work

Due to the importance of the Internet of Things and its impact on daily life, the different

technologies applied to them are continually being investigated and how they can be most

beneficial. It is becoming increasingly important to be able to consult/control electronic

devices remotely.

In this thesis, a system was created to be able to control a robot through Docker remotely,

and the different latency times in the different scenarios were evaluated.

In the initial scenario, the system gives reasonably good latency results, of which 35%

represents the time taken by the robot to process the information. In other words, the

communication protocol used is efficient and fast; however, the response latency of the

scenario will depend on the device to which the request is executed (in this case, reference

is made to the Arduino contained in the robot).

Besides, scenarios have been created by pushing the system to the limit, causing stress in

Docker and also directly to the MQTT Broker. Nevertheless, finally, it has been concluded

that to try to avoid this phenomenon, it is necessary to prioritise, at least, the Docker

container of the MQTT Client. Also, depending on the importance of the data, the use of

QoS, taking into account that sets the highest level, can cause a significant increase in the

system’s latency.

Finally, the utility of the system created has been very simple and, practically, only for

the use of analysis. That is why, as future work, it would be interesting to see how the

system acts if the robot subscribes to different topics and also, depending on the answers,

acts with specific balancing movements or changes its speed.

52

References

[1] Entendiendo Docker. https://www.javiergarzas.com/2015/07/entendiendo-

docker.html, Accessed: 2020-06-15.

[2] What is Docker? https://opensource.com/resources/what-docker, Accessed: 2020-06-

15.

[3] IT explained: mqtt. https://www.paessler.com/it-explained/mqtt, Accessed: 2020-06-

16.

[4] Docker Official Images - eclipse-mosquitto. https://hub.docker.com//eclipse −

mosquitto, Accessed : 2020 − 06 − 29.

[5] Docker Official Images - mqtt-client. https://hub.docker.com/r/efrecon/mqtt-client,

Accessed: 2020-06-29.

[6] Eclipse MosquittoTM. https://mosquitto.org/, Accessed: 2020-06-29.

[7] Raspberry Pi 4 Tech Specs. https://www.raspberrypi.org/products/raspberry-pi-4-

model-b/specifications/, Accessed: 2020-06-29.

[8] Runtime options with Memory, CPUs, and GPUs.

https://docs.docker.com/config/containers/resourceconstraints/, Accessed :

2020 − 06 − 29.

[9] MQTT man page. https://mosquitto.org/man/mqtt-7.html, Accessed: 2020-06-30.

[10] Qué son y cómo usar los Topics en MQTT correctamente.

https://www.luisllamas.es/que-son-y-como-usar-los-topics-en-mqtt-correctamente/,

Accessed: 2020-06-30.

53

[11] Understanding MQTT QOS Levels- Part 2. http://www.steves-internet-

guide.com/understanding-mqtt-qos-2, Accessed: 2020-06-30.

[12] ¿Qué es MQTT? Su importancia como protocolo IoT. https://www.luisllamas.es/que-

es-mqtt-su-importancia-como-protocolo-iot/, Accessed: 2020-06-30.

[13] Manuel Peuster Stefan Schneider Panagiotis Gouvas Daniel Behnke Marcel Müller

Patrick-Benjamin Bök Anastasios Zafeiropoulos, Eleni Fotopoulou. A scalable and

low-cost MQTT broker clustering system. IEEE, Published in: 2017 2nd International

Conference on Information Technology (INCIT), 2018.

[14] Kevin Ashton. The Internet Of Things. https://medium.com/how-to-fly-a-horse/the-

internet-of-things-e3050dd55556, Accessed: 2020-06-30.

[15] Lindsay Hiebert. Public Safety Blog Series-Connecting the Unconnected in Public

Safety Response. https://blogs.cisco.com/government/connecting-the-unconnected-

in-public-safety-response, Accessed: 2020-06-30.

[16] B. Ritesh Kumarn. What are Internet of things (IoT) devices? A com-

plete guide. https://acquirehowto.com/what-are-internet-of-things-devices-complete-

guide/, Accessed: 2020-06-30.

[17] Vasaka Visoottiviseth Ryousei Takano Jason Haga Dylan Kobayashi Pongnapat Ju-

tadhamakorn, Tinnapat Pillavas. A scalable and low-cost MQTT broker clustering

system. IEEE, Published in: 2017 2nd International Conference on Information Tech-

nology (INCIT), 2018.

[18] G. Salgueiro D. Hanes R. Barton. IoT Fundamentals: Networking Technologies,

Protocols, and Use Cases for the Internet of Things. Cisco Press, 2017.

54

[19] Margaret Rouse. MQTT (MQ Telemetry Transport).

https://internetofthingsagenda.techtarget.com/definition/MQTT-MQ-Telemetry-

Transport, Accessed: 2020-06-16.

[20] The HiveMQ Team. Quality of Service 0, 1 and 2 - MQTT Essen-

tials: Part 6. https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-

service-levels/, Accessed: 2020-06-30.

55

A Appendix - Scripts

In this appendix are attached all the scripts used in the project.

Figure A.1: Docker MQTT Client Publishing Script

56

Figure A.2: Docker MQTT Client Subscribing Script with QoS

57

Figure A.3: Docker MQTT Client Subscribing Script

58

Figure A.4: RPi MQTT Client Subscribing-Publishing Script

59

