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Abstract: A model to forecast the underground temperature in a mine ventilation circuit was
developed on the basis of a case study and actual data describing temperature, airflow, and drift
length collected over several years. A mathematical model featuring seven variables with
interactions provided reliable predicted temperatures, achieving a correlation of R? = 0.933 with an
estimation error of +2 °C. Its soundness was proven using both the node-to-node analysis and the
multi-node approach. The multi-node approach was shown to be an interesting option to model
underground mining environments. This model can be very useful to predict the temperature
evolution along the main ventilation system, determine the best workplace conditions in terms of
temperature, and analyze different planning scenarios of the mine. Moreover, some
recommendations are presented for obtaining reliable data when using temperature sensors and the
model in a U-shaped ventilation system.
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1. Introduction

The environmental conditions in an underground mine are crucial in terms of efficiency and
health and safety conditions [1,2]. Furthermore, these factors have to be taken into account for mine
planning due to the restrictions imposed by proper ventilation conditions. This becomes increasingly
relevant as shallow deposits run out and mineral resources are extracted at greater depth, and as
mines increase in size with more infrastructure, with an intensification in the use of mining
equipment [3,4] and human resources [5]. This creates a situation where the potential effects must be
defined [6], with a need to determine the best possible conditions related to performance in the
workplace [7-10].

One of the most important variables regarding environmental conditions in an underground
mine is temperature [11-13]. It not only affects the concentration levels of the workers [14], but also
creates unsafe conditions [15,16]. Currently, there is an increasing interest in the characteristics of
underground spaces [17], with previous studies creating a model to predict the temperature at the
bottoms of shafts in metal mines [18], simulating the temperature at the working face of a coal mine
[19], and determining the main parameters of heat from the intrinsic properties of the deposit [20]. In
this regard, airflow is crucial to maintain adequate temperatures in the workplace, ensuring its
supply during the whole lifespan of the mine and any future changes in the ventilation circuit [21].
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There were even some studies focusing on potash mining [3] or applying cooling systems [22—
24]. However, it is necessary to not only identify the current conditions in terms of temperature, but
also to predict the future conditions in order to plan the necessary actions. Some recent studies
focused on obtaining an equation to determine temperature at working faces [25], or determine the
most efficient airflow velocity for thermal comfort in underground mines [18]; however, there is still
a lack of knowledge pertaining to other types of mining activities with regard to identifying the
temperature in the main ventilation system, as well as developing a system able to test different
possible scenarios in the future development of the mine.

Knowledge of the temperature in the drifts is crucial to understanding the future conditions of
the workplace and working faces and, therefore, correctly planning the airflow required over time
[26], and improving the main ventilation system. There are many factors that contribute to increasing
the temperature; among them, some of the most important are equipment, autocompression, and
geothermal gradient [27]. However, each mine has its own weaknesses and constraints, whether
related to the deposit or otherwise.

Many modeling methods have been proposed to develop predictive models in the engineering
field in recent years [28]. Multivariate regression analysis is one of the methods most commonly used
[29,30], whereas other techniques such as artificial neural network and support vector regression are
also implemented [31]. A mathematical model for underground coal mining was proposed by [32],
while an initial model was also proposed for a deep gold mine [33]; however, they were validated
with only a few temperature measurements. The intrinsic characteristics and high variability of the
environmental conditions in an underground mine require the use of a large database recorded over
a long period of time to validate any model proposed.

The aim of this research was to find a model able to predict temperature in the main ventilation
system from a case study, which was also easy to implement in any mine and was versatile depending
on the data available and requirements. Actual data collected from the main ventilation circuit over
three and a half years were used.

2. Case Study

The research was based on an underground mine that extracts potash using an irregular room
and pillar method, at a depth between 700 and 1000 m. The layout of the mine involves two main
levels with a U-shaped ventilation circuit. The principal ventilation circuit is placed on the lower
level, while the higher level contains the workings faces, with several splits of airflow from the level
below, as well as the auxiliary ventilation system. The main ventilation system consists of a single
exhausting fan. Extraction is achieved via three shifts lasting eight hours each, working continuously
throughout the day.

The different exploitation panels include an extension of the lower level and, subsequently, an
extension of the same panel above. Therefore, it is important to know, in advance, the temperature
evolution along the principal circuit, to determine the environmental conditions at the entrance of
the panel and to be able to analyze different scenarios.

3. Methods

3.1. Data Collection

Determination of the necessary data required to define the ventilation characteristics of the drifts
in a mine was previously considered in a case study [27,34]. Seven control points representing the
main ventilation system were established, from the entry to the end of the intake, collecting data
every 3 min between January 2016 and June 2019. The following variables were collected:

- Time of the measurement (date and hour);
- Control point (X, Y, and Z coordinates);

- Actual distance between control points (m);
- Dry temperature (°C);
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- Wet temperature (°C);
- Effective temperature (°C);
- Airflow (m?s).

Wet and dry temperatures are crucial to understanding the environmental conditions in an
underground mine [35]; however, an analysis of the humidity evolution along the intake does not
show appreciative changes. Therefore, the effective temperature, described by Spanish law
(RGNBSM, ITC 04.7.02), was taken into account as a predictive variable, which includes wet and dry
temperatures combined into a single value with a certain proportion, as shown in Equation (1).

T,r = 09T, + 0.1T, (1)

where Ty is the effective temperature (°C), Tw is the wet temperature (°C), and Tu is the dry
temperature (°C).

3.2. Data Processing and Analysis

The equipment to record and collect data was calibrated regularly to avoid inaccurate
measurements [36]. The effective temperature was transformed into daily average values, resulting
in a total of 1155 daily records. Figure 1 shows the temperatures measured in each node,
corresponding to the fixed control points representing the ventilation conditions of the intake. As can
be seen in Figure 1, there was a higher dispersion in the initial nodes due to the influence of outside
conditions, which were quite variable depending on the season of the year.
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Figure 1. Effective temperature measurements in each node (left) and as a function of distance
(right).

According to Navarro et al. [37], variations in temperature in an underground mine are caused
by several intrinsic and extrinsic characteristics, as shown in Equation (2).

ATiorqr = ATye + ATy + ATy + ATye + ATy + AT, (2)

where AT. represents autocompression (°C), ATy represents thermal rock properties (°C), ATe
represents heat emission from electrical equipment (°C), ATz represents heat emission from diesel
equipment (°C), ATim represents human metabolism (°C), and ATw represents thermal water (°C).

The underground atmospheric temperature, at any location inside the mine, can be expressed as
a function of the underground initial temperature, eliminating the autocompression factor from
Equation (2), since the temperature at the bottom of the shaft is taken into account, thereby obtaining
Equation (3).

t, =ty + ATiora 3)

where t2 is the underground atmospheric temperature (°C), and # is the underground initial
temperature (°C).
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The intake drifts from the case study had very steady conditions in terms of equipment usage,
working force, and thermal rock properties, due to them being opened for a long time. It was also
considered that the thermal water had no influence, due to the intrinsic characteristics of the type of
mineral extracted in the case study. The physicochemical properties of the air conditions were not
considered either. Therefore, the more developed form of Equation (3), with simplifications, can be
written as Equation (4).

t; =t + ATjprake 4)

where AT depends on the dry and wet temperatures expressed as equivalent temperature (°C).

However, the airflow is not steady throughout the main ventilation circuit, with some leakages
existing along the intake and/or return, especially in U-shaped circuits as considered in this study, as
well as airflow splits to different extracting panels.

In this case, the cross-section did not have a substantial variation along the intake drift.
Therefore, the heat contribution was similar along the intake drifts and the airflow was mainly
reduced due to its distribution to the workplace. Distance was also very important to consider
because of the interaction between the air and heat sources along the drifts. Equation (5) describes
the factors influencing temperature variation along a drift.

t, = F(C,D, ATineare), )

where C is the airflow (m3/s), and D is the distance (m).

A mathematical model is a simplified representation of reality with predictive variables (x1, xz,
..., xn) and target variables that need to be estimated [38]. The model presented herein was based on
the variables detailed in the previous paragraph, with the aim of forecasting the temperature using
in situ measurements of temperature and airflow along the ventilation circuit, taking into account
seven preset control points (see Figure 2).
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Figure 2. Representation of the system modeled. Here, tn is the temperature, whether measured or
estimated (°C), cn is the airflow measured (m3/s), x» is the relative position of the control points or
nodes (m), and ni is the node number.

An analysis of the real data suggested a strong linear relationship among the effective
temperatures in the nodes, especially in the case of adjacent nodes, as can be seen in Figure 3.
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Figure 3. Scatter plot of the effective temperatures (°C) measured in situ, corresponding to the seven
nodes.

3.3. Model Used

On the basis of data analysis, a generalized linear model with four parameters (see Equation (6))
and a linear model with interactions and seven parameters (see Equation (7)) were chosen for this
study. A sensitivity analysis was carried out to assess the significance of the parameters from the
model [39].

tf =ay+aqt; + asz + a3Dc: (6)

tr = ag + art; + a; Dy + azDe + ant;Dy + ast; D, + agDyDe, (7)

where tiis the temperature at the beginning of the stretch (°C), tr is the temperature at the end of the
stretch (°C), D« is the length of the stretch (m), and D« is the airflow change along the stretch (m%/s).

The model estimated the daily mean temperature at the end of the stretch as a function of the
daily mean temperature at the beginning of the stretch, the length of the stretch, and airflow variation.
The prediction was achieved using information from node to node, as well as with a multi-node
approach. Despite the quantity of data being very large, it was necessary to obtain all parameters in
all nodes to use the models proposed in Equations (6) and (7). The final amount of data could be
substantially reduced due to various causes, such as sensors being broken or lost due to aggressive
operation conditions, abnormal values due to heavy equipment working close to the sensor, or sensor
malfunction. The use of a multi-node approach with a lag step allows obtaining more data. In this
study, the following lag steps were applied:

- Lags step of one node, using six stretches created by nodes 1, 2, 3,4, 5, 6, and 7;
- Lag step of two nodes, using five stretches created by nodes 1-3, 2—4, 3-5, 4-6, and 5-7;
- Lag step of three nodes, using four stretches created by nodes 14, 2-5, 3-6, and 4-7.

In addition, the multi-node system reduces the tendency toward the prediction of mean values.
Figure 4 displays the variables used in the model, while Table 1 details the length, Dx, and the airflow
variation along the intake, Dc.



Appl. Sci. 2020, 10, 7238 6 of 11

Figure 4. Scheme of the prediction system created. Here, ci is the airflow at the beginning of the stretch
(m?3/s), ctis the airflow at the end of the stretch (m?/s), xiis the initial relative position (m), and x is the
final relative position (m).

Table 1. Characteristics of the stretches used in the model.

Stretch Nodes Dx(m) Dc (m3/s)

S1 ni—nz 1300 -30
S2 n>—ns 1700 -127
S3 ns—n4 670 -3
S4 ns—ns 1120 -2
S5 ns—s 810 =31
S6 ne—n7 530 -22

Airflow variation was caused by its allocation depending on mine planning and air
requirements in different workplaces, which could vary over time. Moreover, stretches S3 and 54 had
a small reduction in airflow due to leakages in the circuit.

4. Results and Discussion

The generalized linear model (Equation (6)) and the model with interactions (Equation (7))
exhibited correlations of R? = 0.858 and 0.887, respectively. However 5.96% of the data recorded by
the sensors displayed irregular behavior compared to the dataset, i.e., extremely high temperatures
(greater than +1.5 IQR (interquartile range)), probably due to the exhaust pipe of the diesel
equipment passing close to the sensor during some specific maneuvers in the drift. The data analysis
also suggested that some outliers could have been caused by erroneous sensor recording [38]. These
outliers were avoided for the creation of the model.

The model fully developed with only regular data is displayed in Equation (8). The R? of the
model with interactions was higher than that of the generalized linear model; thus, it was used
moving forward, attaining R? = 0.933 and an estimation error of +2 °C, with 100% of the residual
values lying in the range of +2.5 °C (Figure 5), which can be considered acceptable for mine ventilation
analysis according to the literature [27]. Furthermore, it can be modified according to the needs of the
user and characteristics of the mine.

t; = 0.7142 + 0.9887¢; + 0.004419D,, + 0.02139D, — 1.509 x 10~*£;D,

8
—8.057 x 1074t;D,. + 1.024 X 107°D,.D, ®
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Figure 5. Residual values from the linear model with interactions.

Figure 6 displays the stretches used in the analysis of the estimation error using the node-to-
node and multi-node approaches. The x-axis includes the combination of nodes used in the multi-
node approach, as detailed in Section 3.3.

The highest error was concentrated in nodes 1 and 2, when the lag step was 1, 2 or 3. This was
due to the ventilation circuit of the case study (a U-shaped system) having a high variability in
temperature at the entrance of the intake, as well as potential problems with connections between the
return and intake drifts through doors, and other disturbing factors in areas with a high pressure
difference. This issue coincided mainly with nodes 1 and 2, which were within an area with a high
airflow and pressure difference. If only nodes 3—6 were considered, the relative error was reduced to
<10%.

Estimation error (2C)
0

-2

e S e
[

1 2 3 4 5 6 13 24 35 46 57 14 25 36 47
Stretch

Figure 6. Error distribution as a function of stretch, node-to-node (red), and multi-node lag steps (blue
represents two steps and gray represents three steps).

When the estimated temperatures were compared to the observed values in Figure 7 (i.e., those
at the end of the stretch (tr)), it can be seen that the estimation was quite good, with a deviation lower
than 2 °C in most of the cases. Furthermore, the correlation was also good, whether using node-to-
node or multi-node analysis with a lag step of 2 and 3 nodes (see Figure 8); there was important
consistency between the temperatures measured and those estimated at the end of the stretches. The
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temperature oscillations corresponded to the different seasons of the year, influencing the effective
temperature at the bottom of the shaft and along the intake.
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Figure 7. Comparison between values observed and estimated.
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Figure 8. Final temperature comparison for different node lag steps as a function of node-to-node
(red) and multi-node lag steps (blue represents two steps and gray represents three steps).

If the analysis was carried out with the intermediate or final nodes, the correlation between
observed and estimated values increased considerably (see Figure 9). Additionally, there was a
substantial reduction in terms of range of deviation (~50%) compared to the analysis of the whole
system detailed in Figure 7. This means that the model can be used to predict the temperature in a
possible extension of the ventilation circuit, even when only using data from a part of the intake drift,
by determining the effective temperature at the entrance of each extracting panel of the mine.
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Figure 9. Analysis of temperature correlation and deviation between nodes 6 and 7.

Further research should be done to analyze different ventilation circuits and additional variables
related to the underground mining environment, such as pollutants or humidity. The prediction of
temperatures in other sectors was studied using machine learning techniques [40]. Other models and
approaches should also be explored in the future.

5. Conclusions

A model with interactions and seven parameters was found to be the most appropriate to
describe the main ventilation system in an underground mine, showing good correlation between
estimated and observed temperatures (R?=0.933), with an estimation error of +2 °C. Furthermore, its
soundness was proven in both node-to-node and multi-node analyses. The model obtained can be
useful to predict temperature evolution along the principal circuit, find the best workplace conditions
in terms of temperature, and analyze different mine planning scenarios. It is simple to use, adaptable
to further modifications depending on the data and requirements of the mine, and accurate in
temperature predictions.

The higher error seen in nodes 1 and 2 suggests that the analysis and model of a U-shaped
ventilation system should begin at least several hundred meters away from the bottom of the shafts
or ramp (>2 km in this case study) in order to obtain the highest accuracy (as seen in nodes 3-7);
otherwise, the range of the estimation error may be considerable due to the influence of potential
disturbances in areas with a high pressure differential and large amounts of airflow. The multi-node
approach is an interesting option in underground mining, due to there being many factors that can
affect the availability of data from the sensors. The placement of sensors was also found to be crucial
for obtaining representative data and, subsequently, an accurate model. It is important to find zones
of drift with the lowest possible disturbance, especially regarding the operation of diesel equipment,
due to the high temperature of exhaust fumes. In addition, it is necessary to have an accurate
calibration protocol to avoid outliers.
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