
Knowledge Management in Optical Networks

Luis Velasco*, Fatemehsadat Tabatabaeimehr, and Marc Ruiz

Optical Communications Group (GCO), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

*e-mail: lvelasco@ac.upc.edu

ABSTRACT

Autonomous network operation realized by means of control loops, where prediction from machine learning (ML)

models is used as input to proactively reconfigure individual optical devices or the whole optical network, has

been recently proposed to minimize human intervention. A general issue in this approach is the limited accuracy

of ML models due to the lack of real data for training the models. Although the training dataset can be

complemented with data from lab experiments and simulation, it is probable that once in operation, events not

considered during the training phase appear thus leading into model inaccuracies. A feasible solution is to

implement self-learning approaches, where model inaccuracies are used to re-train the models in the field and to

spread such data for training models being used for devices of the same type in other nodes in the network. In this

paper, we develop the concept of collective self-learning aiming at improving models error convergence time, as

well as at minimizing the amount of data being shared and stored. To this end, we propose a knowledge

management (KM) process and an architecture to support it.

Keywords: Knowledge Management; Network Automation; Autonomic Transmission; Self-learning

1 INTRODUCTION

The optical network is being extended toward the edges of operators’ networks [1], fostered not only by the

increased amount of traffic coming from current and future access segment, but also by the stringent requirements

that they need to support, like low latency and high reliability. The added complexity, in addition to highly dynamic

traffic, requires the network operation to be automated. In this regard, autonomous control loops based on Machine

Learning (ML) techniques [2] have been proposed aiming at reducing human intervention as a way to minimize

network operational costs. In general, an autonomous control loop uses knowledge discovered during a ML training

phase to predict (near) future network conditions, so as to proactively prepare resources to deal with them

(decision-making).

In view that knowledge usage and decision making are needed not only at the Software-defined Networking

(SDN) controller level, but also at the local node/subsystem level, the control plane should be designed to support

such variety of use cases and scenarios of autonomous networking. For instance, the authors in [3] present the

benefits of adding a Monitoring and Data Analytics (MDA) system and present operators use cases looking at

automating optical network operation.

Enough real data to produce accurate ML models is rarely available owing to a plethora of reasons, like the

existing legal and regulatory context that limits the availability of real network performance measurement, as well

as the difficulty to obtain training datasets belonging to specific pre-commercial and commercial technologies and

use them in current and forecasted scenarios. In view of that, the authors in [4] proposed a learning life-cycle to

facilitate ML deployment in real operator networks. In particular, they added a ML training phase to be carried out

after detecting model inaccuracies (e.g., in the form of prediction errors), being this the basis of self-learning to

progressively improve the ML models deployed in the network. Such improvement can be made faster in the case

of the model is being used by several agents, which can share model’s inaccuracies among them; they called this

as collective self-learning. It was demonstrated that collective self-learning outperforms individual strategies.

However, because the size of the training dataset might be large to reach high-accuracy and robustness, (data-

based) collective self-learning increases data to be stored and to be exchanged among agents.

Instead of data, ML models can also be shared among agents. An example of such model sharing can be found

in [5], where the authors proposed to model OD traffic in the core as an aggregation model of the conveyed metro

flows models. In this case, metro flow models are trained by the metro SDN controllers and shared with the core

SDN controller, which composes the model for the core OD.

In this paper, we go further and target at completing the knowledge management (KM) process for truly

autonomous optical network operation. The KM process entails creating and sharing knowledge and it has been

applied to achieve organizational objectives, like continuous improvement of an organization. Those learning

organizations are able to adapt quickly and effectively to be superior to the competitors in their field or market

[6]. Here, we apply KM in the context of optical transmission and networking and define it as the process to

autonomously (i.e., without human intervention) i) discover; ii) share; iii) assimilate; and iv) use knowledge to

improve the performance of a network. Note that networks, like organizations, consist of a set of networking

devices, which would probably not achieve a global improvement in case of knowledge being individually

managed.

2 KNOWLEDGE MANAGEMENT

Fig. 1 presents the architecture proposed to enable KM, where two software agents in charge of networking devices

are represented. Agents collect monitoring/telemetry data from the underlying device(s) e.g., an optical

transponder (step 1 in Fig. 1a) that are consumed by a ML-based application, to produce some output (e.g.,

prediction) based on some ML models regarding some device/entity, e.g., the QoT of an optical connection. The

results can be used by a decision maker module (2) to tune configuration parameters in the device(s) (3). Note that

we just described the typical control loop (1-2-3), which focuses exclusively on knowledge usage.

Now let us assume that the output produced by the ML-based application based on the measured data is stored

(4) and that such output could be compared to real data measured from the device(s) after some time. If this would

be possible, we could conceive an algorithm that would monitor the accuracy of the current ML models and detect

events for which the models return inaccurate output (5). For illustrative purposes, Fig. 2a shows an example where

a model for regression has been trained with data points. Note that those data points do not need to be uniformly

distributed in the regions and can form data clusters in some regions of the features space, whereas no data points

can be found in other regions. A prediction for data in an unknown region would produce a response value that

might be far from the actual response measured from the network. Thus, detecting such inaccuracies would open

the opportunity to increase our training dataset with new labelled data (i.e., <X, y>, where X is the input data and

y the predicted response) and apply ML training to produce more accurate ML models that can be immediately

used by the ML-based application (6). This loop (4-5-6) entails knowledge discovery and it is the base for self-

learning [4].

As an alternative to the single ML model covering the complete features space, one could analyze the structure

of the training dataset and realize of the presence of data clusters. In such case, specific and more accurate ML

models could be produced within each of the selected regions as it is suggested in the example in Fig. 2b (regions

R1..3). In this case, some information (meta-data) is needed to specify the region of applicability of the model, as

well as other important data, like the number of samples used to produce the model, etc. In addition, note that the

lack of a model in the region of a collected measurement reveals a new unknown region; those collected data need

to be stored until the corresponding label is obtained and can be used to extend the knowledge to that region.

Data
repo

Configuration

Agent discovering new knowledge (a)

Monitoring
/telemetry

ML-based
Application

Knowledge
Sharing

Model
repo

Device(s)

Data

Decision
Maker

Knowledge
Usage

• Find what the
new knowledge is
(meta-data).

• Assimilate the
new knowledge.
Model pool with
disjoint/shared
regions.

• Join models/data
within a region.

• Join models/ data
of nearby
regions.

Data / Models
and Meta-data

Device(s)

Configuration
Monitoring
/telemetry

Self-learning
Management

Knowledge
Discovery

Agent receiving new knowledge (b)

Self-learning Management

Knowledge Usage

Models and
Meta-data

1

2

3

4

5

6

7

Knowledge
extension

Knowledge
consolidation

Knowledge
Assimilation

Models and
Meta-data

8

Fig. 1. KM Process. New knowledge is discovered (a) and assimilated for operation (b).

Imagine now that the knowledge discovery

process is performed individually per every

different device/entity, as the measured data

could be specific for such device/entity and so

the corresponding ML models. In such case,

knowledge discovered from one device/entity

cannot be shared among different

devices/entities. However, let us assume that

either the measured data can be used

unchanged by other devices/entities or there

exists a function that normalizes the measured

data (i.e., removes local dependences) so that

the resulting normalized data can be used to

train ML models for other devices/entities.

Features Space
(Ω)

Known
regions

Unknown region

Ω

Data
Clusters

b)a) R1 R2 R3

d)c)

U
nk

no
w

n
re

gi
o

n

U
n

kn
o

w
n

 r
eg

io
n

Region
with data

Fig. 2. Known and unknown regions in the features space.

 3

Then, new knowledge in the form of labeled data can be shared with other agents as soon as it is discovered (7),

thus enabling collective learning [4]. Note that the normalized data received from other agents can be used to

complement the local training dataset; this increases the learning speed since the probability of rare events to be

observed increases as there are more observers. However, sharing knowledge in the form of labeled data might

entail the exchange of large volumes until the accuracy of the ML models does not reach high values. Note that

one single labeled data point consists of a tuple of values and that a complete training dataset can contain a large

amount of data points. Another alternative to reduce the amount of data being exchanged is to produce specific

models for the knowledge just discovered. These models can be very accurate in a particular region of the features

space where the new knowledge has been discovered.

The components related to KM in the agent receiving the new knowledge are sketched in Fig. 1b. Note that the

separation between the agent receiving the new knowledge and the one discovering it is done for illustrative

purposes, as there is no limitation about being actually the same agent. When a model and meta-data are used to

share new knowledge, the receiving agent needs to assimilate such knowledge, starting by understanding what the

new knowledge is. Assuming that the feature space is modeled in a per-region way, the received knowledge can

be located (totally or partially) in one or more of the known regions or in the unknown region; in the former, the

model is added to the found region(s) and a merge of regions could be performed, whereas in the latter, a new

region is created. We name knowledge extension to the process of identifying the new knowledge and updating

the regions. Note that a region can be modelled using one or more models, so region updating would entail

generating a new model joining the previous model with the received one, or just adding the new model to the

pool of models. Another process that we call knowledge consolidation is in charge of joining models within a

region and joining nearby regions. Fig. 2c-d illustrate the features space of a given problem, where the training

dataset contains labeled data grouped into three different regions. However, data points are not usually uniformly

distributed along a region, as regions are dynamically re-defined as a result of a region merging process, triggered

whenever new knowledge arrives.

Finally, changes in the regions and models and meta-data generate new operational models that are ready for

knowledge usage (step 8 in Fig. 1b).

3 PROPOSED ARCHITECTURE

Fig. 3 presents an extended architecture for

KM, where more details of the agent are

depicted; specifically, knowledge discovery

and knowledge assimilation in the form of

extension and consolidation (collectively

named self-learning), knowledge sharing, and

knowledge usage components are detailed. In

addition, the Knowledge Manager component

coordinates KM operations.

The data collected from the underlying

physical device(s) is processed by an

application manager that uses knowledge for

the autonomous control of the device(s). For

the sake of generalization, we consider that the

configuration of the devices is based on a set of

algorithms for different problems, which

generate outputs to a decision maker module in

charge of finding the best configuration for the

forecasted conditions.

problem n

Data
repo

Algori
thm

Decision
Maker

Algori
thm

Output
(e.g., prediction)

Config

Agent

Monitoring/telemetry

Application
Manager

Knowledge
Sharing

Models
and Meta-Data

Model
repo

Device(s)

Data
(pre-processed

and labeled
data)

Configuration and Feedback

problem 1

Data and
models

Self-learning Manager

Knowledge Extension / Consolidation

Knowledge Usage

Knowledge Manager

Training
Data

ML
Training

Accuracy
Eval

Model
Ensemble

Model
Merge

Training Data
Re-synthesis

Notifications

Data / Models
and Meta-data

Knowledge
Discovery

Fig. 3. Detailed architecture for KM

Any problem might require a specific procedure combining several techniques (ML, statistics or mathematics) to

generate its outputs. The role of the application manager in the device control loop is to feed the different problems

with the required inputs and to adjust the decision maker according to the observed local performance.

In addition to these operational tasks, the application manager exports pre-processed and labeled data (including

model predictions and real measurements) to be stored in the data repository. Such data is analyzed by the

knowledge discovery module, which holds two essential roles: i) to identify inaccuracies in the current ML models

and, ii) to populate its internal training dataset and perform ML training to produce new models that are stored in

the model repository. The knowledge discovery loop is the main source of knowledge acquisition coming from

real data from the operation of the underlying device(s). Such new knowledge can be afterwards shared with other

agents through the knowledge sharing module thus, implementing collective self-learning. Consequently,

knowledge discovered by other agents is also received and stored in the model repository.

The activity of knowledge discovery could lead to many ML models being stored in the repository, which would

hinder knowledge usage. For example, in the case of keeping several ML models restricted to narrow region in the

feature space or alternatives models for the same region. Owing to that fact, knowledge assimilation applies

methods for knowledge extension and consolidation focused on reducing the number of models used for operation

while keeping its overall accuracy. As illustrated in Fig. 3, we consider three different methods for such task,

named model ensemble, model merge, and training data re-synthesis. The next section is devoted to providing the

details for these assimilation methods.

Finally, following a given scheduling policy, e.g., every time a new ML model is made available or with some

periodicity, the knowledge manager updates the ML models of every problem in the knowledge usage module, so

the algorithms can use them for operational purposes.

Last but not least, the knowledge usage module plays a pro-active role to speed-up knowledge discovery, as the

algorithm can discover that some given measured data locates into an unknown region of the features space of

their problems. In such case, the application manager notifies the knowledge manager, which requests the

knowledge sharing module to ask other agents about labeled data around the measured one, so as to produce a

specific ML model for that unknown region.

4 SUMMARY

The Knowledge Management (KM) process has been proposed aiming at a truly autonomous optical network

operation. KM is based on four main pillars: i) knowledge discover; ii) knowledge share; iii) knowledge assimilate;

and iv) knowledge usage. These pillars allow optical networks to autonomously discover and disseminate

knowledge that can be used to adapt its configuration to variable conditions without human intervention.

A general architecture to support KM has been proposed that extend beyond typical control loop implementation

and allows for knowledge sharing among different agents disregarding they run distributed in the network nodes

or centralized in a controller, like the Monitoring and Data Analytics (MDA) one. Such knowledge sharing enables

collective self-learning, which has been demonstrated to reduce models error convergence time.

ACKNOWLEDGEMENTS

The research leading to these results has received funding from the European Commission through the METRO-

HAUL project (G.A. nº 761727), from the Spanish MINECO TWINS project (TEC2017-90097-R), and from the

Catalan Institution for Research and Advanced Studies (ICREA).

REFERENCES

[1] L. Velasco, P. Wright, A. Lord, and G. Junyent, “Saving CAPEX by Extending Flexgrid-based Core Optical Networks

towards the Edges,” IEEE/OSA Journal of Optical Communications and Networking, vol. 5, pp. A171-A183, 2013.

[2] D. Rafique and L. Velasco, “Machine Learning for Optical Network Automation: Overview, Architecture and

Applications,” IEEE/OSA Journal of Optical Communications and Networking, vol. 10, pp. D126-D143, 2018.

[3] L. Velasco, A. Chiadò Piat, O. González, A. Lord, A. Napoli, P. Layec, D. Rafique, A. D'Errico, D. King, M. Ruiz, F.

Cugini, and R. Casellas, “Monitoring and Data Analytics for Optical Networking: Benefits, Architectures, and Use

Cases,” IEEE Network Magazine, vol. 33, pp. 100-108, 2019.

[4] L. Velasco, B. Shariati, F. Boitier, P. Layec, and M. Ruiz, “A Learning Life-Cycle to Speed-up Autonomic Optical

Transmission and Networking Adoption,” IEEE/OSA Journal of Optical Communications and Networking, vol. 11, pp.

226-237, 2019.

[5] F. Morales, Ll. Gifre, F. Paolucci, M. Ruiz, F. Cugini, P. Castoldi, and L. Velasco, “Dynamic Core VNT Adaptability

based on Predictive Metro-Flow Traffic Models,” IEEE/OSA Journal of Optical Communications and Networking

(JOCN), vol. 9, pp. 1202-1211, 2017.

[6] P. Senge, The Fifth Discipline: The Art and Practice of the Learning Organization, Doubleday/Currency, 1990.

