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Abstract. The present paper analyses a series of Computational Fluid Dynamic simulations
of the cavitating flow around a two-dimensional NACAO0015 foil. The foil is placed at 6° angle
of attack and the cavitation number is 1.1. Two mesh designs, namely a block-structured
topology and an unstructured topology, are compared; additionally, grid refinements and time
step refinements are carried out. Solution Verification is addressed with calculation of the
discretization error and the numerical uncertainty. The numerical uncertainty for the average
lift coefficient is found to be large, up to 15%. The reason is the difficulty of achieving a grid
independent solution: with very fine meshes, the flow shifts from an attached, oscillating sheet
cavity pattern to a regime dominated by shedding of cavity clouds. On the other hand, neither
the time resolution nor the choice of grid topology influence largely the flow pattern; instead,
they only lead to differences in the maximum and minimum cavity size.

1 INTRODUCTION

The objective of Computational Fluid Dynamics (CFD) tools is to find the solution for the
mathematical equations of the model which describes the flow dynamics. The governing equa-
tions are solved numerically by aid of computational resources. The numerical approach becomes
necessary when the analytic solution is either unknown or impossible to determine. However,
the discrete approach leads, in fact, to an approximation of the mathematical equations, hence
it brings errors into the solution. Additionally, sources of errors are introduced when iterative
algorithms are used to overcome the non-linearities in the model. As a result, the solution
obtained from CFD codes is subject to multiple error contributions. The activity which deals
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with estimation of errors and uncertainties in a numerical simulation is referred to as Solution
Verification!!.

Furthermore, for practical applications, CFD codes are used to predict complex flow patterns
and often involves the modeling of additional physical phenomena. This is the case for appli-
cations where hydrodynamic cavitation occurs. Cavitation is the change of phase of a flowing
liquid when the local pressure falls close to the vapor pressure. Marine propellers are one exam-
ple where cavitation influences the performance of the system: it affects the propeller efficiency
and it can lead to undesirable effects, such as an increased noise level, induced vibrations or sur-
face erosion. For a numerical simulation of complex flows, it becomes necessary to estimate the
numerical error and provide an estimate of the uncertainty in the results; Solution Verification
not only is needed to support the credibility of the numerical results, but the uncertainty level
is useful when CFD is used in design tasks.

The scope of the present work is to provide Solution Verification for the cavitating flow around
a NACA0015 hydrofoil. This test case has been investigated earlier, both numerically2/3! and
experimentally[4] [5], but Solution Verification for the numerical calculations was not tackled so
far. Furthermore, several examples of Solution Verification exercises are found in literature, for
instance in the cases of cylinder flows!©]. However, to our knowledge, verification has not been
addressed for a test case with unsteady cavitating flow.

The foil is placed in a water tunnel at an angle of attack of 6°. With the cavitation number
equal to 1.1, the flow is unsteady. Therefore, to compute the numerical error/uncertainty, we
rely on a method based on both grid and time step refinement. A series of RANS simulations
is carried out with different grid densities and time steps. The large dataset allows a deeper
analysis of the influence of spatial and temporal resolution. The work is complemented with a
study of the effect of two different grid designs, with one set of structured grids and a second
set of unstructured ones.

The paper is organized as follows: the first section explains the numerical background (§2.1),
the details of the test case are given in §2.2 and a description of the method employed for
calculation of errors/uncertainties is provided in §2.3. The following sections give the results
of this study, with separate sub-sections regarding the numerical uncertainty (§3.1), the effect
of grid design (§3.2), grid density (§3.3) and time step (§3.4). Finally, the conclusions and
recommendations for future work are summarized in §4.

2 METHODOLOGY
2.1 Numerical model

The multi-phase flow is modeled using a mixture approach. The governing mass and mo-
mentum equations for an incompressible flow are solved considering the mixture density and the
mixture viscosity; an additional transport equation for the vapor volume fraction «,, is added,
which includes a source term to mimic the phase change. The source terms are computed by
means of a modified Sauer modell”. The turbulence modeling relies on the unsteady Reynolds-
averaged-Navier-Stokes (RANS) equations, with turbulent viscosity assumption for the Reynolds
stresses; all the simulations use the 2-equation k-v/kL model for turbulence closurel®l.

The CFD viscous-flow code ReFRESCO (http://www.refresco.org/) is employed. Re-
FRESCO implements a finite volume, co-located discretization method, while a SIMPLE-type
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Figure 1: Domain, boundary conditions, reference system and location of the pressure probe.

algorithm is used to solve the coupled equations in a segregated manner. The convective flux in
the momentum equation is discretized using a QUICK scheme. In view of the experience with
simulation of cavitating flow with ReFRESCO® | a first-order implicit Euler scheme is used for
time integration. As a result, the spatial-temporal numerical scheme is of mixed-order type[w].

2.2 Test case and computational setup

The two-dimensional NACA0015 hydrofoil has a chord length ¢ = 0.2 m and it is placed
at a = 6° angle of attack in a water tunnel of height equals to 2.85¢ (Figure 1). A nominal
width w of one chord is set. The flow domain extends 2¢ upstream of the leading edge and 4c
downstream of the trailing edge. A pressure probe is located at the top boundary; the reference
system is centered at the center of gravity of the foils (i.e. at a relative chordwise position of
0.3086). To reduce the computational cost, slip velocity is allowed at the tunnels walls. An
inflow velocity Us, = 6 m/s results in a Reynolds number based on chord length Re = 1.2 - 106,
given the property of (liquid) water: p; = 998 kg/m? , y; = 1.002 kg/(ms). The vapor density
is set to p, = 0.024 kg/m3. The cavitation number is o = 2(pyef — pv)/pUZ = 1.1. The test
case has been widely investigated experimentally and numerically, among others by Arndt!
and Hoekstral. The latter reports the value of o = 1.1 as the cavitation number at which the
transition occurs between a regime where an attached sheet cavity develops and a regime where
shedding of cavitation clouds takes place.

Two sets of five grids each were generated. The meshing tools GridPro and Hexpress were
used to create a set of block-structured grids and a set of unstructured grids respectively. The
grids were designed to ensure a good resolution close to the suction side of the foil, where cavi-
tation develops. Figure 2 gives a view of the two coarsest grids in the sets. For the unstructured
grids, the cells are aligned with the undisturbed flow direction, with the exception of the bound-
ary layer region; the coarsening towards the far field is sharper than the block-structured grid.
Furthermore, the sets of structured grids are geometrical similar, which means that the grid
properties (skewness, orthogonality,etc.) do not change with the grid refinement and the refine-
ment ratio is constant over the domain. Differently, for the unstructured meshes geometrical
similarity is obtained in the boundary layer cells as well as far from the foil, but in the transition
region between the wall layers and the outer grid similarity is not guaranteed. All the grids were
designed to fully resolve the boundary layer; the maximum value of y™ is found at v’ . = 2.4
and y,5 . = 2.2 for the coarse structured and coarse unstructured meshes respectively.
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Table 1: Number of cells N and grid refinement ratios h;/h; for the two grid sets used. Time steps t;
and time step refinement ratios ¢;/t;.

Structured GridPro Unstructured Hexpress
Case 1D GP5 GP4 GP3 GP2 GP1 | GH5 GH4 GH3 GH2 GHI1
N (x107%) | 29.6 66.3 118 263 468 |26.5 83.5 171 289 437

hi/hy 397 266 199 133 1.00 |4.06 229 1.60 123 1.00
Time steps ID T4 T3 T2 T1
ti[s] 2.667x10~% 1.333x10~* 6.667 x107° 3.333x10~°
ti/t1 8.00 4.00 2.00 1.00
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Figure 2: Overview of the coarse block-structured mesh and the coarse unstructured mesh.

Table 1 shows the number of cells and the grid refinement ratio h;/h; which, for a two
dimensional mesh, is defined as

(Ncells>1
(Ncells)i ’ (1)

where h; is the typical cell size. hj refers to the finest mesh in the set. Efforts were put into
producing grids with a comparable number of cells and similar refinement ratios between the
structured the unstructured sets. Lastly, four time steps are used in combination with all the
grids. The time step refinement ratio is simply the ratio of time step ¢; to the finest ¢;.

2.3 Solution verification

An extensive explanation of Verification & Validation tasks for CFD simulations is given by
Roachel!) and summarized by E(;a[n]: the scope of verification is to show that we are “solving
the equations right”, while the scope of Validation is to show that we are “solving the right
equations”. Following this distinction, verification provides the numerical error/uncertainties
while Validation deals with the modeling error/uncertainties.

In this work, Solution Verification is provided using the method of Eca and Hoekstral'll. One
example of application of this method for unsteady flows is given by Rosettil®.. The numerical
error is commonly split into three contributions: the round-off error, the iterative error and
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the discretization error. The round-off error is a consequence of the finite machine precision.
The iterative error relates to the iterative methods employed to solve the non-linearity of the
governing equations. While the round-off error is reduced to negligible values by use of double
precision (15 digits), the iterative error can become non-negligible for complex flows. Further-
more, the cavitating flow around the hydrofoil is unsteady, hence the iterative error affects the
solution at each time step. The iterative error is estimated using the infinity norm Lo (¢) of
the normalized residuals. According to Rosettil®), a value of Lo (¢) < 1076 for unsteady simula-
tions will reduce the iterative error to a negligible level. However, for the test case investigated
in this study, it was not always possible to converge the simulations to this level. Some large
values of Lo (uy) ~ 1073 for the axial velocity are seen for the simulations with the finest grid
and the coarsest time steps. Because in the Eca and Hoekstra method it is assumed that the
discretization error is dominant, the simulations which exhibit larger residuals are discarded. In
the other cases, the infinity norm is converged to values between 1078 < Lo, < 10, depending
on the flow variable and the simulation time.

The method uses a power expansion to compute the discretization error e(¢;) for the quantity
of interest ¢, for each case of grid&time step.l'!). There are ten error estimators featured in the
Eca and Hoekstra method, which make it suitable for practical application where some scatter
in the data might occur. The error estimator provides a fit through the datapoint and allows to
extrapolate the exact solution. From the knowledge of the discretization error, the uncertainty is
computed, which is defined as the range that contains the exact solution within a 95% accuracy.
To compute the uncertainty, the method takes three factors into account: the standard deviation
of the fit, the difference between the actual data point and the value obtained through the fit
and a variable safety factor.

3 RESULTS

The cavitating flow over the NACA0015 was simulated with all combinations of the grids
and the time steps of Table 1. As it will be shown in Section §3.3, the flow behavior depends
largely on grid refinement. The flow is characterized by a sheet cavity developing at the suction
side of the foil; depending on the numerical settings, the cavity either oscillates (with a periodic
growth and shrinking), or it breaks up to shed a cloud which travels downstream.

In the analysis of the results, the outcome of the numerical uncertainty analysis is given in
the first section. Then, the influence of spatial and temporal discretization is addressed in more
detail; for the purpose, the simulation with a structured grid of approximately 118 x 103 cells
and a time step of 1.333 x 10~ (i.e. case GP3-T3) is taken as a reference.

3.1 Discretization uncertainty

The estimation of the numerical uncertainty is made for the average lift coefficient Cp, =
2L/(pU2,cw). Tt is computed from the time history of the lift force in the last 12 cycles.
Because of the aformentioned weaker iterative convergence for the cases with the finest grid and
the coarsest time step, the solutions from the cases GP1-T4 and GH1-T4 are discarded in the
error estimation.

Figure 3 shows the surface fit used to extrapolate the exact solution. Furthermore, Table
2 provides the extrapolated exact solution C7,, the error for the finest resolution e(C7, ), the
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Figure 3: Values of lift coefficient from the datasets (black spheres), surface fits used for error estimation
and uncertainty range (green error bars). Left: structured grid dataset. Right: unstructured grid dataset.

Table 2: Extrapolated exact solution, discretization error, uncertainty and orders of convergence. (1,2*)
indicates that a first-plus-second order fit is used, as featured in the Eca and Hoekstra method!*!] .

Structured GridPro Unstructured Hexpress

C C
CLO CLl 6(07;11) UCL Pz Dt CLO CL1 6(07511) UCL Pz Dt

0.564 0.549 2.7% 15% 1,2* 1,2* || 0.541 0.529 2.3% 84% 12* 1,2*

numerical uncertainty and the orders of convergence. Although the percentage error for the
finest simulations is <3% for both grid topologies, the uncertainty is rather large: 15% for
the structured grids and 8.4% for the unstructured grid. Furthermore, the formal order of
convergence (second order in space and first order in time) is not retrieved for neither dataset,
which is a result of the scatter seen in the datasets.

With the fine grids, shedding of cavity clouds occurs, which does not happen with coarser
grids. This additional dynamic phenomena leads to major changes on the forces exerted on the
foil. Furthermore, when shedding occurs, the signal for the lift coefficient is not fully periodic,
which also induces some disturbances when computing its average. The shift from a fully
attached sheet to a shedding cavity regime depending on grid refinement level leads to scatter
in the datasets, hence the large uncertainty values follow.

3.2 Influence of grid topology

In this section, a comparison of the reference simulation (GP3-T3) with structured grid and
the simulation with unstructured grid (GH3-T3) is provided. The two cases have the same time
step t3 and the number of cells is comparable. Hence, the influence of two different topologies is
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addressed. The analysis of the results is focused on the integral quantities (Table 3). Also, we
look at the time traces and provide a frequency analysis (Figure 4) for three selected quantities:
the total vapor volume, the lift coefficient and the pressure at the top tunnel probe. The pressure
coefficient is defined as C, = 2p/(pU2).

Table 3: Drag coefficient, lift coefficient and Strouhal number. Relative differences (Ax) between the
results with a structured and an unstructured grid topology are included.

Case | Cp,  ACL(%) |Cp  ACH(%) | Cp,. AC, (%) ]St  ASH%)
GP3-T3 | 0.520 0.48 0.0375 459 -1.231 1.84 0.115
GH3-T3 | 0.518 0.0358 -1.253 ' 0.115
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Figure 4: Time traces and harmonic contents of the total vapor volume, lift coefficient and pressure at
the probe. Dashed: reference simulation GP3T3 with structured grid (= 118k cells). Solid: unstructured
grid topology, case GH3T3 (~ 171k cells). The time step is t3 = 1.333 x 10~ s for both topologies.

Finally, the Strouhal number is based on the upstream velocity and the chord length, and it
is computed using the signal of the lift coefficient. The flow pattern is dominated by the growth
and shrinking of an attached sheet cavity. Both topologies result in regular oscillations. The
average lift coefficient differs by less than 1%, but the difference in drag coefficient is larger (4.52
%). Although the predicted frequency of cavity oscillation coincide (St = 0.115), the sheet cavity
is longer for the structured grid during most of the cycle. Hence, the total vapor volume is larger
for the structured grid, as visible in the time traces of Figure 4. However, despite the different
cavity size, the instantaneous lift differs by 4% at maximum between topologies. A deeper
analysis of the flow fields shows that a stronger re-entrant jet develops for the unstructured
grid. The low pressure in the region of (liquid) flow where the re-entrant jet develops, partially
balances the smaller cavity extension. Finally, the regular, periodic cavity oscillation is reflected
in the frequency contents, where the first harmonic component is dominant for all three signals.
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3.3 Influence of grid size

Secondly, the influence of grid size is investigated by a comparison between the reference
solution and the solution with the finest time step in the set, i.e. t; = 3.333 x 107°. Table 4
reports the integral values while Figure 5 gives the time histories. Furthermore, Figure 6 shows
a side-by-side comparison of pressure contour plots at selected time instants. With a medium
grid the attached cavity oscillates regularly between a minimum length and a maximum length,
shown in the top left and bottom left plots. Remarkably, with a fine grid the predicted cavitation
dynamics changes radically: a vapor structure is detached from the rear edge of the sheet cavity,
as a consequence of a re-entrant jet flow which breaks up the sheet cavity. The cavity bubble is
convected downstream, as shown in the two right contour plots. It moves towards the trailing
edge, where it interacts with the trailing edge flow and eventually collapses downstream of the
foil. Moreover, when the shed vapor structure is small, it can collapse before reaching the trailing
edge. The highly dynamic cavitation cycle results in large variations of total vapor volume and
lift coeflicients among cycles, visible in the first time trace of Figure 5.

The largely different dynamic behavior predicted with a fine grid motivates the large differ-
ences in average loading coefficients (Table 4). The average lift coefficient differs by 4% between
grids and the average drag coefficient even by 31% !

When looking at the time history, it is seen that the signals for GP1 (solid lines in Figure 5)
do not show a clear period behavior. Nevertheless, the harmonic content is dominated by a first
harmonic component for both the lift force and the pressure at the probe. Differently, for the
total vapor volume there is no peak at the shedding frequency, but rather a broad band content
in between the first harmonic n = 1 and the second harmonic n = 2.

Additionally, Figure 7 shows the average pressure coefficient distribution on the surface of the
foil as well as its standard deviation. The standard deviation gives a measure of the influence of
the dynamic cavitation cycle on the surface pressure. At the pressure side, the average pressure
does not differ between grids. At the suction side, Cj, is equal to —o between —0.2 < z/c < 0.1 for
the medium grid. This is the region where the sheet cavity is continuously seen. Correspondingly,
the standard deviation is zero. Furthermore, there is a quick pressure recovery in the average
Cp for z/c > 0.1. The pressure recovery is milder for the fine grid solution because of the
decrease in surface pressure induced by the cavity bubble traveling downstream. Finally, the
right plot shows that the standard deviation is larger for the fine grid at both the suction side
and the pressure side; the increase towards the trailing edge comes as a consequence of the
interaction of the traveling bubble with the trailing edge flow. The peak is located at x/c = 0.1
and x/c = 0.15 for the medium and fine grid respectively. Because the surface pressure within
the cavity is constant and equal to the vapor pressure, these chordwise coordinates represent

Table 4: Drag coefficient, lift coefficient and Strouhal number. Relative differences (Ax) between the
results with a medium grid GP3 and a fine grid GP1 are included.

Case Cy ACL(%) | Cp ACH(%) | Cp AC,, . (%) | St ASt(%)

Pmin
GP3-T3 | 0.520 0.0375 -1.231 0.115
GP1-T3 | 0.539 3.58 0.0544 310 -1.197 2.84 0.104 9-10
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Figure 5: Time traces and harmonic contents of the total vapor volume, lift coefficient and pressure at
the probe. Dashed: reference simulation with medium grid GP3 (= 118k cells). Solid: results with fine
grid GP1 (= 468k cells). The time step is t3 = 1.333 x 10~* s for both grids.

Figure 6: Contour plots of pressure coefficient. Isolines of C}, = —o = —1.1 (green) and «,, = 0.5 (black).
Left column: reference simulation, snapshots at minimum and maximum cavity extension. Right column:
snapshots with fine grid, showing the shed cavity traveling downstream during a period of time of = %TS.
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Figure 7: Average pressure coefficient distribution on the foil (left) and standard deviation (right).
Dashed: reference simulation with medium grid GP3. Solid: results with fine grid GP1.
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the points of maximum cavity length for the two simulations.

The change in cavitation dynamics with a fine grid is seen also with the finer time steps
to,t1. Besides, the same conclusions are drawn when looking at the results with the unstructured
Hexpress grid topology, although the shedding behavior for the unstructured grid is less dynamic,
with a more upstream and less violent collapse of the shed cavity.

3.4 Influence of time step

A third sensitivity study is carried out, regarding the effect of a change in time step while
keeping the same grid resolution. The reference solution GP3-T3 with a time step t3 = 1.333 x
10~ s is compared to the solution GP3-T1 with a time step ¢; = 3.333 x 107° 5. The outcome
is given in Table 5 and Figure 8. Dimensionful time is used for the time traces, hence the phase
shift seen is due solely to the initial, transient, part of the simulations (not shown here).

With both time steps, an attached sheet cavity remains, without shedding. The shape of the
cavity is the same for the two solutions; however, with a smaller time step the attached cavity is
both longer and thicker at its maximum length, which results in larger peaks in total vapor vol-
ume. In addition, a fine time step results in a smaller minimum cavity length. Correspondingly,
the oscillations in lift coefficients and pressure at the top tunnel wall have larger amplitudes.
Nevertheless, the difference in shedding frequency (hence the Strouhal number) is negligible.

Moreover, the frequency content of Figure 8 has a visible larger harmonic components for the
solution with small time step, mostly in the second harmonic. This contribution is related to
the behavior of the cavity at its early stage, when the cavity is at its minimum length: before
the attached sheet cavity starts to grow again, a rapid oscillation occurs. The time scale of such
effect is on the order of 1072s, hence two to three orders of magnitude larger than the time
steps. Nonetheless, only the simulation with fine time step shows this behavior.

4 CONCLUSIONS

The present work tackles the Solution Verification for the cavitating flow over a two-dimensional
NACAO0015 hydrofoil placed in a water tunnel at an angle of attack of 6°. The cavitation num-
ber was ¢ = 1.1. Multi-phase, viscous flow simulations were run using two grid topologies:
a block-structured topology and a fully unstructured one. Furthermore, combinations of five
systematically refined grids and four time steps were considered. Hence, it was possible to
investigate the influence of discretization levels in time and space.

Discretization error and numerical uncertainty are computed. The numerical uncertainty for
the average lift coefficient was found to be as large as 15% and 8.4% for the finest structured and
unstructured grid respectively. The large value of the uncertainties is a consequence of scatter

Table 5: Drag coefficient, lift coefficient and Strouhal number. Relative differences (Ax) between the
results with a reference time step t3 and a fine time step ¢;.

Case | Cp ACL(%)|Cp  ACH(%) | Cp.. AC, (%) |St  ASH%)

Pmin
GP3-T3 | 0.520 0.0375 -1.231 0.115
GP3-T1 | 0.536 3.01 0.0433 13.4 -1.232 0.05 0.115 0.01
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Figure 8: Time traces and harmonic contents of the total vapor volume, lift coefficient and pressure at
the probe. Dashed: reference simulation with time step t3 = 1.333 x 10~%s. Solid: results with fine time
step t; = 3.333 x 107 %s.

in the results, due to a shift from an attached sheet cavity flow to a shedding cavity behavior
for the finest spatial resolutions.

It was observed that the grid resolution has the largest influence on the flow dynamics. With
a fine grid (and a medium-to-fine time step) cavity clouds are shed from the rear edge of the
cavity. The clouds are convected downstream and collapses either before reaching the trailing
edge or in the wake of the foil, depending on the size of the bubble. The test case is two-
dimensional, and the flow modeling relies on RANS for turbulence and mixture approach for
multi-phase flow. Furthermore, for the sake of the verification study, the grid densities used are
rather fine, compared to what is commonly seen for unsteady RANS simulations with the same
setup. Bearing in mind the assumption of the test case, the numerical settings and the level of
flow modeling, it is concluded that the strive towards a grid independent solution turns out to
be vain: very fine spatial and temporal resolutions leads to additional cavitation dynamics.

Finally, both the grid topology and the temporal discretization are found to provide small
effects, in comparison to the large influence of grid density. With the unstructured Hexpress
grids the attached sheet cavity is shorter and thinner, but the same periodic behavior of the
structured GridPro grids is observed. Regarding the influence of temporal discretization, a
smaller time step leads to larger oscillations of the attached sheet cavity. In addition, a small
contribution from the second harmonic appears, as a result of rapid oscillation of the cavity at the
beginning of the cycle, when the cavity has the minimum length. Future work is recommended
to extend the current study. For the fine grids, the lack of clear periodicity is expected to affect
the computation of mean values. A more thorough analysis, possibly including calculation of
the statistical uncertainty, is suggested. Moreover, Solution Verification is naturally followed by
Validation. In this perspective, extension to a three dimensional foil is recommended to have a
more consistent comparison with the experiments.
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ABSTRACT: Compared with open propellers, tunnel thruster blades are more vulnerable to
cavitation and local structure vibration problems because they are typically heavily loaded and
subject to severe non-uniformity of inflow produced by the blunt gearbox. However, it seems
that the simple 'flat plate' is still often used in designing the thruster blades. In this research,
model tests and RANS simulations are carried out for three highly skewed thruster blades
having different pitch and rake profiles to investigate the effects of blade geometry on cavitation
and pressure fluctuations. The results indicate that the 'flat plate' blade is unfavorable for
vibration excitation and unloading towards the tip is an effective way to reduce the fluctuating
pressures.

1 INTRODUCTION

Ship vibration can bring about structural damage, fatigue, excessive noise and other issues.
The major sources of excitation include the propeller, main engine, and waves, where the
propeller is usually the most important one. Once cavitation happens, the propeller induced
fluctuating pressures will increase significantly and such problems are among the most active
research topics in ship propulsion.

For open propellers, relevant researches based on both model experiments and numerical
simulations are relatively sufficient. For example, Pereira et al.'*! conducted fluctuating
pressure and noise measurements for a cavitating propeller in uniform and non-uniform flows
and demonstrated that the pressure fluctuations due to the occurrence of cavitation are
proportional to the cavity volume acceleration by the test results. Salvatore et al.l*) compared
seven computational models including RANS, LES, and BEM for the INSEAN E779A
propeller in uniform and non-uniform inflows. The comparison of numerical results highlights
a good agreement for the non-cavitating steady flow predictions, whereas for the cavitating
flow, discrepancies in cavity extent are observed. The main reason is likely to be the lack of
grid density and/or too much numerical dissipation in the vicinity of the cavity-fluid interface.

However, the relevant researches on tunnel thrusters seem to be scarcely available in the
public domain due to high loading on the impeller blades and interactions among different parts
of the thruster. The typical configuration of a tunnel thruster includes an impeller, a T-shaped
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housing (the 'gearbox' hereinafter) of the right-angle shaft system, and a driving motor. Due to
the limited space available, the gearbox is typically blunt in geometry and close to the impeller
blades, which induces severe blockage effect and flow non-uniformity for the impeller.
Meanwhile, the impeller blades are usually heavily loaded. Under such adverse conditions
tunnel thrusters are more vulnerable to cavitation, especially when the simple 'flat plate'
impeller blades are used. The fluctuating pressures induced by the impeller on the tunnel wall
can exceed those by a propeller on the stern by two orders of magnitude when cavitation
happens.

There are just a few pieces of work, all published in the 1960s, focusing on the hydrodynamic
performance of tunnel thrusters based on model experiments'* and design methods?®~”!. During
the last ten years advances in computational fluid dynamics have made it possible to simulate
the viscous flow of tunnel thrusters!®~'!, Unfortunately, the research work on cavitation and its
induced effects is still scarce in the public domain. Stefano et all''l investigated the
hydrodynamic performance and cavity patterns for a 'flat plate' Kaplan type propeller working
in a cylinder at two pitch settings, based on BEM simulation and experimental observation.
Fischer!'? proposed a design criterion for tunnel thrusters from the perspective of reducing the
vibration and noise and measured the noise levels in cabins. It has been found that noise and
vibration levels are different depending on thrust direction and the noise is 5~10 dB higher in
low frequency range when the gearbox is located upstream of the impeller.

As dynamic positioning systems are equipped on more ships and operate more frequently,
the necessity becomes obvious to enhance the performance of thrusters. In this research, model
tests and RANS simulations are carried out for three highly skewed thruster blades having
different pitch and rake profiles to investigate the effects of blade geometry on cavitation and
pressure fluctuations. The impeller models are designed to produce the same amount of thrust
when fitted to the same gearbox and bow model. The fluctuating pressures on the tunnel wall
are measured at a number of locations in the vicinity of the blade tip. Viscous flow CFD
simulations are carried out for the three impellers in one condition to gain more detailed
information of the flow.

2  EXPERIMENTAL RESEARCH

2.1 Test facility and measuring equipments

The model tests are carried out in the cavitation tunnel of Shanghai Jiao Tong University, as
shown in Figure 1. The test section is 6.1m in length, and its cross section is 1mx1m with
rounded corners. The axial flow velocity over the test section ranges from 0.5m/s to 15.8m/s,
and the static pressure at the centerline of the test section ranges from 25kPa to 300kPa. The
non-uniformity of axial flow velocity is less than 1%.

As shown in Figure 2, the generic bow model is 0.58m long, with identical cross section
geometry over the length and a tunnel in transverse direction to house the thruster. The bow
model is made of plexiglass to facilitate observation of the flow and cavitation inside the tunnel.
As illustrated in Figure 3, the bow model is installed at the streamwise center of the third
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