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Abstract Many of the methods which deal with clustering in matrices of data are based1

on mathematical techniques such as distance-based algorithms or matrix decompo-2

sition and eigenvalues. In general, it is not possible to use statistical inferences or3

select the appropriateness of a model via information criteria with these techniques4

because there is no underlying probability model. This article summarizes some recent5

model-based methodologies for matrices of binary, count, and ordinal data, which are6

modelled under a unified statistical framework using finite mixtures to group the rows7

and/or columns. The model parameter can be constructed from a linear predictor of8

parameters and covariates through link functions. This likelihood-based one-mode9

and two-mode fuzzy clustering provides maximum likelihood estimation of param-10

eters and the options of using likelihood information criteria for model comparison.11

Additionally, a Bayesian approach is presented in which the parameters and the num-12

ber of clusters are estimated simultaneously from their joint posterior distribution.13

Visualization tools focused on ordinal data, the fuzziness of the clustering structures,14

and analogies of various standard plots used in the multivariate analysis are presented.15

Finally, a set of future extensions is enumerated. 116
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1 Introduction20

Cluster analysis has been widely used in many areas such as ecology, marketing, and21

computer science to identify groups, patterns, or clusters in a data set. For example, we22

may have n individuals completing a health questionnaire containing m questions, with23

yi j being the response of person i to question j . We thus have data in an n × m array24

Y , along with other possible covariates. We may wish to find groups of persons (rows)25

each containing individuals with similar patterns of responses, and simultaneously26

find groups of correlated questions (columns). This leads to a two-mode clustering, or27

a biclustering problem.28

In general, there are non-model-based and model-based approaches for cluster29

analysis. The most common heuristic non-model-based approach uses a criterion30

(Friedman and Rubin 1967) on the sum of within-cluster sums of squares, e.g., k-31

means clustering (MacQueen 1967; Hartigan and Wong 1979; Jobson 1992; Vichi32

2001; McCune and Grace 2002; Rocci and Vichi 2008), where the data points are33

iteratively moved from one cluster to another until there is no improvement in the cri-34

terion. In addition, many metric methods have been developed including hierarchical35

clustering, multidimensional scaling, association analysis, correspondence analysis36

and ordination [see e.g. Johnson (1967), Manly (2005), Everitt et al. (2011), Quinn37

and Keough (2002)]. Although these methods have been successful in solving many38

practical problems, no statistical inference is available because they are not based39

on statistical likelihoods. Statistical tests can only be constructed through the use of40

resampling methods (Manly 2007; Gotelli and Graves 1996), but it is still not clear41

how to decide the number of clusters (Fraley and Raftery 1998).2 42

A long-standing model-based approach to clustering assumes the data come from a43

mixture of probability distributions [see e.g., McLachlan and Basford (1988), McLach-44

lan and Peel (2000), Everitt et al. (2011), Böhning et al. (2007), Wu et al. (2008),45

Melnykov and Maitra (2010), Melnykov (2013), Matechou et al. (2016)]. For con-46

tinuous outcomes yi j the clustering methodology is based on multivariate normal47

mixtures and the estimation is usually carried out using the expectation-maximization48

(EM) algorithm (Dempster et al. 1977). This approach provides a probability clustering49

where each subject is probabilistically classified across the groups, allowing a richer50

description of the data than a method that definitively allocates each observation to a51

single cluster. In this setting we might classify one individual definitively into Group52

1, another definitively into Group 2, but a third might have 80%/20% membership53

probabilities for these groups.54

The model-based approach has some distinct advantages over the non-model based55

approaches listed above. In particular, it allows the use of statistical inference and56

information criteria (Akaike 1973; Hurvich and Tsai 1989; Schwarz 1978; Biernacki57

et al. 1998) to compare models in order to select a suitable number of clusters. Addi-58
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tionally, it allows an accurate representation and inference of complex distributions,59

identification of different groups, better handling of missing data, and the possibility60

to fit structured data (e.g. longitudinal data) (McLachlan and Peel 2000). On the other61

hand, model based clustering is computationally intensive when implemented using62

the EM algorithm or Bayesian methods. Moreover, finding a good starting point for63

the EM algorithm is not easy, which is a common issue for finite mixture models. With64

a bad choice, the parameter estimates might reach a local maximum of the likelihood.65

Additionally, and unlike metric methods (e.g., k-means clustering), practitioners need66

to have some basic knowledge on statistical models. Most metric methods are more67

user friendly to solve many practical problems.68

It is only in recent times that the model-based clustering of non-continuous out-69

comes has received significant attention, and the clustering of such data is the subject70

of this paper. Specifically, we discuss the likelihood-based biclustering of arrays of71

non-continuous data, where each of n individuals has a set of m binary, count, or ordi-72

nal measurements. These types of data are common across many disciplines. Examples73

include incidence and abundance matrices in ecological communities where the rows74

are species and the columns are samples, and binary/ordinal item response analysis75

with respondents in the rows and questions in the columns. The cluster analysis of76

ordinal data has received remarkably little attention in the literature, and such data are77

often treated as continuous in order to apply existing methodologies.78

This paper reviews our recent work in this area. Pledger (2000) and Arnold et al.79

(2010) proposed biclustering using mixtures for binary data. Pledger and Arnold80

(2014) developed an approach via finite mixtures for binary and count data using81

basic Bernoulli or Poisson building blocks. This approach unified a suite of mod-82

els, some new and some previously published proposals for binary data and count83

data (Govaert and Nadif 2003, 2010; Nadif and Govaert 2005), and showed that84

new geometric insights provide likelihood-based analogues of multidimensional scal-85

ing, association analysis, correspondence analysis, pattern detection, ordination and86

biplots. Hui et al. (2015) compared single-mode clustering via finite mixtures with87

using normally-distributed random effects, for Poisson and negative binomial mod-88

els. For ordinal data, Matechou et al. (2016), Fernández et al. (2016), Fernández and89

Pledger (2016), and Fernández and Arnold (2016) developed and applied clustering90

models for ordinal data using the assumption of proportional odds (McCullagh 1980)91

or the ordered stereotype model (Anderson 1984). Our work bears some similarity to92

latent class models (Goodman 1974; Haberman 1979; McCutcheon 1987) in the sense93

that the models consist of sets of subjects with unobserved homogeneous response94

distributions (Agresti and Lang 1993; Moustaki 2000; Vermunt 2001; DeSantis et al.95

2008; Breen and Luijkx 2010; McParland and Gormley 2013). Nevertheless, our mod-96

els have the flexibility across row, column and biclustering for the data in an n × m97

array with or without covariates. In our work fuzzy allocation of rows and columns98

to corresponding clusters is usually achieved by performing the EM algorithm or99

by Bayesian methods. In addition, the fuzzy clustering approach allows novel data100

visualization tools for depicting the results of the clustering.101

This paper is structured as follows. Section 2 contains definitions of the models and102

their formulation using fuzzy clustering via finite mixtures. Model fitting by using the103

iterative EM algorithm and a Bayesian approach are described in Sect. 3. Graphical104
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displays for ordinal and count data are presented in Sect. 4, and we conclude with a105

discussion, technical notes, and extensions in Sect. 5. A “Supplementary Appendix”106

contains a summary of the definitions of all information criteria measures used in107

the paper (Sect. S1), an outline of the Reversible-jump MCMC algorithm and of108

the relabelling procedure to overcome the label switching problem (Sects. S2, S3,109

respectively), how average scores for graphical displaying of ordinal data are computed110

(Sect. S4), details on the data set used throughout this paper and on a new graphical tool111

for ordinal data based on mosaic plots (Sects. S5, S6), and technical details (Sect. S7).112

2 Finite mixture models113

The widespread use of finite mixture models as a mathematical-based method for114

statistical modeling of unknown random phenomena in an extremely flexible way has115

increased over the last 20 years (McLachlan and Peel 2000). An appropriate choice116

of the components that make up the finite mixture model allows both the accurate117

representation of complex distributions and inference about the random phenomena118

observed.119

Finite mixture modeling can be viewed as latent variable analysis with a latent120

categorical variable describing the group or subpopulation membership, and the latent121

classes being described by the different components of the mixture distribution (Skro-122

ndal and Rabe-Hesketh 2004).123

In the setting of an n × m matrix of observations Y = {yi j } we may wish to124

cluster the rows, the columns, or both simultaneously (biclustering). Here we give125

expressions for row clustering and biclustering. Results for column clustering follow126

straightforwardly by exchanging rows and columns in the row clustered case.127

The data we use throughout this paper is the student feedback form ordinal data128

set (Fernández et al. 2016). It has the responses of 70 students giving feedback about129

an applied statistics course. The responses were collected in feedback forms through130

10 questions (e.g. “The way this course was organised has helped me to learn”), where131

each question had three possible ordinal response categories: “disagree” (coded as 1),132

“neither agree or disagree” (coded as 2) and “agree” (coded as 3). Each question was133

written so that “agree” indicates a positive view of the course. The list of questions134

and the data set are given in Tables S4 and S5 in “Supplementary Appendix S5”.135

2.1 The row-clustered model136

In row clustering we assume that each m-dimensional row yi (i = 1, . . . , n) is a137

realization drawn from the R component finite mixture138

f (yi |xi ,Ω) =

R∑

r=1

πr fr (yi |xi , θr ).139

Here xi is a d × 1 set of covariates, (π1, . . . , πR) are the mixture component proba-140

bilities, and θr is the set of parameters corresponding to the r th mixture component141
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Finite mixture biclustering of discrete type multivariate…

fr (yi |xi , θr ). Ω contains all the unknown parameters in the mixture, {(πr , θr )}
R
r=1.142

The mixing probabilities πr satisfy143

R∑

r=1

πr = 1, 0 ≤ πr ≤ 1, r = 1, . . . , R,144

and πr is the a priori probability that a row in the matrix belongs to mixture component145

r . We write i ∈ r to indicate the event that row i is drawn from mixture component r .146

The individual mixture component distributions fr (yi |xi , θr ) are the probability147

densities/mass functions of yi given i ∈ r . These distributions may be specified148

distinctly, or may be members of a single family of distributions—differing only149

through their dependence on xi and θr . If so then the subscript r on fr (·|·) is redundant,150

and we have fr (yi |xi , θr ) = f (yi |xi , θr ).151

A further simplification occurs when the m elements of yi are conditionally inde-152

pendent given xi and θr , so that153

f (yi |xi , θr ) =

m∏

j=1

f (yi j |xi j , θr j ) if i ∈ r154

with xi j a d j ×1 subset of xi . Most of the models we discuss are of this form, however155

there are important extensions for repeated measures and other correlated data settings156

which we discuss briefly in Sect. 5.157

The likelihood of the full n × m data array sums over all possible allocations of the158

n rows to the R clusters:159

L(Ω|{yi j , xi j }) =

R∑

r1=1

· · ·

R∑

rn=1

πr1 · · · πrn

n∏

i=1

m∏

j=1

f (yi j |xi j , θri j ),160

which can be simplified to161

L(Ω|{yi j , xi j }) =

n∏

i=1

⎡
⎣

R∑

r=1

πr

m∏

j=1

f (yi j |xi j , θri j )

⎤
⎦ . (1)162

In the case of the student feedback form data set, row clustering implies the clus-163

tering of students and not questions. Additionally, the model formulation for column164

clustering is similar, with clustering of columns but not rows, i.e. clustering of ques-165

tions but not students.166

Maximisation of expressions such as (1) is analytically complex and numerically167

demanding, and the EM algorithm is often used to find parameter estimates. In the168

mixture setting it is convenient to introduce the R×1 latent group membership variable169

Zi with Zir = 1 if i ∈ r and Zir ′ = 0 for r ′ �= r . A priori the group memberships170

follow a multinomial distribution171

Zi = (Zi1, . . . , Zi R)T ∼ Multinomial(1;π1, . . . , πR)172
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with
∑R

r=1 Zir = 1. These group memberships form the missing data when estimation173

is carried out using the EM Algorithm (see Sect. 3 below). The joint distribution of174

(yi , Zi ) is then175

f (yi , Zi |xi , {θr }) =

R∏

r=1

[πr f (yi |xi , θr )]
Zir

176

leading to the complete data likelihood177

Lc(Ω|{yi j }, {Zir }) =

n∏

i=1

m∏

j=1

R∏

r=1

[πr f (yi |xi , θr )]
Zir

178

which is much more amenable to maximisation due to its product structure.179

The a posteriori distribution of Zi is multinomial180

Zi = (Zi1, . . . , Zi R)T |Y ∼ Multinomial(1; Ẑ1, . . . , Ẑ R).181

Here Ẑir = P[i ∈ r |Y ] is the estimated probability, conditional on the data, that182

observation i comes from group r .183

2.2 The biclustered model184

Simultaneous clustering of both rows and columns, also known as biclustering, allo-185

cates each row to one of R row groups, and each column to one of C column groups.186

The notation of the row clustered model is augmented as follows. The a priori proba-187

bility that column j is in group c (written j ∈ c) is κc so that the mixture distribution,188

assuming full conditional independence of every cell from every other, is189

f (yi j |xi j ,Ω) =

R∑

r=1

πr

C∑

c=1

κc f (yi j |xi j , θrc) for i = 1, . . . , n, j = 1, . . . , m190

with xi j a d j × 1 subset of xi .191

The likelihood sums over all possible allocations of rows to R clusters and columns192

to C clusters:193

L(Ω|{yi j , xi j })194

=

C∑

c1=1

· · ·

C∑

cm=1

κc1 · · · κcm

R∑

r1=1

· · ·

R∑

rn=1

πr1 · · ·πrn

n∏

i=1

m∏

j=1

f (yi j |xi j , θri c j
)195
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Finite mixture biclustering of discrete type multivariate…

which can be simplified to196

L(Ω|{yi j }) =

C∑

c1=1

· · ·

C∑

cm=1

κc1 · · · κcm

n∏

i=1

⎡
⎣

R∑

r=1

πr

m∏

j=1

f (yi j |xi j , θri c j
)

⎤
⎦ . (2)197

Introducing a C × 1 latent column group membership variable W j (with W jc = 1 if198

j ∈ c and W jc′ = 0 for c′ �= c) alongside the latent row group membership variable199

Zi the joint distribution of the augmented data is200

f (yi j , Zi , W j |xi j ,Ω) =

R∏

r=1

C∏

c=1

[
πrκc f (yi j |xi j , θrc)

]Zir W jc
201

leading to the complete data likelihood202

Lc(Ω|{yi j }, {Zir }, {W jc}) =

n∏

i=1

m∏

j=1

R∏

r=1

C∏

c=1

[
πrκc f (yi j |xi j , θrc)

]Zir W jc .203

In the case of the student feedback form data set, biclustering implies the simulta-204

neous clustering of students and questions into student clusters and question clusters.205

2.3 Specific models206

We now present specific expressions for the finite mixture model component distribu-207

tions for binary, Poisson count and two specific ordinal data types. Generalisations to208

other count types (e.g. Negative Binomial) and other ordinal models are straightfor-209

ward. The building blocks of the likelihood are the probability distributions210

f (y|θ) =

⎧
⎨
⎩

θ y(1 − θ)1−y Binary y ∈ {0, 1}

e−θθ y/y! Poisson count y ∈ 0, 1, 2, . . .∏q
k=1 θ

I (y=k)

k Ordinal y ∈ {1, 2, . . . , q}.

(3)211

In the ordinal case we have a variable with q levels y ∈ {1, . . . , q} and
∑q

k=1 θk = 1.212

In this paper we focus on models where the model parameter θ in (3) can be213

constructed from a linear predictor of the general form η = µ + xT β for some214

parameter vector β and covariates x . For binary variables use the logit link215

η = logit(θ) = logit(P[Y = 1]) = µ + xT β216

and use the log link for count variables217

η = log(θ) = log(E[Y ]) = µ + xT β.218

123

Journal: 11634 Article No.: 0324 TYPESET DISK LE CP Disp.:2018/5/7 Pages: 27 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

D. Fernandez et al.

With ordinal variables we use one of two models. The proportional odds model has219

ηk = logit

(
k∑

ℓ=1

θℓ

)
= logit(P[Y ≤ k]) = µk − xT β (4)220

with µ1 ≤ µ2 ≤ . . . ≤ µq−1 ≤ µq = +∞. The ordering of the µk parameters gives221

the model its ordinal character, and the negative sign in (4) is a convention that ensures222

that higher covariate values make higher values of Y more likely. An alternative ordinal223

model is the ordered stereotype model (Anderson 1984) which has224

ηk = log

(
θk

θ1

)
= log

(
P[Y = k]

P[Y = 1]

)
= µk + φk xT β225

with score parameters φ1 = 0 ≤ φ2 ≤ . . . ≤ φq−1 ≤ φq = 1. These score parameters226

have the appealing interpretation as a numerical representation of the category levels,227

possibly unevenly spaced.228

Clustering is introduced by having the linear predictor depend on the (unmeasured)229

latent row and/or cluster membership, as well as any measured covariates. Those230

covariates are now being absorbed into the set of parameters θ so that we add the row231

and column subscripts to θi j to reflect this in the following sections.232

2.3.1 The row-clustered model233

For row-clustered binary and count models the linear predictor for observation yi j234

conditional on i ∈ r is235

logit(θi jr ) or log(θi jr ) = ηi jr = µ + αr + β j + γr j + xT
i jδr j236

with E[yi j |xi j , i ∈ r ] = θi jr , and corner point or sum to zero identifiability constraints237

on {αr }, {β j } and {γr j }. The sets {αr } and {β j } represent the parameters quantifying238

the main effects of the R row groups and m columns respectively, the set {γr j } are the239

associations between the different row clusters and columns, and {δr j } represents the240

effects of the covariates. The additive version of these models omits the interaction241

term γr j . The two ordinal models have P[yi j = k|xi j , i ∈ r ] = θi jrk . The proportional242

odds ordinal model has243

logit

(
k∑

ℓ=1

θi jrℓ

)
= ηi jrk = µk − αr − β j − γr j − xT

i jδr j244

and the ordered stereotype model has245

log

(
θi jrk

θi jr1

)
= ηi jrk = µk + φk(αr + β j + γr j + xT

i jδr j ).246
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The complete data log likelihood of these models, using the known data {yi j } and the247

assumed latent class memberships {Zir }, is as follows248

ℓc(Ω|{yi j }, {Zir }) =

n∑

i=1

R∑

r=1

Zir log(πr ) +

n∑

i=1

m∑

j=1

R∑

r=1

D1(yi j , Zir , θi jr ), (5)249

where250

D1(yi j , Zir , θi jr ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Zir {yi j log(θi jr ) + (1 − yi j ) log(1 − θi jr )}, Binary

Zir (yi j log(θi jr ) − θi jr ), Poisson count

∑q
k=1 Zir I (yi j = k) log

(
θi jrk

)
, Ordinal.

251

2.3.2 The biclustered model252

For biclustered data the equivalent expressions are253

logit(θi jrc) or log(θi jrc) = ηi jrc = µ + αr + βc + γrc + xT
i jδrc254

for binary and count data models, with E[yi j |xi j , i ∈ r, j ∈ c] = θi jrc and identifia-255

bility constraints on {αr }, {βc} and {γrc}. For the ordinal models P[yi j = k|xi j , i ∈256

r, j ∈ c] = θi jrck . In the proportional odds model we have257

logit

(
k∑

ℓ=1

θi jrcℓ

)
= ηi jrck = µk − αr − βc − γrc − xT

i jδrc258

and for the ordered stereotype model259

log

(
θi jrck

θi jrc1

)
= ηi jrck = µk + φk(αr + βc + γrc + xT

i jδrc).260

Consequently, the complete data log likelihood of this model using the known data261

{yi j } and the row and column memberships {Zir } and {W jc} is as follows:262

ℓc(Ω | {yi j }, {Zir }, {W jc}) =

n∑

i=1

R∑

r=1

Zir log (πr ) +

m∑

j=1

C∑

c=1

W jc log (κc)263

+

n∑

i=1

m∑

j=1

R∑

r=1

C∑

c=1

D2(yi j , Zir , W jc, {θi jrc}) (6)264
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where265

D2(yi j , Zir , W jc, {θi jrc})266

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Zir W jc{yi j log(θi jrc) + (1 − yi j ) log(1 − θi jrc)}, Binary

Zir W jc(yi j log(θi jrc) − θi jrc), Poisson count

∑q
k=1 Zir W jc I (yi j = k) log

(
θi jrck

)
, Ordinal

267

3 Estimation and model selection268

3.1 Maximum likelihood269

All the models in this paper are likelihood-based and may be fitted by maximum270

likelihood, by direct maximisation of the likelihoods (1) and (2). This yields parameter271

estimates and their estimated asymptotic standard errors from the observed information272

matrix. Possible multimodality of the likelihood surface necessitates trying multiple273

starting points to avoid being locked into a local maximum.274

The likelihoods (1) and (2) are however computationally expensive to evaluate, due275

to the need to sum over all possible allocations of observations to clusters. More rapid276

estimation is available through the EM algorithm (Dempster et al. 1977; McLachlan277

and Krishnan 1997) with the missing data being the group membership of each row278

and/or column.279

The EM algorithm uses the formulae for the log likelihood under complete knowl-280

edge, denoted by ℓc (see their expressions for row clustering and biclustering in281

(5) and (6), respectively), to produce the estimates in the E and M steps. The E282

step of the algorithm provides estimates of the posterior probabilities of allocations283

to clusters. Conditional on the data, the covariates, and the current parameter esti-284

mates E[Zir ] = ẑir is the posterior probability that i ∈ r , and for biclustering285

E[W jc] = ŵ jc is the posterior probability that j ∈ c. Note that ∀i ,
∑R

r=1 ẑir = 1 and286

∀ j ,
∑C

c=1 ŵ jc = 1. Given these estimates of the latent group memberships the M step287

of the EM algorithm maximises the appropriate complete data log likelihood, (5) or288

(6) to update the parameter estimates Ω .289

The use of EM algorithm to estimate the model parameters is exemplified in290

Pledger and Arnold (2014) for the Bernoulli and Poisson distributions, in Fer-291

nández et al. (2016) for the ordered stereotype model, and in Matechou et al.292

(2011) for the propotional odds model. In the E-step of the EM algorithm for293

the biclustering model, the expected value of the product term E[Zir W jc|{yi j }, Ω̂]294

in (6) is approximated using the variational approximation E[Zir W jc|{yi j }, Ω̂] ≃295

E[Zir |{yi j }, Ω̂]E[W jc|{yi j }, Ω̂] employed by Govaert and Nadif (2005). To ensure296

that this approximation does not affect any final estimates, Fernández et al. (2016)297

use the resulting approximate MLEs from the EM algorithm as starting points to298

directly numerically maximise the incomplete data log likelihood (2). We also note299

that during the maximisation a convenient transformation for the row and column mem-300

bership parameters {πr } and {κc} is sr = logit(πr/
∑R

ℓ=r πℓ) for r = 1, . . . , R − 1301
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Finite mixture biclustering of discrete type multivariate…

and qc = logit(κc/
∑C

ℓ=c κℓ) for c = 1, . . . , C − 1 respectively. This transformation302

means that the parameters sr and qc are unconstrained during the maximisation, taking303

values over the whole real line.304

Once the models are fitted, they may be compared by likelihood ratio tests (LRTs).305

A standard LRT may be successful when attempting to determine the need to include306

particular covariates in the model, and the presence of fixed column effects {β j } in307

row clustered models, or the interaction {γr j } terms. However, there is a failure of308

necessary regularity conditions for LRTs if the comparison is between models with309

different numbers of clusters—when certain parameters (certain πr and κc values) lie310

on the boundary of parameter space (Self and Liang 1987). In these cases we may use311

the theory in Self and Liang (1987) or randomisation tests (McLachlan 1987; Manly312

2007; Gotelli and Graves 1996) to obtain the distribution of the test statistic under the313

null hypothesis. Estimation of standard errors are available using the curvature of the314

(incomplete data) log likelihood.315

Information criteria, for example AIC (Akaike’s Information Criterion) or its small-316

sample modification AICc (Akaike 1973; Burnham and Anderson 2002), provide an317

alternative means not only for choosing which covariates/effects to include but for318

comparing models of different dimension. The identification of the number of clusters319

is, of course, a key outcome of any cluster analysis and a number of approaches320

have been proposed to solve this problem [see e.g. McLachlan (1982), McLachlan321

and Basford (1988), Fraley and Raftery (2002), Sugar and James (2003), Raftery322

and Dean (2006), McCullagh and Yang (2008), Silvestre et al. (2014), Hasnat et al.323

(2015)]. There are a number of information criteria available, however the choice of324

the best criterion appears to be highly situation dependent, despite strong theoretical325

reasons for preferring one criterion over another (Schwarz 1978; Biernacki et al. 1998;326

McLachlan and Peel 2000).327

As a specific example demonstrating the behaviour of these criteria, we carried328

out an extensive simulation study comparing the performance of eleven information329

criteria. Our particular interest was to determine how well they could identify the330

number of clusters in ordinal data using the proportional odds model (Matechou et al.331

2011) and the ordered stereotype model (Fernández and Arnold 2016). The criteria332

were AIC, AICc, BIC, ICL-BIC, AICu, AIC3, CLC, CAIC, NEC, AWE and the L333

criterion. (Their definitions are given in Table S1 in “Supplementary Appendix S1”.)334

We tested a range of sample sizes and included situations where the true cluster sizes335

differed strongly, as well as cases where clusters had very similar parameter values.336

Overall, variants of AIC performed the best. For row-clustered ordered stereotype337

models, AIC correctly selected the number of row clusters in 93.8% of cases, followed338

by AICc (89.8%) and AICu (82.4%). Similar results were found in biclustered mod-339

els. AICc and AICu also perform very well with percentages close to AIC: 85.6%340

and 84.2% respectively. BIC, which has a stronger model complexity penalty, under-341

estimates the number of clusters (incorrectly selecting a smaller number of clusters in342

56% and 63.2% of cases in row clustering and biclustering respectively).343

In the case of proportional odds models, AIC3 has the best performance (selecting344

the correct model in 78% of cases), followed by BIC (75%), AIC, AICc, AICu, and345

CAIC (73%).346
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The other criteria (ICL-BIC, CLC, AWE and NEC) in both settings showed poor347

performance in selecting the correct number of clusters.348

3.2 Bayesian approaches349

Bayesian estimation provides a practical and tractable alternative to maximum likeli-350

hood estimation [see e.g. McLachlan and Peel (2000), Lee et al. (2008)]. An important351

advantage of Bayesian methods is that parameter estimation and model selection352

methodologies do not depend on the regularity conditions required by the LRT and353

which are violated in the fitting of finite mixtures, and can apply without modifica-354

tion to large and small samples. Additionally, Bayesian approaches incorporate prior355

knowledge regarding the parameters, and the results include the whole joint poste-356

rior distribution of the parameters (see a review of advantages in Wagenmakers et al.357

(2008, Chapter 9). Bayesian models are however often more computationally intensive358

(particularly where estimated by Markov Chain Monte Carlo, MCMC, methods), and359

have additional complexities such as label switching (see below).360

A good introduction to Bayesian modeling of finite mixtures was given by Marin361

et al. (2005), Jasra et al. (2005) and and Marin and Robert (2007, Chapter 6) and362

Frühwirth-Schnatter (2006) gave a detailed review of Bayesian methods for finite363

mixtures. There are numerous examples of applications to continuous data (Richardson364

and Green 1997; Fraley and Raftery 2007; Stahl and Sallis 2012, e.g.). There is however365

a lack of development of a Bayesian inference approach with mixture models for366

ordinal data. Such models have additional complexities including the need for priors367

ensuring the ordering of parameters ({µk} in the proportional odds model, and {φk} in368

the ordered stereotype model).369

Trans-dimensional implementations of MCMC provide a straightforward means of370

identifying the number of clusters. In particular, the reversible jump MCMC (RJM-371

CMC) algorithm, introduced by Green (1995), has a sampler which jumps between372

parameter vectors with different numbers of components R. The RJMCMC approach373

is attractive because it solves the parameter estimation and dimension finding problems374

simultaneously. An alternative is the birth-and-death process (Stephens 2000a), whose375

mechanism has been shown to be essentially the same as RJMCMC algorithm (Cappé376

et al. 2003). Examples of the application of this algorithm in the context of mixture377

models is given, for instance, in Marrs (1998), Zhang et al. (2004), and Dellaportas378

and Papageorgiou (2006).379

Using a trans-dimensional method the analyst can estimate the number of com-380

ponents by restricting attention to the model with the highest posterior probability.381

Alternatively, where the posterior distribution does not concentrate strongly on a382

single model with a fixed dimension, model-averaged estimates of the dimension-383

independent parameters can be calculated easily, incorporating this additional model384

uncertainty. Fernández and Arnold (2016) investigated the choice of the number of385

components most suitable for a given data set in the context of row clustering of386

ordinal data modelled by the ordered stereotype model (Fernández et al. 2016). This387

work compared two methodologies for selecting the best model: the first approach388

fits a separate model to the data for each possible number of clusters using the EM389
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Finite mixture biclustering of discrete type multivariate…

algorithm (Sect. 3.1). Information criteria are then used to select the best model. The390

second approach uses a trans-dimensional Bayesian construction in which the parame-391

ters and the number of clusters are estimated simultaneously from their joint posterior392

distribution. The results described in their paper for the RJMCMC sampler are encour-393

aging in its ability to select models correctly. An outline of the RJMCMC sampler394

for one-dimension clustering is given in “Supplementary Appendix S2”. The use of395

likelihood maximization to evaluate information criteria such as the AIC is difficult396

when the likelihood surface is flat or contains long level ridges. A particular advantage397

of a Bayesian approach is that the estimation process is more stable in those cases.398

In a mixture model the labels {1, . . . , R} are not identifiable and are arbitrary. For399

example, the row cluster mixture model π̂1 f (y|x, θ̂1) + π̂2 f (y|x, θ̂2) has the same400

likelihood when we replace estimates (π̂1, π̂2, θ̂1, θ̂2) with (π̂2, π̂1, θ̂2, θ̂1). Therefore,401

we cannot uniquely identify π̂1 f (Θ̂1; Y) as the “first” component of the mixture,402

and in an MCMC sampler the properties of a mixture component may be swapped403

many times with other components—leading to what is known as the ‘label switching’404

problem (Stephens 2000b; Jasra et al. 2005). This problem can be resolved by placing405

an identifiability constraint (IC) on the parameters defining the mixture components.406

For example, we can require that α1 < α2 < · · · < αR . Attractive as they are, ICs can407

often impede chain mixing and make it harder for the MCMC sampler to converge.408

A common alternative is to have no IC, but to relabel the components of the mixture409

after the sampler has run. There are a number of variants of relabelling procedures410

(Celeux 1998; Stephens 2000b; Frühwirth-Schnatter 2001; Hurn et al. 2003; Marin411

and Robert 2007). In our work we adopt the method introduced by Stephens (2000b),412

which is outlined in “Supplementary Appendix S3”.413

4 Visualising fitted models414

The use of finite mixture approaches performs a fuzzy assignment of rows and/or415

columns to clusters, and therefore, any visualisation tool should take into account any416

fuzziness in the cluster structure. In this section, we present graphic tools for ordinal417

and count data sets (Sects. 4.1, 4.2, respectively). Two visualisation tools that represent418

this fuzziness are presented, which are based on the membership posterior probabilities419

{Ẑir } that row i is in cluster r once we have observed the data {yi j } (Sect. 4.1.1), and420

the distances among score parameters {φ̂k} when ordinal data is used (Sect. 4.1.2). A421

new graphical tool for ordinal data based on mosaic plots is described in Sect. 4.1.3422

(Fernández et al. 2014). Section 4.2 shows graphical displays which are analogues of423

various existing and commonly used techniques in multivariate analysis (Pledger and424

Arnold 2014).425

4.1 Ordinal data426

The data we used to illustrate the graphical tools for ordinal data is the student feedback427

form ordinal data set. We fitted a suite of clustering models including row (student)428

clustering, column (question) clustering and biclustering (student and question). For429

each model, the information criteria AIC, AICc, BIC and ICL-BIC were computed and430
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Disagree

No Agr 

 Disag Agree

Low Score Students

r=1

82%

17%

1%

π̂1 = 23%

Disagree

No Agr 

 Disag Agree

Medium Score Students

r=2

49%

37%

14%

π̂2 = 56%

Disagree

No Agr 

 Disag Agree

High Score students

r=3

21%

38%
41%

π̂3 = 21%

Fig. 1 R = 3 student group profiles. The percentage represents the estimated probability θ̂rk =∑m
j=1 θ̂r jk/m in each student group r and category k

the results are summarized in Table S6 in “Supplementary Appendix S5”. Most of the431

information criteria indicate that the best clustering models are the ordered stereotype432

model version including row clustering with R = 3 row (student) groups and without433

interaction factors (µk + φk(αr + β j )). Figure 1 displays the estimated probability434

θ̂rk =
∑m

j=1 θ̂r jk/m of a member of group r responding at category level k. The435

students classified into the first group are those with lowest opinion of the course,436

the ones in the second group have a more moderate opinion about the course and the437

students in the third group are those with more positive (though still heterogeneous) set438

of opinions. More details about data set, list of questions, and traditional visualisation439

of the results (e.g. line plots and histograms) are given in Fernández et al. (2016).440

4.1.1 Pairwise co-membership probabilities441

Tibshirani and Walther (2005) developed a concept of strength of association based442

on the pairwise co-membership probabilities. The top graph in Fig. 2 shows a plot443

depicting the probability Ci i ′ of any pair of students i and i ′ (i, i ′ = 1, . . . , n) of being444

allocated to the same cluster for the data set with regard to students. The displayed445

probability Ci i ′ in both contours is calculated as follows:446
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Ci i ′ =

R∑

r=1

P
[
Zir = 1, Zi ′r = 1 | {yi j }, Ω̂

]

=

R∑

r=1

P
[
Zir = 1 | Zi ′r = 1, {yi j }, Ω̂

]
P

[
Zi ′r = 1 | {yi j }, Ω̂

]

=

R∑

r=1

P
[
Zir = 1 | {yi j }, Ω̂

]
P

[
Zi ′r = 1 | {yi j }, Ω̂

]

=

R∑

r=1

Ẑir Ẑi ′r , i, i ′ = 1, . . . , n,

447

where Ẑir and Ẑi ′r are the posterior probabilities that row i and i ′ respectively are448

members of row group r . It is important to note that we are assuming that the rows449

are independent conditional on the parameter vector Ω .450

The contour plot is sorted by taking into account the column structure and the451

R = 3 clusters are clearly visible. Red tones represent pairs of students with a high452

probability of being allocated to the same cluster. Otherwise, orange tones are the453

students with a moderate probability and yellow tones are those students with lower454

probability of being allocated to the same cluster. Thus, this pairwise graph of the455

individuals can depict the cluster structure with the advantage of including the fuzzy456

assignment of rows to clusters based on the posterior probabilities {Ẑir }.457

4.1.2 Fitted scores458

For ordinal data, an alternative way of depicting the fuzziness of the probabilistic459

clustering is by means of the fitted score parameters from the ordinal stereotype model.460

The average fitted scores of each row (student) i across all of the m columns (questions)461

are:462

φ(i ·) =
1

m

m∑

j=1

R∑

r=1

q∑

k=1

ẑir φ̂k P[yi j = k|i ∈ r ] i = 1, . . . , n.463

From here, we can compute the distance Di i ′ = |φ̄(i.)−φ̄(i ′.)| based on the {φ(i ·)} values464

for any two rows (students) i and i ′ so that the differences between the fitted spacing465

of the levels of the ordinal response can be depicted. The full definition of the average466

score in the ordinal stereotype model is given in “Supplementary Appendix S4”. The467

fuzziness in the clustering is shown in the bottom plots in Fig. 2 using a cell colour468

which goes from dark green to light brown. A dark green cell represents two students469

with a small distance in their fitted scores and who are therefore very likely to be in the470

same cluster. A light brown cell depicts high spacing distance between two students471

and a low probability of being in the same cluster. The rows were sorted according472

to the row cluster structure over both axes. As we noted on the fuzzy clustering heat473

maps (top graph), the three clusters are easily identifiable on the right level plot. The474

student cluster allocation is done by maximal posterior membership, i.e. each student475
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(a)

(b) (c)

Fig. 2 Student feedback forms data set: the upper graph a shows a heat map of the pairwise probabilities

that each student is a member of the same cluster. The students are sorted by the (R = 3) row cluster

structure. The lower graph shows heat maps of the mean response level of each student to each question,

(Eq. (S6) in “Supplementary Appendix S4”), with students and questions in (b) their original ordering and

c ordered by cluster. The horizontal blue lines divide the plot to show the 3 clusters. The student cluster

allocation is done by maximal posterior membership. The student orderings in (a) and (c) are the same
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is allocated to the student group to which he or she belongs with the highest posterior476

probability. The student orderings in Fig. 2a, c are the same.477

4.1.3 Spaced mosaic plots478

Fernández et al. (2014) introduced a new graphical tool for ordinal data based on479

mosaic plots. The original mosaic plot was developed by Hartigan and Kleiner (1981)480

and refined by Friendly (1991). It is a graphical method for visualizing data from two481

qualitative variables which gives an overview of the data, makes it possible to recognize482

relationships, and shows the cross-sectional distribution of different variables. In this483

summary paper, we apply this visualization tool to the model-based methodology484

for matrices of ordinal data clustered using the ordered stereotype model. Therefore,485

the ordinal response level (y ∈ {1, . . . , q}) and the cluster identity (r ∈ {1, . . . , R})486

in the data are considered as those two qualitative variables. Fernández et al. (2014)487

incorporated the estimated score parameters {φk} into the mosaic plot. As is mentioned488

in Sect. 2.3, those parameters determine the distance between two adjacent ordinal489

categories based on the data (see Anderson (1984); Agresti (2010) for more detail). For490

instance, in the student feedback form data set, the estimate of φ̂2 is 0.66. Therefore,491

given fixed values φ1 = 0 and φ3 = 1, it means that the space between “disagree”492

and “neither agree or disagree” is higher (0.66) than the space between “neither agree493

or disagree” and “agree” (0.34). The inclusion of space within a regular mosaic plot494

generates an enriched graph with more information which we called the spaced mosaic495

plot.496

Figure 3 depicts a spaced mosaic plot of the student feedback forms data set for the497

model with row clustering with R = 3 student groups and q = 3 ordinal categories.498

The plot has three horizontal bands, one for each student cluster, with the height of499

each band proportional to the number of students in the cluster. Within each cluster,500

the vertical lines separate the ordinal responses, with the width of each block showing501

the proportions of responses in each category. Each block is labelled with the actual502

(relative) frequency. The blocks are held apart by rods representing the distances; in503

Fig. 3 the yellow rods are 0.66 units (φ̂2 − φ̂1) and the red are 0.34 (φ̂3 − φ̂2). Thus we504

can immediately see that categories 2 and 3 are close to each other, without needing505

to refer to the numerical values of φ̂k .506

The spaced mosaic plot allows us to see at once the relative sizes of the row groups,507

the relative frequencies of the different response categories within each row group508

and the differences between the levels of the response categories. More details may509

be found in Fernández et al. (2014). The main features of the spaced mosaic plots510

for ordinal data and the R function to implement it are described in “Supplementary511

Appendix S6”.512

The construction of this new plot can be performed for one-dimensional clustering513

as shown, and also, by further subdividing the blocks, for biclustering. For instance,514

Fig. 4 shows a spaced mosaic plot with R = 2 student (row) clusters (y-axis) and515

C = 3 question (column) clusters (z-axis) for the ordinal student feedback form data516

set. The description of the graph is the same as explained for the one dimensional case.517

The only difference is that we use different colours to differentiate the column boxes518
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Fig. 3 Spaced mosaic plot for the row clustering model R = 3 for the student feedback forms data set. The

height of each block is proportional to the number of rows in each row cluster; the width is proportional to

the numbers of each ordinal responses within each row cluster. The area represents the frequency of each

combination, also shown numerically in each block. The relative spacing between ordinal categories (e.g.

0.66 between 0 and 1, shown by the yellow bars) has been determined by the data

within each row box. In this case, blue boxes correspond to column cluster C = 1,519

orange ones to column cluster C = 2, and brown ones to column cluster C = 3.520

4.2 Count data: generalisations of biplots521

Clustering provides likelihood-based dimension reduction, leading to informative522

plots showing the main features of the data (Pledger and Arnold 2014). Clustering523

the rows of a data matrix yields a profile plot of row groups (labelled RG1, RG2, etc.)524

and a scatter plot of individual columns, and vice versa for column clustering with525

column groups labelled CG1, CG2, etc. After allowing for main effects, the interac-526

tions seen in the biclustering provide biplots, showing associations among rows, row527

groups, columns and column groups. The scatterplots are analogues of multidimen-528

sional scaling, and the biplots are analogues of correspondence analysis plots, but with529

a likelihood basis.530

We use a test data set to illustrate the data visualisation for some of these graphs.531

The test data is an 8 × 10 matrix of counts where the rows and columns are labelled532
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Finite mixture biclustering of discrete type multivariate…

Fig. 4 Spaced mosaic plot for the student feedback forms data set for the biclustering model R = 2 student

clusters and C = 3 question clusters

as {A, B, C, D, E, F, G, H} and {a, b, c, d, e, f, g, h, i, j}, respectively. Figure 5533

shows the test count data set.534

For biclustering, a model with linear predictor535

µ + αi + β j + γrc536

adjusts for differing row and column sums (terms αi and β j respectively, the no-537

association model), allowing γrc to represent associations between row groups and538

column groups. For row clustering only, replace γrc with γr j to model associations539

between row groups and individual columns, and for column clustering only, use γic540

to represent associations between individual rows and column clusters. In general the541

gamma values provide the plots in the link-transformed space, e.g. for row clustering542

each row r of γr j versus 1 to m shows the profile for row group r, while with R=3 the543

columns of γr j give coordinates in a plane embedded in 3-D space, thus providing a 2-544

D ordination diagram for the columns. However with a Poisson model special features545

of this distribution allow plotting in the original data space. The biplot methodology is546

to fit a 3 by 3 biclustering. The columns of γrc provide a scatterplot of the row groups,547

then imposing the same column clustering but allowing all rows to vary gives a matrix548
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Raw Count Data
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Fig. 5 Test data set: 8 × 10 matrix of counts where the rows and columns are labelled as

{A, B, C, D, E, F, G, H} and {a, b, c, d, e, f, g, h, i, j}, respectively

γic which allows individual rows to be plotted on the same plane. Similarly the row549

clustering from the biclustered model provides a 2-D plot of the column clusters and550

the individual columns. From there standard biplot methodology allows these two551

planes to be superimposed to illustrate which rows and columns are similar to each552

other (Pledger and Arnold 2014).553

The parameter γ is useful for displaying patterns in the data. For example with554

Poisson assumptions and row clustering into (say) three row clusters (groups, RG1,555

RG2 and RG3), the 3 by p table of estimates of (γr j ) gives data for plotting three row-556

group profiles across all the different columns of the original data matrix (Fig. 6a).557

The same γr j table has three coordinates associated with each column of the original558

data, and hence provides a scatterplot of all the different data columns in 3 dimensions.559

However sum-to-zero constraints for the γ table ensure these points are coplanar (on560

triangle A1A2A3 in Fig. 6b) and so may be rotated to be viewed more simply in two561

dimensions. Columns which are close in this scatterplot have similar data patterns.562

Similarly a model which clusters columns into three groups (CG1, CG2 and CG3)563

while keeping the rows separate provides an n by 3 table of pattern parameters (γic).564

The columns of this table provide profiles of the three column groups over the different565

rows (Fig. 6c) while the rows of this pattern table give a scatterplot of the separate data566

rows in 3 dimensions (coplanar in triangle B1B2B3 in Fig. 6d, and hence able to be567

rotated down into a simple 2-dimensional plot). A biclustering allows the two triangles568

to be rotated and superimposed (using a singular value decomposition, SVD) to give569

a biplot (Fig. 6e). This is an alternative to the traditional biplot from correspondence570

analysis (Fig. 6f). The difference between the methods is that with finite mixtures,571

likelihoods are used to reduce the dimensions, after which all components of the SVD572

are used in the biplot, whereas with correspondence analysis a full distance-based573

SVD is done and the dimension is then reduced, using the first two components to574

draw the biplot. Both types of biplot do dimension reduction and superposition of row575
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 Results of clustering a test data set into three row and three column groups. (See also Pledger

and Arnold 2014). Plots a, b arise from row clustering and plots, c, d from column clustering. The biplot

algorithm on b and d gives the combined plot e, which is similar to the standard correspondence analysis

biplot in (f). Centroids are marked +

and column data; correspondence analysis uses mathematical distance measures while576

finite-mixture biclustering uses statistical likelihood measures.577

5 Concluding remarks and extensions578

This article summarises our recent contributions to mixture-based clustering and clas-579

sification methods for binary, count and ordinal data. The common practice of treating580

ordinal data as continuous with equally spaced categories entails a loss of power and581

parsimony, and we have demonstrated a practical alternative in the clustering setting.582
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Perhaps the main challenge for the coming years is to make these methods better583

known to practitioners and researchers.584

All the models are likelihood-based and may be fitted by maximum likelihood,585

yielding parameter estimates from the optimisation, and their estimated asymptotic586

standard errors from the observed information matrix. Maximum likelihood estimation587

provides advantages such as model comparison, hypothesis testing, and likelihood-588

based confidence intervals for parameters. Possible multimodality of the likelihood589

surface necessitates trying multiple starting points when using either direct optimisa-590

tion or the EM algorithm to avoid being locked into a local maximum. We have had591

success using random starts combined with starting points found from using (dou-592

ble) k-means clustering (Maurizio 2001; Rocci and Vichi 2008). However it is almost593

impossible to provide general advice on the number of starting points required for all594

settings.595

The models presented in this article may be also fitted with a Bayesian approach.596

A particular advantage of the trans-dimensional RJMCMC sampler, is the combina-597

tion of the parameter estimation and model selection stages, and the computation of598

model specific and model averaged estimates are handled automatically. Alternatively,599

a single maximum a posteriori submodel can be selected if desired. Based on our expe-600

rience, two of the drawbacks of the RJMCMC sampler are that it requires some care601

in the selection of suitable proposal distributions and the mixing can be slower than602

in fixed-dimensional MCMC samplers.603

There are numerous applications for these models, for example in item response604

analysis and in contingency table analysis. The models presented here have been605

used for ecological (Pledger and Arnold 2014; Fernández et al. 2016; Fernández606

and Pledger 2016; Fernández and Arnold 2016), educational (Fernández et al. 2016),607

and medical (Matechou et al. 2011) applications to illustrate model fitting, fuzzy608

clustering, basic and pattern-detection models, binary, count and ordinal data, and the609

analogues of ordination, multidimensional scaling and correspondence analysis, with610

the substantial advantage of having a likelihood-based foundation. Our models are611

not, of course, limited to these fields.612

For clustering purposes, there are typically two main approaches to the analysis613

of repeated measurements: subject-specific models and transitional models (Diggle614

et al. 2002; Vermunt and Hagenaars 2004; Agresti 2013). Subject-specific models,615

also known as conditional or random-effects models, describe effects at the individual616

or unit level and jointly model the response and individual random effects. In the case617

of model-based clustering, these random effects arise from a latent variable so that618

these models are also known as latent random effects models (Vermunt and Dijk 2001;619

Bartolucci et al. 2014). Vermunt and Dijk (2001) formulated a latent class regression620

model with class-specific coefficients, that is a finite mixture of random-intercepts621

and random-coefficients model. More recently, Bartolucci et al. (2014) presented a622

mixture of latent AR(1) processes with different correlation coefficients by cluster but623

the same variance. Their model also includes covariates and can handle longitudinal624

binary, categorical and ordinal data.625

On the other hand, the transitional approach covers models in which past responses626

are included as predictors. These models are known as latent transition and Markov627

chain clustering models and typically use first-order Markov chains with states628
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corresponding to the levels of the response. Frydman (2005), Pamminger and629

Frühwirth-Schnatter (2010), and Frühwirth-Schnatter et al. (2012) used this approach630

for model-based clustering of longitudinal categorical data. The latter two incorporate631

the effect of covariates in the cluster membership probabilities, use time-homogeneous632

Markov chains, and estimate their models within a Bayesian approach. Frydman (2005)633

considered a constrained version model where the transition matrices for the latent634

clusters are function of one of them. Estimation in this model is carried out using635

the EM algorithm. More recently, Costilla et al. (2015) proposed a Bayesian latent636

transitional approach for repeated ordinal data.637

Data collection exercises commonly lead to data that are of mixed types: the data638

may be any of binary, nominal, ordinal, count or continuous variables. Multivariate639

analyses, in which multiple variables are treated simultaneously as outcomes, are640

typically restricted by the assumption that the data are all of a single type. However,641

there has thus far been little work on mixed type multivariate outcomes, despite the642

abundance of mixed type data sets. There has only been a small number of fully643

likelihood based treatments of the general multivariate mixed data problem where644

m variables of mixed types are measured on n individuals (Browne and McNicholas645

2012; Cai et al. 2011; McParland and Gormley 2016). We are working on extending the646

likelihood based methods presented in this paper for finding association and correlation647

structures within potentially large multivariate data sets of mixed types.648

In the analysis presented in this paper, we have considered only individuals with649

complete records, excluding participants with missing data. Missing data are often650

present in similar studies; and, hence, future work could extend the models to deal651

with such issues. Fitting the models using a Bayesian approach could provide a way652

of dealing with the missing data and also of choosing the right number of clusters, as,653

for example, in van Dijk et al. (2009) and Wyse and Friel (2012).654

Another research direction would be to include the empirical study of models with655

interactions and the development of an extra layer in the RJMCMC sampler allowing656

both jumps between different class families (i.e., between models from the same657

family with and without interaction). We also envisage allowing jumps between one-658

dimensional (row or column clustering) and two-dimensional models (biclustering).659

Fernández and Liu (2016) introduced a new goodness-of-test for ordered stereo-660

type models based on the Hosmer–Lemeshow test for logistic regression and its661

version for the proportional odds model. A direct extension would be to develop a662

new goodness-of-fit measure which must take into account the possible clustering663

structure to reducing the dimensionality of the problem and become a parsimonious664

model. This new measure could be applied to all models presented in this article.665

Acknowledgements This work was supported by the Marsden Fund on “Dimension reduction for mixed666

type multivariate data” (Award Number E2987-3648) from New Zealand Government funding, adminis-667

trated by the Royal Society of New Zealand.668

References669

Agresti A (2010) Analysis of ordinal categorical data, 2nd edn. Wiley series in probability and statistics.670

Wiley, Hoboken671

123

Journal: 11634 Article No.: 0324 TYPESET DISK LE CP Disp.:2018/5/7 Pages: 27 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

D. Fernandez et al.

Agresti A (2013) Categorical data analysis, 3rd edn. Wiley series in probability and statistics. Wiley,672

Hoboken673

Agresti A, Lang JB (1993) Quasi-symmetric latent class models, with application to rater agreement.674

Biometrics 49(1):131–139675

Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN,676

Csaki F (eds) 2nd international symposium on information theory, pp 267–281677

Anderson JA (1984) Regression and ordered categorical variables. J R Stat Soc Ser B 46(1):1–30678

Arnold R, Hayakawa Y, Yip P (2010) Capture-recapture estimation using finite mixtures of arbitrary dimen-679

sion. Biometrics 66(2):644–655680

Bartolucci F, Bacci S, Pennoni F (2014) Longitudinal analysis of self-reported health status by mixture681

latent auto-regressive models. J R Stat Soc Ser C (Appl Stat) 63(2):267–288682

Biernacki C, Celeux G, Govaert G (1998) Assessing a mixture model for clustering with the integrated683

completed likelihood. Technical Report 3521, INRIA, Rhne-Alpes684

Böhning D, Seidel W, Alfò M, Garel B, Patilea V, Walther G (2007) Advances in mixture models. Comput685

Stat Data Anal 51(11):5205–5210686

Breen R, Luijkx R (2010) Assessing proportionality in the proportional odds model for ordinal logistic687

regression. Sociol Methods Res 39(1):3–24688

Browne RP, McNicholas PD (2012) Model-based clustering, classification, and discriminant analysis of689

data with mixed type. J Stat Plan Inference 142(11):2976–2984690

Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-691

theoretic approach, 2nd edn. Springer, Berlin692

Cai JH, Song XY, Lam KH, Ip EHS (2011) A mixture of generalized latent variable models for mixed mode693

and heterogeneous data. Comput Stat Data Anal 55(11):2889–2907694

Cappé O, Robert C, Rydén T (2003) Reversible jump, birth-and-death, and more general continuous time695

MCMC samplers. J R Stat Soc Ser B 65(3):679–700696

Celeux G (1998) Bayesian inference for mixtures: the label switching problem. In: Proceedings in compu-697

tational statistics 1998 (COMPSTAT98), Physica-Verlag HD, pp 227–232698

Costilla R, Liu I, Arnold R (2015) A Bayesian model-based approach to estimate clusters in repeated ordinal699

data. In: JSM Proceedings, biometrics section, pp 545–556700

Dellaportas P, Papageorgiou I (2006) Multivariate mixtures of normals with unknown number of compo-701

nents. Stat Comput 16(1):57–68702

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm.703

J R Stat Soc Ser B 39(1):1–38704

DeSantis SM, Houseman EA, Coull BA, Stemmer-Rachamimov A, Betensky RA (2008) A penalized latent705

class model for ordinal data. Biostatistics 9(2):249–262706

Diggle PJ, Heagerty PJ, Liang KY, Zeger SL (2002) Analysis of longitudinal data second edition. Oxford707

statistical science series 1(25)3 708

van Dijk B, van Rosmalen J, Paap R (2009) A Bayesian approach to two-mode clustering. Technical Report709

Everitt BS, Landau S, Leese M, Stahl D (2011) Cluster analysis, 5th edn. Wiley, Chichester710

Fernández D, Arnold R (2016) Mode selection for mixture-based clustering for ordinal data. Aust NZ J Stat711

58:437–472712

Fernández D, Liu I (2016) A goodness-of-fit test for the ordered stereotype model. Stat Med 35(25):4660–713

4696714

Fernández D, Pledger S (2016) Categorising count data into ordinal responses with application to ecological715

communities. J Agric Biol Environ Stat 21(2):348–362716

Fernández D, Pledger S, Arnold R (2014) Introducing spaced mosaic plots. Research Report Series. ISSN:717

1174-2011. 14-3, School of Mathematics, Statistics and Operations Research, VUW. http://msor.718

victoria.ac.nz/foswiki/pub/Main/ResearchReportSeries/TechReport_Spaced_Mosaic_Plots.pdf719

Fernández D, Arnold R, Pledger S (2016) Mixture-based clustering for the ordered stereotype model.720

Comput Stat Data Anal 93:46–75721

Fraley C, Raftery AE (1998) How many clusters? Which clustering method? Answers via model-based722

cluster analysis. Comput J 41(8):578–588723

Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am724

Stat Assoc 97(458):611–631725

Fraley C, Raftery AE (2007) Bayesian regularization for normal mixture estimation and model-based726

clustering. J Classif 24(2):155–181727

Friedman HP, Rubin J (1967) On some invariant criteria for grouping data. J Amer Stat Assoc 62:1159–1178728

123

Journal: 11634 Article No.: 0324 TYPESET DISK LE CP Disp.:2018/5/7 Pages: 27 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f

http://msor.victoria.ac.nz/foswiki/pub/Main/ResearchReportSeries/TechReport_Spaced_Mosaic_Plots.pdf
http://msor.victoria.ac.nz/foswiki/pub/Main/ResearchReportSeries/TechReport_Spaced_Mosaic_Plots.pdf


u
n
co

rr
ec

te
d

p
ro

o
f

Finite mixture biclustering of discrete type multivariate…

Friendly M (1991) Mosaic displays for multiway contingency tables. Technival Report 195, Department of729

Psychology Reports, New York University730

Frühwirth-Schnatter S (2001) Markov chain Monte Carlo estimation of classical and dynamic switching731

and mixture models. J Am Stat Assoc 453(96):194–209732

Frühwirth-Schnatter S (2006) Finite mixture and Markov switching models. Wiley, New York733

Frühwirth-Schnatter S, Pamminger C, Weber A, Winter-Ebmer R (2012) Labor market entry and earnings734

dynamics: Bayesian inference using mixtures-of-experts markov chain clustering. J Appl Econom735

27(7):1116–1137736

Frydman H (2005) Estimation in the mixture of markov chains moving with different speeds. J Am Stat737

Assoc 100(471):1046–1053738

Goodman LA (1974) Exploratory latent structure analysis using both identifiable and unidentifiable models.739

Biometrika 61:215–231740

Gotelli NJ, Graves GR (1996) Null models in ecology. Smithsonian Institution Press, Washington741

Govaert G, Nadif M (2003) Clustering with block mixture models. Pattern Recognit 36(2):463–473742

Govaert G, Nadif M (2005) An EM algorithm for the block mixture model. IEEE Trans Pattern Anal Mach743

Intell 27(4):643–647744

Govaert G, Nadif M (2010) Latent block model for contingency table. Commun Stat Theory Methods745

39(3):416–425746

Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determina-747

tion. Biometrika 82(4):711–732748

Haberman SJ (1979) Analysis of qualitative data, vol 2. Academic Press, New York749

Hartigan JA, Kleiner B (1981) Mosaics for contingency tables. In: Proceedings of the 13th symposium on750

the interface between computer sciencies and statistics, Springer, pp 268–273751

Hartigan JA, Wong MA (1979) Algorithm as 136: a k-means clustering algorithm. J R Stat Soc Ser C (Appl752

Stat) 28(1):100–108753

Hasnat MA, Velcin J, Bonnevay S, Jacques J (2015) Simultaneous clustering and model selection for754

multinomial distribution: a comparative study. In: International symposium on intelligent data analysis,755

Springer, pp 120–131756

Hui FK, Taskinen S, Pledger S, Foster SD, Warton DI (2015) Model-based approaches to unconstrained757

ordination. Methods Ecol Evol 6(4):399–411758

Hurn M, Justel A, Robert CP (2003) Estimating mixture of regressions. J Comput Graph Stat 12(1):55–79759

Hurvich CM, Tsai CL (1989) Regression and time series model selection in small samples. Biometrika760

76(2):297–307761

Jasra A, Holmes CC, Stephens DA (2005) MCMC and the label switching problem in Bayesian mixture762

models. Stat Sci 20(1):50–67763

Jobson JD (1992) Applied multivariate data analysis: categorical and multivariate methods. Springer texts764

in statistics. Springer, Berlin765

Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32(3):241–254766

Lee K, Marin JM, Robert C, Mengersen K (2008) Bayesian inference on mixtures of distributions. In:767

Proceedings of the platinum jubilee of the Indian statistical institute, p 776768

MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Cam769

LML, Neyman J (eds) Proceedings of the fifth Berkeley symposium on mathematical statistics and770

probability, University of California Press, pp 281–297771

Manly BFJ (2005) Multivariate statistical methods: a primer. Chapman & Hall, London772

Manly BFJ (2007) Randomization, bootstrap and monte carlo methods in biology, 3rd edn. Chapman &773

Hall, London774

Marin JM, Robert C (2007) Bayesian core: a practical approach to computational Bayesian statistics.775

Springer texts in statistics. Springer, Berlin776

Marin JM, Mengersen K, Robert C (2005) Bayesian modelling and inferences on mixtures of distributions.777

In: Dey D, Rao CR (eds) Handbook of statistics, vol 25. Springer, New York778

Marrs AD (1998) An application of reversible-jump mcmc to multivariate spherical gaussian mixtures. In:779

Advances in neural information processing systems, pp 577–583780

Matechou E, Liu I, Pledger S, Arnold R (2011) Biclustering models for ordinal data, presentation at the NZ781

Statistical Assn. In: Annual conference, University of Auckland, 28–31 Aug 2011782

Matechou E, Liu I, Fernandez D, Farias M, Gjelsvik B (2016) Biclustering models for two-mode ordinal783

data. Psychometrika 81:611–624784

123

Journal: 11634 Article No.: 0324 TYPESET DISK LE CP Disp.:2018/5/7 Pages: 27 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

D. Fernandez et al.

Maurizio V (2001) Double k-means clustering for simultaneous classification of objects and variables. In:785

Advances in classification and data analysis, pp 43–52786

McCullagh P (1980) Regression models for ordinal data. J R Stat Soc 42(2):109–142787

McCullagh P, Yang J (2008) How many clusters? Bayesian Anal 3(1):101–120788

McCune B, Grace JB (2002) Analysis of ecological communities. Struct Equ Model 28(2)4 789

McCutcheon AL (1987) Latent class analysis. Sage Publications, Thousand Oaks790

McLachlan G, Peel D (2000) Finite mixture models. Wiley series in probability and statistics. Wiley,791

Hoboken5 792

McLachlan GJ (1982) The classification and mixture maximum likelihood approaches to cluster analysis.793

Handb Stat 2(299):199–208794

McLachlan GJ (1987) On bootstrapping the likelihood ratio test statistic for the number of components in795

a normal mixture. Appl Stat 36(3):318–324796

McLachlan GJ, Basford KE (1988) Mixture models: inference and applications to clustering. Statistics,797

textbooks and monographs. M. Dekker, New York798

McLachlan GJ, Krishnan T (1997) The EM algorithm and extensions. Wiley series in probability and799

statistics: applied probability and statistics. Wiley, Hoboken800

McParland D, Gormley IC (2013) Clustering ordinal data via latent variable models. In: Lausen B, Van den801

Poel D, Ultsch A (eds) Algorithms from and for nature and life, studies in classification, data analysis,802

and knowledge organization. Springer, Berlin, pp 127–135803

McParland D, Gormley IC (2016) Model based clustering for mixed data: clustMD. In: Advances in data804

analysis and classification, pp 1–156 805

Melnykov V (2013) Finite mixture modelling in mass spectrometry analysis. J R Stat Soc Ser C (Appl Stat)806

62(4):573–592807

Melnykov V, Maitra R (2010) Finite mixture models and model-based clustering. Stat Surv 4(9):80–116808

Moustaki I (2000) A latent variable model for ordinal variables. Appl Psychol Meas 24(3):211–233809

Nadif M, Govaert G (2005) A comparison between block CEM and two-way CEM algorithms to cluster810

a contingency table. In: European conference on principles of data mining and knowledge discovery,811

Springer, pp 609–616812

Pamminger C, Frühwirth-Schnatter S et al (2010) Model-based clustering of categorical time series.813

Bayesian Anal 5(2):345–368814

Pledger S (2000) Unified maximum likelihood estimates for closed capture-recapture models using mixtures.815

Biometrics 56(2):434–442816

Pledger S, Arnold R (2014) Multivariate methods using mixtures: correspondence analysis, scaling and817

pattern-detection. Comput Stat Data Anal 71:241–261818

Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University819

Press, Cambridge820

Raftery AE, Dean N (2006) Variable selection for model-based clustering. J Am Stat Assoc 101(473):168–821

178822

Richardson S, Green PJ (1997) On Bayesian analysis of mixtures with an unknown number of components.823

J R Stat Soc Ser B 59(4):731–792824

Rocci R, Vichi M (2008) Two-mode multi-partitioning. Comput Stat Data Anal 52(4):1984–2003825

Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464826

Self SG, Liang KY (1987) Asymptotic properties of maximum likelihood estimators and likelihood ratio827

tests under nonstandard conditions. J Am Stat Assoc 82(398):605–610828

Silvestre C, Cardoso MG, Figueiredo MA (2014) Identifying the number of clusters in discrete mixture829

models. arXiv:14097419830

Skrondal A, Rabe-Hesketh S (2004) Generalized latent variable modeling: multilevel, longitudinal, and831

structural equation models. In: Monographs on statistics and applied probability. Chapman & Hall,832

London7 833

Stahl D, Sallis H (2012) Model-based cluster analysis. Wiley Interdiscip Rev Comput Stat 4(4):341–358834

Stephens M (2000a) Bayesian analysis of mixture models with an unknown number of components-an835

alternative to reversible jump methods. Ann Stat 28(1):40–74836

Stephens M (2000b) Dealing with label switching in mixture models. J R Stat Soc Ser B 62(4):795–809837

Sugar CA, James GM (2003) Finding the number of clusters in a dataset: an information-theoretic approach.838

J Am Stat Assoc 98(463):750–763839

Tibshirani R, Walther G (2005) Cluster validation by prediction strength. J Comput Graph Stat 14(3):511–840

528841

123

Journal: 11634 Article No.: 0324 TYPESET DISK LE CP Disp.:2018/5/7 Pages: 27 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f

http://arxiv.org/abs/14097419


u
n
co

rr
ec

te
d

p
ro

o
f

Finite mixture biclustering of discrete type multivariate…

Vermunt JK (2001) The use of restricted latent class models for defining and testing nonparametric and842

parametric item response theory models. Appl Psychol Meas 25(3):283–294843

Vermunt JK, Hagenaars JA (2004) Ordinal longitudinal data analysis. In: Hauspie R, Cameron N, Molinari844

L (eds) Methods in human growth research. Cambridge University Press, Cambridge845

Vermunt JK, Van Dijk L (2001) A nonparametric random-coefficients approach: the latent class regression846

model. Multilevel Model Newsl 13(2):6–13847

Vichi M (2001) Double k-means clustering for simultaneous classification of objects and variables. In:848

Borra S, Rocci R, Vichi M, Schader M (eds) Studies in classification, data analysis, and knowledge849

organization. Springer, Berlin, pp 43–52850

Wagenmakers EJ, Lee M, Lodewyckx T, Iverson GJ (2008) Bayesian versus frequentist inference. Springer,851

Berlin852

Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Yu PS, Zhou853

ZH, Steinbach M, Hand DJ, Steinberg D (2008) Top 10 algorithms in data mining. Knowl Inf Syst854

14(1):1–37855

Wyse J, Friel N (2012) Block clustering with collapsed latent block models. Stat Comput 22(2):415–428856

Zhang Z, Chan KL, Wu Y, Chen C (2004) Learning a multivariate gaussian mixture model with the reversible857

jump MCMC algorithm. Stat Comput 14(4):343–355858

123

Journal: 11634 Article No.: 0324 TYPESET DISK LE CP Disp.:2018/5/7 Pages: 27 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f


	caratula springer.pdf
	UPCommons
	Portal del coneixement obert de la UPC
	http://upcommons.upc.edu/e-prints
	This is a post-peer-review, pre-copy edit version of an article published in Advances in data analysis and classification. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11634-018-0324-3.
	Published paper: Fernandez, D. [et al.]. Finite mixture biclustering of discrete type multivariate data. "Advances in data analysis and classification", 15 Maig 2018, vol. 13, núm. 1, p. 117-143. doi:10.1007/s11634-018-0324-3
	URL d'aquest document a UPCommons E-prints:
	https://upcommons.upc.edu/handle/2117/330154


