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Abstract scales are formalized as a cyclic group of classes of projection functions related to iterations
of the scale generator. Their representatives in the frequency domain are used to built cyclic sequences
of tone iterates satisfying the closure condition. The re�nement of cyclic sequences with regard to the
best closure provides a constructive algorithm that allows to determine cyclic scales avoiding continued
fractions. New proofs of the main properties are obtained as a consequence of the generating procedure.
When the scale tones are generated from the two elementary factors associated with the generic widths
of the step intervals we get the partition of the octave leading to the fundamental Bézout's identity
relating several characteristic scale indices. This relationship is generalized to prove a new relationship
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step-intervals induce to a speci�c set of octaves.
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1. Introduction

An n-tone equal temperament (TET) scale does not include the pitch classes (PCs) of the har-
monics and subharmonics of a fundamental frequency, not even the lowest orders, but in its
favour its PCs remain equally spaced within the circle of the octave. The scale intervals have an
algebraic structure similar to the group of integers modulo n, (Zn,+), and any PC may assume
the role of the fundamental. On the other hand, a just intonation scale composed of a �nite
family of harmonics and subharmonics, apart from having non-equal temperament, is not closed
with regard to the composition of its intervals. A compromise is reached in Pythagorean tuning,
where the scale is tuned to the class of the third harmonic, the lowest harmonic not belonging
to the class of the fundamental. The standard 12-tone Pythagorean scale gives an acceptable
approximation of the harmonics up to the tenth �except the seventh that sounds very low in
most instruments (von Helmholtz 1863)� and is close to a 12-TET scale with an error smaller
than one Pythagorean comma. For these reasons, Pythagorean tuning has become the standard
pattern of Western music. By choosing conveniently the number n of notes, it is possible to get
a Pythagorean scale containing notes closer to the lower harmonics. On the other hand, it is
well known that the frequency ratios between the scale tones are aurally signi�cant since the
harmonic structure of many musical instruments causes their partials to overlap. For this reason,
in order to produce speci�c overtone series, spectrum, or timbre (Sethares 1998), Pythagorean
tuning can be generalized to scales generated by intervals other than the �fth.
While trying to substantiate the process of building a Pythagorean scale, one �nds that the

properties inherent to the formation of the scale do not depend on the generator interval chosen,
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rather they are a consequence of the process itself. Hence, as already suggested by Regener (1967),
the procedure can be extended to musical scales generated as a �nite sequence of iterations
of an arbitrary frequency ratio h (with regard to a fundamental ν0 = 1). Since the octave is
associated with a frequency ratio 2, the reduction of the frequencies by octaves to the interval
[1, 2) determines the representatives of the frequency classes (FCs), which will be referred to as
scale tones. When one iterate is closer than the others to either end of the interval, the scale
formed up to this iterate satis�es the closure condition (Carey and Clampitt 1989). Since the
reference octave is usually represented as a circle in the pitch domain (log2 of the frequencies), we
will say the scale is cyclic, meaning a well-formed scale of one generator, which will be described
as a cyclic group. In the general case, h is assumed to be di�erent from a rational power of 2,
otherwise the scale is equally tempered, which is considered as a degenerate Pythagorean system.
The procedure can be generalized by changing the period of the octave to any positive value ω.
In the current paper, cyclic scales will be studied by following such a constructive procedure,

by pointing out, especially in the footnotes, the links to other approaches, namely the continued
fractions approximation of log2 h, combinatorics of words, Farey sums, or the Stern-Brocot tree
(Carey and Clampitt 2012, 2017; Clampitt and Noll 2011; Noll 2006, 2007, 2008, 2015; Jedrzejew-
ski 2009, 2008). After introducing the notation, an abstract scale is described from a canonical
Generalized Interval System (GIS) (Lewin 1987) with an interval function, that we call projection
function, related to iterations of the generator tone. Under an equivalence relation, the represen-
tatives of the classes of projection functions de�ne the tones of a cyclic scale. Hereafter, we leave
the abstract formulation and adopt a more analytical viewpoint. In a �rst instance, we present
an approach leading for e�ciently determining these tones. It is worked out in the frequency
domain instead of the pitch domain, as usual. The reason is to show in what simple way a cyclic
scale can be generated: (a) there is an in�nite hierarchy of cyclic sequences increasing the number
of tones; (b) each sequence is characterized by the minimum and maximum tones νm and νM ,
ordered as increasing pitches in (1, 2); (c) since νM

2 < 1 < νm, then νM
2 < νMνm

2 < νm, from where
we prove that a new extreme tone of the next cyclic sequence must be νm+M . By identifying
this tone of the sequence with the fundamental we get the cyclic scale. In this way, we obtain
alternative proofs to results usually derived from the continued fractions approach (e.g., Carey
and Clampitt 1989; Hellegouarch 1999; Douthett and Krantz 2007). Later on, the generating al-
gorithm is reformulated at a generic level depending exclusively on the indices of the scale tones,
without the need to estimate the comma (e.g., Noll 2007). In this form, the algorithm allows
to distinguish easily between optimal scales (associated with the convergents of the continued
fractions approach) and non-optimal scales (associated with the semi-convergents).
In a second part, new proofs of several scale properties are derived from the generating pro-

cedure. The paper provides new and alternative viewpoints to obtain the main characterizations
of well-formed scales, such as those related to the best comma (Douthett and Krantz 2007), the
chromatic length of the generator, Myhill's property (Clough and Myerson 1985, 1986), the spec-
trum width, etc. As a new result we prove that, for a n-tone cyclic scale, the di�erence between
the chromatic length of the generating ratio N and the index of octave JnK (octave windings in
n) tells whether the scale is or is not optimal.
Finally, we study the partition of the octave. After providing a new demonstration of how the

frequency ratios associated with the extreme tones (i.e., those corresponding to the two possible
sizes of the step-interval j = 1) generate the partition of the octave into elementary factors such
that νMm ( 2

νM
)m = 2, we generalize it. Thus, if the pair νl, 2

νL
, with l + L = n, is the spectrum of

the j-th step-interval, then we get νLl ( 2
νL

)l = 2j , which provides the partition of j octaves and
yields the generic relationship between the indices j, l, L. Generating the cyclic scale from such
a pair of factors with indices coprime with n, which in the log2 domain is equivalent to the pairs
generator/co-generator, gives rise to self-similar pitch structures representing the scale (Carey
and Clampitt 1996; Clampitt and Noll 2011). In addition. it provides the deviation of the scale
tones with regard to the n-TET scale.
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2. Preliminaries

2.1. Well-formed scales

Well-formed scales satisfy the symmetry condition, consisting of displaying several degrees of
rotational symmetry, which Carey and Clampitt (1989) proved to be equivalent to the closure
condition. �abka (2009, 2010) generalized this result and proved the equivalence of the closure
and symmetry conditions also for scales generated by two intervals. In the current paper, cyclic
scale refers to a well-formed scale with one generator. If one wishes a particular frequency ratio
h to be the generator of a non-degenerate cyclic scale, i.e., reproducing the closure and symme-
try conditions, the cardinal k of its pitch class (PC) within the scale must be coprime with n.
For generalized Pythagorean systems, well-formed scales are also known as moment of symme-
try (MOS) (Wilson 1975) and natural scales (Hellegouarch 1999). We highlight the three main
approaches leading to cyclic scales.
The �rst one is the MOS (Wilson 1974, 1975), which results from iterating a non-degenerate

generalized Pythagorean system when the partition of the octave induced by the scale notes has
exactly two sizes of scale steps and each number of generic intervals occurs also in two di�erent
sizes1. This condition is known as Myhill's property (Clough and Myerson 1985, 1986).
Alternatively, Carey and Clampitt (1989) founded well-formed Pythagorean scales on two

theorems (Carey and Clampitt 2012, 2017). According to the �rst theorem, these scales have a
number of PCs corresponding to the denominators of convergent and semi-convergent continued
fraction expansions of log2 3. These numbers are associated with intervals that contain no pitches
that occur earlier in the sequence of �fths (primary intervals). In other words, the span of the
closure interval (i.e., the number of steps between the �rst and last note of the scale when the scale
notes are ordered by pitch) is 1. The properties of the continued fraction convergents determine
automorphisms that rearrange the �fths iterations according to the symmetry condition. The
second theorem states that these scales satisfy Myhill's property.
Another approach (Hellegouarch 1999; Kassel and Kassel 2010) determines successive natural

scales from a quotient group G/H, where G is the group generated by the frequency ratios 2
and 3, and H is the group generated by the comma rn. If

pn
qn

is a convergent or semi-convergent

of the continued fraction expansion of log2 3, the comma rn =
(

3qn
2pn

)(−1)n satis�es rn → 1
as pn

qn
→ log2 3. The representative of each PC is chosen as the simplest irreducible fraction

allowing an isomorphism ϕ between the qn tones in [1, 2) and the set {0, 1, . . . , qn − 1} so that
ϕ(2) = qn. However, for three or more generators, �abka (2010) proved that the generalization
of Hellegouarch's natural scales produces scales that are not necessarily well-formed.
From a mathematical viewpoint, the present paper integrates aspects of all the above ap-

proaches, in addition to providing new points of view. In the frequency domain, cyclic scales are
associated with one of the extreme tones providing a best approximation to the frequency class
1, while optimal scales are associated with the best comma (Douthett and Krantz 2007). When
the last tone of a cyclic sequence is identi�ed with the fundamental, a structure of cyclic group
arises, which representatives in [1, 2) de�ne a cyclic scale.

2.2. Frequency classes

We �rst introduce the notation by reviewing the basic notion of pitch class. For any frequency
ratio ν ∈ Ω ≡ (0,∞), all the values 2kν, k ∈ Z, de�ne one equivalence class ν. A ratio of 2 between
values corresponds to the frequency range of one octave. The set Ω is a commutative group for ×.
The set of all the octaves of the fundamental frequency ratio (ν0 = 1) is a monogenous subgroup
of Ω of in�nite cardinal, Ω2 = {2k, k ∈ Z}.

1This is a case of a maximally even set, where each generic interval is either a single integer or two consecutive integers
(Clough and Douthett 1991).
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The frequency classes (FCs) are the elements of the quotient group Ω0 = Ω/Ω2, also commu-
tative for multiplication. For each equivalence class, we choose a representative tone in [1, 2), the
reference octave, which we identify with Ω0. Throughout the current paper, frequency classes
will be denoted with these representatives. The FC of ν ∈ Ω is determined as ν = 2{log2 ν} ∈ Ω0,
where the curly brackets mean the fractional part. The integer part z = blog2 νc (expressed in
terms of the �oor function) determines the octave Ωz = [2z, 2z+1) where ν is set. Thus, ν = 2zν.
Alternatively, each FC ν ∈ Ω0 is associated with a PC {log2 ν} in the circle of the octave

S0 = R/Z. Therefore, the multiplicative structure of Ω0 becomes an additive structure in S0,
where notes and intervals are represented.
We shall now generalize and formalize the operation of obtaining FCs, since our purpose is to

obtain the best approximations in the multiplicative space of the frequency domain, instead of
the additive space of their logarithms. Given the frequency ratio α ∈ Ω, the function2 that maps
any frequency ratio β ∈ Ω to the FC αβ ∈ Ω0 is de�ned as

πα : Ω→ Ω0, παβ = αβ. (1)

It will be referred to as projection function of step α, or α-projection function. It is surjective.
The identity, π1, applied to α returns its FC π1α = α. It satis�es πα = πα. Therefore, we may
write π 3

2
instead of π3, or π 4

3
instead of π 1

3
and π3−1 , regardless whether the step belongs to Ω

or Ω0.
The composition of projection functions is well de�ned from the product of FCs. It satis�es

παπβ1 = πβπα1 = παβ1. (2)

We can then identify the FC αβ with the projection function παβ , by assuming it is applied to
1. If we restrict the previous function to the domain of FCs Ω0, for any α ∈ Ω the function

πα : Ω0 → Ω0, παβ = αβ (3)

is bijective. Then, the family of projection functions is an Abelian group for composition, iso-
morphic with the group Ω0.
We say that α and β belong to complementary classes3 if they satisfy παπβ = π1. Then

πα−1 = πβ . Hence, π−1
α = πα−1 . The α-projection function is equivalent to the inverse function

whose step is the complementary FC of α, πα = π−1
α−1 . In general, for n ∈ Z, we have πnα = παn ,

although it is not true for non-integer exponents.

2.3. One-generator sets

We focus on the non-trivial case of the family generated by a frequency ratio α ∈ Ω other than an
integer power of 2. That is, the set de�ned as Ωα = {αk, k ∈ Z}. This family is an in�nite cyclic
subgroup of Ω and its FCs are the elements of the quotient group Eα ≡ Ωα/Ω2, isomorphic to
the family of projection functions generated by πα. Unless explicitly speci�ed, we shall identify
the FC αk to the projection function πkα. Thus, we write

Eα = {πkα, k ∈ Z}. (4)

2In a more formal context, we consider a GIS (Lewin 1987; Kolman 2004) π : Ω × Ω → Ω0 and a canonical GIS
π : Ω0 × Ω0 → Ω0, with the α-projection function de�ned as πα(·) ≡ π(α, ·).

3Two FCs α and β other than 1 are complementary if they satisfy αβ = 2. This de�nition is not valid for the FC 1.
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As a particular case of Dirichlet's approximation theorem4, if α 6= 2r, r ∈ Q, then Eα is an
in�nite monogenous subgroup of Ω0, whose FCs form a dense subset. Otherwise, if α = 2

m

n , with
m
n ∈ Q an irreducible fraction, we get a cyclic group of order n, which describes a n-TET scale
that we shall write as

E>n = {πk21/n , k ∈ Z} (5)

although it su�ces to take into account only the values k = 0, . . . , n− 1.
We may also consider subfamilies of Eα with regard to a particular set of indices A, namely

EαA = {πkα, k ∈ A}. In a general case, EαA is not a subgroup of Eα unless A is a subgroup of
Z, i.e., A = nZ, with n ∈ N. However, the only case leading to a �nite cyclic group is that of
equation (5), since the subgroups of Z are of in�nite cardinal. In particular, when A = {1, . . . , n}
we will rank the elements of EαA as a n-order sequence

Sαn = (πkα)k=1,...,n. (6)

Notice that a sequence Sαn does not begin with π0
α = 1. It starts with the index k = 1. In addition,

it is not closed for composition of FCs. Only if α = 2
m

n , with m,n coprime positive integers, is
Sαn a �nite cyclic group, which is E>n , and the value k = n yields π2 = 1.

2.4. Algebraic structure

The process of considering that a particular FC πnα plays the same role as the class of the
fundamental can be summarized as follows. Several projection function iterates π0

α ≡ 1, . . . , πnα,
corresponding to FCs in Ω0, are generated by choosing n such that, in the circle of the octave S0,
the shortest interval between πnα and 1, of length5 ε = d(πnα, 1) and corresponding to a frequency
ratio κ = 2ε, contains no previous iterates. The quantity κ generalizes the Pythagorean comma.
Then, in the family of projection functions Eα we de�ne an equivalence relation identifying two
projection functions πpα, π

q
α whenever there exists an integer r such that πpα = πqαπrnα .

The classes of projection functions are obtained by considering the subgroup Eα
n

= {πknα , k ∈
Z} ⊂ Eα and the quotient group

E
α
n ≡ Eα/Eα

n

= {πkα, k ∈ Zn}. (7)

Therefore, E
α
n is a �nite cyclic group. For each class πkα, we shall choose a representative πkα

satisfying 0 ≤ k < n (since we are interested in generalizing the Pythagorean tuning, where the
PCs are obtained by applying successive �fths to the fundamental ratio 1).
Nevertheless, alternative scales can be obtained by choosing an other representative of the

class. For instance, Hellegouarch (1999) constructs an abstract scale as a factor group (see also
Kassel and Kassel 2010). Starting from a comma κ, he de�nes a Pythagorean scale as the one
generated from the harmonic of order 3, in addition to the second harmonic determining the
octave, modulo the group generated by comma, i.e., 〈2, 3〉/〈κ〉. In such a case, the representative
of the class is chosen as the tone given by the irreducible fraction p

q with max(p, q) minimal6. In
the end, it comes down to choosing either the projection function πkα or πk−nα , so that some tones

4For any x ∈ R and any positive N ∈ Z, there exists integers p and q such that 1 ≤ q ≤ N and |qx− p| < 1
N
.

5 The shortest distance between two FCs α, β is measured in the unit circle S0 as d(α, β) = min(| log2
α
β
|, 1− | log2

α
β
|).

For a FC πkα ∈ (1, 2) we have d(πkα, 1) = min(log2 π
k
α, 1 − log2 π

k
α), while for its complementary FC, π−kα = 2

πkα
, we also

have d(π−kα , 1) = min(1− log2 π
k
α, log2 π

k
α). Thus, d(πkα, 1) = d(π−kα , 1).

6In our approach, the scale remains composed of tones corresponding to positive powers of 3, and the 12-tone Pythagorean
scale is formed by successive �fths of 1; while for these authors a natural scale is also composed by tones expressed as negative
powers of 3, so that the Pythagorean scale is formed by successive �fths of 256

243
.
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are obtained as positive powers and others as negative. By this method, these authors determine
the optimal scales (continued fractions convergents).
Our procedure has also important similarities with Regener's (1973) approach. His interval

transformations provide a primary instance of Generalized Interval System (Lewin 1987) in the
special case of notes and note intervals in mediation with frequencies and frequency ratios.
Focusing in pitch notation, he also constructs a music scale as a factor group of octave and
comma classes, which he call enharmonic lines (Regener 1973, p. 106).
The group structure of (E

α
n, ·) for composition is obviously isomorphic to (Zn,+). The repre-

sentatives of the classes of projection functions applied to the fundamental determine n tones in
Ω0 that de�ne an α-cyclic scale, according to

Eαn = {πkα; k = 0, . . . , n− 1}. (8)

Since the abstract scale E
h
n is isomorphic to the �nite cyclic group Zn, any class πph with p ∈ Zn

coprime with n generates the scale7. In Appendix A we brie�y review how to deal with cyclic
scales from an arithmetical point of view.
In the limiting case πnα → 1 we get an equal temperament scale, i.e., a degenerate cyclic scale.

Therefore, the better the approximation πnα ≈ 1, the closer Eαn to a n-TET scale,

πnα → 1⇒ Eαn → E>n . (9)

A precise quanti�cation will be done. For this reason we could say that a non-degenerate α-cyclic
scale Eαn is a scale asymptotically equally tempered, with πnα converging to 1 when n increases
to ∞.

3. Cyclic sequences and scales

Let us examine a novel way to build cyclic sequences and scales and the important role played by
the extreme tones (after arranging the scale tones in pitch order and excluding the fundamental).
The immediate generalization of a Pythagorean scale is a scale generated by a harmonic of the
fundamental h ∈ Z+ (coprime with 2). However, the structure of these scales is the same for any
value h ∈ R+. Furthermore, there is no loss of generality by assuming the scale is generated by a
representative h ∈ (1, 2) of a FC. For a non-degenerate scale, �rst we �nd out the tones generated
by the projection πh, i.e., π

p
h = hp, p ∈ Z. Since πph ∈ Ω0, we write π

p
h = hp

2q , 1 ≤ hp

2q < 2. Then,
by multiplying by 2q and taking logarithms to the base 2, we get q ≤ p log2 h < q + 1, hence,
p log2 h− 1 < q ≤ p log2 h. Therefore, q is univocally determined from p as the following integer
part

q = JpK ≡ bp log2 hc. (10)

Given h, the tones resulting from applying iteratively the projection πh become expressed as

νp ≡ πph =
hp

2JpK , p ∈ Z. (11)

7 It is worth remembering that Zn has the same structure of commutative ring than the integers for the addition and
product. In the ring Zn of integers modulo n, 1 is the neutral element for the product. The invertible elements form the
multiplicative group of units U(Zn). Therefore, a ∈ Zn has inverse if and only if there is b ∈ Zn such that ab = 1, hence
a, b ∈ U(Zn). Similarly, two integers x, y ∈ Z, such that xy ≡ 1 (mod n), belong to two classes of U(Zn) that are mutually
inverse, or belong to the class of 1. This condition can be written using Bézout's identity. This leads to the property that
the generators of (Zn,+), which are coprime with n, are just the elements of U(Zn).

6
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The value JpK is the index of octave of hp, i.e., the number of the octave ΩJpK where the tone hp lies.
To simplify, we may read JpK as octave of p. For positive integers, if p′ > p then p′ log2 h > p log2 h
and bp′ log2 hc ≥ bp log2 hc. Therefore, we get8 p′ > p =⇒ Jp′K ≥ JpK.
Depending on whether we take positive or negative indices in equation (11) the resulting scales

are not the same, since the way of closing the cycle of �fths about the fundamental ratio 1 is
di�erent in each case. If in one case it is closed by default, in the other it is by excess. In general,
positive indices will be used.
According to equation (11), since log2 h is irrational, the sequence Shn = (νk)k=1,...,n is never

closed and the iterations νk are not ordered along the octave Ω0 in terms of k. If the tones of a
sequence Shn are ordered from the lowest to the highest pitch, in (1, 2) we �nd two extreme tones

νm = min
ν∈Shn

ν , νM = max
ν∈Shn

ν. (12)

We call them minimum and maximum tones of the sequence. Obviously, any tone νi ∈ Shn satis�es
1 < νm ≤ νi ≤ νM < 2. The indices of the extreme tones m and M are usually referred to as the
generic widths of the step intervals. Their music-theoretical interpretation and historical traces
can be found in Clampitt and Noll (2011).
In order to get the last iteration close to the fundamental, a sequence Shn should end when

νn is one of the extreme tones νm or νM , so that the last iteration is closer to 1 or 2 than the
previous iterations. This is a condition equivalent to that of Carey and Clampitt's (1989) primary
intervals. In such a case we say that the sequence is cyclic. Then, the approximation νn → 1+ or
νn → 2− justi�es the equivalence relation νn ∼ ν0 yielding the cyclic scale of equation (8).

3.1. Optimal sequences and scales

We say the cyclic sequence Shn is optimal if the last term of the sequence is the best approximation
of the fundamental. Such a distance corresponds to a frequency ratio κn, referred to as n-order
comma,

κn = min(νn,
2
νn

). (13)

Then, the n-order comma is a value greater than one. Remark that the comma is not de�ned as
the frequency ratio of the smallest distance between the FCs of the sequence and the fundamental.
For this reason, we will call marginal ratios to the values νm and 2

νM
, and absolute ratio of the

sequence, ρ(Shn), to their minimum, corresponding to the minimum comma of the sequence. If the
sequence Shn = (ν1, · · · , νn) is optimal, then ρ(Shn) = κn and by identifying the tones νn and ν0

we get the n-tone optimal scale Ehn = {ν0, ν1, . . . , νn−1}. The tones other than the fundamental
of the optimal scale Ehn match those of the sequence Shn−1.
An optimal scale remains characterized in terms of the extreme tones according to one of the

following two cases:

(i) If the tone νn is identi�ed with the fundamental 1 from above, then the comma is κn = νn
and the tones satisfy the conditions

(1) 1 < κn = νn < νm ≤ νk , k < n

(2) 1 < κn = νn <
2
νM
≤ 2

νk
, k < n

. (14)

However, if the scale is non-optimal only condition (1) is satis�ed.

8 If x, y ∈ R we have bxc + byc ≤ bx + yc ≤ bxc + byc + 1. If h ∈ (1, 2), then J1K = blog2 hc = 0 and the value Jp + 1K
matches either JpK or JpK + 1.
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(ii) If the tone νn is identi�ed with the fundamental 2 from below, the comma is κn = 2
νn

and
the tones satisfy the conditions

(1) 1 < κn = 2
νn
< νm ≤ νk , k < n

(2) 1 < κn = 2
νn
< 2

νM
≤ 2

νk
, k < n

. (15)

However, if the scale is non-optimal, only condition (2) is satis�ed.

3.2. Re�nement of sequences and scales

We enumerate some immediate properties and consequences of the de�nition of cyclic sequences
and scales, not necessarily optimal.

(1) Given a sequence Shn, if m,M ≤ n are the indices of the extreme tones satisfying equa-
tion (12), then Shm and ShM are two cyclic sequences contained in Shn. By taking n′ =
max(m,M), Shn′ is the greater cyclic sequence contained in Shn.

(2) Any pairs of cyclic sequences Shn′ , S
h
n and scales Ehn′ , E

h
n with n′ < n satisfy Shn′ ⊂ Shn and

Ehn′ ⊂ Ehn. We say that Shn and Ehn are re�nements of (or �ner than) Shn′ and E
h
n′ , respectively.

(3) The de�nition of extreme tones is also valid for scales, by leaving aside the fundamental ratio
ν0 = 1.

(4) If Shn is a cyclic sequence and the sequence Shn−1, not necessarily cyclic, has extreme tones
νm = minν∈Shn−1

(ν) and νM = maxν∈Shn−1
(ν); then, the index n′ = max(m,M) determines a

cyclic sequence Shn′ ⊂ Shn among which there is no intermediate cyclic sequence. We then say
that they are consecutive cyclic sequences.

The algorithm we use to generate cyclic scales is based on the following simple fact:

νM
2 < 1 < νm =⇒ νM

2 < νMνm
2 < νm. (16)

Let us remember that the tone νM+m, as a representative of a FC, takes the value νMνm
2 if

νMνm > 2, or νMνm if νMνm < 2. This leads to the following results (since these results,
although derived from a new perspective, are equivalent to those of well-formed scales (e.g.,
Carey and Clampitt 1989), their proof is not provided):

Theorem 3.1 If a sequence Shn (not necessarily cyclic) has extreme tones of indices m,M , then
the sequence ShM+m improves at least one of the marginal ratios of Shn and is cyclic.

Thus, the last tone νM+m is a new extreme tone of the sequence ShM+m, although if Shn is
optimal, ShM+m is not necessarily optimal.
The second fact in which the generating algorithm is based can be enunciated as follows.

Theorem 3.2 None of the marginal ratios of a cyclic sequence Shn with indices of the extreme
tones m,M can be improved with a sequence of an order lower than M +m.

Corollary 3.3 In order to determine optimal sequences it su�ces to consider re�nements of
consecutive cyclic sequences in the form . . . ⊂ Shn ⊂ ShM+m ⊂ . . .

3.3. Next and previous cyclic sequences and scales

Let Shn be a cyclic sequence with n = max(m,M). According to what has been explained above,
the next cyclic sequence containing Shn, denoted as Shn+ , is obtained by taking n+ = M + m.
The cyclic sequence previous to Shn, denoted as Shn− , is also well determined. The sequence Shn

8
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has maximum and minimum tones of indices m and M . Let us write n = max(m,M) and
n′ = min(m,M). Then, one extreme tone still is n′, while the other is, by construction, n − n′.
Thus, n− = max(n − n′, n′); n = max(m,M), n′ = min(m,M). In such a way, consecutive
cyclic sequences can be chained according to Shn− ⊂ Shn ⊂ Shn+ . Since each cyclic sequence
generates a cyclic scale, they are also chained as Ehn− ⊂ Ehn ⊂ Ehn+ .
Let us consider the cyclic sequence Shn− , with extreme tones of indices m and M , and its next

sequence Shn by application of the re�nement algorithm, with n = m+M . Then we get the scale
Ehn with indices of the extreme tones m and M , i.e., the same that the sequence Shn− already
had. Therefore, for the scale Ehn, we have νm = minν∈Ehn\{1}(ν), νM = maxν∈Ehn\{1}(ν). These
indices are associated with cyclic scales contained in Ehn, i.e.,

m < M =⇒ Ehm ⊂ · · · ⊂ EhM ⊂ Ehn

M < m =⇒ EhM ⊂ · · · ⊂ Ehm ⊂ Ehn
. (17)

The two cyclic scales on the right-hand side are, in each case, consecutive. The previous properties
allow us to implement an algorithm to re�ne optimal scales that is detailed in Appendix B.
Although derived in an independent way, it is equivalent to a similar algorithm reasoned in
terms of PCs and primary intervals given by Carey (1998, p. 88), which, on the other hand,
is a formalization of the process explained in Carey and Clampitt (1989) of how a musician
can obtain well-formed scales without using continued fractions. Our algorithm performs, in the
frequency domain, a strategy similar to that of the Farey sums (Farey 1816), so that if two
rational approximations satisfy log2 h ∈ (a

′

a ,
b′

b ) then we can lessen the size of the interval from
a new approximation a′+b′

a+b that substitutes the appropriate extreme. From another perspective,
it also reproduces the structure of the Stern-Brocot tree9 (e.g., Graham, Knuth, and Patashnik
1994).
The approach is also valid for non-natural scales with any positive, real generator interval, i.e.,

by de�ning an octave-like as Ω/Ωω, with ω ∈ Ω, instead of Ω/Ω2.

4. Scale properties

4.1. Closure and �digit� of scale

For an optimal scale Ehn, depending on whether νn is closer to 1 or 2, the equations (14) and (15),
corresponding to the cases (i) and (ii) of Section 3.1, are satis�ed. Since the above two cases will
appear repeatedly hereafter, when a property is only valid for optimal scales it will be indicated
with the subscript �opt�, otherwise it will be valid for all cyclic scales.
Instead of the comma, a non-degenerate cyclic scale is better characterized by the parameter

γn =
νmνM

2
=

hm+M

2JmK+JMK+1
(18)

that will be referred to as scale closure10. We shall see that it is a measure of several qualities,
such as the closeness to the fundamental of the closure, the comma, the spectrum width, etc.

9 The Stern-Brocot tree is a full binary tree where the nodes are labelled in such a way that each positive rational number
occurs exactly once. Vertically, it provides the usual ordering of the rationals. For p1

q1
and p2

q2
, the mediant is the fraction

p1+p2
q1+q2

whose parents they are. Every row consists of the fractions that are mediants of elements of previous rows. Positive
irrational numbers can be associated with a unique in�nite pathway down the tree and the nodes which are passed by on
such a �nite or in�nite path are called semi-convergents of the corresponding rational or irrational number.

10The scale closure is an intrinsic parameter of the scale. However, comparing between scales according to the closeness
of the closure to 1 (its logarithm closer to 0) is actually equivalent to evaluating the best comma as de�ned in Douthett
and Krantz (2007).

9
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Owning to equation (16) this quotient satis�es νM
2 < γn < νm.

According to the de�nition of comma, we have

(i) γn > 1 ⇐⇒ κn = νn = γn

(ii) γn < 1 ⇐⇒ κn = 2
νn

= γ−1
n

. (19)

Hence, the scale closure γn informs us whether the sequence Shn closes just above 1 (1 < γn <
√

2)
or just below 2 ( 1√

2
< γn < 1), whereas the comma κn always produces a value greater than 1

and does not provide such information. Therefore,

log2 κn = | log2 γn| (20)

hence, log2 γn multiplied by 1200 gives the distance from γn to 1 measured in cents11. The
exponent of the denominator of equation (18), when h ∈ (1, 2), is the chromatic length of the
generator,

N = JmK + JMK + 1 (21)

since, as we shall see later, this is the number of step-intervals12 of the generating tone when the
scale notes are arranged in pitch order. Thus, the scale closure is equivalent to

γn =
hn

2N
. (22)

Hence, we have

(i) γn > 1 ⇐⇒ 1 < γn < νm ⇐⇒ 1 < 2
νM

< νm

(ii) γn < 1 ⇐⇒ νM
2 < γn < 1 ⇐⇒ 1 < νm < 2

νM

. (23)

Therefore, the scale closure indicates which of the ratios 2
νM

or νm is closer to 1, i.e., which of
the extreme tones is closer to the fundamental. If the scale is non-optimal it only informs on the
error about the fundamental associated with the last iteration νn of the sequence. For optimal
scales, the ordering established in equations (14) and (15) can be more speci�c yet, such as,

(i)opt γn > 1 ⇐⇒ 1
νm

< νM
2 < 1

γn
< 1 < γn <

2
νM

< νm

(ii)opt γn < 1 ⇐⇒ νM
2 < 1

νm
< γn < 1 < 1

γn
< νm < 2

νM

. (24)

Notice that the index of octave JnK, which determines the tone

νn =
hn

2JnK (25)

indicates the octave ΩJnK where the frequency hn is located. Now we can also give signi�cance to
N , since 2N is the beginning of the octave closest to hn. In other words, the chromatic length of

11 It will be notated as ¢(γn) = 1200 log2 γn, corresponding to the width of the spectrum associated with the frequency
ratios 2

νM
and νm (e.g., Douthett and Krantz 2007).

12Since 1√
2
< γn <

√
2, then − 1

2
< n log2 h−N < 1

2
, and N < n log2 h+ 1

2
< N + 1. Hence, by taking integer parts, we

get N ≤ bn log2 h + 1
2
c < N + 1, from where N = bn log2 h + 1

2
c. Usually, the chromatic length N is de�ned in this way.

However, in the current paper such a relationship is not of particular interest. Instead, we are interested in the dependency
of the scale properties on the indices m, M , and their respective octaves.

10
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the generator indicates how many full octaves would cover the scale Ehn if the frequencies were
not reduced to FCs in the reference octave Ω0. By comparing equation (22) and equation (25),
we have13

(i) γn > 1 ⇐⇒ 1 < νn < νm ⇐⇒ N = JnK
(ii) γn < 1 ⇐⇒ νM < νn < 2 ⇐⇒ N = JnK + 1

. (26)

Then, it is natural to de�ne a scale digit indicating whether N and JnK match or di�er,

δ = N − JnK (27)

so that, according to equation (26), we have the following equivalences

(i) γn > 1 ⇐⇒ δ = 0
(ii) γn < 1 ⇐⇒ δ = 1

. (28)

By comparing equation (22) and equation (25), we can express the scale closure as

γn = 2−δνn. (29)

4.2. Pseudo-complementary classes

Among the tones composing the scale Ehn we do not �nd their own complementary tones. The
complementary of νk 6= 1 is

ν−k =
2

νk
= π−kh = πk1/h, k ∈ Z (30)

which does not belong to Ehn. Let us remark that, in terms of classes of projection functions,
with indices in Zn, we have π−kh = πn−kh , so that

πn−kh πkh = π0
h, k ∈ Zn

However, as projection functions, with indices in Z, the tones πn−kh = νn−k ∈ Ehn and πkh = νk
satisfy πn−kh πkh = πnh . Therefore, as projection functions, this establishes πn−kh πkh = νn, k ∈ Z.
This equality, according to equation (29), can be expressed as

πn−kh πkh = 2δγn, k ∈ Z. (31)

Then, the tones νn−k, νk ∈ Ehn are not complementary. We shall prove that these tones satisfy

νn−k νk = 2γn; k = 1, . . . , n− 1. (32)

Theorem 4.1 The scale closure can be computed from any pair of tones other than the funda-
mental with symmetric indices in Zn, i.e.,

γn =
νn−k νk

2
; k = 1, . . . , n− 1. (33)

13We know that, if k < n then JkK ≤ JnK. Nevertheless, if 1 < h < 2, in case (i) we have νn < νn−1 and νn = h
2
νn−1,

therefore JnK = Jn − 1K + 1; hence, JkK ≤ Jn − 1K = JnK − 1. Instead, in case (ii), νn−1 < νn and hνn−1 = νn, therefore
Jn− 1K = JnK; hence, JkK ≤ Jn− 1K = JnK. Thus, in both cases, JkK ≤ N − 1 for 0 ≤ k ≤ n− 1.

11
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1 + log2

√
γn

0

log2

√
2γn

log2 νj
log2 νn−j

log2 νn−k

log2 νk

log2

√
γn0

log2

√
2γn

log2 νj

log2 νn−j

log2 νn−k

log2 νk

Figure 1. Symmetrical distribution of the scale notes depending on whether γn is smaller (left) or greater (right) than 1.

Proof. In e�ect, equation (31), written as tones, should have the form

νn−k νk = 2αγn (34)

for some α ∈ Z. Bearing in mind that νn−k, νk ∈ (1, 2), we have νm < νn−k νk < 2νM . If this
equation is multiplied by 2−α, owing to equation (34) α must satisfy 2−α νm < γn < 22−α νM

2 .
Nevertheless, on the one hand we get γn < νm ⇒ α > 0, and on the other hand νM

2 < γn ⇒ α < 2.
Hence, it must be α = 1 in equation (34). �

If γn → 1, the above tones are nearly complementary14, νn−k νk → 2 for k = 1, . . . , n− 1. We
shall say that the tones νn−k and νk are pseudo-complementary. Also, by taking logarithms in
equation (33), we get several ways to express the chromatic length N .

Corollary 4.2 The chromatic length N of the generator satis�es

N = Jn− kK + JkK + 1; k = 1, . . . , n− 1. (35)

�

Corollary 4.3 In the circle of the octave S0, the notes of pseudo-complementary tones are
symmetric with regard to a diameter passing through the following points (Figure 1): one on the
opposite side of the fundamental, log2

√
2γn, and the other close to the fundamental, log2

√
γn if

γn > 1 or log2 2
√
γn if γn < 1. �

Therefore, the intervals between the scale notes spread symmetrically by both sides around the
point log2

√
2γn, nearly opposite to the fundamental, and the only two non-symmetrical intervals

are the two on both sides of the fundamental. The twist of the symmetry axis originates Myhill's
property.

4.3. Myhill's property

More generally, we may analyse the relation between two classes of projection functions πph and
πp−kh (0 < k < n) associated with frequency ratios between scale tones di�ering in a step-interval
corresponding to k h-iterates. To this purpose, consider the equation πph = πp−kh παh . It can be
interpreted in terms of their projection function representatives as follows:
If p− k > 0, then πph = πp−kh παh , so that παh = πkh.
If p− k < 0, it is equivalent to πph = πn+p−k

h παh , so that παh = πk−nh = πn−k1/h .

14According to equations (30) and (32), the complementary tones of the scale (other than the fundamental) are given by

ν−k = γ−1
n νn−k, which do not match the tones of the scale Ehn. The inverse scale E

1/h
n , built by starting at the fundamental

by negative iterations of the h-interval, does not provide the same scale as Ehn. However, since the tones of Ehn and E
1/h
n

di�er by excess or by default in one comma, they belong to the same classes of projection functions. It happened in a similar

way with Hellegouarch's (1999) natural scales, that were a particular choice of representatives of the abstract scale E
h
n.

12
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Both projection functions πkh and πn−k1/h belong to the class πkh, and they correspond to the two

frequency ratios πkh = νk and πn−k1/h = 2
νn−k

, which are associated with the same step-interval
k. This demonstrates Myhill's property, by associating two possible sizes with one step-interval
of the scale. For each step-interval k, the pair (νk,

2
νn−k

) in the log2 space is referred to as the
spectrum. These sizes are the respective distances from the fundamental to the two symmetric
points in the graph of Figure 1. Each line connecting these two points represents a level (from
top to bottom) corresponding to a generic interval. Well-formed scales remain characterized
from the precisely two sizes composing the constant spectrum width | log2 γn| for the di�erent
step-intervals (Carey and Clampitt 1989, 2012, 2017), as equation (33) proves.

4.4. Approximations of log2 h

For any h > 0, if a cyclic sequence Shn closes near the fundamental with indices n,N satisfying
hn

2N ≈ 1, then N
n ≈ log2 h. Without loss of generality we may assume that n and N are coprime. In

addition, if Nn ≈ log2 h, then 2
N

n ≈ h. Thus, by de�ning µ = N mod n, the class of the generator
interval is h ≈ 2

µ

n , corresponding to the cardinal µ. Since we had assumed that the scale generator
satis�es 1 < h < 2, then µ = N (in such a case, these two values N,n are referred to as chromatic
length of the generating interval and chromatic cardinality of the scale). Therefore, a pair (n,N)
associated with a cyclic scale provides a rational approximation of log2 h and, in addition, an
equal temperament scale E>n whose tone 2

N

n is an approximation of the generator FC h.
More precisely, the above approximations can be described according to the following results,

by relating our approach to that of continued fractions. In Appendix C there is a summary of the
concepts hereafter involved. Since these are familiar results to music theorists (for a summary,
e.g., Douthett and Krantz 2007), we will not give proofs.

Lemma 4.4 A tone νn near the fundamental provides a rational approximation of log2 h, which

is either JnK
n → log2 h

− if νn → 1+, or JnK+1
n → log2 h

+ if νn → 1−.

Theorem 4.5 The tone νn of an optimal cyclic sequence Shn provides the best rational approx-
imation15 of log2 h.

In the non-optimal case: if in equation (14) only condition (1) is ful�lled, then the convergence
to log2 h is from below; if in equation (15) only condition (2) is ful�lled, then the convergence is
from above16.
Hence, according to equation (26), for cyclic scales with closure γn = hn

2N , we have:

Corollary 4.6 The best estimations γn ≈ 1 provide the best rational approximations N
n of

log2 h, i.e., the convergents of its continued fraction expansion.

In a similar way, we can see how the generator interval h is approximated by the power 2
N

n .

Corollary 4.7 The best estimations 2
N
n

h ≈ 1 provide the good rational approximations N
n of

15The terms "good" and "best� approximation, used in recent books such as Loya (2017), are equivalent to best approx-
imation �of the �rst kind� and �of the second kind�, respectively, used in Khinchin (1964).

16For the cyclic scale Ehn, with extreme tones of indices m and M , the value n provides a convergent or semi-convergent
N
n

of log2 h according to one of these situations: JmK
m

< N
n
< log2 h <

JMK+1
M

or JmK
m

< log2 h <
N
n
<

JMK+1
M

, depending

on whether νn is a new minimum or maximum of the sequence Shn. We shall see in Section 6.2 that equations (45) and (46)

are satis�ed. Therefore, we meet a situation such as a′
a
< log2 h <

b′
b
, together with the Bézout's identity corresponding

to pairs of coprime numbers, ab′ − ba′ = 1, which leads to a new improvement a′+b′
a+b

of the approximation. This situation
is common to the continued fractions approach, the Farey sums, the structure of the Stern-Brocot tree, and its dual, the
Raney tree (Berstel and de Luca 1997; Raney 1973), also known as Calkin-Wilf tree (Calkin and Wilf 2000; Gibbons, Lester,
and Bird 2006). Thus, for two consecutive approximations, by using the extended Euclidean algorithm (Appendix D) it is
possible from one to determine the other.

13
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log2 h.

In summary, good rational approximations of log2 h correspond to cyclic scales, close to n-TET
scales, that include optimal cyclic scales obtained from the best approximations. Furthermore,
there are cyclic scales not associated with good or best rational approximations still corresponding
to semi-convergents (see Table B1).

5. Alternative algorithm

Scales can be ordered according to decreasing values of | log2 γn|; however, we are going to de-
termine the chain of �ner cyclic scales, and in particular the optimal ones, without needing to
evaluate the comma. Instead, the scale digit δ will determine the optimal scales.

5.1. Previous and next scale

Starting from the indices of the extreme tones (m,M) in Ehn we will calculate the same values in
the scale Ehn+ for the next cyclic scale in the chain. For the scale Ehn, with n = m+M , the value
δ, de�ned in equation (27), according to equation (28) tells us whether the FC νn, not belonging
to the scale Ehn, is the new minimum or maximum tone of the next scale Ehn+ .
Then, the next improvement of the scale takes place according to one of the following cases:

(i) m+ = m+M, M+ = M ; Jm+K = JmK + JMK + 1, JM+K = JMK ⇐⇒ δ = 0
(ii) m+ = m, M+ = m+M ; Jm+K = JmK, JM+K = JmK + JMK ⇐⇒ δ = 1

. (36)

5.2. Matrix notation

The equalities in equation (36) can be written in matrix form to obtain the indices of the subse-
quent scales as (

m+ M+

Jm+K JM+K + 1

)
=

(
m M

JmK JMK + 1

)(
1 δ

1− δ 1

)
. (37)

The above transformation of indices is bijective, since the determinant of the matrix is 1−δ+δ2 =
1 for each possible value of δ. For Pythagorean scales, applying this recurrence we get again the
values of Table B1. The iterations may start with m = 1, M = 1, JmK = JMK = 0, δ = 0. It is
possible to get a similar iterative process for the pair (n,N),(

n+

N+

)
=

(
m M

JmK JMK + 1

)(
1 + δ
2− δ

)
=

(
n
N

)
+

(
m M

JmK JMK + 1

)(
δ

1− δ

)
. (38)

An equivalent algorithm17, although obtained from a di�erent approach, is described in Noll
(2007), in relation to the linear transformations providing addition of intervals in terms of a
�nitely generated free commutative group and to the intrinsic structure of the Stern-Brocot tree.

17 According to equation (37), the subsequent matrices of indices are obtained multiplying by a matrix in one of the forms

L =
(

1 0
1 1

)
or R =

(
1 1
0 1

)
. These are equivalent to the 2× 2 matrices representing the branches of the Stern-Brocot

tree (Noll 2006, 2007; Jedrzejewski 2009, 2008), providing the strings of L's and R's that encode the subsequent nodes of
the fractions N

n
. This is equivalent to the retrograde Euclidean algorithm along the path to the root from that node in the

Raney tree. On the other hand, the fractions m
M

follow a similar path in the Raney tree, with the same strings as N
n
.

14



April 1, 2020 Journal of Mathematics and Music generalized_pythagorean_author_rev2

5.3. Condition for optimal scale

While processing the iteration described in the past section, it is possible to determine the optimal
scales.

Theorem 5.1 The cyclic sequence next to Shn changes the value of the digit δ if and only if Shn
is optimal.

Proof. Let us consider an optimal cyclic sequence Shn, i.e., | log γn| < | log γk|,∀k < n, with
extreme tones of indices m,M . There are two possible cases:

(1) If the last tone of Shn is the maximum tone νM , then n = M > m and the comma of the
optimal sequence is κn = γ−1

n > 1. Hence γn < 1. For the next cyclic sequence Shn+ with
n+ = m + M , not necessarily optimal, since Shn is optimal, owing to the �rst expression of
equation (24) we have 1 < γm+M < 2

νM
< νm. Hence, γm+M > 1.

Thus, if Shn is optimal with γn < 1 (therefore δ = 1), the next sequence Shn+ has closure
γn+ > 1 (and δ = 0). If Shn were not optimal, it would satisfy 1 < νm < 2

νM
, so that

γm+M = νmνM
2 < 1 (and δ = 1), similarly to γn.

(2) If the last tone of Shn is the minimum tone νm, then n = m > M and the comma of the
optimal sequence is κn = γn > 1. For the next cyclic sequence Shn+ with n+ = m + M , not
necessarily optimal, since Shn is optimal, owing to the second expression of equation (24) we
have 1 < 1

γm+M
< νm < 2

νM
. Hence, γm+M < 1.

Thus, if Shn is optimal with γn > 1 (therefore δ = 0), the next sequence Shn+ has closure
γn+ < 1 (and δ = 1). If Shn were not optimal, it would satisfy 1 < 2

νM
< νm, so that

γm+M = νmνM
2 > 1 (δ = 0), similarly to γn.

�

Thus, the way to determine optimal scales is as follows. If between two consecutive cyclic
sequences, Shn and Shn+ , δ changes, then the sequence Shn and the scale Ehn are optimal. The
extreme tones of this scale match those of the previous cyclic sequence Shn− .

Corollary 5.2 Consecutive optimal scales have alternate values of δ and the last iteration of
their sequences closes alternatively at opposite extremes of the octave. �

Such a behaviour for optimal scales is equivalent to the property of alternance of the continued
fraction convergents remarked by Carey and Clampitt (1989, 2012), although here it has been
obtained as a natural result of the process of building cyclic scales.

6. Partition of the octave

6.1. Elementary factors

From the classes of projection functions with indices in Zn, by taking into account their repre-
sentatives in Ω0, we order by pitch the scale tones in [1, 2). Let us bear in mind that the class of a
power

(
πph
)q has a representative given by πpqh , where pq = pq mod n. On the right side of ν0 = 1

the tones are generated by n − 1 iterations of πmh as increasing pitches. Similarly, for the lower
octave Ω−1, on the left side of 1, we arrange them backward, generated by n − 1 iterations of
πMh , as decreasing pitches (with their representatives reduced by a factor 1

2). Then, the resulting
tones remain ordered along two consecutive octaves as

· · · < 1
2π

mM
h < · · · < 1

2π
2M
h < 1

2π
M
h < 1 < πmh < π2m

h < · · · < πMm
h < · · · . (39)
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In particular, the interval between the extreme values displayed in equation (39) contains all the

scale tones. It corresponds to the octave Ω′0 =
[

1
2π

mM
h , πmMh

)
. However, if in an attempt to write

the scale tones in terms of the �rst n iterates of equation (11), instead of equation (39) we had
written the scale tones as

· · · <
(
νM
2

)m
< · · · <

(
νM
2

)2
< νM

2 < 1 < νm < ν2
m < · · · < νMm < · · · (40)

then, the above scales would not have coincided: while the former neglects the comma, the latter
accumulates it. Although the frequencies in equation (40) belong to the FCs of the abstract scale
E
h
n, they do not necessarily match the scale tones of Ehn since they can di�er in some commas.

Nevertheless, we will prove that the interval Ω′0 = [
(
νM
2

)m
, νMm ) is exactly one octave.

6.2. Fundamental relationship

Theorem 6.1 The frequency ratio of one octave is the product of m factors 2
νM

and M factors
νm, e.g.,

νMm

(
2
νM

)m
= 2. (41)

Proof. It will be proved in several steps.

(a) By �xing n ∈ R, for two values x, y > 0 such that y 6= 1
x , there is a single value α that

satis�es the equation

2yn−α = xα. (42)

Indeed, by taking log2, we get α = 1+n log2 y
log2(xy) , which is de�ned and is unique if xy 6= 1.

(b) If we add the conditions y < 1, x > 1, α > 0, and n− α > 0, then we are in the conditions
of the problem we were considering (with x = νm, y = νM

2 ), so that the ratio between the
extremes of the interval [yn−α, xα) is 2, corresponding to one octave. This will impose some
conditions on x and y.
Thus, we have log2 x > 0, α log2 x > 0 and log2 y < 0, (n − α) log2 y < 0. Therefore, the

powers yn−α < 1 and xα > 1 remain on both sides of the fundamental tone, by ful�lling,
owing to equation (42),

2yn−α < 2⇒ xα < 2⇒ x < 2
1

α , xα > 1⇒ 2yn−α > 1⇒ y > 2
1

α−n . (43)

(c) For x = νm and y = νM
2 , conditions (a) and (b) are satis�ed. Since n = M + m, the

value α = M �ts 2
(
νM
2

)n−α
= ναm. Therefore, it necessarily matches the one solution of

equation (42).

�

By identifying the powers of 2 in both sides of equation (41), we derive the relationship that
we shall refer to as the fundamental identity of h-cyclic scales:

Corollary 6.2 The indices of the extreme tones satisfy the identity

(JMK + 1) m− JmK M = 1. (44)

�
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We meet again Bézout's identity, am+ bM = 1, with m and M coprime, but additionally we
now have determined the values of the parameters a and b. In addition, since N = JmK+JMK+1,
we get straightforwardly18

N m− n JmK = 1 (45)

n (JMK + 1)−N M = 1 (46)

To calculate the indices m and M one could apply the extended Euclidean algorithm to equa-
tion (45) if N > n, or to equation (46) if n > N , by starting from the values n,N of the scale
Ehn. Appendix D details the algorithm.
The following boundaries are a straightforward consequence of equation (43).

Corollary 6.3 The extreme tones satisfy

1
2 <

(
νM
2

)m
, νMm < 2. (47)

�

We denote the elementary factors (corresponding to elementary intervals in S0) by D ≡ 2
νM

,
U ≡ νm. By equation (18), we have γn = U

D , so that, in the frequency space, the factors U and
D compose the spectrum of the interval that spans one step.
Although in the current paper we will not discuss the exact order of these factors between the

scale tones in the octave Ω0, we provide an easy way to �nd it. It su�ces to solve the system
resulting from the equation νk = νrm

(
2
νM

)s
for 0 ≤ k < n, 0 ≤ r < M , 0 ≤ s < m; that is,

(
k

JkK

)
=

(
m −M

JmK −(JMK + 1)

)(
r
s

)
. (48)

According to equation (44), the system determinant is non-zero; hence, there exists an isomor-
phism between both pairs of indices describing the scale. Therefore, each iteration νk has a unique
expression in terms of the elementary factors U and D. These frequency ratios (with value greater
than 1) play the roles of generator/co-generator19. Since within the octave there are n scale tones
and n elementary factors, we conclude:

Corollary 6.4 The factors U and D are the only possible ratios between tones, which generate
the scale tones and introduce the non-equal temperament. �

6.3. Partition of j octaves

The previous results can be generalized.

Theorem 6.5 The frequency ratios νl and
2
νL
, with l ∈ {1, . . . , n− 1} and L = n− l, compose

the spectrum of the speci�c interval that spans a number of steps j = (JLK + 1) l − JlK L.
18One consequence of the fundamental identity is that all the following pairs are coprime:
(m,M); (JMK + 1,M); (JMK + 1, JmK); (m, JmK); (m,n); (M,n); (n,N); (JmK, N); (JMK + 1, N).
19The procedure to determine cyclic scales and their re�nements is closely related to the concept of mechanical or Sturmian

words used in the new approaches to the theory of well-formed scales and modes (Noll 2008; Clampitt and Noll 2011; Noll
2015) based on methods of combinatorics on words (e.g., Lothaire 2002). A cyclic scale can be de�ned as a Christo�el word
of the alphabet {U,D} with slope m

M
and length n. For cyclic scales, the �rst step of the octave after 1 must be U , and

the last step before 2 must be D, although generic scales do not need to satisfy such a requirement. Given a scale whose
factors satisfy UMDm = 2, if U < D then, owing to Myhill's property, it can be re�ned by factorizing D = UD′, otherwise
by factorizing U = U ′D, and so on. The re�nement of cyclic scales correspond to the binary tree of Christo�el words.
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Proof. We use the more general relationship

2jyn−α = xα (49)

for j ≥ 1, with the same reasoning and under the same conditions as in the above section. Then,
the values α and j are linked by the equation α = j+n log2 y

log2(xy) . By taking x = νl and y = νL
2 , i.e.,

L = α and l = n− α, we then obtain

νLl

(
2
νL

)l
= 2j ; l, L ∈ {1, . . . , n− 1} (50)

that generalizes Theorem 6.1. It is easy to see that by interchanging l and L the power of 2
becomes n − j. The foregoing equation explains how each pair of pseudo-complementary tones
induces a partition in a speci�c set of octaves.
By identifying the powers of 2 in both sides of the above equation we get the identity

(JLK + 1) l − JlK L = j (51)

for values j ∈ {1, . . . , n− 1}, that generalizes Corollary 6.2.
Similarly, the generalization of Corollary 6.3 leads to the following conditions

1
2j <

(
νL
2

)l
, νLl < 2j . (52)

�

By taking into account equation (35) and writing L = n − l, equation (51) can be rewritten
depending on n and N . Since (J(n− l)K + 1) l− JlK (n− l) = (J(n− l)K + JlK + 1) l− JlK n, we get

N l − JlK n = j. (53)

In particular, for the �rst iterate l = 1, we get j = N since J1K = 0.

Corollary 6.6 The deviation from equal temperament is given as νl = 2
j

nγ
l

n
n and 2

νL
= 2

j

nγ
−L
n

n .

Proof. As de�ned in Section 4.2, νl and νL are pseudo-complementary. Thus, by equation (32)
we have νl νL = 2γn, therefore xy = γn. Hence, in equation (49), we get

2jyn = γLn =⇒ y = 2−
j

n γ
L

n
n

Therefore, 2

νL
=

1

y
= 2

j

nγ
−L
n

n , νl = x =
γn
y

= 2
j

nγ
l

n
n . (54)

�

When γn ≈ 1, we get the approximations νl ≈ 2
j

n , νL ≈ 2
n−j
n , which determines what couple

of indices l and L produce a particular value of j in equation (50). The set of indices can be
extended to 0 to include the fundamental tone. Hence, j is the chromatic cardinality of νl.

6.4. Best equal temperament scales

These results can be used to link the n-tone cyclic scale to the corresponding n-TET scale.
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Equation (54) gives the exact deviation of the tones of a non-degenerated cyclic scale from an
equal temperament scale in terms of the scale closure. These expressions can be used in order to
study the proximity of these scales (e.g., Douthett and Krantz 2007; Krantz and Douthett 2011;
Liern 2015). As previously noticed, a good approximation between the FC h of the generator
interval of the cyclic scale and the corresponding tone 2

N

n of the n-TET scale is not a su�cient
condition for a good approximation between the other tones.
By measuring in cents the interval between νl and 2

j

n for l ∈ {1, . . . , n − 1}, bearing in mind
equation (20), we get 1200 | log2(νl/2

j
n )| = l

n ¢(κn). In order to associate unambiguously each
note of the h-cyclic scale with the corresponding one of the n-TET scale, it is necessary for
those intervals, in particular the wider one corresponding to l = n − 1, to be smaller than
half an elementary interval of the n-TET scale, i.e., 1200

2n . Therefore, to get a n-TET scale that
unambiguously approximates all the notes of a h-cyclic scale we should add the condition

¢(κn) < 600
n−1 . (55)

Then we get a su�cient condition for a good approximation between both scales, similar to the
su�cient conditions given by Liern (2015) in order to compare di�erent types of tuning systems.
This allows to distinguish, among the good approximations of log2 h, what n-TET scales provide
optimal �ttings of h-cyclic scales. For instance, for n = 12 the values ¢(κn) = 23.5 and 600

n−1 = 54.5

guarantee a good �tting, for n = 41 the values ¢(κn) = 20 and 600
n−1 = 15 indicate that some note

is not �tting well.

6.5. Generator and co-generator pairs

Equation (A2) can also be written in terms of coprime indices l and L = n− l, as

πkh = πlrh π
−Lr
h ⇐⇒ k = lr − Ls; 0 ≤ k < n, 0 ≤ r < L, 0 ≤ s < l (56)

so that the scale tones can be expressed as νk = νrl

(
2
νL

)s
. Each generator has its pseudo-

complementary co-generator. Among the indices coprime with n we have found several possible
values, namely, l = 1 is the index of the generator h giving the tones ordered according to its
iterates, l = m generates the tones increasingly from the minimum tone, l = M provides the
tones ordered decreasingly from the maximum tone, and the chromatic length of the generator
l = N , if it does not match any of the previous ones, also generates the scale in a di�erent order.

7. Conclusions

In the current paper a new approach to generalized Pythagorean scales, developed in the speci�c
level of frequency classes, has been described. The abstract scale is formalized in terms of a cyclic
group of classes of projection functions, more similar to Hellegouarch's (1999) factor groups than
to Carey and Clampitt's (1989) method of continued fractions. Their representatives are used to
built cyclic sequences of tone iterates satisfying the closure condition. The re�nement of cyclic
sequences with regard to the best closure provides a chain of progressively �ner cyclic sequences
leading to a generating algorithm for cyclic scales. The optimal closure of a n-tone cyclic sequence
is tantamount to obtaining the best comma and, therefore, the best rational approximation N

n of
log2 h. Optimal scales provide the best approximations from both sides, while non-optimal scales
converge from one side. On the other hand, good rational approximations of log2 h are associated
with n-TET scales providing the best estimations of the generator FC.
The algorithm is based on the following properties, providing a new strategy to prove some

basic properties of well-formed scales. If Shn− is a sequence, not necessarily cyclic, and has extreme
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tones of indicesm,M , then the sequence Shn with n = m+M improves at least one of the marginal
ratios of Shn− and is cyclic. Furthermore, none of the marginal ratios of a cyclic sequence Shn−
can be improved with a sequence of an order lower than n = M +m. Therefore, it is possible to
build a chain . . . ⊂ Shn− ⊂ Shn ⊂ . . . of progressively �ner cyclic sequences with n = m + M . Shn
generates the scale Ehn, which also has indices of the extreme tones (m,M).
The algorithm provides itself several parameters which characterize a cyclic scale. For a n-tone

scale, the main parameter is the scale closure γn = U/D, quotient of the two elementary factors
U = νm and D = 2

νM
generating the scale tones. It accounts for the equal spectrum variations of

the scale, that can be expressed in the frequency domain as γn = νmνM
2 = hn

2N , either depending
on the indices of the extreme tones (the generic widths of the step intervals) or the chromatic
length of the generator and the chromatic cardinality of the scale. In addition, the scale closure
can be computed as γn = νn−k νk

2 for k = 1, . . . , n− 1, being determined from pairs of factors νk
and 2

νn−k
(associated with pseudo-complementary tones) composing the di�erent step spectra in

relation to Myhill's property.
The chromatic length N and the index of octave JnK are signi�cant integers. The former can

be computed as N = Jn − kK + JkK + 1; k = 1, . . . , n − 1; and their di�erence, the scale digit δ,
takes value 0 or 1 depending on whether γn is greater or smaller than 1. Therefore, we can know
whether the n-th iteration closes near 1 or 2 directly from the scale digit. On the other hand, δ
relates the indices of the extremes tones of a cyclic scale Ehn to similar values of the next and
previous cyclic scales of the chain according to equation (37), leading to an alternative matrix
algorithm. This reproduces the structure of the Stern-Bocot tree, as in Noll (2007), although
here it is rooted on a less abstract approach. For the chain of �ner cyclic sequences, according to
the matrix algorithm, it has been proved that the next cyclic sequence to Shn changes the value
of δ if and only if Shn is optimal. Hence, there are two results to point out. One is new: optimal
scales can be determined from oscillations in δ. The other already known: consecutive optimal
scales close their cycle of tone iterates at opposite extremes of the octave.
An ad hoc approach is proposed to prove that the whole octave of a non-degenerate cyclic

scale remains composed of n elementary intervals separating the scale notes, from which m
correspond to factor D, and M to factor U . This result leads to an explicit Bézout's identity
relating the indices of the extreme tones in either of its forms, equations (44), (45), or (46). From
the latter, given the pair (n,N), the indices of the extremes tones (m,M) can be determined
by applying the extended Euclidean algorithm, which is equivalent to determining the previous
cyclic scale in the chain. From there, a new and more general relationship is derived. For each
index l ∈ {0, . . . , n − 1} and L = n − l, not necessarily coprime with n, the step-interval j
corresponding to the spectrum of frequency ratios (νl, 2

νL
) is determined such that each pair of

frequency ratios induces an exact partition of j octaves. Therefore, j is the chromatic cardinality
corresponding to the scale tone νl. If the indices l, n are coprime, the above frequency ratios are
generator and co-generator of the scale. For each value j = 0, . . . , n− 1, if γn → 1, the tones νl
and νL converge to complementary tones of a n-TET scale, whose quality of approximation to
the cyclic scale has been explicitly obtained.

Appendix A. Bézout's identity

Instead of using classes of projection functions with indices in Zn we may work with projection
functions over Z according to the rules of modular arithmetic, by applying congruences modulo
n over the indices. Since two projection functions πph, π

q
h belong to the same class if there is a

number k ∈ Z such that πph = πqh π
kn
h , then p − q is a multiple of n. Therefore, πph and πqh are

equivalent projection functions if and only if p ≡ q (mod n).
Assume p, n ∈ Z, with p < n. Bézout's lemma states that p and n are coprime if and only if

there are two integers a and b that satisfy 1 = pa − nb. This equation admits in�nitely many
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pairs of solutions, although if p and n are positive, there exists a unique couple of values a, b
satisfying 0 ≤ a < n, 0 ≤ b < p. The three pairs a and b, a and n, p and b are couples of coprime
numbers. If we multiply the above equation by an integer k such that 0 < k < n, and write
x = ka, y = kb, we get the Diophantine equation

k = px− ny. (A1)

For positive integers p, n there exists only one pair of values x, y satisfying 0 ≤ x < n, 0 ≤ y < p.
The equation (A1) is also valid for the value k = 0 in the trivial case x = y = 0. Hence, the
projection functions {πkh, 0 ≤ k < n} providing the tones of the scale can be written as

πkh = πpxh π−nyh (A2)

with p < n, coprime. So, any projection function πkh, with 0 ≤ k < n, is of the same class that
πxhp for a single value 0 ≤ x < n satisfying equation (A1).

Appendix B. Generating algorithm

We are dealing with cyclic sequences Shn, so that νn is always an extreme tone. The starting
sequence is Sh2 with two tones ν1, ν2. The indices of the extreme tones are initialized as m =
1 + I,M = 2 − I, where I will take the value 0 or 1 depending on the value h. For instance, if
h = 3 then I = 1, since the extreme tones have indices m = 2 and M = 1. These values provide
marginal ratios that are compared with the absolute ratio of the unit sequence Sh1 . In general,
if the sequence previous to Shn has absolute ratio ρ0, we need to compute the marginal ratios of
the extreme tones m and M of the sequence Shn and evaluate the minimum marginal ratio ρ.
If ρ < ρ0, the minimum marginal ratio has decreased and then Shn is an optimal sequence with
comma κn = ρ, leading to an optimal scale Ehn. However, if ρ = ρ0, the marginal ratio remains
equal to the previous sequence and, therefore, the re�ned sequence is not optimal, although it is
still cyclic. In the next iteration, the re�ned sequence with m+M notes is considered, with one
of the extreme tones improved with regard to the previous sequence. This new extreme tone will
be the minimum tone if νMνm2 > 1, and the maximum otherwise. Then the procedure is repeated,
by comparing this sequence to the previous one to see whether the absolute ratio is improved.
As an example, cyclic scales Ehn for h = 3 and 5 are calculated. For h = 3, Table B1 lists

non-optimal Pythagorean scales on gray background and optimal on white, by displaying the
cardinal of the scale, the indices of the extreme tones m,M , besides other quantities. Other
values of n, such as n = 7 and 29, correspond to good approximations (marked with asterisk)
of log2 3. They provide non-optimal Pythagorean scales related to n-TET scales providing an
optimal approximation of the class of the generator tone. For instance, 29 is the lowest number
of equal divisions of the octave that produces a better perfect �fth than the 12-TET scale. There
are also non-optimal scales providing equal temperament scales that are not good approximations
of log2 3, such as n = 17. For h = 5, Table B2 displays the �rst 5-cyclic scales. In such a case
the mediant is prioritized in front of the dominant. Here, optimal scales corresponds to the best
rational approximations of log2 5.

Appendix C. Best and good rational approximations

We review the concept of rational approximation of a real number (e.g., Loya 2017). A fraction
α

β
with α, β > 0 is a good rational approximation of a real number r > 0 if any rational

a

b
with

21



April 1, 2020 Journal of Mathematics and Music generalized_pythagorean_author_rev2

n m M N δ εn ¢(κn)

2* 1 1 3 0 8.50E-02 2.04E+02
3* 2 1 5 1 -8.17E-02 2.94E+02
5* 2 3 8 1 -1.50E-02 9.02E+01
7* 2 5 11 0 1.35E-02 1.14E+02
12* 7 5 19 0 1.63E-03 2.35E+01
17 12 5 27 1 -3.27E-03 6.68E+01
29* 12 17 46 1 -1.24E-03 4.33E+01
41* 12 29 65 1 -4.03E-04 1.98E+01
53* 12 41 84 0 5.68E-05 3.62E+00
94 53 41 149 1 -1.44E-04 1.62E+01
147 53 94 233 1 -7.15E-05 1.26E+01
200* 53 147 317 1 -3.75E-05 9.00E+00
253* 53 200 401 1 -1.77E-05 5.38E+00
306* 53 253 485 1 -4.82E-06 1.77E+00
359* 53 306 569 0 4.28E-06 1.85E+00
665* 359 306 1054 0 9.47E-08 7.56E-02
971 665 306 1539 1 -1.45E-06 1.69E+00
1636 665 971 2593 1 -8.24E-07 1.62E+00
2301 665 1636 3647 1 -5.59E-07 1.54E+00
2966 665 2301 4701 1 -4.12E-07 1.47E+00
3631 665 2966 5755 1 -3.19E-07 1.39E+00
4296 665 3631 6809 1 -2.55E-07 1.32E+00
4961 665 4296 7863 1 -2.08E-07 1.24E+00
5626 665 4961 8917 1 -1.73E-07 1.17E+00
6291 665 5626 9971 1 -1.44E-07 1.09E+00
6956 665 6291 11025 1 -1.21E-07 1.01E+00
7621 665 6956 12079 1 -1.03E-07 9.38E-01
8286* 665 7621 13133 1 -8.68E-08 8.63E-01
8951* 665 8286 14187 1 -7.33E-08 7.87E-01
9616* 665 8951 15241 1 -6.17E-08 7.12E-01
10281* 665 9616 16295 1 -5.16E-08 6.36E-01
10946* 665 10281 17349 1 -4.27E-08 5.61E-01
11611* 665 10946 18403 1 -3.48E-08 4.85E-01
12276* 665 11611 19457 1 -2.78E-08 4.09E-01
12941* 665 12276 20511 1 -2.15E-08 3.34E-01
13606* 665 12941 21565 1 -1.58E-08 2.58E-01
14271* 665 13606 22619 1 -1.07E-08 1.83E-01
14936* 665 14271 23673 1 -5.97E-09 1.07E-01
15601* 665 14936 24727 1 -1.68E-09 3.15E-02
16266 665 15601 25781 0 2.26E-09 4.41E-02
31867* 16266 15601 50508 0 3.29E-10 1.26E-02
47468 31867 15601 75235 1 -3.32E-10 1.89E-02
79335* 31867 47468 125743 1 -6.66E-11 6.34E-03
111202* 31867 79335 176251 0 4.67E-11 6.23E-03

Table B1. First n-tone Pythagorean scales (h = 3). Optimal Pythagorean scales, corresponding to the best rational ap-
proximations of log2 3, are listed on white background, non-optimal scales on gray. Good approximations are marked with
asterisk. The comma κn is measured in cents and εn = log2 3− N

n
.
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n m M N δ εn ¢(κn)

2* 1 1 5 1 1.78E-01 4.27E+02
3* 1 2 7 1 1.14E-02 4.11E+01
4 1 3 9 0 -7.19E-02 3.45E+02
7 4 3 16 0 -3.62E-02 3.04E+02
10 7 3 23 0 -2.19E-02 2.63E+02
13 10 3 30 0 -1.42E-02 2.22E+02
16* 13 3 37 0 -9.43E-03 1.81E+02
19* 16 3 44 0 -6.14E-03 1.40E+02
22* 19 3 51 0 -3.75E-03 9.89E+01
25* 22 3 58 0 -1.93E-03 5.78E+01
28* 25 3 65 0 -5.00E-04 1.68E+01
31 28 3 72 1 6.53E-04 2.43E+01
59* 28 31 137 1 1.06E-04 7.49E+00
87* 28 59 202 0 -8.90E-05 9.29E+00
146* 87 59 339 0 -1.03E-05 1.80E+00
205 146 59 476 1 2.31E-05 5.69E+00
351* 146 205 815 1 9.23E-06 3.89E+00
497* 146 351 1154 1 3.49E-06 2.08E+00
643* 146 497 1493 1 3.65E-07 2.82E-01
789 146 643 1832 0 -1.61E-06 1.52E+00
1432 789 643 3325 0 -7.21E-07 1.24E+00
2075 1432 643 4818 0 -3.84E-07 9.56E-01
2718* 2075 643 6311 0 -2.07E-07 6.74E-01
3361* 2718 643 7804 0 -9.73E-08 3.92E-01
4004* 3361 643 9297 0 -2.30E-08 1.10E-01
4647 4004 643 10790 1 3.08E-08 1.72E-01
8651* 4004 4647 20087 1 5.91E-09 6.14E-02
12655* 4004 8651 29384 0 -3.22E-09 4.90E-02
21306* 12655 8651 49471 1 4.85E-10 1.24E-02
33961 12655 21306 78855 0 -8.97E-10 3.66E-02
55267* 33961 21306 128326 0 -3.64E-10 2.42E-02
76573* 55267 21306 177797 0 -1.28E-10 1.18E-02
97879* 76573 21306 227268 1 5.31E-12 6.24E-04

Table B2. Firsts n-tone 5-cyclic scales. Optimal scales, corresponding to the best rational approximations of log2 5, are
listed on white background, non-optimal scales on gray. Good approximations are marked with asterisk. The comma κn is
measured in cents and εn = log2 5− N

n
.

a, b > 0 such that
a

b
6= α

β
and 1 ≤ b ≤ β satis�es

∣∣∣r − α
β

∣∣∣ < ∣∣∣r − a
b

∣∣∣. (C1)

This inequality is equivalent to |βr − α| < β
b |br − a|. Since

β
b ≥ 1, it is possible to require a

stronger condition. A fraction
α

β
satisfying

∣∣∣βr − α∣∣∣ < ∣∣∣br − a∣∣∣ (C2)

is called a best approximation of r.
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i 0 1 2 3 4 5 6

di 53 31 22 9 4 1 0
qi 1 1 2 2 4
xi 1 0 1 -1 3 −7

yi 0 1 -1 2 -5 12

Table D1. Iterations of the extended Euclidean algorithm for n = 53, N = 31.

The Best Approximation Theorem states that every best approximation of a real number is a
convergent of its canonic continued fraction expansion and, conversely, each of the convergents
is a best approximation. This guarantees that the best approximations of a real number are
provided by the convergents of its canonical continued fractions. Thus, equation (C2) will yield
the continued fraction full convergents without having to calculate them explicitly. In addition,
with regard to one-sided approximations, we point out two facts. On the one hand, every one-
sided good approximation α

β , i.e., satisisfying 0 < r− α
β < r− a

b or r−
a
b < r− α

β < 0, provides a
convergent or a semi-convergent (intermediate fraction) of r. On the other hand, every convergent
and semi-convergent of r is a one-sided best approximation, i.e., satis�es 0 < βr − α < br − a or
br−a < βr−α < 0. An interesting geometrical interpretation of convergents and semi-convergents
with regard to well formed scales is given in Hall and Josi¢ (2001).

Appendix D. Extreme tones

The Euclidean algorithm allows to �nd the greatest common divisor of two integers a > b > 0
from a succession of remainders of Euclidean divisions, so that the last non-zero remainder is
d = gcd(a, b). Starting from d0 = a, d1 = b, the Euclidean division bd0/d1c provides the quotient
q1 and the remainder r1, satisfying r1 = d0 − q1d1. Hence, the values

di+1 ≡ ri = di−1 − qidi , i ≥ 1 (D1)

form a decreasing sequence so that if dk+1 = 0 then dk = d. The extended Euclidean algorithm
is an improvement of the previous one that, in addition to calculating d, provides the two pairs
of integers x and y satisfying Bézout's identity d = ax+ by; |x| < |b|, |y| < |a|.
If x, y are solutions and x < 0, then x+ b > 0 and y − a are solutions too, and if y < 0, then

x− b and y + a > 0 also are. The way to proceed is to de�ne the variables20

x0 = y1 = 1, x1 = y0 = 0; xi+1 = xi−1 − qixi, yi+1 = yi−1 − qiyi, i ≥ 1 (D2)

satisfying di = axi+byi, i < k. For i = k, we get the coe�cients of Bézout's identity d = ax+by.
Therefore, if n > N , this method can be applied to equation (46) with a = n, b = N ,

x = JMK + 1, and y = −M , till reaching d = 1. In Table D1 an example shows how to determine
the minimum tone of the Pythagorean scale (h = 3

2) with n = 53 tones and N = 31. The rows
di, qi follow the conventional Euclidean algorithm. The last two rows, which are easily calculated
from the previous ones according to equation (D2), provide the values xi, yi. We have obtained
x = −7 and y = 12. Since we wish a value 0 ≤ x < N and 0 ≤ y < n, we must correct the equation
as n (x+N) +N (y − n) = 1, so that, comparing with equation (46), we get x = JMK + 1 = 24
and M = 41, hence m = 12. Since M > m, the cyclic scale previous to n = 53 is n = 41.

20For i ≥ 2, these variables are equivalent to duplicate equation (D1), dividing it by a and b, and de�ning xi = di
a
,

yi = di
b
. As x1 = y0 = 0, the new variables are integers.
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