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Abstract

Video object segmentation (VOS) is a computer vision task that aims at determining 
the pixels of an object of interest along a video sequence. This thesis explores different 
curriculum learning strategies for a deep neural network trained to solve this task.

Curriculum learning defines a methodology where the training data are not ran-
domly presented to the model, instead, they are organized in a meaningful way. Sim-
ple concepts are first presented and gradually become more c omplex. Four different 
curriculum strategies are explored: schedule sampling, frame skipping, the effect of 
temporal and spatial recurrence variations and loss penalization by the object’s area.

This work focuses on the RVOS neural architecture, a recurrent architecture orig-
inally tested on the DAVIS and YouTube-VOS datasets for one-shot video object seg-
mentation, over the cars class of the KITTI-MOTS dataset. Even though this archi-
tecture is a fast solution for the VOS task, the model struggles with the KITTI-MOTS 
dataset, whose videos are more crowded and challenging.

For the schedule sampling curriculum, both the classic and inverse implementa-
tions are evaluated. Results show how inverse schedule sampling strategies improve 
the model’s performance instead of the classic approach, the forward one. The dif-
ferent frame skipping schemes are also beneficial, but only when t raining with the 
ground truth mask instead of the predicted ones. Lastly, both the curriculums that 
vary the temporal and spatial recurrence or penalize the loss by the object’s area have 
shown poor model’s performance.

These results show how curriculum learning strategies affect greatly the perfor-
mance of recurrent neural networks. Moreover, the results on the inverse schedule 
sampling and frame skipping strategies invite to further explore these schemes to 
exploit their benefits.
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1 Introduction

1.1 Motivation
During the past few years, computer vision has been gaining popularity for its poten-
tial and its applications. This field of computer science focuses on the study of how
computers "see" and understand images and videos. It tries to replicate the complexity
of the human visual system so computers can identify and process objects in images
and videos in the same way that humans do.

Until recently, computer vision performance was limited and required a large
amount of manual effort by developers. It is not until machine learning and, more
precisely, deep learning algorithms were introduced that this field was boosted. Deep
learning uses logical structures that mimic the human brain and its neurons, creating
a network of artificial neurons in order to detect and determine the characteristics of
the perceived objects. This entailed an efficient, fast and easy approach for develop-
ment and deployment of task related to this field.

Under this context appears Video Object Segmentation (VOS), a task which is still
very challenging in the research community. Video Object Segmentation’s objective
is to determine the pixels which correspond to the objects of interest in the consecutive
frames of a video sequence. Figure 1.1 shows two examples of this task. Among the
multiple challenges that it faces; occlusions, deformations or scale variations are some
examples. The rapid development of intelligent mobile terminals and the Internet
has resulted in an increment in video data. This fact has put Video Object Segmenta-
tion in the spotlight, in order to be able to analyze and use this data in an efficient way.

Figure 1.1: Example of video object segmentation on five consecutive frames of two
video sequences of the YouTube-VOS dataset [1].
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CHAPTER 1. INTRODUCTION 2

Video Object Segmentation is a versatile task, which can be applied to a wide
range of practical applications: autonomous vehicles, high definition video compres-
sion, large video collections analysis and activity recognition among many others.

The optimization process of deep neural networks is greatly influenced by how
training data is used. This thesis focuses on applying curriculum learning strategies
on a recurrent neural network model which addresses the one-shot VOS task in or-
der to improve its performance. One-shot VOS fits under semi-supervised VOS and
it consists of giving the manual annotation of the first time that an instance appears
to the model in order to estimate the instance segmentation for the remaining frames
until the instance disappears [2].

Curriculum learning describes a methodology of training where the examples are
not randomly presented to the model, instead, they are organized in a meaningful
way. Simple concepts are first presented and gradually become more complex [3].
These training techniques are inspired by the learning processes of humans and an-
imals. Humans’ training is highly organized and structured to ease learning and in-
crease the speed of the learning process. This raises the question of whether artificial
intelligence based models can benefit from this methodology.

Four training curriculums will be presented, followed by its implementation and
results, both quantitative and qualitative. These four strategies are performed on the
cars class of the KITTI-MOTS [4] benchmarks and the most promising ones on the
YouTube-VOS [5]. The model that has been used is the End-to-End Recurrent Net-
work for Video Object Segmentation (RVOS) which outperforms state-of-art results
on YouTube-VOS and DAVIS-2017 benchmarks [6] for models that do not use online
learning.

1.2 Thesis Outline
The thesis is organized in five chapters.

Chapter 2 exposes the state of the art of curriculum learning techniques on video
object segmentation and presents the different techniques that have been tested.

Chapter 3 explains the implementation of the four training curriculums and its
variations, as well as its settings and specific parameters.

In Chapter 4, the results of the multiple experiments applying the curriculum tech-
niques are presented.

Finally, in Chapter 5, the conclusions of the thesis are presented.



2 State of the art

Curriculum learning is referred to the concept of training a model starting with sim-
ple concepts and, gradually, increase the complexity of these. Similar to what humans
do, it tries to enhance the learning by structuring the concepts that are to be fed to
the model by creating a "curriculum". It first was presented by Bengio et al. [3] hy-
pothesising that curriculum learning was able to boost the convergence speed of the
training process as well as find a better local minimum than the existing solvers for
non-convex problems.

On the literature, some examples of curriculum learning can be found applied to
a diverse number of tasks. One example is proposed by Gong et al. [7], where a
curriculum learning approach is used on image classification. The authors generate a
multi-modal curriculum learning in a simple-to-difficult order to optimize the quality
of semi-supervised image classification. Hacohen and Weinshall [8] use curriculum
learning on image recognition. Two problems are addressed: (i) sort the training ex-
amples by difficulty; (ii) compute a series of mini-batches that exhibit an increasing
level of difficulty. They define a curriculum learning algorithm by a scoring function
and a pacing function. The scoring function evaluates the difficulty and the pacing
function evaluates the rhythm in which the difficulty is increased. The authors end
defining the concept of an ideal curriculum.

The tasks where recurrent neural networks (RNN) have had the most impact are
the ones which involve text analysis. This type of artificial neural networks is com-
monly used in speech recognition and natural language processing. RNNs are de-
signed to recognize sequential characteristics of data and use patterns to predict the
next likely scenario which makes them ideal for tasks which involve time-series pre-
dictions. On the area of speech recognition, Shi et al. [9] propose three curriculum
learning strategies on language modelling. On the other hand, Platanios et al. [10]
are an example of recurrent neural networks focusing on neural machine translation
by using curriculum learning which reduces training time, reduces the need for spe-
cialized heuristics or large batch sizes, and results in overall better performance. To
do so, the authors decide which training samples are shown to the model at different
times during training, based on the estimated difficulty of a sample and the current
competence of the model. On the area of natural language processing, Rao et al. [11]
and Sido and Konopík [12] focus on sentiment analysis using similar strategies to the
ones exposed previously. Both works focus their strategy on the sentence length, in
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CHAPTER 2. STATE OF THE ART 4

which the longer the sentence, the more difficulty it supposes to the model. More-
over, Sido and Konopík [12] also experiment with the frequency of the words.

As explained above, curriculum learning has beenwidely used for many tasks, pro-
viding interesting results on these. Focusing on video object segmentation, a large
number of works have relied on curriculum learning strategies to improve the per-
formance of their models [1, 13–21]. The concept behind curriculum learning can be
implemented in multiple ways. This thesis focus its analysis on four strategies: sched-
uled sampling, frame skipping, from only temporal to spatio-temporal and creating a
curriculum by the object’s area.

2.1 Scheduled Sampling
Introduced by Bengio et al. [14], scheduled sampling is a curriculum learning ap-
proach which objective is to slowly eliminate the gap between training and inference
for sequence prediction tasks using recurrent neural networks. It was proposed for
sequence prediction with recurrent neural networks, and successfully applied in the
wining bid in the MSCOCO image caption challenge 2015.

When training recurrent neural networks, an interesting technique widely used
in the literature is teacher forcing. Teacher forcing is a strategy which replaces the
generated output of a unit by the ground-truth or actual output in subsequent com-
putation, using this latest as an input in the next training step [22]. This technique
provides a fast and effective way to train a recurrent neural network and boosts the
convergence speed of the model. Nevertheless, this training methodology leads to ex-
posure bias: discrepancy between training and inference. During training, the model
is trained on the ground-truth data distribution while in inference, the predictions are
conditioned to what the model generates itself. This difference results in instability
and poor model performance. Schedule sampling takes benefit from teacher forcing
while avoiding exposure bias by gradually replacing the ground-truth tokens by the
model’s predictions. With this strategy, the model is forced to gradually learn to deal
with its own mistakes as it would during inference.

On the original work [14], three different decays were proposed: exponential, in-
verse sigmoid and linear. On the literature, works on instance segmentation apply
the linear schedule sampling. Ren and Zemel [16] define a stochastic switch (θt) in
the input of the external memory regulates whether to use either the maximally over-
lapping ground-truth instance segmentation or the output of the network from the
previous time step. By the end of the training, the model completely relies on its own
output from the previous step, which matches the test-time inference procedure.

Lai and Xie [15], in order to tackle the challenges from tracker drifting, due to
complex object deformations, illumination changes and occlusions, propose training
with this schedule sampling strategy. Their strategy does not go from all ground
truth labels to total model predictions in their linear schedule, but consider of having
a higher probability value (0.9) of using ground-truth frames in early training stages
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and uniformly anneal to a probability of 0.6. This forces the model to recover from
error states and improves the robustness to drifting.

Finally, Xu et al. [1] and RVOS [6] define a more drastic scheme, using ground
truth labels in the first half of the training, and predicted masks in the second half. In
this Master thesis, this approach has been named as step schedule, as in the well-known
Heaviside step function. Xu et at. [1] go even further and once the training losses
become stable, the ground-truth annotations are replaced by the model’s predictions.

Motivated by the affirmations of Huszár [23], when studying schedule sampling,
the question whether an inverse strategy makes sense arises. The author affirms that,
for generative models, schedule sampling is an inconsistent training strategy. Even
though his work does not take on video object segmentation, inverse strategies have
been tested in this thesis when studying the schedule sampling approach to provide a
full understanding of the technique.

2.2 Frame Skipping
Frame skipping is a training curriculum in which video sequences are progressively
sub-sampled in time, so that the model is exposed to sequences with faster changes,
even if synthetically generate. It appears partially motivated by the limitations of the
number of frames that the model can see per mini-batch due to memory constraints.
These constraints force the model to train with short sequences of frames which may
cause redundancy in the case of training with consecutive frames.

On the literature, Oh et al. [17–19], rely on this strategy on their different works
that address video object segmentation. On [17], they introduce this concept for their
model, the Space-Time Memory Networks (STM). STMs achieved the state of the
art on one-shot video object segmentation by randomly skipping frames during sam-
pling in order to learn the appearance change over a long time. They limited the
maximum number of frames to be skipped to 25 and applied a curriculum learning
strategy which gradually increases the skipped number of frames from 0 to 25. On
their previous works [18] and [19], they use a similar strategy of randomly skip frames
to simulate fast motion, with the difference that in [18] they also gradually increased
the length of a training video clip from 4 to 8.

Alabed et al. [20] propose three implementations of this technique for video ob-
ject segmentation: downsampling by 67% (skip two frames every three frames for
slow-moving objects), 50% (skip a frame every two frames for moderate speed mov-
ing object), and 0% (no frame skipping for fast-moving objects).

Finally, Wu et al. [24] have achieved relevant gains when addressing the action
recognition task with a neural network that processes the video streams at a fast and a
slow frame rates in two different pathways that merge at the deepest layer. In this the-
sis, a single pathway is kept but considering different frame rates during the training
curriculum.
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2.3 From temporal only to spatio-temporal
The work on [21] is an example in which spatio-temporal CNN is trained for video
object segmentation where the temporal branch is pre-trained separately. Specifically,
it consists of first training with only temporal information and later adding spatial
information, providing both temporal and spatial information to the model in the
latest phases of the training process.

2.4 Loss penalization by object area
The loss penalization by object area technique discriminates which instances are used
for training on each stage of the process. It first starts training with instances consid-
ered easy for the model, omitting the rest. Latter, the difficult ones are added. Even
though no related works have been found for VOS, works on a closely connected task,
object detection, use this technique. Wang et al. [25] and Siyang et al. [26] present in
their works curriculums which discriminate the instances by difficulty when training.
The authors determine the difficulty of the instances by how their model performs on
them. Then, they start training with this type of "easy" data and latter add the re-
maining one.



3 Methodology

This chapter presents the methodology followed to perform the different experiments,
starting with the environment set-up and narrowing down to the implementation of
each strategy. The set-up includes the details of the datasets used on the experiments.
After that, context of the RVOS model is given, in order to understand its perfor-
mance. Finally, the implementation and intuition behind each strategy are explained.

3.1 Datasets
This thesis focuses mainly on the KITTI-MOTS benchmark [4], even so, some of the
most promising strategies have been tested on the YouTube-VOS benchmark [5] in
order to obtain a robust insight on their effect.

3.1.1 KITTI-MOTS Benchmark
The KITTI benchmark was introduced in 2012 to address the autonomous driving
challenge [4] but it was not until 2018 when a semantic segmentation and semantic
instance segmentation approach to the benchmark was presented. This dataset con-
sists of a set of video sequences captured by driving around a mid-size city, in rural
areas and on highways. Figure 3.1 is an example of the type of images that can be
found in this dataset.

Figure 3.1: Example of images from the KITTI-MOTS dataset. On top, the original
image; on the bottom, the original image with the ground-truth annotations super-
imposed.

7
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The annotations are provided in both text or image format. The background is
defined by an id value of 0. Ignore regions are defined as 10.000. The class id for cars
is defined as 2 and the class id for pedestrians is 1. An object will have an object id of
the order of 200X for a car and 100X for a pedestrian. The object id is maintained
during all the video sequence.

The sequences are split into train, validation and test sets. The training set is com-
posed of 12 sequences while the validation set is composed of 9. Figure 3.2 shows
the distribution and the number of cars and pedestrians of each set. It can be seen
how many instances (denominated "# Tracks") the two sets contain as well as the to-
tal number of masks annotated to track these instances (denominated "# Masks"). For
either set, the number of cars and the masks that they generate at least double the
number of pedestrians and their masks.

The test set has not been used for the experiments. The KITTI-MOTS competi-
tion addresses a zero-shot challenge while this thesis has been focused on addressing a
one-shot challenge. On one-shot learning, the manual annotation of the first time that
an instance appears is given to estimate the instance segmentation for the remaining
frames until the instance disappears [2]. With zero-shot learning, there is no initial-
ization to perform the frames segmentation. While a one-shot approach fits under
semi-supervised video object segmentation, zero-shot fits under unsupervised video
object segmentation. RVOS, the model which has been used for all the experiments,
has demonstrated better performance and results with one-shot learning, which has
been the motivation of choosing this approach. This choice has resulted in a modifica-
tion on the official splits, as the test slip does not contain its annotations and, therefore,
cannot be used on a one-shot approach.

Figure 3.2: Information about the sequence splits on the KITTI-MOTS dataset [27].

For the reasons exposed above, the training set has been split into two sets: a train-
train set, with 9 sequences, and a train-val set, with 3 sequences. The official validation
set has not been modified and has been used as the test set.

The challenges that offers this dataset are varied. The sequences are conformed
by a large number of frames, being the shortest one compounded by 78 frames and
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the longest one by 1059 frames. Motion changes are observed. There are right and
left turns which are fast and happen in few frames while the majority of the other
scenes are slow paced, meaning that it takes a higher number of frames for a change
to be noticed. Multiple occlusions, both partial and total, take place on the sequences.
There are also changes in illumination and resolution on the objects. Due to all of
that, this dataset presents many challenges.

3.1.2 YouTube-VOS Benchmark
Presented on [5] in 2018, YouTube-VOS is the largest video object segmentation
dataset. It contains 4,453 YouTube video clips from 94 selected object categories. The
categories include animals, vehicles, common objects and humans in various activities
in order to provide a complete and comprehensive dataset. The YouTube-VOS dataset
is used for unsupervised, semi-supervised, interactive, and weakly supervised VOS
approaches. An example of the type of images that this dataset contains can be seen
on Figure 3.3.

Figure 3.3: Example of images from the YouTube-VOS dataset. On the left, the
original image; on the right, the original image with the ground-truth segmentation
masks superimposed.

The whole dataset which consists of 4,453 videos is split into training (3,471),
validation (474) and test (508) sets. Since the dataset is used for competitions, the
test set is only available during the competition period. This is the reason why the
validation set is used for evaluation instead, as this set will be always publicly available.
To train the model, the same 80%-20% split of the training set as in [6] is used.

3.2 The model
The model that has been used is the End-to-End Recurrent Network for Video Ob-
ject Segmentation (RVOS) [6]. It has been developed by researchers of three different
entities: Universitat Oberta de Catalunya, Barcelona Supercomputing Center and
Universitat Politècnica de Catalunya.

RVOS is an end-to-end trainable model which incorporates recurrence on two
different domains, spatial and temporal. We understand as an end-to-end model those
models where all modules are differentiable and, when training, gradient-based learn-
ing can be applied to the system as a whole [28]. Meanwhile, spatial recurrence allows
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to discover the different object instances within a frame and the temporal recurrence
allows to keep the coherence of the segmented objects along time.

This model is used for video object segmentation that tackles multi-object seg-
mentation. It is able to perform either in one-shot or zero-shot learning. This thesis
has been focused on working with the one-shot scenario, as mentioned before.

The architecture of the model can be seen in Figure 3.4. It is based on an encoder-
decoder architecture for both scenarios mentioned above. For the encoder, a pre-
trained model of ResNet-101 [29] is used. For the decoder, it is designed as a hierar-
chical recurrent architecture of ConvLSTMs [30]. The optimal assignment between
predicted and groundtruth masks is found with the Hungarian algorithm using the
soft Intersection over Union score as cost function. The input of the model will consist
of a set of RGB image frames of a video sequence. As we are in a one-shot scenario,
the mask of the objects at the frame where each object appears for the first time will
be also part of the input of the model. A set of object segmentation predictions for
each frame will be output at the end of the decoder.

Figure 3.4: Model architecture for a single frame at time step t. A single forward is of
the decoder is depicted, predicting only the first mask of the image [6].

The concept behind the implementation of the spatio-temporal recurrence is shown
in Figure 3.5. Each ConvLSTM layer, on one hand, depends on the preceding Con-
vLSTM layer, the features obtained from the encoder from the same temporal frame
and the object segmentation prediction mask of the object at the previous frame. On
the other hand, it will also depend on two hidden states; the temporal, which is the
representation from the same object at the previous frame and the spatial hidden state,
which is the representation from the previous object at the same frame.

The RVOS model has been tested on YouTube-VOS [5] and DAVIS-2017 bench-
marks [31]. It has been proved that adding spatio-temporal recurrence outperform
models which only consider the spatial and temporal domains. At the same time, the
model outperforms sate-of-the-art techniques that do not make use of online learning
for one-shot scenarios.
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Figure 3.5: Spatio-temporal recurrence scheme [6].

3.3 Implementation
On this section, the implementation of the different strategies which apply curriculum
learning will be explained as well as the motivation behind them.

3.3.1 Scheduled sampling
As explained on Chapter 2, Section 2.1, schedule sampling is a curriculum learning
strategywhere, gradually, the use of the ground-truth annotations as input on the next
step is replaced by the model’s output. The motivation behind schedule sampling is to
obtain a robust model able to learn from its own mistakes. The gradual change from
ground-truth annotation to the model’s output can be implemented in multiple ways.
On [14], the authors which presented this training strategy present some examples of
schedule decays (Figure 3.6).

Figure 3.6: Examples of decay schedules [14].

RVOS [6] was already implemented using a hard schedule sampling strategy. The
authors were training half time with the ground-truth annotations and, on the last
half of training, they switched to train with the model’s outputs of the previous step
as inputs. This implementation can be seen as a step decay, depicted in Fig. 3.7a. This
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methodology was already proved on [6] to improve considerably the performance of
the model. On this thesis, a more gradual schedule decay has been studied to find if
these results can be improved furthermore: the linear decay.

Three schemes have been implemented and analysed: no schedule sampling, for-
ward schedule sampling and inverse schedule sampling.

No Schedule Sampling

This implementation refers to not using a schedule sampling scheme. There is no
change from ground-truth annotations to the model’s outputs. It consists of applying
a teacher forcing approach, using all the time ground-truth annotations.

Forward Schedule Sampling

The forward scheme implements a schedule sampling strategy as defined on [14].
To implement a linear decay, the model chooses according to a threshold if it uses
the ground-truth annotations or the model’s output as inputs. A random number
∈ (0, 1) is generated, if it is higher than the actual threshold, the model chooses to use
the ground-truth annotations. If the random number generated is smaller than the
threshold, the model chooses to use its output as inputs on the following step. The
threshold starts with a value of 1 (thresholdi=0 = 1) and linearly decreases during
each epoch (n) following the next equation, for n > 0:

thresholdi=n = thresholdi=n−1 −
1

maximum epoch
(3.1)

At the start of the training process, ground-truth annotations are always chosen. In
the same way, at the end of the training, the model’s output is always chosen. During
the rest of the epochs the probability of choosing ground-truth over outputs decreases.
The forward step can be seen as following the same reasoning as the linear decay but
implementing the following equation:

threshold =

1, n < 20
0, n ≥ 20

(3.2)

Inverse Schedule Sampling

The inverse scheme implements a contrary schedule sampling methodology. The
threshold varies following Eq. 3.3. It starts with a value of 0 (thresholdi=0 = 0) and
linearly increments during each epoch (n) until reaching a value of 1, for n > 0. In
this case, at the start of the training process, the model’s outputs will always be chosen
and, at the end of the training, the ground-truth annotations will always be chosen.

thresholdi=n = thresholdi=n−1 + 1
maximum epoch

(3.3)
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As one-shot learning is being applied, the model is trained using the first ground-
truth annotation for each object. The model does not start blind. The hypothesis from
inverse schedule sampling is that, if the model starts training with its model’s outputs,
it will force the model to focus on the areas of the image where there are objects, as
the error, and therefore the loss penalization, will be higher than when using perfect
outputs. This way, the objective is to study if the training process can speed up by
using this scheme.

Apart from the linear approach, it has also been implemented as an inverse step
schedule sampling scheme. As in the forward step approach, the model trains half time
using ground-truth annotations and the other half using the model’s outputs. In the
inverse approach, it starts training with the model’s outputs and changes to ground-
truth annotations on the second half of training. The inverse step is implemented
following Eq. 3.4.

threshold =

0, n < 20
1, n ≥ 20

(3.4)
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Figure 3.7: Decay schemes implementing schedule sampling.

3.3.2 Frame Skipping
The second curriculum learning technique that has been studied is frame skipping. As
mentioned in previous sections, this strategy is motivated by the appearance changes
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of the objects on video sequences. Limited by the number of consecutive frames that
the model sees on a training iteration, parameter named length clip, if the changes of
a sequence are slow, the model may not be taking the most advantage of the informa-
tion of the sequences during training.

The KITTI-MOTS dataset is compounded by slowmotion sequences, the appear-
ance changes are slow. A sequence may have a large number of frames with almost no
variation. This fact has been illustrated in Figure 3.8. The three images on the top are
three consecutive frames, skipping step of 0. On the other hand, the three images on
the bottom have a skipping step of 9 frames between each one of them. While on the
top row there is almost no change, on the bottom row it can be seen how the camera
is making a turn to the right. The model sees more changes, making it more robust
to these variations.

Figure 3.8: Comparison on the training sequences of the model with and without
frame skipping.

By applying curriculum learning, the experiments under frame skipping have been
performed by gradually increasing the number of frames skipped between the frames
shown to the model. Two schemes are considered:

• Skipping from 0 to 9 frames
For this implementation, at the start, no frames are skipped. After that, every
number of epochs, the number of skipped frames increases until 9 consecutive
frames are skipped. The total number of epochs is divided equally so each skip-
ping step is trained during the same number of epochs. A skipping step is defined
as a finite number of skipped frames. In this scheme, there are 10 skipping steps.
From one skipping step to the next, the increment unit is the addition of one
more frame to skip.

KITTI-MOTS sequences are long enough to skip 9 consecutive frames and still
be able to train correctly the model. This maximum number of skipped frames
has been chosen taking into account the number of epochs for each training
step and the speed of the changes in the sequences. A higher maximum num-
ber of skipped frames implies less training epochs for each skipping step. This
could lead to the model not having enough time to learn the changes in motion.
Moreover, after analysing the motion of different sequences, it has been con-
cluded that when skipping 9 frames, the model is able to see significant changes.
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Increasing more this skipping step would not contribute to the information pro-
vided to the model. Further details of this study can be seen in Appendix A.

• Skipping from 1 to 5 frames
In this case, the model starts training with one skipped frame and increases the
skipping step until 5. In the same way as in the previous implementation, the
total number of epochs is equally divided to provide the same training time for
each skipping step. Compared to the previous scheme, this implementation re-
duces the skipping steps from 10 to 5, providing the double amount of training
time for each skipping step.

The motivation behind this scheme arises from questioning the training time
available for each skipping step. This approach tries to find the optimum balance
between the changes that the model sees during training and the training time
for each one of this changes, as the changes that the model sees are different
on each step. The model starts training with a skipping step of 1 instead of
0 due to the similarity between two consecutive frames. It has been observed
that the sequences shown to the model without skipping any frame offer almost
no change. The evolution of the sequences is too slow for consecutive frames
to caption any variation. Due to this similarity, the model ends seeing several
consecutive frames as if it was only one frame due to the information that it
provides. The length clip is not used to its most. It has been considered that
starting to train without skipping frames and, later, increase to skip one frame
was not necessary. Furthermore, increasing the step until 5 provided enough
changes to the sequences and allowed to duplicate the training time per step.
The whole study can be found in Appendix A.

For the YouTube-VOS benchmark, the first scheme, which skips from 0 to 9, has
been adapted. As the sequences on this benchmark are shorter than in KITTI-MOTS,
the skipping scheme is from 0 to 3 consecutive frames skipped. This is the maximum
number of skips that these sequences allow.

As will be explained on Chapter 4, the baseline model which has been used on
most experiments implements a Forward Step Schedule Sampling (FSSS) strategy, as
it was used on the original paper of RVOS [6]. This means that there are two training
stages, the first where the ground-truth annotation is used as input of the next step,
and the second stage where the outputs of the model are used instead.

While on the first half of training frame skipping is always implemented, during
the second half both with and without frame skipping has been studied. This results
in two training methodologies: on one hand training during all time with a frame
skipping strategy and, on the other hand, only training with frame skipping when
using ground-truth annotations. When using the first strategy, the skipping step is
restarted to the original value (skipping step of 0 or skipping step of 1) when the
second phase starts. On the second strategy, when training with the model’s outputs,
no frame is skipped. As different strategies are combined, FSSS and frame skipping,
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an excessive increment on the difficulty wants to be avoided. The four combinations
are illustrated in Figures 3.9 and 3.10.
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Figure 3.9: Training strategies for the skipping scheme from 0 to 9.
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Figure 3.10: Training strategies for the skipping scheme from 1 to 5.

3.3.3 From temporal only to spatio-temporal
As explained on Section 3.2, RVOS [6] implements spatio-temporal recurrence. This
model gives the option to train by using spatio-temporal recurrence or only using the
temporal recurrence. Even though the authors of the paper define that using spatio-
temporal recurrence during all training obtains the best performance, the effect of
the two recurrences on KITTI-MOTS has been questioned. For this reason, the set
of experiments on this section explore the effect of this information on the model’s
performance.

Different cases can be defined when exploiting and combining the two options.
The first one would be training with spatio-temporal recurrence during all the train-
ing time while the second case would be training only with temporal recurrence.
Nevertheless, under the curriculum learning context, more emphasise is made into the
case where the model is first trained with only temporal recurrence and, later, spatial
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recurrence is added, training the model with spatio-temporal recurrence during the
last half of the training time. Using a reverse curriculum learning approach, the oppo-
site procedure has also been implemented. In this case, the model starts training with
both spatio-temporal recurrence and, in the second half of training, only temporal
recurrence is used.

3.3.4 Loss penalization by object area
This approach tries to take benefit on first learning easier objects, which are bigger,
with more resolution and more defined. This technique motivation is to address the
challenge that entails the changes in resolution of the objects during a video sequence.
To do so, the model is forced to focus only on penalizing the big and medium objects
at first. Once a certain number of epochs has passed, the small objects are also taken
into account.

To definewhich objects are considered small, medium or big, the official definition
on COCO has been used [32]. For a resolution of 480x640, an interval of values is
defined for each category. These intervals have been adjusted to the resolutions used
on the experiments. The used intervals for a resolution of 256x448 are the following:

• Big objects: [592,1e5 ]

• Medium objects: [202, 592]

• Small objects: [0, 202]

Meanwhile, the used intervals for a resolution of 287x950 are the following:

• Big objects: [902,1e5 ]

• Medium objects: [302, 902]

• Small objects: [0, 302]

To penalize only big and medium objects, the loss has been masked. For each
object, the number of pixels is computed using the ground-truth. To focus on big
and medium objects, if the area does not surpass a value of 202 for an image resolution
of 256x448 or 302 for an image resolution of 287x950, the object is not taken into
account.

3.4 Results Preparation
RVOS outputs the predictions generating a white and black image for each detected
instance. For a frame with 3 cars, it will generate three images, one per car. Each
instance will be depicted in white on a black background. To evaluate the results,
post-processing of these images has been done where the images which correspond
to the same frame have been combined. The importance of this post-processing falls
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on how is made the decision when two instances overlap.

In the KITTI-MOTS dataset, as instances are close to each other, there is a great
number of overlapping instances. For these cases, the decision has been made by
observing the behaviours of the area of the instance on previous frames. A common
behaviour that has been observed when an instance overlaps completely another one
is the fast change of the object’s area. For example, the growth in the area when an
instance which was first perceived as one single car changes to being perceived as two
cars is fast in time (in one or two frames) and significant. For this reason, in the case of
overlapping, the area of each instance is calculated on the two previous frames. These
two values are added and compared between instances. The instance with less area
change over the two previous frames is the one which is considered to be correct in
case of overlapping.



4 Experiments

In this chapter, the results obtained with each of the experiments that have been per-
formed are exposed. First of all, the used metrics for evaluating and comparing the
models’ results are explained. After that, the results of each experiment are presented.

4.1 Evaluation metrics
For the experiments performed with the KITTI-MOTS benchmark, the metrics used
to evaluate the obtained results follow the official procedure of the KITTI-MOTS
challenge [33]. The organizers of the challenge provide a GitHub repository with
scripts to evaluate the results [34]. These scripts offer the score performance on a
wide range of metrics and they also compute values of interest such as the number of
true positives or false positives, for example.

Fourmetrics of the available range have been selected. These are sMOTSA,MOTSP,
Recall and Precision. These four metrics provide a full and global vision of the mod-
els’ performance. All these metrics are separately computed for the cars class and the
pedestrians class. On this thesis, the focus is made on the cars class due to the imbalance
of classes, which can be seen in Figure 3.2.

• sMOTSA: soft Multi-object Tracking and Segmentation Accuracy
This metric has been taken as the reference in order to compare the performance
between models. The reason why this is the reference metrics can be found
on [35], where the different multi-object tracking segmentation challenges are
defined. On the official site, it is specified that the sMOTSA score is the one used
to evaluate and compare the performance of the models participating. sMOTSA
is defined as follows [27]:

sMOTSA = T̃P − |FP | − |IDS|
|M |

(4.1)

This metric measures segmentation as well as detection and tracking quality.
T̃P refers to the soft number of true positives. Instead of counting the number
of true positives TP by counting how many masks reach an IoU of more than
0.5, for T̃P all the true positives are accumulate. |FP | refers to false positives;
|IDS| refers as ids switches, which means the set of ground truth masks whose

19
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predecessor was tracked with a different id; and |M | is the non-empty ground-
truth pixel mask.

• MOTSP: Multi-object Tracking and Segmentation Precision
This metric implements a mask IoU based version of MOTP defined on [36]. It
represents the total error in the estimated position formatched object-hypothesis
pairs over all frames, averaged by the total number of matches made. It shows
the ability of the tracker to estimate precise object positions, independent of its
skill at recognizing object configurations, keeping consistent trajectories, and
so forth.

MOTSP = T̃P

|TP |
(4.2)

• Recall
The recall metric computes the ratio of actual positives that are captured by the
model’s prediction.

Recall = TP

TP + FN
(4.3)

• Precision
The precision metric measures the proportion of actual positive predictions out
of the total positive predictions.

Precision = TP

TP + FP
(4.4)

On the experiments, the overall metrics have been computed following two proce-
dures. The first one follows the official evaluation of the KITTI-MOTS challenge. It
computes the metrics on the total amount of predicted masks of all sequences equally,
averaging the metrics per pixel. In this work, a second procedure to obtain the over-
all metrics is presented, due to the unique characteristics of each sequence and the
unbalance of the number of frames, depicted on Figure 4.1. The overall metrics are
obtained averaging per sequence to avoid the domination of the results over very long
sequences with specific challenges.

The metrics used to evaluate the experiments performed on YouTube-VOS are
different from KITTI-MOTS. The evaluation metrics used are the ones used on the
workshop of YouTube-VOS which are defined on [37].

The first metric is the region similarity J . It measures the number of mislabeled
pixels. It is defined as Eq. 4.5 where M is a given output segmentation and G is its
corresponding ground-truth mask.

J = M ∩G
M ∪G

(4.5)
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Figure 4.1: Frames per sequence of the validation set on the KITTI-MOTS bench-
mark.

The second used metric is the contour accuracy F , computed as defined on Eq.
4.6. Pc and Rc are the contour-based precision and recall, computed between the
contour points of c(M) and c(G), via a bipartite graph matching in order to be robust
to small inaccuracies. c(M) is the set of closed contours delimiting the spatial extent
of the mask. The same definition extends to c(G), applied to the ground-truth mask.

F = 2PcRc

Pc +Rc

(4.6)

For bothmetrics, two categories are differentiated: seen and unseen categories. On
the YouTube-VOS dataset, in the training set, there are 65 object categories which
are regarded as seen categories. In the validation set, there are 91 unique object cat-
egories which include all the seen categories and 26 unseen categories. The unseen
categories are used to evaluate the generalization ability of different algorithms. The
evaluation is performed on these two categories, providing the performance score of
region similarity J and contour accuracy F for both seen and unseen categories.

Lastly, an average of the four metrics is computed and defined as "Overall". Due
to computational and time limitations, not all training methodologies have been per-
formed on the YouTube-VOS dataset. Only the most promising strategies have been
tested on this benchmark. The promising strategies have been chosen based on the
best results obtained on KITTI-MOTS.

4.2 Experiment Sets
On the following sections, the results of the different curriculum learning strategies
are exposed. For each technique, two sets of experiments are presented. The first set
of experiments are performed using an image resolution of 256x448, a batch size of 4
and a length clip of 5 consecutive frames. These are the original parameters in which
RVOS was trained for YouTube-VOS. The second set of experiments uses an image
resolution of 287x950, a batch size of 2 and a length clip of 3. The image resolution
of these models is 287x950, which maintains the aspect-ratio of the original images
of the KITTI-MOTS benchmark, which is approximately 3,3; value obtained by di-
viding the width of the image by its height. At the same time, compared with the
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resolution of the first set of examples, in this case, the image resolution is bigger. Its
the highest value that the models allow in terms of memory usage when using a batch
size of 2 and length clip of 3, the minimum acceptable values for these parameters.
A length clip value lower than 3 when tackling the video object segmentation task is
considered unsuitable. These two sets of parameters have been found to provide the
best performances compared to other combinations of image resolutions, batch size
and length clip. Table 4.1 and Table 4.2 show the results of the four combinations
performed. These results are performed using a forward step schedule sampling, as it
was originally implemented RVOS [6], and obtained on the KITTI-MOTS bench-
mark. It can be seen how the best sMOTSA scores are obtained with the two chosen
configurations.

Table 4.1: Image resolution variations, averaged per pixels.

Image Aspect Batch Length sMOTSA MOTSP Recall Precisionresolution ratio size clip
256x448 YouTube-VOS 4 5 -2,80 76,30 42,20 55,80
412x723 YouTube-VOS 2 3 -56,70 76,90 50,20 35,10
178x590 KITTI-MOTS 4 5 -31,90 74,30 48,90 42,60
287x950 KITTI-MOTS 2 3 -18,10 71,70 39,00 46,10

Table 4.2: Image resolution variations, averaged per sequence.

Image Aspect Batch Length sMOTSA MOTSP Recall Precisionresolution ratio size clip
256x448 YouTube-VOS 4 5 -6,83 68,12 37,38 49,70
412x723 YouTube-VOS 2 3 -46,24 76,00 44,75 37,84
178x590 KITTI-MOTS 4 5 -27,30 73,53 47,97 41,23
287x950 KITTI-MOTS 2 3 -11,70 75,68 46,47 47,63

On the tables presenting the results for each technique on the following sections,
the baseline model defined for each training set can be found highlighted in grey. The
results which surpass the performance of the baseline are highlighted in bold. For all
the cases, the higher the value of the metric, the better. All experiments are trained
during a total number of 40 epochs.

4.3 Schedule Sampling
On this section, the results of the experiments with the schedule sampling technique
are presented, implemented as explained on Section 3.3.1.
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4.3.1 KITTI-MOTS Benchmark
The two sets of experiments, performed with their correspondent training parameters
on the KITTI-MOTS benchmark and evaluated computing the metrics with the two
previous explained strategies, are shown on the following tables.

Table 4.4 and Table 4.5, show the results of the first set of experiments. This set
has been trained with the parameters specified on Table 4.3. Evaluating the results,
it can be observed how the results differ from one table to the other. On the pixel
level evaluation, it can be seen that none of the other models outperform the baseline
model. Instead, when averaging over the sequences, better performance is obtained
for all the proposed models, excluding the teacher forcing approach.

Focusing on Table 4.5, the model with the best performance is the inverse step ap-
proach, followed by the forward linear schedule sampling. With a forward schedule
sampling strategy, the linear approach outperforms the step approach. Instead, when
using an inverse strategy, the step approach increases the overall performance of the
sequences more than the linear approach.

Table 4.3: Training parameters for the experiments on Table 4.4 and Table 4.5.

Epochs Resolution Batch size Length clip
40 256x448 4 5

Table 4.4: Quantitative results on the schedule sampling strategies averaged per pixels.

sMOTSA MOTSP Recall Precision
Teacher Forcing -21,50 73,80 33,90 43,00
Forward Step -2,80 76,30 42,20 55,80
Inverse Step -5,30 75,20 42,90 54,20
Forward Linear -4,80 75,50 41,20 54,40
Inverse Linear -11,40 74,30 49,80 51,60

Table 4.5: Quantitative results on the schedule sampling strategies averaged per se-
quence.

sMOTSA MOTSP Recall Precision
Teacher Forcing -16,57 73,98 32,81 43,62
Forward Step -6,83 68,12 37,38 49,70
Inverse Step -1,57 73,17 42,79 55,00
Forward Linear -2,29 72,97 41,00 53,64
Inverse Linear -4,77 73,35 48,60 53,06

To understand more these results, a qualitative analysis has been performed. First,
the focus will be made on the forward strategies where it has been seen in the quanti-
tative analysis that, with the image resolution of 256x448,the linear decay outperforms



CHAPTER 4. EXPERIMENTS 24

the step decay.

Though the two schemes have negative scores, after analysing the images it has
been observed that the linear decay adapts less to the changes of appearance of the
objects, contrary to what one would think when observing the quantitative analysis.
Using this technique, instances disappear faster than when using the step decay. In-
stead, with the step decay, as instances do not disappear, they offer more errors and
thus more false positives appear which greatly influence on the computation of the
score metrics. For this reason, quantitatively, this model performs worse than the lin-
ear decay. This phenomenon can be observed in Figure 4.2. Focusing on the green
mask, it can be seen how it generates much more error on the baseline model. Using
a forward linear strategy, this mask disappears quicker. For this same scheme, the blue
and pink masks are already lost meanwhile, when using the forward step, the blue
mask is still detected.

(a) Ground-truth annotation

(b) Forward Step (baseline model)

(c) Forward Linear

Figure 4.2: Qualitative results on non-consecutive frames for the schedule sampling
strategies with an image resolution = 256x448, batch size = 4 and length clip = 5.
Special focus is made on the error that generated the green instance for the baseline
model. The effect of instances that disappear quickly can also be observed for the blue
and pink instances.

For the inverse strategies, each of them has been compared to the baseline (for-
ward step). Figure 4.3 shows the improvement of the inverse step versus the forward
step scheme. The inverse step has learned better the appearance of the cars compared
to the baseline. Horizontal changes of appearance are the ones in which the camera
turns to the right/left and the position of the cars changes relative to the camera on the
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horizontal axis. Vertical changes are the ones that appear when the car goes through
a straight road and it gets closer to the cars on each side of the road or to the cars
in front, with a change in depth. While horizontal changes are a common problem
on all the models, independently from the schedule sampling scheme, the inverse step
strategy shows improvements with vertical changes of appearance. In Figure 4.3c, it
can be seen how the inverse step model has not lost the green and turquoise masks on
the first and second frames, compared with Figure 4.3b.

(a) Ground-truth annotation

(b) Forward Step (baseline model)

(c) Inverse Step

Figure 4.3: Qualitative results on non-consecutive frames for the step strategies with
an image resolution = 256x448. The baseline model losses faster instances like the
green of the turquoise segmented instances.

When comparing the inverse linear strategywith the baselinemodel, the improve-
ment of performance is subtle. In this case, it is observed that some instances are
defined much better with the inverse strategy meanwhile some other instances get
greatly confused with vertical close by objects. Figure 4.4 shows the performance of
the inverse linear strategy on the same piece of the sequence evaluated in Figure 4.2.
In this case, neither of the blue nor pink masks disappears and the green mask is more
defined, producing less error. The model seems to adapt more to the changes in the
objects.
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(a) Forward Step (baseline model)

(b) Inverse Linear

Figure 4.4: Qualitative results on non-consecutive frames comparing the inverse linear
strategy with the baseline. Improvement on the segmentation of the green masked car
as well as the non disappearance of the pink mask demonstrate a better performance.

Even though this segmentation shows great improvement comparedwith the base-
line model, the gain in adaptation of the model also produces important errors. Figure
4.5 shows how the blue instance, due to perspective occludes a vertical pole during
some consecutive frames (left image). When this instance finally separates from the
pole (right image), the model has assimilated the two of them as the same instance
and false positives are generated. Due to the balance between the improvement on
assimilating the changes of appearance and the mistakes due to this adaptation, this
model improves the performance over models that also generate false positives but still
perform worse than models such as the forward linear strategy where the instances
disappear quickly.

Figure 4.5: Error on the inverse linear scheme due to the adaptation of changes in
appearance of objects.

Table 4.7 and Table 4.8 show the results obtained for the second set of experiments
with an image resolution that maintains the KITTI-MOTS aspect-ratio, with train-
ing parameters specified in Table 4.6.

In this set of experiments, the same behaviour as in the results obtained for the
first set of experiments is observed. Focusing on the forward strategies, the linear
decay outperforms the step decay. Instead, when focusing on the inverse strategies,
the step scheme outperforms the linear. However, compared to the previous set of
experiments, in this set, the results obtained with the inverse strategies provide greater
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improvement of the performance. A score of 8,90 for the sMOTSA can be observed
for the model with the best performance, the inverse step approach.

Table 4.6: Training parameters for the experiments on Table 4.7 and Table 4.8.

Epochs Resolution Batch size Length clip
40 287x950 2 3

Table 4.7: Quantitative results on the schedule sampling strategies averaged per pixel.

sMOTSA MOTSP Recall Precision
Teacher Forcing -0,10 77,70 46,10 56,40
Forward Step -18,10 71,70 39,00 46,10
Inverse Step 8,60 78,90 47,20 63,00
Forward Linear -8,90 77,20 47,20 51,50
Inverse Linear 2,10 77,80 50,30 58,20

Table 4.8: Quantitative results on the schedule sampling strategies averaged per se-
quence.

sMOTSA MOTSP Recall Precision
Teacher Forcing 4,24 77,00 45,84 57,87
Forward Step -11,70 75,68 46,47 47,63
Inverse Step 8,90 77,90 42,86 60,33
Forward Linear -5,58 76,76 46,72 51,53
Inverse Linear 2,48 77,87 47,12 57,07

As said before, comparing the forward strategies, the linear decay outperforms the
step decay. On most of the sequences, their performance is similar. Even so, in the
sequences where the linear decay outperforms the step scheme, the improvement is
notable. Figure 4.6 shows the sequence which improves the most. It can be seen how
the step scheme drags some error from a previous instance (mask coloured in green
on top of the blue segmented car). This error produces false positives and reduces the
true positives when coming across another instance, which is going to be segmented
erroneously (see the third frame). Also, the orange car is perceived as if it was part of
the car segmented in red, error which appears on the first frame and is dragged when
the instance gets more defined (second frame). The forward linear approach does not
make these errors.
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(a) Ground-truth annotations

(b) Forward Step (baseline model)

(c) Forward Linear

Figure 4.6: Qualitative results on non-consecutive frames for the forward strategies
with an image resolution = 287x950. On the baseline model, instances get mixed and
error from previous instances (mask in green) is dragged through the sequence.

When focusing on the inverse strategies, the inverse step shows impressive perfor-
mance results. This strategy, with an image resolution of 287x950, batch size of 2 and
length clip of 3 outperforms all the models and shows improvements in almost all of
the sequences (see Figure 4.7).
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Figure 4.7: sMOTSA per sequence for the forward step (baseline) and the inverse step
strategies.
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The improvements of the inverse step over the forward strategy (baseline) are
shown in Figure 4.8. The errors on the baseline model can be seen on the pink in-
stance. On the second frame, it is not well defined, producing false positives between
the separation of the cars. Moreover, in the third frame, the pink instance gets con-
fused for the blue instance. When using the inverse step, the pink mask and the other
masks are well defined and do not spread error.

(a) Ground-truth annotations

(b) Forward Step (baseline model)

(c) Inverse Step

Figure 4.8: Qualitative results on non-consecutive frames for the step strategies with
an image resolution = 287x950. The pink instance, which latter is assimilated by the
blue mask, produces significant errors on the baseline model.

The teacher forcing approach, in this set of experiments has also outperformed
the baseline model. Still, this technique does not surpass the score obtained with the
inverse step approach. It seems that the configuration of this set of experiments bene-
fits greatly from fine-tuning at the end of training with the ground-truth annotations.

Finally, the results obtained with the inverse linear strategy also offer improve-
ments compared with the forward schemes. This can be seen in fragments of scenes
such as the one depicted in Figure 4.9. Both the forward step and forward linear
approaches have negative performance scores. These two strategies produce a large
number of false positives. For the baseline model (Figure 4.9b), it can be seen how the
first frame is correctly segmented but during the second frame, the error between the
green and red instance starts spreading. On the last frame, both instances are identi-
fied as the same one. The forward linear (Figure 4.9c) in this case, due to the reflection
of the road and the size of the instance, it gets confused and identifies the road as if it
is the green instance. Contrary to all of that, the inverse linear scheme (Figure 4.9d)
segments almost perfectly all masks.
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(a) Ground-truth annotations

(b) Forward Step (baseline model)

(c) Forward Linear

(d) Inverse Linear

Figure 4.9: Qualitative results on non-consecutive frames for the inverse linear strat-
egy compared with the forward strategies with an image resolution = 287x950. False
positives are generated with either of the forward strategies.

4.3.2 YouTube-VOS Benchmark
The four training variations have also been tested on the YouTube-VOS benchmark,
in order to evaluate if the different strategies depend on the dataset or if a more gen-
eral conclusion can be extracted. The training parameters that have been used are the
same defined originally for RVOS [6].

On Table 4.9, it is seen that the best performance is obtained with the baseline
model. Neither the inverse strategies nor the forward linear strategy improve the
performance of the model. Even so, it can be seen that the second best performance
is obtained with the inverse step, obtaining the same pondering for the category of J
unseen.
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Table 4.9: Quantitative results on the schedule sampling strategies for the YouTube-
VOS dataset.

Epochs Resolution Batch size Length clip
40 256x448 4 5

Overall J seen J unseen F seen F unseen
Forward Step 0,566 0,629 0,451 0,673 0,514
Inverse Step 0,557 0,622 0,451 0,655 0,499
Forward Linear 0,545 0,601 0,442 0,639 0,499
Inverse Linear 0,551 0,625 0,430 0,660 0,490

4.4 Frame Skipping
This section introduces the quantitative and qualitative results for the models trained
by using frame skipping strategies.

4.4.1 KITTI-MOTS Benchmark
Below, the results of the experiments implementing frame skipping strategies per-
formed on the KITTI-MOTS dataset are shown.

The baseline model used for evaluating the performance implements a forward
step schedule sampling, as the original RVOS. In a forward step strategy, two parts of
the training process can be differentiated. On all the result’s tables of this section, it is
specified in which part of the training process a skipping scheme is applied and which
scheme it is. The study of two skipping schemes on two training implementations,
previously explained in Section 3.3.2, has been conducted.

Table 4.11 and Table 4.12 show the results for the first set of experiments, with the
training parameters specified in Table 4.10. It can be seen that, when implementing a
skipping strategy in each one of the training phases, it does not improve the perfor-
mance of the model. In the second phase of training, the difficulty is being increased
by using the model’s outputs instead of the ground-truth annotations as the input of
the next step and also by applying the frame skipping strategy. By combining the two
strategies on the last part, the model benefits of neither of them.

Instead, taking focus on the second training implementationwhere the frame skip-
ping scheme is only applied when using the ground-truth annotations, the model
benefits from using this technique. It improves its performance considerably with ei-
ther of the frame skipping schemes. The second phase of training then fine-tunes the
model.

These results agree on the two evaluation methodologies, the official evaluation
and the averaged per sequence evaluation.
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In this set of experiments, skipping from 1 frame to 5 frames outperforms the
other skipping scheme. This demonstrates that the model benefits from seeing more
changes as the sequences on the KITTI-MOTS dataset have a slow motion and, at the
same time, the training time per skipping step is an important factor in order to avoid
instability. If the changes occur too fast, the model does not have time to adjust to
them.

Table 4.10: Training parameters for the experiments on Table 4.11 and Table 4.12.

Epochs Resolution Batch size Length clip Sampling
40 256x448 4 5 FSSS

Table 4.11: Quantitative results on the frame skipping strategies averaged per pixel.

Skip @ GT Skip @ Pred. sMOTSA MOTSP Recall Precision
No skip No No -2,80 76,30 42,20 55,80
From 0 to 9 Yes Yes -31,90 58,30 1,00 3,10
From 1 to 5 Yes Yes -51,90 70,60 27,40 28,70
From 0 to 9 Yes No 2,30 75,50 51,90 59,40
From 1 to 5 Yes No 4,90 79,10 41,00 60,50

Table 4.12: Quantitative results on the frame skipping strategies averaged per se-
quence.

Skip @ GT Skip @ Pred. sMOTSA MOTSP Recall Precision
No skip No No -6,83 68,12 37,38 49,70
From 0 to 9 Yes Yes -39,39 58,30 1,57 3,33
From 1 to 5 Yes Yes -43,44 70,43 27,16 32,06
From 0 to 9 Yes No -0,87 74,73 49,43 55,49
From 1 to 5 Yes No 0,51 79,10 39,26 53,57

Qualitative results for the best schemes in Table 4.12 are shown in Figure 4.10. In
this case, the three images are non-consecutive frames that belong to a part of a turn
scene of a sequence. It can be seen that when applying any of the two frame skipping
schemes only when training with ground-truth annotations improve the quality of
the segmentation. On both Figure 4.10c and 4.10d, the false positives of the green
instance disappear.
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(a) Ground-truth annotation

(b) Baseline model

(c) Frame skipping from 0 to 9

(d) Frame skipping from 1 to 5

Figure 4.10: Qualitative results of a turning scene with frame skipping schemes for
an image resolution = 256x448, batch size = 4 and length clip = 5. The baseline model
does not adapt well to the changes in position of the green segmented car, spreading
the mask. The frame skipping schemes solve this problem.

The second set of experiments, which maitains the KITTI-MOTS aspect-ratio,
has been trained with the parameters specified on Table 4.13. Observing the results on
Tables 4.14 and 4.15, the model also benefits from using either of the frame skipping
frames during the first half of training. The same behaviour as on the previous set of
experiments is observed. On the per sequence evaluation, the frame skipping scheme
from 1 to 5 still outperforms the other strategies.
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Table 4.13: Training parameters for the experiments on Table 4.14 and Table 4.15.

Epochs Resolution Batch size Length clip Sampling
40 287x950 2 3 FSSS

Table 4.14: Quantitative results on the frame skipping strategies averaged per pixels.

Skip @ GT Skip @ Pred. sMOTSA MOTSP Recall Precision
No skip No No -18,10 71,70 39,00 46,10
From 0 to 9 Yes Yes -26,70 77,00 47,00 43,30
From 1 to 5 Yes Yes -28,00 76,90 44,30 43,00
From 0 to 9 Yes No -5,60 78,90 52,40 53,30
From 1 to 5 Yes No -12,90 76,90 52,30 50,80

Table 4.15: Quantitative results on the frame skipping strategies averaged per se-
quence.

Skip @ GT Skip @ Pred. sMOTSA MOTSP Recall Precision
No skip No No -11,70 75,68 46,47 47,63
From 0 to 9 Yes Yes -17,66 74,99 46,70 50,00
From 1 to 5 Yes Yes -22,87 75,20 41,77 45,99
From 0 to 9 Yes No -8,18 76,92 44,67 48,21
From 1 to 5 Yes No -7,05 75,86 53,00 54,49

Notice that, in this set, the difference between the performance of the two skip-
ping schemes, from 0 to 9 and from 1 to 5 when applying the skipping scheme only
when using the ground-truth annotations, is not very significant. This is due to the
length clip parameter. Both skipping schemes were thought for a length clip value
of 5. When seeing only three frames per training iteration, using a frame skipping
scheme benefits but it is limited to seeing fewer appearance changes. Both schemes
become more similar, with fewer changes of appearance. The model does not benefit
to the fullest of the variation between the two schemes.

On Figure 4.11, the same sequence as in the previous set of experiments has been
evaluated. In this case, it can also be observed improvement when using frame skip-
ping techniques in the first phase of training. When turning, the baseline model does
not segment correctly the green instance, it gets confused with the background. On
the frame skipping models, this error is smaller, there are still false positives but the
amount of them is considerably smaller than on the baseline model.
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(a) Ground-truth annotation

(b) Baseline model

(c) Frame skipping from 0 to 9

(d) Frame skipping from 1 to 5

Figure 4.11: Qualitative results of a turning scene with frame skipping schemes for
an image resolution = 287x950, batch size = 2 and length clip = 3. The baseline model
does not adapt well to the changes in position of the green segmented car, spreading
the mask. The frame skipping schemes solve this problem.

4.4.2 YouTube-VOS
The strategy that has obtained the best gains with the KITTI-MOTS dataset has been
tested onYouTube-VOS. This strategy implemented a forward step schedule sampling
and used a frame skipping scheme only when using ground-truth annotations.

For theYouTube-VOS, a different skipping scheme from theKITTI-MOTS bench-
mark has been used, as the video sequences are shorter. In this case, the used scheme
starts without skipping any frame and, gradually, increases until 3 consecutive frames
are skipped.

Table 4.16 shows the results obtained. It can be seen that the model performance
does not improve. YouTube-VOS does not benefit from this strategy as most of its
video sequences have faster motion compared to KITTI-MOTS. It has to be taken
into account that this dataset already applies a skip-frame annotation strategy. To
creat the dataset, annotations are generated every five frames. The authors believe
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that the temporal correlation between five consecutive frames is sufficiently strong that
annotations can be omitted for intermediate frames to reduce the annotation efforts
[5].

Table 4.16: Quantitative results on the frame skipping strategies for the YouTube-
VOS dataset.

Epochs Resolution Batch size Length clip Sampling
40 256x448 4 5 FSSS

Skip @ GT Skip @ Pred. Overall J seen J unseen F seen F unseen
No skip No No 0,566 0,629 0,451 0,673 0,514
From 0 to 3 Yes No 0,553 0,619 0,434 0,661 0,497

4.5 From temporal only to spatio-temporal
This set of experiments has explored the impact of spatial and temporal recurrence
on the model’s performance. The baseline model implements the forward step sched-
ule sampling with spatio-temporal recurrence during all the training. The other ex-
periments also implement this scheme, differentiating the two training stages where
the model trains first using the ground-truth annotations and, on the second half of
training, it uses its outputs. On each stage, it has been chosen which combination of
temporal and spatial recurrence has been used. Under the curriculum learning con-
text, the experiment of interest is the one which starts by training with only temporal
recurrence and latter, on the second half of training, spatial recurrence is added. This
way, the model starts with less information and it is increased after 20 epochs. Even
though this is the relevant experiment in the context of the thesis, two more exper-
iments, excluding the baseline, have been performed to provide a global view. The
first of them trains the model only with temporal recurrence. The second one mir-
rors the curriculum technique, providing a reverse approach. It starts training with
spatio-temporal recurrence and, after 20 epochs, the model only trains with tempo-
ral recurrence for the rest of the training process. These experiments have only been
tested for the KITTI-MOTS datset.

Results on the first set of experiments have been obtained training with a com-
pressed image resolution of 256x448, a batch size of 4 and a length clip of 5 (Table
4.17). The results are presented in Table 4.18 and Table 4.19. On both evaluations,
by pixel level and by sequence level, it can be seen that the second best performance is
obtained with the curriculum learning strategy where the model starts training with
only temporal recurrencewith scores of -1,10 and 1.71. Even so, the best performance
is obtained when only using temporal recurrence during all training improving the
performance around 4 points over the curriculum learning strategy and improving
even more when compared to the baseline. When using only temporal recurrence,
the improvement compared with the baseline, on the pixel level, is around 7 points
and, on the sequence level, is around 14 point. The reverse strategy offers poor per-
formance.
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Table 4.17: Training parameters for the experiments on Table 4.18 and Table 4.19.

Epochs Resolution Batch size Length clip Sampling
40 256x448 4 5 FSSS

Table 4.18: Quantitative results on strategies with temporal and spatial recurrence
averaged per pixels.

Ground-truth Prediction Metrics
Temporal Spatial Temporal Spatial sMOTSA MOTSP Recall Precision

Yes Yes Yes Yes -2.80 76,30 42,20 55,80
Yes No Yes No 5,00 77,70 46,70 62,00
Yes No Yes Yes -1,10 76,40 49,50 57,40
Yes Yes Yes No -7,00 77,50 43,60 53,10

Table 4.19: Quantitative results on strategies with temporal and spatial recurrence
averaged per sequence.

Ground-truth Prediction Metrics
Temporal Spatial Temporal Spatial sMOTSA MOTSP Recall Precision

Yes Yes Yes Yes -6.83 68,12 37,38 49,70
Yes No Yes No 6,95 75,72 46,93 60,16
Yes No Yes Yes 1,71 74,66 49,10 59,49
Yes Yes Yes No -10,23 75,25 38,43 48,35

This set of results demonstrates that, when working with temporal and spatial
recurrence, a curriculum learning strategy does not provide the best results. The im-
provement over the baseline is due to the effect that spatial recurrence has over the
performance instead of the idea of the planned strategy in which more information is
gradually added to the model. In this set of experiments, the spatial recurrence makes
the model confused. This is due to the fact that the KITTI-MOTS dataset contains a
lot of small instances very close to each other. When removing this information, the
model improves in all cases except for the reverse strategy. On the reverse strategy, as
the model has already started training with the spatial component, the error is already
present in the experiment from the start.

Figure 4.12 shows the segmentation mask predicted by the four models on a se-
quence with two nearby cars. It can be observed that on the models where spatial
recurrence is used even once (b,d and e), the blue car gets merged with the green car.
Instead, when using only temporal recurrence, even though the green mask also dis-
appears as on the baseline model, the car which should have been segmented in green
does not merge with the car next to it. For the model with a curriculum learning
strategy, it can be seen how it is the model that preserves the most the segmentation
of the green car. As this model uses spatial recurrence on the second half of train-
ing, the blue car ends assimilating part of the green car as in the other examples with
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spatio-temporal recurrence. Models that use spatial recurrence have a larger number
of false positives.

(a) Ground-truth annotations

(b) Baseline model

(c) Only temporal model

(d) Only temporal on the first half of training

(e) Only temporal on the second half of training

Figure 4.12: Qualitative results of nearby instances with different combinations of
temporal and spatial recurrence for an image resolution = 256x448, batch size = 4 and
length clip = 5. For models which use spatial recurrence, the instances close to each
other (blue and green masks) merge into one.

Tables 4.21 and 4.22 show the results of the second set of experiments, performed
with smaller values of batch size and length clip and with a higher image resolution
which maintains the aspect-ratio of the KITTI-MOTS dataset. All the training pa-
rameters are specified on Table 4.20

For themodel which uses spatio-temporal recurrence during all training (the base-
line model) and for the model which uses spatio-temporal recurrence only during the
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first half of training and latter changes to only using temporal recurrence, the quan-
titative results agree on both Table 4.21 and 4.22. While on Table 4.21 it seems that
the curriculum learning strategy improves, looking at Table 4.22, the opposite can be
seen. The same happens with the model which uses only temporal recurrence during
all training, where on Table 4.21 the performance is far worse than the baseline and
on Table 4.22 the performance is similar to the baseline.

Table 4.20: Training parameters for the experiments on Table 4.21 and Table 4.22.

Epochs Resolution Batch size Length clip Sampling
40 287x950 2 3 FSSS

Table 4.21: Quantitative results on strategies with temporal and spatial recurrence
averaged per pixel.

Ground-truth Prediction Metrics
Temporal Spatial Temporal Spatial sMOTSA MOTSP Recall Precision

Yes Yes Yes Yes -18,10 71,70 39,00 46,10
Yes No Yes No -49,50 77,30 46,10 35,70
Yes No Yes Yes -14,60 79,20 54,20 49,00
Yes Yes Yes No -100,10 73,30 33,30 21,20

Table 4.22: Quantitative results on strategies with temporal and spatial recurrence
averaged per sequence.

Ground-truth Prediction Metrics
Temporal Spatial Temporal Spatial sMOTSA MOTSP Recall Precision

Yes Yes Yes Yes -11,70 75,68 46,42 47,63
Yes No Yes No -14,62 75,28 39,34 51,96
Yes No Yes Yes -81,54 77,15 45,81 39,09
Yes Yes Yes No -84,18 74,17 31,59 24,68

To understand what is happening in this set of experiments, an analysis on the se-
quence level has been done. The following bar charts show the sMOTSA of the two
models which differ from one table to the other.

On Figure 4.13, the sMOTSA per sequence of themodel which uses only temporal
recurrence during all training is represented in red. The baseline model is represented
in blue. While all the results fit inside an interval of [-55,70], there is a sequence
which performs very poorly respect to the others: sequence 7. This sequence is one
of the sequences with more weight when computing the sMOTSA on a pixel level.
It has 800 frames, being the longest of all the evaluated sequences and through all the
frames, there is a large number of cars. This sequence produces the difference that can
be observed on the tables. If the other sequences are observed, most of them perform
similarly or outperform the baseline, providing a performance that aligns with what
has been seen on the previous set of experiments with an image size of 256x448.



CHAPTER 4. EXPERIMENTS 40

02 06 07 08 10 13 14 16 18

−200

−100

0

100

−39 −48.8
−18.3

25.4

−12.1

44.2

−16 −12.8
−28.1

−14.2

−54.8

−175.1

43.3 54.3
67.9

−14.1
−36.1

−2.8

sM
O
T
SA

Only spatio-temporal (Baseline) Only temporal

Figure 4.13: sMOTSA per sequence for the baseline model and the model that uses
only temporal recurrence.

The sMOTSA per sequence for the model which trains with temporal recurrence
during the first half of training and adds latter the spatial recurrence is shown in Figure
4.14. In this case, there is also a sequence that shadows the other sequences. For this
model, the sequence with poor performance is sequence number 13. This sequence
contains 340 frames and, even though it is not one of the shortest, it is one of the
sequences which contains fewer cars. This means that it contributes less when com-
puting the sMOTSA on a pixel level. Instead, when computing the overall averaged
over sequences, it lowers considerably the score. Focusing on the other sequences, 5
out of 9 outperform the baseline.
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Figure 4.14: sMOTSA per sequence for the baseline model and the model that uses
only temporal recurrence during the first half of training.
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When analysing the same sequence as in the previous set of experiments, shown
in Figure 4.17, spatial information has the same effect in both sets. In the baseline
model (Figure 4.17b), the instances close to each other are grouped. Moreover, on
the last frames, error from a previous object segmentation (orange) is added. Instead,
the model which uses only temporal information (Figure 4.17c) does not get confused
and even though the green mask is lost, it does not group together the two cars. Eval-
uating the results obtained with training only with temporal information during the
first half of the training and adding afterwards the spatial information (Figure 4.17d),
it seems as if the segmentation is perfect for the first and second frame. As in the
previous set of experiments, this model is the one that preserves the most the green
segmentation. Taking a closer look to the third frame, error from a previous seg-
mented instance (pink) gets mixed with the green and blue masks. The error due to
spatial information also affects this model. Lastly, the model which starts with spatio-
temporal recurrence and, in the second half of training, trains with only temporal
recurrence (Figure 4.17e) is the model with the worst performance. Its instability can
be seen as the predictions for the three frames are confusing spots. In the middle of
the erroneous segmentation and the error that drags from previous instances, it can
be seen how this model started segmenting correctly the blue car but got the red and
green mixed, considering both cars as the red one.

For the baseline model and the model which used only temporal recurrence on
the first half of training, it has been seen how error from previous masks is dragged.
Figure 4.15 shows the moment in which the red mask and the orange masks come
close enough for them to be mixed in the case of the baseline model. From this point
onwards, a part of the orange mask is attached to the red mask, causing errors on
instances that appear latter. Moreover, in this case, the red car is already dragging
error from a previously seen instance segmented in pink. The same thing happens
with the pink mask for the model with only temporal recurrence on the first half of
training. Themoment in which the twomasks come closer can be seen in Figure 4.16.

(a) First frame where the orange instance crosses paths with the
red mask.

(b) Frames later, when the orange instance is already attached to
the red mask.

Figure 4.15: Origin of the error due to spatial recurrence shown on Figure 4.17b.
Images on the right are the zoomed in version of the images in the left.
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(a) First frame where the pink instance crosses paths with the red
mask.

(b) Frames later, when the pink instance is already attached to the
red mask.

Figure 4.16: Origin of the error due to spatial recurrence shown on Figure 4.17d.
Images on the right are the zoomed in version of the images in the left.

(a) Ground-truth annotations

(b) Baseline model

(c) Only temporal model

(d) Only temporal on the first half of training

(e) Only temporal on the second half of training

Figure 4.17: Different combinations of temporal and spatial recurrence for an image
resolution = 287x950, batch size = 2 and length clip = 3. For models which use spatial
recurrence, the instances close to each other (blue and green masks) merge into one.
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4.6 Loss penalization by object area
Penalizing the cost function has not improved the model’s performance on either of
the sets of experiments. The idea behind this implementation was to start first focus-
ing the training on objects with a considered big and medium area and latter intro-
duce smaller objects. This technique has only been performed on the KITTI-MOTS
benchmark. The baseline model implements the forward step schedule sampling tech-
nique. Table 4.24 and Table 4.25 show the results of the first set of experiments, with
an image resolution of 256x448, batch size of 4 and length clip of 5 (see Table 4.23).
Table 4.27 and 4.28 correspond to the second set of experiments with an image reso-
lution of 287x950, batch size o 2 and length clip of 3 (see Table 4.26). On both sets,
the results show a great deterioration.

Table 4.23: Training parameters for the experiments on Table 4.24 and Table 4.25.

Epochs Resolution Batch size Length clip Sampling
40 256x448 4 5 FSSS

Table 4.24: Quantitative results the loss penalization strategy averaged per pixels.

sMOTSA MOTSP Recall Precision
-2,80 76,30 42,20 55,80
-31,30 72,90 31,80 38,10

Table 4.25: Quantitative results the loss penalization strategy averaged per sequence.

sMOTSA MOTSP Recall Precision
-6.83 68,12 37,38 49,70
-23,11 73,24 28,13 41,00

Table 4.26: Training parameters for the experiments on Table 4.27 and Table 4.28.

Epochs Resolution Batch size Length clip Sampling
40 287x950 2 3 FSSS

Table 4.27: Quantitative results the loss penalization strategy averaged per pixels.

sMOTSA MOTSP Recall Precision
-18,10 71,70 39,00 46,10
-23,70 75,60 34,00 41,70

Table 4.28: Quantitative results the loss penalization strategy averaged per sequence.

sMOTSA MOTSP Recall Precision
-11,70 75,68 46,42 47,63
-17,02 75,47 31,82 45,47
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This approach ends worsening the performance due to the error propagation on
the smallest instances. TheKITTI-MOTS dataset is formed by video sequences recorded
by a car driving around a mid-city. In these sequences, there are a lot of cases in which
the instances first appear far away and slowly come closer to the camera. In these cases,
as this approach started focusing on objects with larger areas, the smallest instances
were neglected. This produces more errors on small area cars. Small area instances
have more errors, some instances disappear on their following frames and these errors
propagate through time. Even if the instance’s area grows bigger as it comes closer to
the camera, the model has already an erroneous segmentation as a base and it can not
be segmented correctly. On the following figures, the error spreading can be seen for
both models trained with the loss penalization approach.

Two images are presented. The first one is a shot taken from far away, where
the cars are seen in the distances. The second one is a closer shot of the same cars
when the camera has come closer to them. The first two figures in Fig. 4.18 are
the ground-truth annotations to allow the reader to see the true segmentation of the
instances.

Figure 4.18: Ground-truth annotations for a far away shot and close by shot of the
same video sequence.

Figure 4.19 shows the predictions of the models with a compressed image reso-
lution (256x448). On the figure on top, it can be seen that the model spreads the
segmentation of the closest car to the cars around. On the closer shot, figure on
the bottom, even though the segmented car in red is recovered, the spreading error
lingers around the other three cars. Also, the pink car is confused by the blue car
which appeared on the left side of the picture.
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Figure 4.19: Qualitative results with an image resolution=256x448, batch size=4 and
length clip=5 for a far away shot and close by shot of the same video sequence. Errors
with the pink mask of the far away shot maintain when the instances get closer to the
camera.

On figure 4.20, the predictions of themodel with a larger image resolution (287x950)
can be seen. In this case, when seen from far away, the model sees three cars as one
unique instance, segmented in red. This mismatch propagates until the close by shot,
where, even though the model perceives the three cars as another instance compared
with the far away shot (green instance this time), it still groups the three of them. At
the same time, the red and pink segmentation have mixed as if they were the same
object.

Figure 4.20: Qualitative results with an image resolution=287x950, batch size=2 and
length clip=3 for a far away shot and close by shot of the same video sequence. Error
with the red mask of the far away shot maintain when the instances get closer to the
camera and get more defined, identifying three cars as a sole instance.



5 Conclusions

In this thesis, curriculum learning techniques have been implemented on RVOS to
take on the challenge of one-shot video object segmentation for the cars’ class of the
KITTI-MOTS challenge. It has been demonstrated how curriculum learning affects
greatly the performance of a recurrent neural network.

Focusing on the schedule sampling curriculum, surprising results have been ob-
tained. While the forward strategies increase the performance, the inverse strategies,
have improved even further the model’s performance. Contrary to the reasoning be-
hind curriculum learning, it has been seen how the model benefits greatly from the
inverse step, where the difficulty of the starting point is higher than the difficulty of
the ending.

For the frame skipping curriculum, significant gains have been obtained for ei-
ther of the two proposed schemes, skipping from 0 to 9 frames and skipping from
1 to 5 frames. Even so, the model only benefits of this technique when using the
ground-truth annotations as input of the next step. This may be due to the increment
in difficulty that the model is exposed to when combining the forward step, defined
as the baseline model, and the frame skipping curriculum.

The other two curriculums, from only temporal to spatio-temporal recurrence
and loss penalization by object area, have demonstrated not to provide gains. For
both strategies, the characteristics of the dataset were not favourable. For the cur-
riculum which worked with temporal and spatial recurrences, it has been seen how
the distance between instances and their similarity produced errors when adding the
spatial information. For the loss penalization curriculum, as the first appearance of
the instances is from far away, their area is small. Due to this fact, as this curricu-
lum focused on learning better bigger instances, the error from the small instances is
dragged when the instance comes closer and changes its area size.

These results demonstrate the importance of knowing well the challenges and
characteristics of the dataset that is being dealt with. The KITTI-MOTS dataset is
a dataset for autonomous driving. It contains a large number of partial and complete
occlusions as well as many left/right turns. It has been observed how RVOS does not
perform well in these cases, independently of the curriculum used. This has entailed
low quantitative results compared to the state of the art of the KITTI-MOTS chal-
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lenge. This fact invites to explore these curriculum learning with better performing
architectures that may produce more stable and confident results.

The techniques that have improved the performance for the KITTI-MOTS dataset
have been implemented on the YouTube-VOS dataset. Even so, for the YouTube-
VOS dataset none of the techniques has surpassed the baseline model. The character-
istics of the two datasets are very different. YouTube-VOS contains a wider variety of
objects, with larger resolution and with the camera focused on them. KITTI-MOTS
is a more crowded dataset, where the model has to differentiate similar and nearby
instances that can have a small resolution when they first appear. Also, in this dataset
new instances can appear in the video sequence at any time. These differences are the
reason that the methods that work with the KITTI-MOTS benchmark do not offer
the same gains with the YouTube-VOS dataset.

To sum up, interesting results have been obtained with curriculum learning strate-
gies. This demonstrates how these techniques affect the performance of a recurrent
neural network and how gains can be obtained without modifying its architecture.
Even so, further research needs to be done to provide a complete understanding and
characterization of the techniques.

Future work
The results obtained in this thesis invite to further explore strategies like the inverse
schedule sampling and frame skipping as well as other curriculums.

For the schedule sampling curriculum, the surprising finding of the improvement
in the performance of the inverse step encourage to work with this strategy for a bet-
ter understanding. Other schemes combining the forward and inverse strategies such
as quadratic or triangular pulses would be interesting to test.

The results for the inverse schedule sampling question whether an inverse strategy
with the frame skipping curriculum would improve the results. Further investigations
on this area are left open due to a lack of time. At the same time, more frame skip-
ping schemes tested on different datasets would provide the full characterization of
this technique.

For the loss penalization by the object area technique, the poor results make won-
der whether the initial reasoning of the experiment is correct. It was assumed that
larger instances are easier to learn for the model but this may not be the case as this
dataset has a wide variety of scenes with great complexity (turns, occlusions, etc.).
With the loss penalization approach, it has been observed that the error due to the
small instances dragged when they come closer to the camera is important as it de-
grades considerably the performance. Instead, observing the model’s performance,
instances that start close to the camera and, as time goes by, get distanced getting
smaller, are usually well segmented. This suggests that it may be interesting to change
the initial approach and create a curriculum where the easy cases are nearby instances
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that move away and the difficult cases are far away instances that come close to the
camera. This way the difficulty is determined by the area of the first apparition of
the instance instead of the area of the mask of the instances at any frame. Further
research can be done on this line by letting the model determine the difficulty of the
examples that it sees. By using methods such as the one introduced by Bellver et al.
[38], where the model predicts the quality score of the mask for each instance, it may
be interesting to let the model create its own curriculum.

Another interesting curriculum worth exploring and that has been omitted due to
a lack of time is the multigrid approach, introduced by Wu et al. [24]. This curricu-
lum is of special interest as, in this work, two sets of experiments with different image
resolution and batch size have been defined. This approach would unify the obtained
results, combining these two sets when training first with an image resolutions-batch
size pair and, after some time, changing these parameters.

Finally, it is also left for future work the combination of the best curriculums that
have been explored.
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A Study of appearance changes

The KITTI-MOTS dataset offers multiple challenges in terms of occlusions, variation
of the illumination or variation in the objects resolution. This thesis has made special
focus on one of them: the appearance changes on slow motion sequences. This has
been addressed with a frame skipping strategy.

This chapter presents the study of how the different schemes which implement
frame skipping, presented on Section 3.3.2, have been chosen.

Appearance changes on objects refers to the variation that the objects on video
sequences suffer. It could be that objects disappear, get deformed as the camera turns
or grow bigger as the object comes closer to the camera. It may happen that these
changes take a long time to occur, this is referred as slow motion sequences. It takes a
high number of frames to notice the changes on objects. Due to memory constrains
and depending on the resolution of the image and the used batch size, the model will
be able of training with more or less consecutive frames on one iteration. This means
that the model is limited to a certain number of frames to see appearance changes.

The strategy of skipping frames comes into scene in order to speed up these varia-
tions. By skipping frames, a fastest motion can be simulated. To take the most benefit
of this strategy and the KITTI-MOTS dataset, the "sight" of the model has been stud-
ied. To study the "sight" of the model means to try to understand what changes the
model sees on different iterations. To simulate what the models sees, the different
training batches of frames have been depicted in order to see the effect of skipping a
certain number of frames on appearance change. This can bee seen on Fig. A.1 and
Fig. A.2 where two video sequences are studied.

The maximum number of frames per training iteration that can be passed to the
model is 5. This value is considered the maximum has it affects directly to the image
resolution. It is the value used on the original paper of RVOS [6]. Also, increasing
it would result on lower image resolution which would affect notably to the model’s
performance. The study of the adaptation of the model to higher values of length clip
has been left out of this project’s scope as it is too wide to explore. For this reason,
the images that would be passed to the model with different skipping steps have been
gathered with a length clip of 5.
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On the two figures, each row implements a skipping step, starting without skip-
ping any frame (skip step of 0) and ending with skipping 9 consecutive frames (skip-
ping step of 9). Each consecutive row increments 1 skipped frame from its previous
row. It can be seen how a skip of 9 consecutive frames is enough for the model to
observe notable changes on the appearance of the objects. On Fig. A.1, it is observed
how the camera turns to the right. With 10 skipping steps (from 0 to 9 skipping
frames) a sequence change is fully illustrated. Figure A.2 shows a similar sequence
change with a left turn of the camera. To increment event more the number of skip-
ping steps has been discarded. If the number of skipped frames is too large, the model
will not be able to relate the information on one frame to the next one which will lead
to poor performance. At the same time, with a larger number of skipping steps, the
model will have less time per step to train which could lead to instability.

The second scheme, which consists of 5 skipping steps from skipping 1 frame until
5 frames are skipped, is motivated by the training time spent on each skipping step.
This scheme tries to halve the skipping steps to double the training time per skip-
ping step. Instability wants to be avoided and more robustness to changes wants to be
gained. Analysing Fig. A.1 and A.2, on the first row, almost no change is observed
between consecutive frames. This is the reason why the skipping step of 0 is omitted.
A skipping step of 1 is much richer on information for training. Without skipping any
frame, the model perceives five images as one, in terms of information. After starting
to train with a skipping step of 1, it is increased until a skipping step of 5. This cuts in
half the total number of skipping steps as well as provides enough information about
changes in the model. On both figures it can be seen that with a skipping step of 5
the change on the sequence is starting to be perceived.

More schemes could be studied under the frame skipping context but it has been
considered that the previous schemes illustrate well this strategy on the KITTI-MOTS
dataset.
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B Workshop submissions

A summarized version of this master thesis has been submitted to two workshops in
the European Conference on Computer Vision (ECCV), to be hold virtually:

M. Gonzalez-i-Calabuig, C. Ventura, X. Giró-i-Nieto, "Curriculum Learning for
Recurrent Video Object Segmentation"

They are both under review at the time of writing this master thesis report. The
description of these two workshops follow:

• Women in Computer Vision (WiCV) Computer vision has become one of the
largest computer science research communities. We have made tremendous progress in
recent years over a wide range of areas, including object recognition, image understanding,
video analysis, 3D reconstruction, etc. However, despite the expansion of our field, the
percentage of female faculty members and researchers both in academia and in industry
is still relatively low. As a result, many female researchers working in computer vision
may feel isolated and do not have a lot of opportunities to meet with other women [39].

• Perception for Autonomous Driving Autonomous Driving (AD) has the po-
tential to revolutionize mobility and bring lasting benefits to society. It is thus at the
forefront of AI research and has attracted the attention of both academia and industry.
As an example, half of the exhibitions at CVPR 2019 are related to AD. From a Com-
puter Vision perspective, the most relevant task in AD is Perception, i.e. understanding
the world around the car. After discussions with both academic researchers and industrial
practitioners, we feel that the temporal and multi-modal aspects of perception have been
overlooked. Robust tracking and more importantly prediction of movement, for both ve-
hicles and pedestrians, are critical for AD. This issue is particularly acute in dense urban
environments, which are heterogeneous multi-agent systems consisting of diverse tra�c
participants with a great variety of shapes, dynamics, behaviors, and intents [40].
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Curriculum Learning for Recurrent Video
Object Segmentation

Maria Gonzalez-i-Calabuig1, Carles Ventura2, and Xavier Giró-i-Nieto1

1 Universitat Politècnica de Catalunya
{maria.gonzalez.calabuig,xavier.giro}@upc.edu
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Abstract. Video object segmentation can be understood as a sequence-
to-sequence task that can benefit from the curriculum learning strategies
for better and faster training of deep neural networks. This work explores
different schedule sampling and frame skipping variations to significantly
improve the performance of a recurrent architecture. Our results on the
car class of the KITTI-MOTS challenge indicate that, surprisingly, an
inverse schedule sampling is a better option than a classic forward one.
Also, that a progressive skipping of frames during training is beneficial,
but only when training with the ground truth masks instead of the pre-
dicted ones.

Keywords: Video Object Segmentation, Recurrent Neural Networks,
Curriculum Learning

1 Introduction

The optimization process of deep neural networks is greatly influenced by how
training data is used. Curriculum learning [3] is a training strategy for machine
learning that consists on presenting simple concepts to the model first to, grad-
ually, increasing their complexity.

Our work proposes two training curriculums for a Recurrent Video Ob-
ject Segmentation engine (RVOS) [9], a neural model for one-shot (or semi-
supervised) video object segmentation (VOS). In this task, a binary mask of
an object is provided for a single frame and the goal is predicting the mask of
the selected object across the rest of the frames in the video sequence. RVOS
architecture is based on an end-to-end recurrent Conv-LSTM [14] decoder that
tracks objects across frames, with no need of any post-processing. The recur-
rent architecture makes RVOS a fast solution for the task, capable of processing
more than 20 frames per second [1]. RVOS was originally tested on the DAVIS
and YouTube-VOS datasets for one-shot video object segmentation. We show
how RVOS struggles with the cars in the KITTI-MOTS dataset [10], whose
videos are more crowded and challenging than DAVIS or YouTube-VOS. We
improve the off-the-shelf RVOS baseline by modifying its training curriculum in
two ways. First, with a schedule sampling [2] totally contrary to the one original
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one in RVOS and, secondly, by gradually increasing the complexity of the task
by subsampling video frames at training time.

The developed source code and trained models will be published upon ac-
ceptance to facilitate reproducibility.

2 Related Work

Schedule Sampling [2] was proposed for sequence prediction with recurrent
neural networks, and successfully applied in the wining bid in the MSCOCO
image caption challenge 2015. It offers an alternative to teacher forcing [11]
where, during training time, the model has access to the ground truth label of
the previous time-step in each new prediction. During inference, the model uses
its predictions as input in the next training step, which may produce exposure
bias because of the discrepancy between training and inference. This difference
may result in instability and poor model performance. Schedule sampling takes
benefit from teacher forcing while avoiding exposure bias by gradually replacing
the ground-truth tokens by the model’s predictions. The model is forced to learn
to deal with its own mistakes as it would during inference. Three different decay
schedules were proposed in the original work [2]: exponential, inverse sigmoid
and linear.

Related works on instance segmentation have linear schedule sampling in
their trainings. Ren and Zemel [8] used a linear schedule in their recurrent in-
stance segmentation model on still images, and Xu et al. [15] apply it for video
object segmentation. Lai and Xie [5] do not go from all ground truth labels to
total model predictions in their linear schedule, but consider intermediate prob-
abilities between 0.9 and 0.6. Oh et al. [13] and RVOS [9] adopted a more drastic
scheme, using ground truth labels in the first half of the training, and predicted
masks in the second half. We have named this approach as a step schedule, as
in the well-known Heaviside step function.

Frame Skipping is a training curriculum in which video sequences are pro-
gressively sub-sampled in time, so that the model is exposed to sequences with
faster changes, even if synthetically generated. This technique is partially moti-
vated by the tight constraints in terms of memory resources when training deep
neural networks with video sequences. The limited sizes of the mini-batches typ-
ically force training with short sequences which, in the case of video, may be
highly redundant if considering consecutive frames.

Frame Skipping was introduced in the Space-Time Memory Networks (STM) [7],
inspired by a previous work on 3D reconstruction with RNNs [16] and related
to their own previous model[6] trained by randomly removing frames in the
training sequences. STMs achieved the state of the art on one-shot video object
segmentation by training with a gradually increased amount of skipped frames,
from 0 to 25. Their attention-based architecture could be trained with clips of
only length 3.

Other approaches for building a curriculum by building video mini-batches
may be combining different spatial-temporal resolutions that change according
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to a schedule, as in multigrid by Wu et al. [12]. However, multigrid always
considers consecutive frames. On the other hand, the same authors have also
achieved relevant gains when addressing the action recognition task with a neural
network that processes the video streams at a fast and a slow frame rates in two
different pathways that merge at the deepest layer. In our work, we keep a single
pathway but consider the different frame rates during the training curriculum.

3 Experiments

We have explored different schedule sampling and frame skipping strategies with
the RVOS model [9] evaluated on the car class in the validation partition of the
KITTI-MOTS benchmark [10]. The task addressed is the one-shot (or semi-
supervised) video object segmentation (VOS) task, where a mask of the object
is provided to the model to estimate the masks in the rest of the frames in the
video sequence. All models are trained during a fixed amount of 40 epochs.

We adopt the official metrics for the MOTS Challenge [10] to obtain quanti-
tative results: sMOTSA, MOTSP, Recall and Precision. In all cases, the higher
the metric, the better. However, instead of averaging the metrics per pixel/frame
as in the public benchmark, we have averaged them by sequence. Otherwise, the
results over one very long sequence with specific challenges would dominate over
the rest.

Two different strategies have been considered when allocating memory in the
GPUs for training: whether we considered a lower spatial resolution (256x448
pixel) and longer clips of 5 frames, or a higher spatial resolution (287x950) at
the cost of a shorter clips of 3 frames. While the 287x950 definition matches the
aspect ratio of the KITTI-MOTS dataset [10], the 256x448 one corresponds to
the aspect ratio of the YouTube-VOS dataset [15], for which RVOS was originally
trained.

3.1 Schedule Sampling

Our experiments on schedule sampling consider the step and linear schedules
in addition to the teacher forcing, provided as a baseline to compare with. The
study extends to the non-conventional inverse variations for both the step and
linear cases, inspired by the finding reported in [4]. The inverse variations actu-
ally defy the curriculum learning paradigm, as they start the training with the
prediction of the model as references, and progress into a set up that considers
only ground truth labels at the end.

The results presented in Table 1 indicate that actually the Forward Step
curriculum adopted in the original RVOS baseline is the worst option, and that
actually the best option is the inverse step approach. Figure 1 shows a fragment
of a sequence in which the inverse step outperforms the baseline model.
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Table 1. Schedule sampling variations of one-shot VOS on KITTI-MOTS cars. Best
values are shown in bold and second best values in blue.

Image Batch Length
sMOTSA MOTSP Recall Precision

resolution size clip

Teacher Forcing
256x448 4 5 -16.57 73.98 32.81 43.62
287x950 2 3 4.24 77.00 45.84 57.87

Forward Step
256x448 4 5 -6.83 68.12 37.38 49.70
287x950 2 3 -11.70 75.68 46.47 47.63

Forward Linear
256x448 4 5 -2.29 72.97 41.00 53.64
287x950 2 3 -5.58 76.76 46.72 51.53

Inverse Step
256x448 4 5 -1.57 73.17 42.79 55.00
287x950 2 3 8.90 77.90 42.86 60.33

Inverse Linear
256x448 4 5 -4.77 73.35 48.60 53.06
287x950 2 3 2.48 77.87 47.12 57.07

Fig. 1. Qualitative results on three non-consecutive frames comparing the baseline
model (row 1) and the model with best performance: inverse step (row 2). Compared
to the inverse step strategy, during all the sequence, on the baseline model a wrong
mask in red is observed next to the blue instance. Also, the orange mask is confused
by the green mask.

3.2 Frame Skipping

Two frame skipping schemes were explored. In the 0 to 9 scheme, the number
of skipped frames, which will be referred to as skipping step, is changed every
2 epochs. The total number of skipping steps is 10. The model starts training
without skipping any frame and, gradually, increases the number of skipped
frames by 1 until 9 consecutive frames are skipped. The second scheme, the 1
to 5 one, halves the number of skipping steps from 10 to 5. In this case, the
number of skipped frames is increased after 4 epochs, doubling the training time
per skipping step.

These experiments are run with the RVOS baseline mode, which follows
the Forward Step schedule sampling. On the first training phase, when using
the ground-truth (GT) annotations, frame skipping is always used. During the
second training phase, when the model’s predictions (Pred.) are used for training,
we consider the two cases of skipping and non-skipping frames. We consider
this hybrid approach because the difficulty of having to deal with the noisy
predictions of the model, may be overwhelming for our model when adding on
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Table 2. Frame skipping variations of one-shot VOS on KITTI-MOTS cars. Best
values are shown in bold and second best values in blue.

Image Batch Length Skip Skip
sMOTSA MOTSP Recall Precision

resolution size clip @ GT @ Pred.

No skip
256x448 4 5 No No -6,83 68,12 37,38 49,70
287x950 2 3 No No -11,70 75,68 46,47 47,63

0 to 9

256x448 4 5 Yes Yes -39,39 58,30 1,57 3,33
287x950 2 3 Yes Yes -17,66 74,99 46,70 50,00
256x448 4 5 Yes No -0,87 74,73 49,43 55,49
287x950 2 3 Yes No -8,18 76,92 44,67 48,21

1 to 5

256x448 4 5 Yes Yes -43,44 70,43 27,16 32,06
287x950 2 3 Yes Yes -22,87 75,20 41,77 45,99
256x448 4 5 Yes No 0,51 79,10 39,26 53,57
287x950 2 3 Yes No -7,05 75,86 53,00 54,49

Fig. 2. Qualitative results on three non-consecutive frames depicting a turning scene
comparing the baseline model (row 1) and the model with best performance using
frame skipping: skipping from 1 to 5 (row 2). The baseline model does not adapt well
to the changes in position of the red segmented car, spreading the mask.

top the temporal sub-sampling. During the second phase, when frame skipping
is applied, the skipping step begins from 0 and increases to 9 again.

The results in Table 2 actually show that applying a frame skipping strategy
during all training does not improve the performance of the model, maybe due to
the difficulty of combining the two schemes. Instead, when using frame skipping
only during the first training phase, the performance improves considerably for
either set of experiments. As the sequences of KITTI-MOTS present a slow
motion, the model benefits from training with this scheme. Analysing the results
for both configurations, it can be seen how the best results are obtained with
a frame skipping scheme of increasing from 1 to 5 skipped frames. The model
benefits more when seeing changes but with enough time to process them. Figure
2 shows the improvement of performance over a fragment of a turning scene,
comparing the baseline to the frame skipping strategy from 1 to 5.

4 Conclusions

This work has shown how the curriculum learning greatly affects the performance
of a deep neural network trained for the task of one-shot video object segmenta-
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tion. The two techniques explored, schedule sampling and frame skipping, have
brought significant gains to the RVOS model. These results encourage further
research for a complete understanding and characterisation of the techniques,
especially in the surprising findings that an inverse step set up may result in
better results. However, the low values of the quantitative results also invite to
explore these curriculum learning with better performing architectures that may
produce more stable and confident results.
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