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Abstract. This paper presents a corrected partitioned scheme for investigating fluid-structure
interaction (FSI) that may be encountered by lifting devices immersed in heavy fluid such as
liquids. The purpose of this model is to counteract the penalizing impact of the added mass
effect on the classical partitioned FSI coupling scheme. This work is based on an added mass
corrected version of the classical strongly coupled partitioned scheme presented in [1]. Results
show that this corrected version systematically allows convergence to the coupled solution with
no dependency on fluid density . The fluid flow model considered here uses a non-stationary
potential approach, commonly termed the Panel Method. The advantage of this kind of approach
is twofold: first, in restricting itself to a boundary method and, second, in allowing an added
mass matrix to be estimated as a post-processing phase.

1 CONTEXT AND INTEREST OF THIS STUDY

The research presented in this article focuses on the development of a numerical tool for
investigating fluid-structure interactions (FSI) between a fluid flow that is not confined (infinite)
and a current turbine with blades. Many similarities may be observed from its aerial version
(wind-mill) but a major point of concern results from a fluid density 800 times higher than in the
air. The constant search for an optimal solution (by increasing size and reducing mass) inevitably
leads to flexible behavior resulting from hydrodynamic loads, and this flexible behavior may have
serious impacts on the efficiency of the device.

Since simplifying is part of the process of understanding, the FSI model may here without
loss of generality be restricted to a 2D airfoil placed in a flow and having two degrees of freedom
(dof), namely plunging and pitching motions. This assumption is justified by the fact that the
physical phenomena that occur around the cross-flow section of a blade are quite similar to those
encountered by lifting airfoils in two dimensions (2D). The Panel Method approach [2, 3] is of
particular interest for fluid flow calculations around lifting device due to the fact it has been
originaly designed for. This potential approach is restricted to incompressible and irrotational
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flows, however if completed by a Kutta condition, it can be extended to lifting flows. The FSI
approach is here based on a partitioned coupling with a dedicated solver for each of the two
physics (namely fluid flow and structure dynamics). Exchanges take place regularly between
the two solvers via a coupling scheme [4, 5] that is based on successive solutions produced
by the fluid and structure solvers. The coupling is said to be loosely coupled partitioned if
only one shot (that is to say a single computation) per time step is required for each field,
and strongly coupled partitioned if an iterative procedure is used to ensure convergence of the
coupled solution [6]. In an industrial context, the biggest advantage that partitioned coupling
has over monolithic coupling (with a single solver) is the modularity of the approach, which
makes the different solvers much easier to implement and allows distributed computation. The
major drawback of the standard partitioned FSI coupling scheme is that where higher density
fluids are involved (meaning strong effects of added mass), convergence is no longer guaranteed,
and divergence will generally be observed, regardless of the chosen time step for incompressible
flows [7]. A number of approaches have been proposed since the last decade to counter this
drawback including semi-implicit discretization [8] and adaptive Aitken under-relaxation [9],
but convergence is not always guaranteed, or may be slow in cases of high-density fluids such
as blood or water. Our objective in this paper is to show that in order to take into account
heavy fluid flows such as in sea currents, the coupling scheme must be corrected, as described
for example in [1], in order to counteract the penalizing impact of the added mass effect on the
classical FSI coupling scheme. This correction is based on estimating an added mass matrix
[M e

add] that may considerably improve and/or ensure the iterative phase of a strongly coupled
partitioned approach. Moreover, the interest of an approach such as the Panel Method is here
twofold, in that it enables this matrix to be estimated in a post-processing process without the
use of a fluid mesh: this constitutes a serious and solid advantage.

2 MATHEMATICAL MODELS

2.1 Dynamics for a hydrofoil with two degrees of freedom

Here we consider a 2D airfoil with chord length c, of mass m and flexibly attached to a fixed
point, as illustrated in Figure 1. We have the pivot point P (also called the elastic axis), the
aerodynamic center F (located at c/4 from the leading edge) and the center of mass location G.
Two dof are here considered, namely plunging w(t) and a pitching θ(t) motions. The vertical
and rotational components of the airfoil velocity are respectively denoted by VG and θ̇.

c
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Figure 1: Dynamics of a 2D hydrofoil cross section with two dof w(t) and θ(t)

The fundamental equations may be obtained from the kinetic and potential energy of the
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airfoil:

Ek =
1

2

(
mV 2

G + I|G θ̇2
)

and Ep =
1

2

(
Kzw

2 +Kθθ
2
)
− PGmg θ,

with Kz denoting the axial rigidity along the z−axis, Kθ the torsional rigidity with respect to
the y−axis and I|G the mass moment of inertia about G. From Lagrange’s equation we then
obtain the set of two equations:

[
m −mPG

−mPG IP

]{
ẅ

θ̈

}
+

[
Kz 0
0 Kθ

]{
w
θ

}
=

{
Rz

M|P + PGmg

}
(1)

where Rz and M|P denote respectively the vertical component of the generalized force obtained
from the pressure integration, and the resulting pitching moment at P . Finally, this may be
condensed to the following:

[M ]{Ü}+ [K]{U(t)} = {Fp(t)}, with {U(0)} = {U0} and {U̇(0)} = {0}, (2)

where [M ] and [K] denote respectively the mass and the rigidity matrices corresponding to
the attachment of the airfoil, and {U} denotes the two dof. The term {Fp} denotes for the
sollicitation vector resulting from aerodynamic loads.

2.2 Panel Method (PM) for lifting potential flows

Panel methods are particularly suitable for calculating the flow field over an airfoil that
undergoes unsteady time-dependent motion in a fluid that may be assumed inviscid and incom-

pressible. Let ϕ define the total potential such that
−→
V =

−→∇ϕ. Combining this with the first of
the two equations just cited, we obtain the classical Poisson equation ∆ϕ = 0, ∀�x ∈ V.

The main idea in the Panel Method is not to solve this Laplacian equation in the classical way
for the entire fluid domain, but to cast the same analysis in a boundary integral equation form
for which [10], where the Hess & Smith Panel Method (HSPM) was introduced, is considered to
be the reference paper. In this approach, with 2D non-stationary flows being restricted as set

out in [11], the velocity
−→
V at any point �x = (x, z) of the fluid domain is decomposed according

to:
−→
V (�x) =

−→
V ∞ + �v with �v =

˛

S

σ(s)�r

2πr2
ds+

˛

S

τ(s)

2πr
�eθds, (3)

where
−→
V ∞ defines the velocity of the uniform flow at infinity. The vector �v denotes the dis-

turbance field due to the airfoil and results from two contributions, since the airfoil may be
represented by two elementary flows (also called singularities) corresponding to source flow
(σ(s)) and vortex flow [11] (τ(s)). This expression satisfies the irrotationality condition and the
boundary condition at infinity that stipulates the cancellation of the disturbance velocity, and
it results from Green’s identity (we refer to [2] for a complete mathematical analysis). For a
given set of source strength σ(s)ds and vortex strength τ(s)ds (assumed uniform on the airfoil),
it is then theoretically possible to define the velocity field at any point of the fluid domain: in
the approach adopted in [10], the vortex strength τ(s) is taken to be constant on the airfoil and
adjusted to satisfy a lifting condition.
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For points belonging to the interface between the flow and the airfoil, the boundary condition
that stipulates no flow through surface enables us to define a given set of equations to be solved
for σ(s). Completed by the Kutta condition that stipulates that the flow must leave the trailing
edge smoothly, the set to be solved for σ(s) and τ is now complete.

In order to couple the fluid flow with the structure, we need to know the pressure p. This
may be calculated at any point using the non-stationary form of Bernoulli’s equation [12].

p+ ρgz + ρ
V 2

2
+ ρ

∂ϕ

∂t
= f(t).

3 NUMERICAL MODELS

3.1 Structure model

The time resolution of equation (2) is here obtained using a Newmark-Wilson finite difference
[13] scheme such as:

(
4

∆t2
[M ] + [K]

)
{∆U} = {Fp}n − [K]{U}n + [M ]

(
4

∆t
{U̇}n +

1

4
{Ü}n

)
. (4)

The indexes n and n + 1 correspond to the times t and t + ∆t and {∆U} = {U}n+1 − {U}n.
It should be pointed out that the fluid load term {Fp}, resulting from fluid pressure integration
on the airfoil, is here computed at time step n because of the partitioned nature of the coupling
scheme that we are considering. The mechanical energy can be calculated for each time step
and is divided into two parts, respectively kinetic and potential:

Em = Ek + Ep with Ek =
1

2
< U̇ > [M ]{U̇}, Ep =

1

2
< U > [K]{U}. (5)

3.2 Fluid model

The fluid flow numerical model is built in accordance with [11]. It first requires the discretiza-
tion of the airfoil that is decomposed (see Figure 2) with N panels for N + 1 nodes (symbol ◦).
Each panel i is defined by a pair of boundary points, (xi, zi) and (xi+1, zi+1), and a control point

(cpi) located at the midpoint (symbol ×).
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Figure 2: Panel representation of the airfoil surface

The vectors �ni and�ti located at control point i denote respectively the normal and the tangential
vectors. The perimeter of the airfoil is denoted as l.
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3.2.1 Stationary form

The fluid velocity at any point in the fluid domain is obtained by integrating equations (3)
on the airfoil surface. This integration involves summing all panel contributions such that:

−→
V (P ) = V∞�ı+ V∞

�k + �v where �v =
N�
j=1

ˆ

Lj

σj�r

2πr2
ds+

N�
j=1

ˆ

Lj

τ

2πr
�eθds (6)

For each control point i, with the boundary condition of non-penetrating flow, integration yields
the following expression:

(Vn)i = �V∞.�ni +
N�
j=1

An

ijσj + τ
N�
j=1

Bn

ij = 0, i = 1, . . . , N (7)

The terms An

ij and Bn

ij , detailed in [11], are the influence cœfficients for the source and vorticity
distributions: the first subscript i denotes the panel that is subject to the influence of the panel
indexed by j.

In order to ensure the lifting capability of the airfoil, we here consider a Kutta-Joukowski
condition stipulating that the magnitude of the two tangential velocities at the trailing edge
(control point 1 and N) must be equal to each other:

(Vt)N = −(Vt)1 with (Vt)i = �V∞.�ti +
N�
j=1

At

ijσj + τ
N�
j=1

Bt

ij, (8)

The minus sign results from the fact that the two tangential vectors �t1 and �tN are opposite. The
overall system that needs to be solved comes out of equations (7) and (8), and may be written:




...
An

i1 .. An

iN

�
Bn

ij
...

(At

11+At

N1) .. (At

1N+At

NN )
�

(Bt

1j+Bt

Nj)








σ1
...

σN
τ





=





...

−�V∞.�ni

...

−�V∞.(�t1+�tN )





Solving this system allows the pressure to be computed at all control points, using the following:

pi = ρ
V 2
∞

2
Cpi with Cpi = 1−

�
(Vt)i
V∞

�2

, (9)

where Cpi denotes the nodal pressure cœfficient.

3.3 Non-stationary form

According to Kelvin’s circulation theorem [12], the circulation Γ around a closed curve C1
(composed of the same fluid particles) moving with the fluid, remains constant with time. Stated
mathematically:

ΓC1
|t=0 =

˛

C1

−→
V .

−→
ds = 0 ⇒ dΓC1

dt
= 0, ∀t ≥ 0
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The lifting process around an airfoil is directly related to a circulation, in accordance with
the Kutta-Joukowsky theorem. We deduce that any changes in the airfoil circulation must be
balanced by an equal and opposite change in the wake, resulting from the vortex shedding at
the trailing edge of the airfoil.

At time step (n+1), the vortex shedding has a corresponding additional wake element indexed
by w, of uniform vorticity τn+1

w and length ∆n+1 such that:

Θn+1 = tan−1

�
vn+1
w

un+1
w

�
, ∆n+1 = ∆t

�
(un+1

w )2 + (vn+1
w )2, (10)

where (uw, vw) denote the velocity components at the trailing edge and

τn+1
w ∆n+1 = Γn − Γn+1 = l

�
τn − τn+1

�
. (11)

Each time step n is then associated with a detached vortex n of circulation Γn = τnw l convected
downstream (see Figure 3) by the fluid velocity field.

Γn+1
Γn−1 − Γn

Γn−2 − Γn−1

Γn−3 − Γn−2

Γn−4 − Γn−3

τn+1
w

Θn+1

∆n+1

Figure 3: Vortex shedding at trailing edge developed from a shed vorticity panel (τn+1

w ,∆n+1)

The non-stationary form of the original equation (7) is then completed by unsteady effects and
rearranged using the terms from equation (11) such that:

N�
j=1

An

ijσ
n+1
i = τn+1


 l

∆n+1
(Bn

iw)
n+1 −

N�
j=1

Bn

ij


− (�VST .�ni)

n+1

−τn
l

∆n+1
(Bn

iw)
n+1 −

n�
m=1

(Cn

im)n
�
Γm−1−Γm

�
. (12)

The term �VST denotes the unsteady upstream velocity seen from a coordinate system attached
to the airfoil in order to carry the airfoil motion [11] over to the relative fluid velocity calculation
such as:

�VST = �V∞ − ẇ�k + θ̇� ∧ (�r − �rP ), (13)

with ẇ the vertical velocity component of the airfoil, θ̇ its rotational velocity and P its rotation
axis (see Figure 1). The resulting algebraic equations can be written in the form:

[A]{σ}n+1 = τn+1{B}+ {C}. (14)

Vectors {B} and {C} directly depend on the shed vorticity panel values (∆n+1, Θn+1, τn+1
w ) and

consequently an iterative procedure must be set up to solve the system (14).
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3.4 Incorporating added mass effects into the fluid-structure coupling scheme

The coupling process is required to perform FSI calculations in order to regularly update the
variables common to both the fluid and the structure solvers. The exchange process should be
read as follows:

1 Starting at time n, a single time step is executed in order for the structure solver to update
displacements and velocities, bringing us to time n+ 1.

2 The information based on the new structure state is transferred to the fluid code.

3 Starting at time n, a single time step is executed to update all fluid data, bringing us to
time n+ 1.

4 The pressure field is transferred to the structure code.

. . . Steps [1→4] are executed iteratively until some convergence criterion is satisfied.

In order to better counteract the added mass effect that results from heavy fluid flow such
as in a liquid (sea currents) and that may lead to divergence, here we propose correcting the
classical FSI coupling scheme in relation to the added mass effect. The main idea (in the case
of conservative systems only) is that if the real added mass matrix [Madd,f ] could be calculated
exactly, the force term appearing in equation (2) would be exactly replaced by:

{Fp}i ≡ −[Madd,f ]{Ü}i. (15)

For most cases, the real added mass matrix [Madd,f ] is out of reach. The classical partitioned
coupling scheme (denoted by CLAS) is then modified in accordance with [1], and equation (2)
is now related to the corrected scheme (denoted by CORR):

([M ] + [Madd,e]) {Ü}i+1 + [K]{U}i+1 = {Fp}i + [Madd,e]{Ü}i, (16)

where i and i+1 are indexes for the iterative process, and [Madd,e] is the matrix corresponding
to the estimated added mass effect resulting from the pressure load all around the structure.
Each component Madd,e(i, j) is related to the force on the body in the i-axis resulting from a

unit acceleration along the j-axis. At convergence, the two additional terms cancel out and we
get back to the original form of the coupling equation (2). Adding extra terms on both parts
of the original equation, in accordance with equation (15), helps to reduce the penalizing effect
of {Fp} and to increase the beneficial effect of [M ]{Ü} on the convergence process. The added
mass matrix calculation is calculated according to [14]:

Madd,e(j, k) = ρ

˚

V

ϕi,kϕj,kdV = ρ

‹

S

ϕi
∂ϕj

∂n
dS. (17)

The above expression is fully compatible with the Panel Method in computing ϕj , the gradient
term simply being equal to the normal component of the parietal velocity of the body (a variable
that is already known, transmitted by the structure solver).
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4 RESULTS

4.1 Thrust generation by a forced oscillating airfoil

This first example is simply intended as a qualitative, graphical illustration of the capability
of the Panel Method in relation to the well-known effect of thrust generation through airfoil
oscillation (as presented in [11]). The same non-symmetric NACA 2412 airfoil is moved along
its plunging and pitching directions, according to:

w(t) = wo sin(ωt), θ(t) = θo sin(ωt+ φ)

where φ introduces a phase shift between the two variables. The unsteadiness in the flow

is defined by the reduced frequency κ =
ωc

V∞

: two different non-stationary calculations are

conducted respectively for κ = 0.5 and κ = 2. The entire simulation takes place over eight
periods of oscillation with 200 time steps per period. The airfoil (chord unity) is placed in a
flow with V∞ = +5m/s, wo = 0.2m, θo = 8o and φ = 60o and the airfoil is decomposed into
105 panels.

−1

0

1

0 2 4 6 8 10 12

−1

0

1

κ = 0.5

κ = 2

x [m]

z
[m

]
z
[m

]

Figure 4: Different flow characterizations according to the reduced frequency κ

Results of the two calculations are illustrated in Figure 4. In each case a wake appears that results
from the successive generation of vortex shedding at the trailing edge of the airfoil. For different
stations (x = 3, . . . , 11m) downstream of the trailing edge, the time-averaged velocity profile
(reduced from the value u∞) is superposed. The two cases clearly show opposing behaviors:
in the first case (κ = 0.5), the wake contributes to the airfoil drag (reverse flow), whereas the
second case (κ = 2) there is a jet effect in the direction of flow that can be used profitably to
propel the airfoil.

4.2 Free coupling regime

In this third example the same airfoil (NACA 2412, 105 panels) is now flexibly attached to a
fixed point, as illustrated in Figure 1. Immersed in a uniform flow (V∞, ρ), the airfoil is initially
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removed from its position at rest (wo = 0.2m and θo = 8 deg.) until a stationary fluid state is
reached. It is then relaxed to allow the fluid-structure coupling process to take place freely: it
will be remarked that the mechanical energy decreases with time because of a transfer of energy
to the fluid tracked in the form of a vortex wake. The point of this example is to look at the
influence of the volumetric mass ρ on the convergence property of the FSI scheme, to show the
severe limit observed for the classical coupling scheme (that we term CLAS), and finally to show
the beneficial effect of the scheme corrected from the added mass effect (that we term CORR).
Fluid flow conditions and structure characteristics are summarized in Table 1.

ρ V∞ m I|G KZ Kθ

[kg/m3] [m/s] [kg] [kg/m2] [N/m] [Nm/rad]

[1− 2000] 5 10 100 104 104

Table 1: Fluid flow conditions and structure properties

The estimated added mass matrix [Madd,e] is calculated with equation (17) to obtain:

Madd,e(1, 1)=0.71ρ, Madd,e(1, 2)=Madd,e(2, 1)=−0.15rho, Madd,e(2, 2)=0.05ρ.

The airfoil is considered fixed over a given number of time steps nFIX, then its flexibility is
restored in order to start the free fluid-structure interaction. The time step ∆t is related to the
two natural frequencies, extracted from an eigenvalue analysis:

f1 =
1

τ1
= 1.59Hz, f2 =

1

τ2
= 5.03Hz such as ∆t =

min(τ1, τ2)

200
≈ 10−3s.

The same analysis, in accordance with equation (16), is conducted over nstep time steps, for
both the CLAS scheme (with [Madd,e] = [0]) and the CORR scheme, for a range of volumetric
mass given in Table 1. For each time step, the number of iterations to convergence is extracted.
Figure 5 illustrates the two calculations for the limit case ρ = 21 kg/m3. The upper graph shows
the different wake patterns: black dots for CORR and larger, colored symbols for CLAS. With
CLAS the wake pattern is seen to be wider, and the total number of iterations for convergence
(lower graph) is systematically higher than with CORR.

This case corresponds to the limit observed for the CLAS scheme to converge. Any density
above this value causes the coupling to diverge, as reported in Table 2. For the considered

ρ [kg/m3] 1 10 20 25 100 1000 2000

# iterations (CLAS) 10 8 8 ∞ ∞ ∞ ∞
# iterations (CORR) 10 8 7 6 6 6 6

Table 2: Effect of density on the averaged total number of iterations for convergence

case, the CLAS scheme excludes densities higher than 20 kg/m3. Above this value the coupling
scheme systematically diverges. The CORR scheme, on the other hand, systematically converges,
whatever the density value, which confirms its capacity to support heavy fluids. But the number
of iterations is not the only determinant of whether a scheme is capable of converging. If the
aerodynamic cœfficients are plotted with respect to time, it can clearly be seen that even where
convergence is reached, the solution may not be physically acceptable. For ρ ∈ [8, 20] kg/m3 (not

9
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Figure 5: Convergence histories for CLAS and CORR schemes (case ρ = 21 kg/m3)

shown here) is can be observed (in the case of the CLAS coupling scheme) that all aerodynamic
cœfficients oscillate and, second, that the drag coefficient CD that ought to be null is in fact
non-zero!
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Figure 6: Dissipative effect due to airfoil energy transfer to the wake

The results below are solely obtained by using the CORR scheme. Figure 6(a) and (b) shows
that increasing the fluid density gives rise to a predictable higher level of energy dissipation in
the fluid, since a wake and vortex are generated that are simply convected downstream of the
flow with their own energy (which the airfoil is consequently deprived of). Energy signals are
normalized according to the initial energy Eo resulting from initial perturbations wo and θo.

The two signals Em and W have opposite behaviors, in agreement with the principle of energy
conservation. In other words, an irreversible transfer of the mechanical energy Em (equation 5)
is observed between the main flow and the airfoil, due to the produced work W. The higher the
density, the higher the observed dissipative effect.
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Figure 7 illustrates the frequency shifting observed and predicted for the two modes (pitching
and plunging), directly related to the density value ρ (in log- scale). Theoretical predictions
(solid lines), based on an eigenvalue analysis (mass, added mass and rigidity matrices), are
compared with the observed frequencies extracted (symbols) from the FSI calculations after an
FFT analysis.
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F
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ci
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Figure 7: Modal frequencies with respect to ρ: predictions (lines) and FSI calculations (symbols)

It will be noted that the pitching frequency is relatively constant, whereas the plunging mode is
quite sensitive to the value of the density. The eigenvalue analysis predicts a modal coalescing
at the critical value ρcoal = 133 kg/m3. The FSI simulations confirm the coalescing effect, but
for ρ = 50 kg/m3.

5 Conclusions and prospects

This paper presents a corrected version of a strongly iterative partitioned FSI scheme for
studying the dynamics of an airfoil flexibly attached and immersed in a heavy fluid. The
intended application of our work mainly concerns the fluid-structure coupling that may operate
between a moving lifting component (such as a marine current turbine) and a surrounding
heavy fluid such as water. The mathematical model for the fluid is based on the potential Panel
Method that offers the dual benefit of being restricted to a boundary element analysis and of
ensuring the lifting capability of the component. The mathematical model for the structure,
on the other hand, is based on the dynamics of a 2D airfoil that encounters plunging and
pitching motions. We demonstrate that in simple case, the iterative convergence of a classical
FSI partitioned scheme ceases to be guaranteed once the added mass exceeds the mass of the
component. Correcting the FSI scheme to counteract the penalizing effect of the added mass
allows convergence to be ensured, whatever the value of the added mass. The first example,
for a forced oscillating airfoil, validates the fluid flow model for a stationary flow. The second
example is intended to show how the classical FSI scheme is only applicable to a narrow range of
fluids (ρ ≤ 8 kg/m3), whereas taking into account the added mass effect on the coupling scheme
can ensure the convergence required by coupling considerations. A coalescing and stable effect
were observed, which also illustrates that the natural modes resulting from the flexibility of the
structure may vary considerably. However, even though taking an estimated added mass matrix
into account has obvious benefits in relation to FSI coupling in heavy fluids, this alone is not
sufficient for accurately estimating the consequences of energy transfers that significantly modify
the energy absorbed or dissipated by the system. We are currently looking at the possibility of
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extending this approach to 3D applications to cover more realistic rotor geometries (wind mills,
marine turbines), in order to establish the full requirements of FSI calculations for such devices.
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