
SFDDM: A Secure Distributed Database
Management in Combined Fog-to-Cloud Systems

Souvik Sengupta, Sarang Kahvazadeh, Xavi Masip-Bruin, Jordi Garcia
CRAAX Lab, Dept. of Computer Architecture (DAC), UPC BarcelonaTech, Vilanova i la Geltrú, Spain

Email: (souvik, skahvaza, xmasip, jordig) @ac.upc.edu

Abstract—Technological revolutions have greatly increased the
use of IoT devices for our daily life. Driving the fact that
everything surrounding us is getting connected what turns into an
unstoppable increase in the amount of data produced. This data
represents the state of diverse environmental events and helps to
control a large set of distinct activities. So, accurate and secure
management of this data is essential for any computing platform.
Moreover, in order to provide real-time services in a distributed
system (i.e., smart city), the data should be properly and securely
managed. It is well known that shifting these tasks to the edge
(i.e., near to the end users), highly facilitates these two objectives.
The recently proposed Fog-to-Cloud (F2C) model is intended to
enable data processing near to the edge, which helps to get better
latency-sensitive services. However, some challenges remain to
accurately and securely manage this data over the system, mainly
due to the distributed F2C nature. Thus, considering these facts
and challenges, in this paper we propose an architectural solution
aimed at building a secure distributed database for F2C systems.
Then, considering a real-case scenario, we perform some tests to
measure the performance of our proposing schema. Finally, by
comparing the performance between traditional cloud, fog/edge
based execution model and our proposing SFDDM, we validate
the effectiveness of our proposing schema.

Index Terms—Fog-to-Cloud (F2C), Distributed Database,
Internet-of-Thing (IoT), Security and Privacy

I. INTRODUCTION

The connection of the large set of diverse devices and
objects deployed at the edge to the network, undoubtedly eases
the wide adoption of the set of envisioned Internet-of-Things
(IoT) benefits, mainly rooted on the deployment of innovative
services with a large impact on the society, out of which
large scale situation-awareness applications may be strongly
highlighted (e.g., large-scale air quality monitoring, large-
scale fire detection monitoring, city’s traffic monitoring or
large area video surveillance). Interestingly, these applications
rely on a large amount of data produced by a non-negligible
amount of IoT devices. Moreover, for large scale situation-
awareness applications, it is essential for all IoT devices to
work in a sense-process-actuate control loop at a machine-
perception speed, in order to guarantee a secure and much
better performance. However, assuming all data processing
is handled at remote clouds some relevant issues come up.
Indeed, the network delay and connection unreliability be-
tween the remote cloud and the IoT devices deployed at the
edge makes the cloud-based model not to be the proper one
for latency-sensitive situation-awareness applications. Aimed
at fixing these latency issues, fog computing [1] recently
popped up, pushing for moving cloud to the edge, thus setting

a user/IoT devices proximate infrastructure, able to manage
some processing capacities and consequently shrinking the
need for moving data processing to the cloud, tuning into
a notable latency reduction. Even more, assuming cloud is
here to stay, large benefits may be obtained by the smart
coordination of fog and cloud infrastructures, what has been
recently coined as Fog-to-Cloud (F2C) computing [2]. In fact,
by enabling both a better resources utilization mechanism,
an optimal data processing over the whole set of available
resources and by improving the service execution at the edge
devices, F2C ensures a much better service performance, also
for latency-sensitive applications.

Interestingly, in order to make the most of the capacities
brought in by the edge resources, it is essential to keep the
data near to the edge. But this is not enough. It should be
also noticed that the data required by several applications and
particularly by situation-awareness applications (in general,
any data coming from monitoring infrastructures, resources,
people, etc), is usually quite sensitive, hence unauthorized
access, process and tampering data might cause severe degra-
dation of the overall system performance. Consequently, se-
cure data distribution and processing are basic needs for these
applications [3]. However, when dealing with edge devices,
guaranteeing security and privacy for edge devices is a tough
task [4], mainly motivated by the low capacities normally
inherent to edge devices. In this complex and challenging con-
text, this paper proposes an architectural solution for a secure
distributed database management in scenarios combining fog
and cloud resources, hereby referred to as Secure Fog-to-Cloud
Distributed Database Management (SFDDM).

The rest of the paper is organized as follows. In Section
II, we discuss the related work. After that, in Section III,
we briefly describe the framework of the proposed SFDDM
architectural solution. Then, in Section IV, we evaluate the
performance of our SFDDM proposal. Finally, we conclude
our paper presenting some future direction and final remarks.

II. RELATED WORK

There are some contributions dealing with solutions for
data management in cloud and fog without considering the
coordinated and hierarchical F2C nature. In [5], [6], authors
focus on an efficient data management in a fog computing
ecosystem. More concretely, in [5] authors show their concerns
to find out the best possible way to appropriately replicate
the data over the distributed database system without issuing

inconsistency issues. On the other hand, authors in [6] propose
to design a suitable data-model aimed at ensuring efficient data
distribution to the overall distributed computing framework.
However, none of these two contributions considered security
functionalities and provisioning over the data management.
Another contribution [7], focuses on building an appropriate
framework for managing the huge amount of data in the
federated fog/edge and cloud platform, although, the work
is not considering any security implementation over the data
management in the federated fog/cloud. In [8] authors design
a framework to bring the full cloud facilities near to the edge
minimizing the data-query response time, which helps to opti-
mize the performance of latency-sensitive situation-awareness
services. However, the proposed architecture relies on com-
putational resources from volunteering contributors what can
cause high-security risks. In [9], a holistic vision-centric ap-
proach, proposing an architectural vision for managing the data
is introduced, including novel hypothetical leveraged data-
centric model approaches for managing the system data over
the distributed network in a trustworthy fashion. However,
authors only propose an architecture with no details about
security deployment and trust establishment between layers
such as IoT, fog and cloud. Other papers, put special attention
to highlight potential concerns to design access control policies
[3] aimed at ensuring the security and privacy needs [10] for
specific distributed database frameworks. However, in these
proposals, access control and security provisioning are handled
by a centralized component, becoming a single point of
failure that can compromise the whole system. Therefore, after
revisiting current works, we may conclude that an architectural
solution for a secure and distributed management and access of
the data in combined fog/cloud systems is a must and which is
yet demanding specific efforts from the scientific community.

III. ARCHITECTURAL DESCRIPTION

The key benefits of the coordinated management of fog
and cloud resources have been already demonstrated [2], in
terms of both a much better service execution and optimal
resources utilization. These benefits may be highly emphasized
whether the collected data to be processed are kept close to
the edge of the network or not. However, as already stated
before, dealing with data, especially when playing with data
sensitive applications (an almost mandatory requirement when
running applications and services related to users or pri-
vate systems, e.g., situation-awareness applications), demands
strong guarantees on privacy and security. By aiming to sort
out these challenges and making security a key functionality in
combined fog and cloud scenarios, in this section, we present
a novel architectural solution for data sensitive applications for
smart computing scenarios. To that end, the envisioned sce-
nario is presented, illustrating the proposed security services
which are offered by the proposed architectural solution.

A. Application context: use-case scenario for SFDDM

There are many scenarios where the coordinated manage-
ment of fog and cloud resources brings in substantial benefits,

such as e-health, industry 4.0, smart transportation or smart
cities, just to name a few. Particularly, as introduced in the
first section, latency-sensitive situation-awareness applications
put together a large set of highly demanding services with
a large impact on smart cities scenarios. In fact, through
a vast deployment of smart systems and devices, cities are
evolving towards an improved and sustainable living facility
offering a much better quality of life by reducing environ-
mental pollution and also solving many other issues [11].
Several efforts are already done aimed at building up smart
solutions for improving life quality in modern cities. For
example, authors in [12] proposed a methodology for using
WSN technology for reducing air pollution in modern cities.
In the proposed scenario, many resource-constrained devices
at the edge collect data to measure air quality. These data, in
a smart city context, particularly when dealing with latency-
sensitive situation-awareness applications, must be processed
near to the edge.

As described earlier, the coordinated management of cloud
and fog resources may help to achieve that set of requirements,
taking real-time decisions about the set of resources to use
according to the real needs, be it at the cloud or at fog. Hence,
when putting together the needs required by the envisioned
highly demanding scenario and the features offered by the F2C
model, we indeed notice that F2C may be a nice management
paradigm on which, a solution may rely on. For the sake of
illustration, the proposed architectural solution is applied for
air quality and traffic monitoring service in smart cities. Fig. 1
presents a topological approach of the tentative infrastructure
required to deploy the air and traffic service on a city matching
the F2C model. As shown in the picture, there are many quality
measurement sensors and surveillance cameras geographically
distributed over the city, aimed at measuring the air quality
level and monitoring the traffic in real-time. Assisted by the
surveillance cameras, information about the total number of
vehicles moving in the city for a given time may be also
collected. In practice, considering the volume of sensors and
the volume of vehicles, a large volume of data is expected.
Moreover, for a much better service experience in a smart
city domain, it is essentially required to share the captured
data with existing local government organization (e.g., meteo-
rological dept., traffic controlling dept., etc.) and also among
the citizens. Unfortunately, processing and securely sharing
this high volume of data in real-time is pretty difficult when
considering that edge devices are resource-constrained systems
with poor storage and processing capacities, mainly due to
two key factors. First, it is evident that cloud may be a nice
candidate to handle these needs, but bandwidth limitations and
large distances may make the cloud, as a standalone solution,
not to be the ultimate one. Second, unreliable communication
between edge devices and cloud brings additional complexity
in the system while also increasing the chances for data losses.

B. Architectural schema & components: of SFDDM

In order to alleviate all the upper-mentioned issues, we
develop a modified F2C-based execution model, supported

Fig. 1. F2C-based execution model for monitoring traffic and air quality in
a Smart City scenario.

by an architectural schema named - Secure F2C Distributed
Database Management system (SFDDM). The SFDDM mainly
consists of three (3) layers and six (6) types of architectural
elements, as discussed below.

1) Cloud Layer: This layer is considered as the most
resource-enriched layer. It is the uppermost layer of our
proposing architectural schema as shown in Fig. 3. According
to our schema, two-types of architectural elements are working
in this layer, the F2C Controller and the Cloud Agent (ClA).
The F2C Controller is the master node acting as a certifi-
cate authority providing authentication for distributed control-
area-units (CAUs) located at the edge of the network. F2C
Controller gives authorization for security provisioning at the
edge of the network to the distributed CAUs. Also, it acts as
the data center node for our proposing distributed database
oriented architectural schema. On the other hand, ClA is the
cloud node, which is basically a composite form of cloud
resources. It is responsible for providing the various kind of
cloud facilities, including the storage facilities for historical
data. The F2C Controller has secure intercommunication with
the ClA. Key details and functionalities of the F2C Controller
and CAUs are further extended in subsection III-C.

2) Fog Layer: In the proposed architecture, this layer is
mainly responsible for bringing the cloud facilities near to the
edge of the network. According to the architecture schema
shown in Fig. 2, this layer is a composite layer of two
different sub-layers. The upper sub-layer is called as the Fog
Manager Layer (FML). Another sub-layer resides below of
the FML, referred to as the Fog Employee Layer (FEL).
The FML sub-layer consists of two different architectural
elements - the Control Area Unit (CAU) and the Leader Fog
Node (LFn). The CAUs are responsible for securely managing
and storing the captured data, and whereas the LFns are
responsible for bringing other cloud facilities near to the end-
users. The FEL sub-layer elements are comparatively more
resource constrained than the FML sub-layer elements, known
as Normal Fog Node (NFn). The NFns act as the end-point or
gateway for the Edge-IoT devices (e.g., sensor nodes).

From a topological perspective, we may consider that in a
modern F2C-enabled smart city scenario, several small areas
may emerge to properly provide F2C services near to the edge

of the network. These small areas are individually known as
fog areas. In the proposed architectural schema, we consider
that each fog area has one CAU and one LFn, respectively
responsible for providing the security functionalities, storing
the data near to the edge and managing the other devices (i.e.,
NFn) within their scope.

3) Edge-IoT Layer: This layer is the bottom layer of the
proposed architectural schema (Fig. 2), and consists of various
kind of small IoT devices (e.g., sensor nodes, surveillance
camera). These devices are responsible for both the continuous
capturing of various environmental events (such as temperature
sensing) and the execution of some actions (such as automatic
fire extinguisher), according to some instructions.

Moreover, by recognizing the need for a strong data security
management at edge devices, particularly in data-sensitive
applications, the proposed architecture designs a distributed
database cluster deployed on top of all CAUs and the F2C
Controller. Next subsection briefly describes the main security
features of the proposed architectural schema.

C. Security services

The proposed data management security schema leverages
the decoupled distributed security framework introduced in
[13], briefly described in terms of its main components next:

1) F2C Controller: The F2C Controller resides at cloud
and acts as the master node for the distributed control-area-
units (CAUs) deployed at the Fog Manager Layer FML.
The F2C Controller provides authentication, authorization,
access control and secure channels for distributed CAUs. Once
authorized, CAUs are responsible for providing security in
their corresponding fog areas.

2) Control-Area-Unit (CAU): The CAUs (deployed at the
fog layer), once authenticated and authorized by the F2C Con-
troller, are responsible for providing distributed authentication
and access control, as well as for enabling the secure chan-
nels for their corresponding fog areas. Then, CAUs become
trustable to act as distributed security controllers at other fog
nodes (i.e., LFn and NFn) to provide the security requirements
within their scope. CAUs provide security services for LFn,
NFn and even other edge and IoT devices. All the CAUs are
communicating with each other through a secure intercom-
munication channel. The CAUs, after being authenticated and
authorized from the F2C Controller can provide security at the
edge without relying on the F2C Controller at the cloud.

In the proposed architectural schema, the communication
between all CAUs, CAUs and F2C Controller, LFn and CAU,
as well as NFn and CAU are implemented through transport
layer security (TLS), hence all communications are handled
through secure channels. CAUs are in charge of providing
certificate authorities for their corresponding fog areas. Indeed,
by using X.509 public key certificates with the RSA cryptogra-
phy algorithm, CAUs provide distributed authentication within
their scope. Moreover, CAUs provide access control (Role-
based) to the distributed database to prevent any unauthorized
access. Finally, before storing the data, the CAUs encrypt
the data by implementing the advanced encryption standard

Fig. 2. CAU-based Distributed Database in the F2C scenario

(AES), thus preventing any data leakage, eavesdropping, and
any type of passive and active attack over the database.

D. Functionalities of the SFDDM schema

The set of expected services provided by the proposing
SFDDM architectural schema relies on two algorithms (Al-
gorithm 1 & 2). Algorithm 1, describes the data aggregation
procedure, while Algorithm 2 describes the secure data storing
and retrieving procedure in the proposing SFDDM schema.

Algorithm 1 For preparing the aggregated data in a NFn
Initial Consideration: MQs = [], Qs = [], Cl, Ct

1: procedure AGGREGATION OF DATA
2: Check the data sources for context
3: if contexts are same then
4: check the values of Cl and Ct for every

data sources
5: if All the Cl and Ct are same then
6: Add all the data into Qs

7: Perform data aggregation on Qs

8: EstimateMean, Median, andMode of Qs

9: Calculate the difference betweenMode
value and each data of Qs

10: if difference > 1, for any data
in Qs then

11: Send alert sms to LFn and Add
Estimated Mode value to the MQs

12: else Add the Estimated Mode value to
the MQs

13: else Add all the data in MQs

14: else Add all the data in MQs

In our envisioned scenario, considering latency-sensitive
situation-awareness services in a smart city as an illustra-
tive example, all Edge-IoT devices are responsible for both
continuous capturing the different environmental events (i.e.,

air pollution measurement, passing vehicles counting) and
generating (i.e., collecting) the data. Afterwards, once the data
is generated, the Edge-IoT devices immediately send this data
to their connected NFn. Once the NFn receives this data, it
starts aggregating this data. To that end, the SFDDM solution
adopts the statistical average method. Thus, on the basis of the
data context and with the help of data capturing time (Ct) and
capturing location (Cl), the aggregation is being done. Most
importantly, by doing so, it is possible to detect faulty data.
Then the clean data packet is built for sending to the upper
layer in the SFDDM architectural schema. At this step the
Algorithm 1 stops working.

Algorithm 2 For Storing/Retrieving data
Initial Consideration: MQs = [], MQr = [], InV = []

1: procedure DATA STORING/RETRIEVING
2: Check the authentication of NFn and register them, if

not registered
3: FIRST PHASE: For Storing Data
4: Aggregate the data in NFn and insert it in MQs,

against the InV
5: Send the MQs, and InV to CAU
6: Confirm the accessing permission of NFn for storing

data in distributed DB
7: Encrypt the MQs and store it into the distributed DB

(in a table) considering the InV value
8: SECOND PHASE: For Retrieving data
9: Confirm the accessing permission of NFn for retriev-

ing data from distributed DB
10: Make the query from other NFn, considering the

desired InV value and table name to the CAU
11: Then, CAU find the encrypted data from it’s database,

and then decrypt the data and also put it in the MQr

12: CAU send the MQr to the NFn

In order to store and retrieve the data, the Algorithm 2

is deployed. According to this algorithm, before sending or
retrieving the data, all NFns must be authenticated, before
sending the data packet to the CAU of their corresponding fog
area. Once the authorized NFn gets the accessing permission
from the corresponding CAU, then it can start sending the data
packet (MQs). In order to ensure privacy and data integrity,
we encrypt the (MQs), before storing it against the index
value (InV = [Cl, Ct]).

To that end, for retrieving the data, also all query makers
(e.g., organizational centre, citizen) need to register themselves
and claim the access permission from the CAU of their
corresponding fog area. Once they get access permission, they
can start querying for the desired data. When a CAU gets the
query from the query makers, then the CAU starts looking
for the data in the distributed database with the help of the
mentioned InV . After finding the data from the distributed
database cluster, the CAU decrypts the data and prepares the
response packet (MQr) for sending to the query makers.
Following this way, our schema securely delivers data to the
query makers.

IV. PERFORMANCE EVALUATION

To evaluate the performance of our proposed architectural
schema, we have configured our project test-bed [14] and
emulated our schema. In addition, we have also used the
Python-based simulation tool (YAFS [15]) to generate the
traditional Cloud-based and Edge/Fog-based execution mod-
els, in order to compare our performance with the traditional
execution models. We have set up a prototype of the F2C-
enabled smart city scenario in our research lab, where the
Cloud Layer elements (i.e., F2C Controller and Cloud Agent)
are hosted on a server with Intel Xeon family E5-2620 V4
series (clock speed @3GHz), 96GB RAM, 1TB Hard Drive,
and running on Ubuntu 16.04LTS Linux. In our experimental
testbed, all the Fog Layer elements (i.e., CAUs, LFn and
NFn) are relatively small computing devices: Raspberry Pi3
B+ models, running on Ubuntu 16.04LTS Linux and with
Cortex A53 @ 1.4GHz processor, 1GB SD-RAM, and 64GB
micro-SD card. Similarly, we are hosting the LFn and NFn
on some Raspberry Pi Zero models, working with 1GHz
single-core CPU, 512MB RAM and, for storage purposes,
we are using 8GB microSD for each of the LFn and NFn.
For storing the captured data and securely distributing it over
the network, we are creating a distributed database cluster
over all the CAUs and F2C Controllers. For that purpose, we
are using the containerized Apache Cassandra (Dockerized-
Cassandra). Tests have been performed implementing the
multi-datacenter, multi-node based Cassandra cluster over the
considered distributed framework. Security in our proposing
schema has been ensured by implementing the aforementioned
security functionalities. Similarly, we have customized the
YAFS simulator to create the traditional cloud-based and fog-
based smart city scenario, considering the same resources
specification (i.e., RAM size, CPU specs., bandwidth), in
order to compare with our proposed schema. For, cloud-
based and traditional edge/fog based execution model, we are

permanently storing the data in the cloud. Whereas, in the
traditional edge/fog based model, before permanent storing of
the data, the fog nodes are caching and processing this data
for a limited amount of time. The feasibility of our schema
has been validated performing the test over several amounts of
distinct data packets. Individually, the average size of each of
the packet is 30kB. By imitating the smart city scenario, we
understand that at the edge of the network the communication
bandwidth is reduced. In our proposed schema, we consider
the maximum connection speed between Edge-IoT devices and
the NFn is 2 MBps. Similarly, the maximum connection speed
between NFn and LFn/CAUs is 5-7 MBps. And the maximum
connection speed between different FML’s architectural ele-
ments (e.g. LFn and CAUs) and also with the cloud layer’s
element is 11 MBps. A thorough observation at any smart city
scenario, easily shows that bandwidth utilization is one of the
most critical issues to manage. Considering this requirement,
we perform our first evaluation test to show the performance
of our proposed schema.

A. Bandwidth utilization: Cloud vs Fog vs SFDDM

SFDDM aggregates the raw captured data in the NFn,
before being sent to the distributed database. After that, the
aggregated data is sent to be stored in the distributed database,
located at the FML. Eventually, this reduces the overall band-
width utilization for our proposing schema. In addition, as the
distributed database cluster is residing near to the edge, it also
reduces the data transmission time for storing the data into the
database. In Fig. 3, we present the performance evaluation of
our model. Here, the deep magenta coloured line represents the
performance of the SFDDM schema, and the green coloured
line and the red coloured line represent the performance of
fog-based and cloud-based execution model, respectively. We
observe that our model reduces the data packet transmission
time by approximately 33% compared to the cloud-based
execution model and approximately 44% compared to the
traditional fog/edge-based execution model.

Fig. 3. Test result1: Data transmission vs Bandwidth usage

B. Query response time: Cloud vs Fog vs SFDDM

We consider two different cases to measure the query
response time. In the first case (Fig. 4), we consider that the
data source and the query makers (i.e., organizational centre
or citizen) are within the same scope (i.e., same fog area). In
the second case (Fig. 5), we consider the query for searching
the data is made either from a remote area or from a different
scope (i.e., different fog areas).

Fig. 4. Test result2: Query response time (data within local scope).

Fig. 5. Test result2: Query response time (data in remote area).

In the first case (Fig. 4), we have found that, since the data is
residing within the same scope, the query response time for the
normal fog-based execution model and our SFDDM schema
is quite similar; however, the query response time at cloud is
extremely high. Interestingly, in the second case (Fig. 5), we
have found that our schema performs much better than regular
fog-based execution model. As the SFDDM has the distributed
database near to the edge, the data is dispersed and therefore
closer to the edge of the network. But, in case of the normal
fog-based execution model, the query has travelled through the
upper layer (e.g., cloud layer), so this usually takes a long time
and degrades the performance for normal fog-based execution

model. The traditional cloud-based execution model again has
higher response time, because the data is residing far from the
query makers.

C. Data loss: Cloud vs Fog vs SFDDM

Finally, we measure the data loss. To that end, we consider
the same two cases for some video streaming applications in
a smart city scenario. In the first experiment (Fig. 6), the data
(image) source node (which hosts the surveillance camera) and
the monitoring node (i.e., organizational centre) are residing
within the same scope (i.e., in the same fog area), and in
the second case (Fig. 7), both nodes are residing in different
scopes (i.e., in different fog areas). For both cases, we found
that our SFDDM schema provides better performance than
either traditional cloud-based or fog-based execution models.
Indeed, implementing the distributed security functionalities
and database near to the edge is guaranteeing a better perfor-
mance for our SFDDM schema.

Fig. 6. Test result3: Data loss (Data within the local scope)

Fig. 7. Test result3: Data loss (Data is in the remote area)

V. CONCLUSION

In this paper, we have proposed an architectural schema
for the secure distributed database management system in the
F2C-based execution model. It provides enhanced features
and performance for any latency-sensitive situation-awareness
applications scenario. By performing some tests, we have mea-
sured the performance of our SFDDM architectural schema,
and compared with those in a cloud-based and fog-based
models. We have shown the improved performance of our
model compared with any of the traditional models.

This research work is presented as the primary steps for
making an efficient and secure F2C-based system, so many
challenges still remain to be addressed. For that reason, addi-
tional work is essential. For example, in our framework, we
did not consider the security functionalities for the edge IoTs
(e.g., sensor nodes, surveillance camera). We know that, as
these edge IoTs are mostly resource-constrained, so ensuring
security and privacy functionalities for them, is one of the
most challenging tasks. For this reason, these challenges and
many other open issues will constitute the core of our future
work.

ACKNOWLEDGMENT

This work has been supported by the Spanish Ministry of
Science, Innovation and Universities and the European Re-
gional Development Fund (FEDER) under contract RTI2018-
094532-B-I00, and by the H2020 European Union mF2C
project with reference 730929.

REFERENCES

[1] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A
platform for internet of things and analytics,” in Big data and internet
of things: A roadmap for smart environments. Springer, 2014, pp.
169–186.

[2] X. Masip-Bruin, E. Marı́n-Tordera, G. Tashakor, A. Jukan, and G.-
J. Ren, “Foggy clouds and cloudy fogs: a real need for coordinated
management of fog-to-cloud computing systems,” IEEE Wireless Com-
munications, vol. 23, no. 5, pp. 120–128, 2016.

[3] M. Gupta, F. Patwa, and R. Sandhu, “An attribute-based access control
model for secure big data processing in hadoop ecosystem,” in Proceed-
ings of the Third ACM Workshop on Attribute-Based Access Control.
ACM, 2018, pp. 13–24.

[4] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and A. Y.
Zomaya, “Secure and sustainable load balancing of edge data centers
in fog computing,” IEEE Communications Magazine, vol. 56, no. 5, pp.
60–65, 2018.

[5] R. Mayer, H. Gupta, E. Saurez, and U. Ramachandran, “Fogstore:
Toward a distributed data store for fog computing,” in 2017 IEEE Fog
World Congress (FWC). IEEE, 2017, pp. 1–6.

[6] T. Kudo, “Fog computing with distributed database,” in 2018 IEEE
32nd International Conference on Advanced Information Networking
and Applications (AINA). IEEE, 2018, pp. 623–630.

[7] M. Malensek, S. L. Pallickara, and S. Pallickara, “Hermes: Federating
fog and cloud domains to support query evaluations in continuous
sensing environments,” IEEE Cloud Computing, vol. 4, no. 2, pp. 54–62,
2017.

[8] M. Ryden, K. Oh, A. Chandra, and J. Weissman, “Nebula: Distributed
edge cloud for data intensive computing,” in 2014 IEEE International
Conference on Cloud Engineering. IEEE, 2014, pp. 57–66.

[9] E. M. Schooler, D. Zage, J. Sedayao, H. Moustafa, A. Brown, and
M. Ambrosin, “An architectural vision for a data-centric iot: Rethinking
things, trust and clouds,” in 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2017, pp. 1717–1728.

[10] L. Lyu, K. Nandakumar, B. Rubinstein, J. Jin, J. Bedo, and
M. Palaniswami, “Ppfa: Privacy preserving fog-enabled aggregation in
smart grid,” IEEE Transactions on Industrial Informatics, 2018.

[11] M. Thuzar, “Urbanization in southeast asia: developing smart cities for
the future?” Regional Outlook, p. 96, 2011.

[12] M. S. Jamil, M. A. Jamil, A. Mazhar, A. Ikram, A. Ahmed, and
U. Munawar, “Smart environment monitoring system by employing
wireless sensor networks on vehicles for pollution free smart cities,”
Procedia Engineering, vol. 107, pp. 480–484, 2015.

[13] S. Kahvazadeh, V. B. Souza, X. Masip-Bruin, E. Marin-Tordera, J. Gar-
cia, and R. Diaz, “Securing combined fog-to-cloud system through
sdn approach,” in Proceedings of the 4th Workshop on CrossCloud
Infrastructures & Platforms. ACM, 2017, p. 2.

[14] R. Sosa, R. Sucasas, A. S. ENG, A. Leckey, C. Cordeiro, J. Jensen,
C. Ketley, S. Crompton, and F. Carpio, “D5. 1 mf2c reference architec-
ture (integration it-1).”

[15] I. Lera and C. Guerrero, “Simulation tool: Yet an-
other fog simulator (yafs),” 2017. [Online]. Available:
https://yafs.readthedocs.io/en/latest/index.html

