
OpenMP static TDG runtime implementation and
its usage in Heterogeneous Computing

Chenle YU∗†, Sara Royuela∗, Eduardo Quiñones∗
∗Barcelona Supercomputing Center, Barcelona, Spain
†Universitat Politècnica de Catalunya, Barcelona, Spain

E-mail: {chenle.yu, sara.royuela, eduardo.quinones}@bsc.es

Keywords— OpenMP, CUDA, CUDA graph.

I. EXTENDED ABSTRACT

OpenMP being the standard to use in shared memory
parallel programming, it offers the possibility to parallelize
sequential program with accelerators by using target directive.
However, CUDA Graph as a new, efficient feature is not
supported yet. In this work, we present an automatic trans-
formation of OpenMP TDG to CUDA Graph, increasing the
programmability of the latter.

A. Introduction

With the ever growing number of cores on modern CPUs,
applications are more likely to be designed to have high
scalability, i.e. to have better utilization of the computation
power. This is true in Safety-Critical Embedded System (such
as ADAS, Advanced Driver Assistance System), High Perfor-
mance Computing domain and many other computer related
areas.

However, efficiently parallelizing an application could be
challenging, since there are different existing thread APIs
in different programming languages (e.g. Java thread), or
in different standards, as pthread for POSIX. In order to
render this process easier, Parallel Programming Models have
been introduced. Among them, OpenMP is considered as
the standard model in shared-memory platform, it has been
widely used in the past decades thanks to its performance and
programmability. Besides, CUDA as the standard pragram-
ming model to use if we aim to fully exploit Nvidia cards’
performance, although it has a steep learning curve if one is
not familiar with thread/block/grid concept of it.

Interestingly, Nvidia introduced a novel task execution
model named CUDA Graph [1], which has numerous similar-
ities with Task Dependency Graph (TDG) used in OpenMP,
e.g., this feature allows user to define an execution graph once,
and reuse it multiple times in the future, the same execution
pattern is under consideration to add into the next OpenMP
specification. Consequently, having CUDA Graph supported
in OpenMP could be used for the next OpenMP specification
implementation, and also for increasing the programmability
of CUDA Graph. Thus, we hereby present our research aiming
to automatically transform from OpenMP tasking program to
a CUDA Graph application.

B. Transforming OpenMP to CUDA Graph

OpenMP 4.0 has defined target directive, which allows
users to offload the associated task to an accelerator device
(e.g. a GPU). However, it does not support CUDA Graph. In
order to deploy CUDA Graph in OpenMP, we proceed as the
following:

• build a Task Dependency Graph (TDG) from the source
OpenMP code

• use this TDG to build CUDA Graph
The first step is accomplished in a previous work by Royuela

S. [2], where the author builds the TDG at compile time
(referred as static TDG) with a source-to-source compiler:
Mercurium[3]. This process requires the knowledge of all task
related information at compile time, such as data to consume
by tasks, number of loop iterations, etc. to generate the TDG.
Although the framework slows down the compilation phase
of the application, it parses all task constructs and their
corresponding depend clauses to generate intermediate files,
containing execution order information of the OpenMP pro-
gram. Based on this work, we will see that an implementation
of CUDA Graph in OpenMP is possible.

Generating CUDA graph from the intermediate files is done
with CUDA Graph API. Host function nodes are created
and inserted into the graph through cudaGraphAddHostNode
function call, while cudaGraphAddKernelNode is used for
kernel function node. Dependencies among tasks are managed
via arrays of CudaGraphNode t. Finally, the CUDA Graph,
mapped from static TDG, is actually instantiated by calling
cudaGraphInstantiate, and the function cudaGraphLaunch is
used to launch the executable graph on a specified stream.

Currently, the automatic transformation of OpenMP task
program to CUDA Graph has been tested over different
benchmarks that have numerous iterations. This is done be-
cause CUDA Graph was initially introduced to reduce the
host-device communications overhead, the performance gain
is supposed to be greater when the number of iterations
increases. Secondly, cases where applications run repeatedly
before ended by the user are omnipresent, especially in real-
time systems. Hence, such comparison is valuable and mean-
ingful. In figure. 1, we show the evolution of Cholesky de-
composition execution time based on the number of iterations,
over a matrix of 4000 x 4000 elements (decomposed to 1540



tasks, or cudaGraphNode t). The execution time of Cholesky
decomposition using CUDA Graph is roughly 10 times shorter
than the original OpenMP program, either for 1 iteration or
repetitive execution, as shown in the chart.

In addition, manually writing this example with CUDA
Graph is nearly impossible: every task node operates on
different data block, and needs almost 10 lines to create the
node, set up the correct argument, etc., resulting to a program
having more than 15 000 lines. However, such example only
had 25 additional lines in our OpenMP program.

Fig. 1. Execution time evolution of Cholesky decomposition w.r.t the number
of iterations

C. Further discussion

As mentioned in section I-A, next OpenMP specification
is about to include reusable task graph. The transforming
of OpenMP TDG to CUDA Graph fulfills such execution
paradigm with the use of GPU accelerator. Regarding homo-
geneous programming, one implementation of such execution
pattern could be: i) if all task information are known at

compile time, generate the static TDG, ii) storage of the
graph in memory, and execute it as many times as necessary.
Based on our current work, this implementation should be
straightforward, and it is in progress.

D. Conclusion

We have presented our current research work based on
the concept of static TDG in OpenMP. Regarding the use of
CUDA Graph, we drastically increased its programmability
and the performance results satisfied our expectations. In
addition, we discussed about how this implementation could be
used in the reusable task graph of next OpenMP specification.

II. ACKNOWLEDGMENT

The realization of this work was possible thanks to the
tremendous effort of my PhD advisors: Sara Royuela, Eduardo
Quiñones, and Xavier Martorell. This work is part of Ampere
european project.

REFERENCES

[1] Nvidia, “CUDA 10 Features Revealed: Turing, CUDA Graphs, and
More,” 2018, https://devblogs.nvidia.com/cuda-10-features-revealed/.

[2] S. Royuela Alcazar, “High-level Compiler Analysis for OpenMP,” Ph.D.
dissertation, 2018.

[3] Barcelona Supercomputing Center, “Mercurium,” 2019, pm.bsc.es/mcxx.

Chenle majored in HPC and Cryptography at Sor-
bonne University, France, during his M.S. He joined
BSC in February 2019 as a Ph.D student. His
research is focused on HPC, including OpenMP
runtime implementation and Heterogeneous Com-
puting.




