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Abstract

Multi-agent robotic systems have shown to be useful and reliable solutions to many problems

that arise in science and engineering. In this work we will study Coverage Control, that aims

to achieve optimal coverage of a density. We will focus on the case when the density has a

time dependence and we will study a Singular Perturbation Theory approach to solve the

problem. We will also consider large swarms of agents, where we can develop continuous

models to analyze the behaviour of the swarm. Recent work has focused on applying ideas

from the theory of Optimal Transport to the Multi-Agent Transport problem. We will review

the work and provide some modifications.
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Chapter 1

Introduction

Multi-agent systems are systems formed by multiple agents that can sense the environment,
communicate with their neighbours and perform computations. Their characteristics present
many uses in science and engineering, like the monitorization of environmental processes [17],
search and rescue operations in hazardous environments [47] or joint actuation [34].
This motivates us to develop good algorithms that will allow the agents to perform the task
efficiently and usually in a decentralized manner, since central computations require a higher
communications cost and there might be situations in which the agents loose contact with
the planner, for example exploring complex environments like caves or the ocean.
There are many interesting problems that appear in Multi-agent systems but we will fo-
cus on two problems, Coverage Control and large-scale Transportation. Coverage con-
trol [13], [12], [11] is a problem that appears naturally when we only have a limited amount
of agents and we want them to achieve the optimal configuration in order to detect or track
a density function. Coverage control can be used for many task such as environmental mon-
itoring and search and rescue operations.
Our discussion of Coverage Control will be particularly focused on the coverage of time-
varying densities, a problem that was discussed in [12], [31], [18] and [25]. We have partic-
ipated in the work introduced in [25] where the theory of Singular Perturbations was used
to develop a new approach to Coverage Control. We have provided additional experimental
results and minor changes in the theory. We hope to publish our results soon.
The other application that we will study is Transport, which appears in many related prob-
lems such as extremum seeking of a potential field with chemotaxis [39], coverage con-
trol [13], [12], [11] and formation control [38]. We will particularly focus on large-scale
swarms, which can be composed of miniature robots and have a lot of potential applications
in biology [24], and engineering [46].
There have been different approaches in the literature to treat this problem, some of them
include Markov Transition matrices [5], [7], [16] and continuum models [29], [22]. We will
work with continuum models, in which the swarm can be abstracted as a fluid and we can
study the evolution of the swarm by studying macroscopic variables like the density. We
will develop control laws that act locally on each agent and we will study the macroscopic
behaviour of the swarm. Studying the swarm macroscopically will allow us to use theoreti-
cal tools such as Lyapunov analysis and PDE analysis in order to prove convergence of the
algorithms.

2



3

In order to study the transport of large scale Multi-Agent systems we will introduce Optimal
Transport, a theory that deals with the optimal transportation or rearrangement of prob-
ability measures. The ideas of optimal transport promise an efficient way of transporting
the swarm of agents and there have been some approaches [6] [14], [30] to introduce them
in Multi-Agent swarms. Our research has focused in the recent work of [30], that provides
a decentralized Optimal Transport algorithm for Multi-Agent Transport. Our contributions
are twofold, we have improved the convergence rate of the algorithm and we have developed
simulations in domains that present obstacles and therefore are non-convex.
Our work is structured as follows, in Chapter 2 we will introduce Coverage Control, formu-
late it as an allocation problem and provide a solution using Lloyd’s algorithm following [13]
and [12]. We will then focus on the coverage of time-varying densities, showing that Lloyd
algorithm may not converge and providing and alternative algorithm [31] [18], which can be
implemented in a centralized way or a decentralized way. Finally we will focus on a Singu-
lar Perturbation Theory approach to Time Varying Coverage Control [25]. We have joined
the project and we have contributed providing additional experimental validation and minor
changes in the theory. We hope to publish our results soon.
We will continue by introducing Optimal Transport theory in Chapter 3, following [49], [50]
and [51]. Optimal transport will give us a framework to study distances between probability
measures and rearrange probability measures. Additionally we will study gradient flows,
which will be fundamental in order to formulate our multi-agent transport algorithms.
In Chapter 4 we will study the relation between Optimal Transport and Coverage Control.
We will consider the problem of Optimal Transport when one of the probability measures is
discrete and the other is continuous following [50]. This will allow us to compare the costs
of the two problems and see that the locational cost of Coverage Control is a relaxation of
the Optimal Transport cost. We will also follow [28] to explore the continuous limit of Cov-
erage Control, we will see that the Coverage Control problem is not well posed to be studied
macroscopically.
Finally, we will present a Multi-Agent transport algorithm that uses Optimal Transport in
Chapter 5. Most of the work of section comes from [30]. We have provided some modifi-
cations, improving the rate of convergence of the algorithm and performing additional sim-
ulations with an obstacle environment. We have also proposed different models to include
collision avoidance to the algorithm but our approaches are still incomplete. We discuss our
ideas to include collision avoidance but we will leave their implementation for future work.



Chapter 2

Coverage Control

Coverage Control is an optimal resource allocation problem [19], [52], [42], in which we want
to allocate a group of agents in a configuration that minimizes the cost and provides the best
quality-of service.
We will consider a mobile sensing network composed of agents that can sense their envi-
ronment and communicate. We will define a distribution in the space that will represent a
measure of the probability that some event happens and we will update the positions of the
agents in order to find the configuration that minimizes the sensing cost.
Our work will be structured as follows, we will start introducing some concepts from Com-
putational Geometry, which will help us solve Coverage Control problem. Then we will
follow [13], [12] to define the Coverage problem and solve it using Lloyd’s algorithm. We will
then study the Coverage Control problem when the target distribution has a time depen-
dence. In this situation Lloyd algorithm may not converge and there is a need to develop
efficient algorithms that can provide a good solution to the problem. We will review the ap-
proaches of [31], [18] and we will present a Singular Perturbation Theory approach that was
originally presented in [25]. We have collaborated in the project doing minor modifications
in the theory and performing some additional simulations. We hope to publish our results
soon.

2.1 Voronoi diagrams

We start introducing some notions of Computational Geometry, in particular Voronoi Dia-
grams. A detailed treatment on Voronoi Diagrams can be found in [15] and [41].
Given Ω ⊂ RN we say that the sets W = {W1, . . . ,Wn} are a partition Ω, if ∪iWi = Ω and
their interiors are disjoint, W̊i ∩ W̊j = ∅. Now we define the Voronoi partition of a set Ω
given by some points p.

Definition 1 (Voronoi Partition). Given n points in Ω ⊂ RN , P = (p1, . . . , pn) with pi ∈ Ω,
and a metric c : Ω×Ω→ R≥0 we define the Voronoi Partition V(P ) = (V1, . . . , Vn) generated
by the points P as

Vi = {q ∈ Ω| c(pi, q) ≤ c(pj, q) ∀j 6= i}

We call Vi a Voronoi cell or Voronoi regions. When Ω is a convex set, the Voronoi cells will
also be convex sets and the boundary of the Voronoi regions will be an hyperplane. In Figure
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2.2. Problem definition 5

2.1 we illustrate the Voronoi Diagram, where we can see that the Voronoi cells assign every
point q ∈ Ω to the closest pi. Now we define a similar partition, the Voronoi power cell,
which assigns points q ∈ Ω to points pi according to the weight or bias wi of the points.

Definition 2 (Voronoi Power Diagram). Given n points in Ω ⊂ RN , P = (p1, . . . , pn) with
pi ∈ Ω, a vector w = (w1, . . . , wn), and a metric c : Ω × Ω → R≥0 we define the Voronoi
Power Diagram Vw(P ) = (Vw,1, . . . , Vw,n) generated by the points P as

Vi = {q ∈ Ω| c(pi, q) + wi ≤ c(pj, q) + wj ∀i 6= j}

If Ω is convex the Voronoi Power Cells are convex. In Figure 2.1 we compare the Voronoi
diagram to the Voronoi Power Diagram.

Figure 2.1: Comparison between the Voronoi Diagram (left) and the Voronoi Power Diagram
(right), where the wi = r2

i , with ri the radius of the circles centered around the points. Note
that in the power diagram the generator may lie outside of the corresponding region. Figure
extracted from [10]

2.2 Problem definition

We will now follow [13] and [12] to develop the theory of the Coverage Control Problem.
Coverage Control is a problem that arises when searching for the optimal allocation of n
sensors P = (p1, . . . , pn) in a space Ω in order to maximize the sensing of a density ρ : Ω→
R≥0 which will represent a measure of the information that some event happens. Given the
position of the sensors P = (p1, . . . , pn) and a partition W = {W1, . . . ,Wn} of Ω we define
the coverage cost as

H(P,W) =
n∑
i=1

∫
Wi

||x− pi||2ρ(x)dx (2.1)



6 Chapter 2. Coverage Control

In this allocation cost an agent i, with location pi senses the density ρ in the cell Wi with a
quadratic cost ||x − pi||2, which will penalize more the points q that are farther away from
pi. We would like to optimize the coverage cost H(P,W(P )) with respect to the positions of
the agents P and the choice of partition W(P ). We start by choosing the optimal partition
W(P )). We remember the definition of Voronoi cell in (1)

Vi = {q ∈ Ω|||x− pi|| ≤ ||x− pj|| ∀i 6= j}

this gives us
||x− pi|| ≤ ||x− pj|| ∀x ∈ Vi,∀j 6= i

If we take Wi = Vi we can write the coverage cost as

H(P ) =
n∑
i=1

∫
Vi

||x− pi||2ρ(x)dx =

∫
Ω

min
i
||x− pi||2ρ(x)dx (2.2)

And the Voronoi partition is the optimal partition.

2.2.1 Lloyd’s algorithm

Now we show how we can optimize the coverage cost (2.1) with respect to the position of
the agents. We will use Lloyd’s algorithm, which was originally presented in Quantization
Theory [33], a theory that deals with the efficient quantization of continuous signals into a
discrete set of samples. Lloyd’s algorithm can be formulated as a gradient descend algorithm
in continuous time. We start by calculating

δH
δpi

(P ) =
δH
δpi

(P,V(P )) =

∫
Vi

δ

δpi
||x− pi||2ρ(x)dx

We define the mass and the centroid of the Voronoi cells Vi

mi =

∫
Vi

ρ(x)dx ci =
1

mi

∫
Vi

xρ(x)dx

It can then be proved [13] that

δH
δpi

(P ) = 2mi(pi − ci) (2.3)

From the derivative of the coverage cost we can deduce that we will have a minimum if
pi = ci. We will call this configurations Centroidal Voronoi Tesselations. A detailed study on
Centroidal Voronoi Tesselations can be found on [21]. We particularly remark the following
property.

Remark 1. There are no guarantees that there exists a unique minimum for the problem.
An arbitrary pair Ω, ρ admits in general multiple centroidal Voronoi configurations.

Due to Remark 1 we can only guarantee that our algorithm converges to one of the local
minima. Now we present the continuous time implementation of Lloyd’s algorithm. We
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consider the dynamics
ṗi = ui

With
ui = −k(pi − ci) (2.4)

This dynamics is known as Lloyd descend and we can prove it’s convergence to a Centroidal
Voronoi Tesselation.

Proposition 1. For closed loop system given by (2.4) the sensors location converges asymp-
totically to the set of critical points of H(P ).

Proof. The control law gives us

dH
dt

(P (t)) =
n∑
i=1

dH
dpi

ṗi = −2k
n∑
i=1

mi||pi − ci||2

And the dynamics converge to H−1(0), which is the set of Centroidal Voronoi Configurations.

2.3 Time-varying Coverage problem

Our next objective will be studying the Coverage problem when the density ρ(x, t) has a time
dependence, in this situation Lloyd’s algorithm may not converge to a Centroidal Voronoi
Tesselation. In this section we follow the work of [31] and [18] to study algorithms that are
better suited for the task of coverage in a time-varying setting. We start by showing the
problems that arise with Lloyd’s algorithm. In continuous time Lloyd’s update is given by

ṗi(t) = −k(pi(t)− ci(p(t), t))

and the coverage cost evolves as

dH
dt

(P (t), t) =
δH
δt

+
n∑
i=1

δH
δpi

ṗi =

n∑
i=1

∫
Vi

||x− pi(t)||2
δρ

δt
(x, t)dx− 2k

n∑
i=1

mi||pi(t)− ci(p(t), t)||2

In the last expression, if δρ
δt

is big there are no guarantees that dH
dt

will decrease. To solve
this problem in [31] they propose a control law composed of two parts, convergence to a
Centroidal Voronoi configuration and tracking of the Centroidal Voronoi configuration. We
start by assuming

pi(t) = ci(t)

Differentiating the expression,

ṗi =
dci
dt

=
δci
δt

+
δci
δp
ṗi
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Giving us the tracking control law

ṗ =

(
I − δc

δp

)−1
δc

δt
(2.5)

In order to ensure convergence to a Centroidal Voronoi configuration we can add a Lloyd
descend term.

ṗ =

(
I − δc

δp

)−1(
−k(p(t)− c(p(t), t)) +

δc

δt

)
(2.6)

This algorithm is known as TVD-C, which stands for Time Varying Densities Centralized
case and it can be proved to converge to a Centroidal Voronoi configuration.

Proposition 2. If 1 /∈ eig( δc
δp

) and we let

ṗ =

(
I − δc

δp

)−1(
−k(p(t)− c(p(t), t)) +

δc

δt

)
then ||p(t)− c(p(t), t)|| → 0 as t→ +∞ with a rate of decrease given by e(−k(t−t0))

Proof. We consider the evolution of ||p(t)− c(p(t), t)||2,

d

dt
(||p(t)− c(p(t), t)||2) = 2(p− c)T (ṗ− ċ) =

Expanding ċ,

= 2(p− c)T
((

I − δc

δp

)
ṗ(t)− δc

δt

)
=

Substituting the control law

= 2(p− c)T
((

I − δc

δp

)(
I − δc

δp

)−1(
−k(p− c) +

δc

δt

)
− δc

δt

)
=

= 2(p− c)T
((
−k(p− c+

δc

δt

)
− δc

δt

)
= −2k||p− c||2

From this we get ||p− c||2 ∝ e−2k(t−t0) and ||p− c|| ∝ e−k(t−t0)

This algorithm presents two problems, the first problem is the existence of the inverse. In [20]
they showed that if ρ(x) is log-concave the inverse is well defined in a neighbourhood of a
Centroidal Voronoi configuration but we cannot guarantee the existence of the inverse in
more general situations.
The other problem is related to the centralized nature of this algorithm, making it unsuitable
for coverage of large swarms. To understand this better we provide the formulas for the terms
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of δc
δp

and δc
δt

, developed in [31].

[
δc

δp

]
ij

=
δci
δpj

= −

∫
δVij

(x− ci)(x− pj)Tρdx
mi||pi − pj||[

δc

δp

]
ii

=
δci
δpi

=
∑
j∈Ni

∫
δVij

(x− ci)(x− pi)Tρdx
mi||pi − pj||

dci
dt

=

∫
Vi

(x− ci) δρδt dx
mi

(2.7)

From the expression of δc
δp

we see that it has a sparse structure, being non-zero on the indexes

corresponding to neighbouring agents. Despite this, the term
(
I − δc

δp

)−1

will be in general

not sparse. To solve this problem in [31] they propose a Neumann series expansion,(
I − δc

δp

)−1

≈
k∑
l=0

(
δc

δp

)l
= I +

δc

δp
+

(
δc

δp

)2

+ · · ·+
(
δc

δp

)l
(2.8)

The constant k determines the order of the approximation and also the amount of neigh-

bouring information needed, since

[(
δc
δp

)l]
ij

6= 0 =⇒ j ∈ Nl(i).

To ensure convergence of the Neumann series we require that liml→∞

(
δc
δp

)l
= 0 which corre-

sponds to |λmax| < 1. In [31] it was proven that the condition |λmax| < 1 will be satisfied in
a neighbourhood of a Centroidal Voronoi configuration, the author also remarked that the
algorithm with k ≤ 1 is always well defined and will always converge, while choosing a higher
value of k may result in failure to converge.
The Neumann series approximation leads to the decentralized version of Time Varying Den-
sities, TVD-Dk.

ṗ =
k∑
l=0

(
δc

δp

)l(
−k(p− c) +

δc

δt

)
(2.9)

2.4 Singular Perturbation Coverage

Another interesting approach to the Time-Varying Coverage problem was introduced in [25].
A Singular Perturbation Theory algorithm was proposed, the algorithm relied on a fast
communication between agents in order to estimate the control law that updates the positions.
The benefit of the algorithm is that it only needs nearest neighbour information and can
recover the centralized solution if the communication speed is much higher than the position
update speed. We have joined the project, making small changes in the theory and performing
numerical experiments. We hope to publish our results soon.
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2.4.1 Singular Perturbation Theory

In order to explain the algorithm we will first introduce Singular Perturbation Theory. Singu-
lar Perturbation Theory is particular case of Perturbation Theory, where the general approach
is to obtain solutions as a power series of some small parameter ε. In the case of a Singular
Perturbation the dynamics of the system cannot be approximated by setting the parameter
ε = 0. Singularly Perturbed methods are usually characterized by dynamics operating on
multiple scales.
We consider the system

ṗ = f((p, c), u, t)

εu̇ = g((p, c), u, t)
(2.10)

In this system we can find two different time scales, if take ε→ 0+ we find the reduced model

ṗ = f((p, c), u, t) (2.11a)

0 = g((p, c), u, t) (2.11b)

Here u is constant and we can find its explicit form as u = h((p, c), t). Where h is a function
of p, c, t which may not be uniquely defined. On the other hand, we can consider a stretched
time-scale η = t/ε and analyze the dynamics of the boundary layer by taking ε→ 0+.

dp/dη = 0 (2.12a)

du/dη = g((p, c), u, t) (2.12b)

In the boundary layer p is frozen and doesn’t evolve. To summarize, the reduced model
(2.11) represents the dynamics at a slow time scale, neglecting the faster dynamics, and
the boundary layer (2.12) represents the dynamics at a fast time scale neglecting the slower
time-scale.
Finally, we will introduce a result from [27] which allows us to use the singular perturbation
dynamics to approximate the the reduced model.

Theorem 1 (Tikhonov’s theorem). If u = h((p, c), t) is an exponentially stable root of the
boundary layer dynamics (2.12b) the solution of the system (2.10) approaches the solution of
the reduced model (2.11) as ε→ 0+. Note that there may be more than one such function h.

2.4.2 Main result

Now we return to the Time-Varying Densities coverage problem. We want to build a system
with two time scales, a fast communication time scale and a slow movement time scale. We
start by considering the linear system(

I − δc

δp

)
ṗ =

(
−k(p− c)) +

δc

δt

)
(2.13)

If we solve the system inverting the matrix
(
I − δc

δp

)
we will recover the TVD-C algorithm

(2.6). Our objective is to solve this system of equations by minimizing the difference between
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the two sides of the equality. To do it we consider the function

F (u) =

∣∣∣∣∣∣∣∣(I − δc

δp

)
u−

(
−k(p− c) +

δc

δt

)∣∣∣∣∣∣∣∣2 (2.14)

And we construct a singularly perturbed system,

ṗ = u

u̇ = −1

ε
∇F (u)

with ∇F (u) =

(
I − δc

δp

)T ((
I − δc

δp

)
u−

(
−k(p− c) +

δc

δt

)) (2.15)

We will call this dynamics TVD-SPε, from Time Varying Densities Singular Perturbation.
In the next theorem we show it’s convergence.

Theorem 2. The dynamics of TVD-SPε (2.15) approach the dynamics given by TVD-C
(2.6) as ε→ 0+. Additionally, for 0 < ε� 1, ||p− c|| converges exponentially to zero.

Proof. We start by studying the equations (2.15), with ṗ = u,

u̇ = −1

ε

(
I − δc

δp

)T ((
I − δc

δp

)
u−

(
−k(p− c) +

δc

δt

))
The boundary layer will be given by

du

dη
= −

(
I − δc

δp

)T ((
I − δc

δp

)
u−

(
−k(p− c) +

δc

δt

))
With η = t

ε
. This is a linear system and from the theory of linear systems we know that

it has a unique solution and the solution is exponentially stable. This allows us to apply
Theorem 1, and taking ε→ 0+ we recover the reduced model

ṗ = u

0 =

(
I − δc

δp

)T ((
I − δc

δp

)
u−

(
−k(p− c) +

δc

δt

))
(2.16)

Calculating the explicit value of u we find

ṗ = u

u =

(
I − δc

δp

)−1(
−k(p− c) +

δc

δt

)
(2.17)

Obtaining the dynamics of TVD-C (2.6). Finally, from the convergence we can extend the
exponential decrease of ||p− c|| in TVD-C to TVD-SPε for 0 < ε� 1.

In order to implement (2.15), we must integrate the dynamics of p and u in their timescales.
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The dynamics of p will be given by the reduced model of (2.15), which translates to

p[k + 1] = p[k] + u∆t (2.18)

Where u is considered constant. On the other hand, to discretize u we integrate the boundary
layer of (2.15), giving us

u[l + 1] = u[l]−∆η

(
I − δc

δp

)T ((
I − δc

δp

)
u−

(
−k(p− c) +

δc

δt

))
(2.19)

Where p is considered constant and η = t
ε
. The time steps ∆t, ∆η must be chosen small

enough to ensure convergence of their respective dynamics. Additionally for every update in
p we have N = ∆t

ε∆η
updates in u with a frozen value of p. With this considerations, if ε is

small enough the boundary layer dynamics will converge and we will recover the solution of
TVD-C.

2.4.3 Experimental results

We will now present the the results of our simulations. We have implemented our algorithms
in Python. We have compared the performance of the algorithms Lloyd, TVD-C, TVD-Dk,
and TVD-SPε for various density functions using different numbers of agents. We have used
the following time-varying densities as target:

ρ1(x, t) = e−((x1−2 sin(t/τ))2+(x2/4)2) (2.20)

ρ2(x, t) = e−((x1−sin(t/τ))2+(x2+sin(2t/τ))2) (2.21)

ρ3(x, t) = e−((x1−2 cos(t/τ))2+(x2−2 sin(t/τ))2) (2.22)

Where τ = 5. We measure the performance of the algorithms using the total cost∫ T

0

H(x, V, t)dt (2.23)

In our experiments we have observed that since there are multiple Centroidal Voronoi Con-
figurations we cannot guarantee that two different algorithms will converge to the same
Centroidal Voronoi Configuration. This will introduce some uncertainty in the comparison
of the different algorithms but we can still observe the general patterns.
We start comparing the cost of TVD-SPε with Lloyd and TVD-C with 10 agents. We have
used ∆t = 5 · 10−2 and ∆η = 10−4 to ensure convergence. In Figure 2.2 we can see how we
can achieve a cost similar to TVD-C by taking a value of ε of the order of 10−2. We can also
see how if ε increases the cost can become higher and when ε > 10−1 we have encountered
cases where the algorithm didn’t converge and agents escaped the domain.
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Figure 2.2: Comparison of TVD-SP with Lloyd and TVD-C for 10 agents

A possible solution to fix this problem is to reset the control law when the agents move. We
propose to use

u[0] = −κ(p− c) +
δc

δt

Which corresponds to the control law of TVD-D0. We call this algorithm TVD-SSPε, for
Time Varying Densities (modified) Start Singular Pertubation. This algorithm doesn’t suffer
from the convergence problems when ε is big because it acts as TVD-D0 when ε is big. In
Figure 2.3 we can see the comparative between the algorithm, TVD-C and Lloyd. The cost
of TVD-SSPε converges much smoothly to the cost of TVD-C than TVD-SPε but it also
requires a smaller value of ε = 10−3 to achieve a cost comparable to TVD-C.
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Figure 2.3: Comparison of TVD-SSP with Lloyd and TVD-C for 10 agents

Finally in Table 2.1 we have a comparative of all the algorithms with 10 agents. We note
how by taking ε small enough with TVD-SPε and TVD-SSPε we can obtain better results
than TVD-Dk and achieve a similar cost as TVD-C.

Table 2.1: Comparison of all the algorithms with 10 agents
Algorithm ρ1 ρ2 ρ3

Lloyd 52.11 50.57 62.82
TVD-D0 49.10 48.55 55.41
TVD-D1 44.39 44.23 47.90
TVD-D2 42.68 42.70 44.75
TVD-D3 41.95 41.97 43.23

TVD-SP0.1 46.26 46.26 53.29
TVD-SP0.05 42.49 43.07 42.93
TVD-SP0.01 41.40 41.45 41.48

TVD-SSP0.01 46.38 48.67 49.68
TVD-SSP0.005 44.87 45.94 46.61
TVD-SSP0.001 42.37 41.97 42.97

TVD-C 41.84 42.47 41.46

After performing the experiment with 10 agents we would like to obtain the same results with
a higher amount of agents. Unfortunately we have observed that as the number of agents
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increases some numerical problems appear. In particular we have very poor guarantees on

conditioning of
(
I − δc

δp

)
, since the theoretical results only ensure inversion of the matrix

when it the agents are located in a neighbourhood of a Centroidal Voronoi Configuration. In
a general situation the matrix can be ill-conditioned, presenting small eigenvalues. This leads
to control laws u of TVD-C that have a big norm which exhibit erratic behaviour that can
force the agents to escape the domain. This problem can also be found when implementing
TVD-Dk for k ≥ 2, TVD-SPε and TVD-SSPε.

This problems are not very frequent, happening in very few iterations, but when they happen
they can disrupt the execution of the different algorithms. In Figure 2.4 we can see how
||p−c||2, which should decrease exponentially according to (2), is affected by this phenomena.
A way to mitigate the erratic behaviour is to reduce the time step, but reducing the time
step too much will result in excessive simulation times and real robotic systems have physical
limitations on the frequency of operation. This considerations motivate us to introduce a
heuristic to trim the components of the control u and avoid having excessively big control
laws.

u′i =

{
ui if |ui| ≤ umax,i

umax,i
ui
|ui| otherwise

(2.24)

Here umax,i could be chosen independently for each agent, forbidding agents that are close to
the border of the domain to move outside of the domain. Nonetheless in our experiments we
will use the same constant umax for all the agents. We can see the effects of the trimming in
||p− c|| in Figure 2.4 mitigate the erratic behaviour.

Figure 2.4: Evolution of ||p − c||2 with 30 agents in TVD-C without trimming (left) and
TVD-C with trimming (right).

We perform experiments with 50 agents imposing umax = 3 and show the results on Table 2.2.
We use a ∆t = 0.1 and ∆η = 0.001. In the results of the table we can see the same patterns
we observed with 10 agents but we require smaller values of ε to achieve the same results.
TVD-SPε can achieve costs as good as TVD-C by choosing ε = 0.001, a perfomance similar
to TVD-D3 can be achieved with ε = 0.01. Additionally when we choose a reasonably big
value like ε = 0.1 the algorithm converges without problems but it achieves a performance
comparable to Lloyd algorithm. The other algorithm that we have proposed TVD-SSPε

performs worse than TVD-SPε, requiring ε values 10 times lower than TVD-SPε to obtain to
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same performance, as we can see by comparing TVD-SP0.01 and TVD-SSP0.001.

Table 2.2: Comparison of all the algorithms with 50 agents
Algorithm ρ1 ρ2 ρ3

Lloyd 33.60 30.40 40.00
TVD-D0 32.67 30.06 37.11
TVD-D1 28.26 26.95 31.84
TVD-D2 26.23 25.56 29.09
TVD-D3 25.07 24.65 27.15

TVD-SP0.1 34.09 32.97 41.63
TVD-SP0.01 24.67 26.82 30.26
TVD-SP0.001 22.91 23.23 22.47
TVD-SSP0.01 32.53 31.17 33.69
TVD-SSP0.001 27.23 25.59 27.07

TVD-C 22.44 23.32 22.43

Finally, in Figure 2.5 we show how the 50 agents evolve following ρ1(x, t) using TVD-SP0.001,
converging to the Centroidal Voronoi configuration and decreasing the coverage cost.

Figure 2.5: Evolution of TVD-SP0.001 with 50 agents and target density ρ1(x, t)



Chapter 3

Optimal Transport Theory

Our next objective is to study the transport of Multi-agent robotic systems. To do it we
will first introduce the theory of Optimal Transport, which will give us a good framework
to study the problem. In this chapter we will give an introductory view on the theory of
Optimal Transport. We will follow [49], [50] and [51] and we will present the main results
of the Theory of Optimal Transport. We will not prove every proposition or theorem that
we state because doing so would require long and technical proofs. We will prove some of
the easy results, provide intuition of some of the results and provide references for the more
advanced results. Most of the results that we will present in this chapter will be used later
to study multi-agent transport.
For the interested reader we recommend [50] and [53] for a complete and detailed approach
to Optimal Transport. We also recommend [45] for a computational approach to Optimal
Transport. We recommend [51] as an introduction to gradient flows in probability space
and [3] for a more in-depth exposition.

3.1 Motivation

Optimal Transport is a theory that studies probability measures, the distance between them
and how to efficiently deform a probability measure µ into a target probability measure ν.
The study of the problem started with Gaspard Monge in 1781, when he considered the
allocation problem of sending the resources that N different mines in different places had
produced to M factories that consume the resources. Monge wanted to find the optimal
allocation plan that allowed each mine to send their products to a factory and minimize the
transportation cost of the materials.
The problem can be formalized by considering probability measures, and defining a trans-
port cost between probability measures. This cost can be shown to give a metric to the
probability space, converting it into a metric space. This allows us to consider functionals
on the probability space and minimize functionals in the probability space. This has allowed
to study many problems that appear in diverse fields of science and engineering.

17
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3.2 Kantorovich and Monge formulations

We will start introducing the original Monge Formulation and its relaxation into the Kan-
torovich formulation. The Monge formulation corresponds to the formalization of the allo-
cation problem we have discussed in the motivation section.
Given a space Ω ⊂ RN we consider two probability measures µ, ν, with support X = spt(µ) ⊂
Ω and Y = spt(ν) ⊂ Ω, where the support of a probability measure spt(µ) is defined as the set
of points where the measure is different than 0. We also consider a cost function c : Ω×Ω→ R
and we want to find a map T : X → Y that transports the mass of µ into ν minimizing the
cost of transporting the mass. This can be written as

Definition 3 (Monge formulation).

CM = inf
T :X→Y
T#µ=ν

∫
X

c(x, T (x))dµ(x) (3.1)

Where the constrain T#µ = ν represents the conservation of mass through the map T ,
transforming µ into ν. We call T#µ the push-forward measure of µ through the map T , the
measure obtained when we apply the map X → Y to all the points in the support of µ, and
can be defined formally as:

T#µ(A) = µ(T−1(A)) for every measurable set A (3.2)

Now we consider an example that will show us that the Monge formulation quite restrictive.

Example 1. Consider µ = δxi(x) a delta function and ν(y) a probability measure. Then
there will only exist a transport map T : X → Y if ν(y) = δyi(y) since T is univalued and xi
can only have one image yi.

This example shows us that there may be cases where the Monge formulation has no solution.
To solve this problem Kantorovich introduced an alternative formulation that generalizes the
Monge formulation, allowing the masses to be splitted. In this framework we consider the
set of joint probabilities Π(µ, ν) ∈ P(X × Y ) that have as marginals µ and ν and search for
the Optimal transport plan π∗(x, y) ∈ Π(µ, ν) that minimize the cost of transport.

Definition 4 (Kantorovich formulation).

CK = inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) (3.3)

This problem is better posed. We now present some results that relate both formulations

Proposition 3. Any transport map T : X → Y induces a transport plan πT (x, y) defined by

πT (x, y) = (id, T )#µ

Conversely, a transport plan π(x, y) induces a transport map T if π(x, y) is concentrated on
a π-measurable graph Γ, with

Γ = {(x, T (x)) : x ∈ spt(µ)}
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We can also guarantee the existence of transport maps T .

Proposition 4 ( [50]). If µ, ν are two probability measures on RN and µ is atomless, then
there exist at least a transport map T such that T#µ = ν.

Moreover, it can be proved that the transport plans generated by transport maps T are
dense.

Proposition 5 ( [50]). On a set Ω ⊂ RN , the set of plans πT induced by a transport is dense
in the set of plans Π(µ, ν) whenever µ is atomless.

Now we introduce a proposition that guarantees the existence of a minimizer π∗(x, y).

Proposition 6 ( [1]). Let X and Y be compact metric spaces µ ∈ P(X), ν ∈ P(Y ), and
c : X × Y → R continuous. Then the Kantorovich problem admits a solution. Moreover, if
the measure µ is atomless (i.e µ({x}) = 0, ∀x ∈ X), we have

min(KP ) = inf
T#µ=ν

∫
X

c(x, T (x))dµ(x)

We note that this does not imply the existence of an optimal transport map T ∗ that mini-
mizes the Monge cost. We provide an example to show this.

Example 2 (3 lines). We consider µ = H1|A and ν = 1
2
H1|B + 1

2
H1|C. With A,B,C vertical

parallel lines, with x = 0, 1,−1 and y ∈ [0, 1] and H1 is the one dimensional Haussdorf
measure. We can divide A into 2n segments and assign half of them to B and half to C as
we can see in Figure 3.1. If we take the limit n→∞ we obtain optimal transport cost of 1,
corresponding to the horizontal distance between A and B, A and C, but we cannot have a
transport plan T attaining this cost, since it would require splitting the mass of each point in
A to the right for B and left for C.

Figure 3.1: Non-existence of transport map example, from [50]

Another important topic is the uniqueness of solutions of the Kantorovich problem. We show
now in an example that for a general cost c : X × Y → R there may not be a unique mini-
mizer. We will later see that if we assume some convexity on the cost function it is possible
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to prove the uniqueness of minimizers.

Example 3 (Book shifter). We consider the cost c(x, y) = |x− y| and the measures µ(x) =
1
n
δ0(x) + 1

n
δ1(x) + · · · + 1

n
δn(x) and ν(x) = 1

n
δ1(x) + 1

n
δ2(x) + · · · + 1

n
δn+1(x), we can think

of the problem as wanting to move a set of n books one unit to the right in the real line. We
consider two solutions with the same cost:

1. Move each book one unit to the right

2. Move the leftmost book 1
n
δ0(x) to the rightmost place 1

n
δn+1(x)

Both solutions have the same cost of 1, and it is the optimal cost, there is no uniqueness of
solution.

3.3 The Wasserstein distance

We will now study the Wasserstein distance, a distance that can be defined in the probability
space thanks to Optimal Transport. We will focus on the distances generated by c = |x− y|p
but more general cost functions can be used. We start defining the p-Wasserstein distance
Wp as

Wp =

(
inf

π∈Π(µ,ν)

∫
X×Y
|x− y|pdπ(x, y)

)1/p

(3.4)

To gain intuition about the Wasserstein distance in Figure 3.3 we show how the Wasserstein
distance accounts for the difference between two probability distributions in a different way
than traditional Lp distances. The key aspect is that the Wasserstein distance measures the
”horizontal” distance by measuring the displacement between x and T (x), while Lp distances
measure the ”vertical” displacement between the values of two functions in a given point x.

Figure 3.2: Visual explanation of Wasserstein distance by [50]

One of the main benefits of the Wasserstein distance is that it allows to calculate the distance
between discrete and continuous probability measures. We introduce an interesting example
that shows us how to calculate a Wasserstein distance and also provides an interesting result
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relating the Wasserstein distance to a target delta function with the p-moments of the source
distribution.

Example 4. We want to calculate the Wasserstein distance W p
p (µ, ν) between µ(x) an arbi-

trary probability measure and ν(y) = δxi(y) a delta function.
The optimal transport plan between µ and ν is a function that concentrates all the prob-
ability of µ into the single point yi of the support of ν. The transport plan is given by
π(x, y) = µ(x)× δyi(y) and we can calculate the Wasserstein distance as

W p
p (µ, ν) =

∫
R×R
|x− y|pdπ(x, y) =

∫
R×R
|x− y|pdµ(x)δxi(y)dy =

∫
R
|x− xi|pdµ(x) = Eµ [|x− xi|p]

And W p
p (µ, ν) = Eµ[|x − xi|p], the p-moment of µ around xi. This example is particularly

interesting if we set xi = µ̄, the mean value of µ. Then,

W p
p (µ, ν) = Eµ[|x− µ̄|p]

And in particular setting p = 2 we have,

W 2
2 (µ, ν) = Eµ[|x− µ̄|2] = Varµ[x]

We now prove that the Wasserstein distance establishes a metric in the probability space
P(Ω).

Proposition 7. Given a region of space Ω and a metric c : Ω×Ω→ R then the Wasserstein
distance (3.4) defines a metric in P(Ω).

Proof. We start by analyzing the Wasserstein distance

Wp =

(
inf

π∈Π(µ,ν)

∫
Ω×Ω

c(x, y)pdπ(x, y)

)1/p

From the expression it is easy to see that the distance is non-negative and symmetric. To see
that it is non-degenerate we note that since c(x, y) is non-negative it must be 0 in support
of the minimizer π∗ and c(x, y) = 0 implies x = y.
We will proof the triangular inequality by assuming the existence of and optimal transport
maps T between three absolutely continuous measures µ, ν, ρ. A proof that doesn’t require
this assumption can be found Chapter 5 of [50].
The Wasserstein distance can be written as

Wp(µ, ν) =

(
inf

T#µ=ν

∫
Ω

c(x, T (x))pdµ(x)

)1/p

We consider the optimal transport map T ∗ between µ and ν. Now we consider a third
probability measure ρ, and T1 the optimal transport map from µ to ρ, T2 the optimal transport
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map from ρ to ν. Then T ∗ = T2 ◦ T1 and

Wp(µ, ν) =

(∫
Ω

c(x, T2 ◦ T1(x))pdµ(x)

)1/p

≤
(∫

Ω

(c(x, T1(x)) + c(T1(x), T2 ◦ T1(x)))pdµ(x)

)1/p

≤

≤
(∫

Ω

c(x, T1(x))pdµ(x)

)1/p

+

(∫
Ω

c(T1(x), T2 ◦ T1(x))pdµ(x)

)1/p

= Wp(µ, ρ) +Wp(ρ, ν)

In next proposition we characterize the convergence with respect to the Wasserstein distance.
We will not prove it, a proof can be found in [50].

Proposition 8. Let Ω be compact and {µn} be a sequence of measure and µ a candidate
limit. Then Wp(µn, µ)→ 0 if and only if µn → µ according to the weak convergence, i.e.

lim
n→∞

∫
Ω

fdµn =

∫
Ω

fµ

For all bounded and continuous functions f .

We also remark that the probability space P(Ω) is compact with respect to the weak conver-
gence [9], and thanks to last proposition it is also compact with respect to the Wasserstein
distance. Then the probability space P(Ω) with the Wasserstein distance is a complete met-
ric space, that we will denote as Wasserstein space Wp(Ω).
Next we will show some results that characterize the curves in the Wasserstein space. We
will not provide proofs of the results that we state, the proofs can be found in [3] and [50].
We start by introducing some notions about curves in metric spaces. We will say that a
continuous function ω : [t1, t2] → X is a curve when it maps an interval [t1, t2] ⊂ R to a
metric space (X, d). We note that the speed ω̇(t) of the curve has no meaning unless (X, d)
is a vector space (the direction is not well-defined), nevertheless we can study the modulus
|ω̇(t)|.

Definition 5. Let (X, d) be a metric space and ω : [0, 1] → X a curve valued in a metric
space (X, d). We define the metric derivative |ω̇(t)| of ω(t) at time t as

|ω̇(t)| := lim
h→0

d(ω(t+ h), ω(t))

|h|

provided the limit exists

We now state a theorem on the existence of the metric derivative, which is a generalization
of Rademacher Theorem (5).

Theorem 3. Suppose that ω : [0, 1]→ X is Lipschitz continuous. Then, the metric derivative
|ω̇|(t) exists for a.e. t ∈ [0, 1]. Moreover we have, for t < s,

d(ω(t), ω(s)) ≤
∫ s

t

|ω̇|(τ)dτ
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We now consider a more general set of curves that don’t need to satisfy the Lipschitz conti-
nuity

Definition 6. We will say a curve ω : [0, 1] → X is absolutely continuous whenever there
exist a Lebesgue integrable derivative g ∈ L1([0, 1]) such that d(ω(t0), ω(t1)) ≤

∫ t1
t0
g(s)ds for

every t0 < t1.

Absolutely continuous curves can be reparametrized in time and become Lipschitz continuous
[50]. It can then be proved [50], [3], that the absolutely continuous curves of the Wasserstein
space (µt)t∈[0,1] are solutions of the continuity equation

δtµt +∇ · (µtvt) = 0 (3.5)

For some vector field vt, which will satisfy vt = |µ̇|(t), where |µ̇|(t) is the metric derivative
of the curve (µt)t∈[0,1] with respect to the Wasserstein distance.
Additionally, we can study how a bunch of particles evolve when following the dynamics given
in the continuity equation. We will consider some particles initially distributed as x ∼ µ0,
then, they will evolve following

ẏ(t) = vt(y(t))

y(0) = x
(3.6)

The results that we have presented in this section are very important, allowing us to relate
curves in the Wasserstein space with the continuity equation. In our work we will use this
relation to develop a multi-agent transport algorithm in Chapter 5.

3.4 Kantorovich dual formulation

In the following section we will take advantage of the linearity of the Kantorovich formulation
to study the dual problem of the formulation. The dual formulation of the Kantorovich
problem is more simple than the primal formulation and it allows us to define the Kantorovich
potentials, which will give us the solution of the problem. Our results are taken mainly
from [50]. We start with the Kantorovich formulation (4)

CK = inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y)

Using duality theory we can rewrite the constrain π ∈ Π(µ, ν) as

sup
φ,ψ

∫
X

φ(x)dµ(x) +

∫
Y

ψ(y)dν(y)−
∫
X×Y

(φ(x) + ψ(y))dπ(x, y) =

{
0 if π ∈ Π(µ, ν),
+∞ otherwise

Then we can rewrite the Kantorovich problem as

inf
π

∫
X×Y

c(x, y)dπ(x, y) + sup
φ,ψ

∫
X

φ(x)dµ(x) +

∫
Y

ψ(y)dν(y)−
∫
X×Y

(φ(x) + ψ(y))dπ(x, y)
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Next we will interchange the inf with the sup.1

sup
φ,ψ

∫
X

φ(x)dµ(x) +

∫
Y

ψ(y)dν(y) + inf
π

∫
X×Y

(c(x, y)− (φ(x) + ψ(y)))dπ(x, y)

We rewrite the last term as a constrain using

inf
π

∫
X×Y

(c(x, y)− (φ(x) + ψ(y)))dπ(x, y) =

{
0 if φ(x) + ψ(y) ≤ c(x, y) on X × Y
−∞ otherwise

(3.7)

This equality comes from the fact that if we have a point (x, y) such that φ(x)+ψ(y) > c(x, y)
then we can concentrate the probability density π(x, y) on the point and we get a value of
−∞.
From this we get the dual problem.

CDP = sup
φ,ψ

∫
X

φ(x)dµ(x) +

∫
Y

ψ(y)dν(y)

s.t. φ(x) + ψ(y) ≤ c(x, y)

(3.8)

The next big question that comes is whether there exists a solution (φ, ψ) of the dual problem.
To answer this question we first define the c-transform of a function.

Definition 7. Given a function χ : X → R̄ we define its c-transform or c-conjugate χc :
Y → R̄ by

χc(y) = inf
x∈X

c(x, y)− χ(x)

Analogously we define the c̄− transform of ζ : Y → R̄ by

ζc(x) = inf
y∈Y

c(x, y)− ζ(y)

We say that a function ψ : Y → R̄ is c̄−concave if there exist χ such that ψ = χc, a function
φ : X → R̄ is c− concave if there exist ζ such that φ = ζc.

The c-transform is useful because it can be shown that given a pair (φ, ψ) if we apply the
c-transform we get (φ, φc) with a higher cost and satisfying the same constraints, we could
iterate this process and grow the cost infinitely but it can be proved that φccc = φc. It can
also be proved that the set of functions that are c-concave is compact. This gives us the
following result.

Proposition 9 ( [50]). Suppose X and Y are compact and c is continuous. Then there exist
a solution (φ, ψ) to the dual problem with the form φ ∈ c − conc(X), ψ ∈ c̄ − conc(Y ) and
ψ = φc. Then,

max(DP ) = max
φ∈c−conc(X)

∫
X

φ(x)dµ(x) +

∫
Y

ψ(y)dν(y)

Using (7) constrain φ ∈ c− conc(X) can be rewritten as φ+ φc ≤ c(x, y), giving us

1This equivalence is not trivial, we refer the curious reader to section 1.6 of [50]
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CDP = sup
φ

∫
X

φ(x)dµ(x) +

∫
Y

φc(y)dν(y)

s.t. φ(x) + φc(y) ≤ c(x, y)

(3.9)

With this result we have reduced significantly the complexity of the problem, which now only
depends on φ.

Definition 8 (Kantorovich potential). We call φ such that the dual problem is maximized
Kantorivich potentials, which are equal to a c-concave function µ− a.e.

Finally we introduce a strong duality result, which will establish the equivalence between the
primal and dual formulations of the Kantorovich problem.

Theorem 4 ( [50]). Suppose X, Y ⊂ RN and c : X × Y → R is uniformly continuous
and bounded. Then the Kantorovich dual problem admits a solution (φ, φc) and we have
max(DP ) = min(KP )

We will now introduce some results that only hold when we add some assumptions to the
cost function.

3.4.1 Strictly convex cost functions

In Example 3 we have seen how the optimal transport plan π∗ may not be unique and in
Example 2 we have seen that there may be situations in which an optimal transport map T ∗

may not exist. We will now study this in more depth, showing that when c(x, y) = h(x− y)
this results hold.
We start with the following proposition, relating the Kantorovich potential with the transport
cost c.

Proposition 10. If the cost c is C1, φ is a Kantorovich potential for the cost c in the
transport from µ to ν, and (x0, y0) belongs to the support of an optimal transport plan γ, then
∇φ(x0) = ∇xc(x0, y0), provided φ is differentiable at x0. In particular, the gradients of two
different Kantorovich potentials coincide on every point x0 ∈ spt(µ) where both the potentials
are differentiable.

Proof. Using the strong duality of Theorem 4 we can establish that for the optimal Kan-
torovich potential φ∗ and the optimal coupling π we have max(DP ) = min(KP ) leading
to: ∫

X

φ(x)dµ(x) +

∫
Y

φc(y)dν(y) =

∫
X×Y

(φ(x) + φc(y))dπ(x, y) =

∫
X×Y

c(x, y)dπ(x, y)

Then,
φ(x) + φc(y) = c(x, y) if (x, y) ∈ spt(π)

We also have that φ must be dual feasible

φ(x) + φc(y) ≤ c(x, y) if (x, y) ∈ X × Y
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We now fix y = y0 and consider the function

x→ φ(x)− c(x, y0) ≤ −φc(y0)

We know that if (x0, y0) ∈ spt(π) the inequality becomes an equality, and φ(x) − c(x, y0)
achieves a maximum. Then,

∇X |x=x0(φ(x)− c(x, y0)) = 0

And we end up with
∇φ(x) = ∇Xc(x0, y0)

We note that this equality only holds at the points where φ is differentiable. It can be proved
that φ is Lipschitz [50] and if spt(µ) = Ω, we can use the Rademanchar theorem to guarantee
the differentiability of φ.

Theorem 5 (Rademacher). Let Ω ⊂ RN be open and f : Ω → Rm be Lipschitz continuous.
Then f is differentiable at almost every x ∈ Ω.

The equality ∇φ = ∇xc will help us to find a condition under which there exist an optimal
transport map T ∗.

Definition 9 (Twist condition). For Ω ⊂ RN we say c : Ω × Ω → R satisfies the Twist
condition when c is differentiable with respect to x at every point and the map y → ∇xc(x0, y))
is injective for every x0.

When this condition holds we can deduce that if (x0, y0) ∈ spt(π) then y0 is uniquely defined
and there exist an optimal transport map.
Now, if we consider c(x, y) = h(x, y) with h strictly convex, we have ∇φ = ∇h(x0 − y0) and
since h is strictly convex we can invert ∇h giving us

x0 − y0 = (∇h)−1(∇φ(x0))

This gives rise to the following theorem.

Theorem 6 ( [50]). Given µ and ν probability measures on a compact domain Ω ⊂ Rn,
with µ is absolutely continuous (with respect to the Lebesgue Measure), and cost given by
c(x, y) = h(x − y) with h strictly convex then there exists an optimal transport plan π. It
is unique and of the form (id, T )#µ, provided µ is absolutely continuous with respect to the
Lebesgue Measure in Ω and ∂Ω is negligible. Moreover, there exists a Kantorovich potential
φ, and T and the potentials φ are linked by

T (x) = x− (∇h)−1(∇φ(x)).

3.4.2 Distances as cost functions

Another interesting case appears when the cost function c : Ω× Ω→ R≥0 defines a distance
over Ω. In this situation we can simplify the dual formulation. The key point is the following
lemma.
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Lemma 1. Let c be a metric in Ω and φ a Kantorovich potential. Then φc = −φ and
|φ(x)− φ(y)| ≤ c(x, y) for all x, y ∈ Ω

Proof. We consider a conjugate pair (φ(x), ψ(y)) that solves the Kantorovich problem. From
Definition 7 of the c− transform we have

ψ(y) = inf
x∈X

c(x, y)− φ(x), φ(x) = inf
y∈Y

c(x, y)− ψ(y)

And substituting ψ(y) in φ(x) we obtain

φ(x) = inf
y∈Y

c(x, y)− ( inf
z∈X

c(z, y)− φ(z)) =

= inf
y∈Y

sup
z∈X

c(x, y)− c(z, y) + φ(z)) ≥ inf
y∈Y

(c(x, y)− c(z, y)) + φ(z)) ≥ −c(x, z) + φ(z)

Where the last inequality comes from the triangular inequality of the metric c, c(x, y) −
c(y, z) ≥ c(x, y)− c(x, y)− c(x, z) = −c(x, z). Using φ(x) ≥ −c(x, y)+φ(y) and the fact that
we can swap the points x, y in the expression we obtain

|φ(x)− φ(y)| ≤ c(x, y)

Out of this expression we can get

−φ(x) ≤ c(x, y)− φ(y) ≤ φc(x)

Where we have used that c(x, y) is positive since it is a metric. To find the remaining
inequality we take the definition of φc.

φc(x) = inf
y
c(x, y)− φ(y) ≤ c(x, y)− φ(y) ≤ −φ(y)

And taking y = x we get φc(x) ≤ −φ(x)

Assuming that the cost is a metric and using Lemma 1 we can write a simplified version of
the Kantorovich formulation.

CDP = sup
φ

∫
Ω

φ(x)dµ(x)−
∫

Ω

φ(y)dν(y)

s.t. |φ(x)− φ(y)| ≤ c(x, y)

(3.10)

Now we will focus our attention on Riemmanian metrics.

Definition 10. We say a metric c : Ω × Ω → R≥0 is Riemannian or conformal to the
Euclidean distance if there exist a continuously differentiable conformal factor ξ(x) > 0 such
that

c(x, y) = inf
γ(t):[0,1]→Ω
γ(0)=x, γ(1)=y

∫ 1

0

ξ(γ(t))||γ̇(t)||dt

Where the infimum is taken over the curves γ(t) with endpoints γ(0) = x, γ(1) = y.
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With the Riemmanian metric assumption it is easy to check that the Kantorovich potential
is Lipschitz in Ω̊. We consider x ∈ Ω̊, y ∈ B(x, ε) ⊂ Ω̊ and a straight line γ connecting x and
y.

|φ(x)− φ(y)| ≤ c(x, y) ≤
∫ 1

0

ξ(γ(t))||γ̇(t)||dt = γ(z)

∫ 1

0

||γ̇(t)||dt = γ(z)||x− y||

Where we have used the Mean Value Theorem with z = mx+(1−m)y with m ∈ [0, 1]. Since
φ is Lipschitz from the Rademacher Theorem (5) we know that it is differentiable almost
everywhere. With this considerations we will rewirte the constrain.

Proposition 11. The constrain |φ(x)− φ(y)| ≤ c(x, y) is equivalent to ||∇φ(x)|| ≤ ξ(x)

Proof. Let x ∈ Ω̊ and y ∈ B(x, ε) ⊂ Ω̊. Then, using the Mean Value Theorem, there exist
z1 = m1x+ (1−m1)y, z2 = m2x+ (1−m2)y with m1,m2 ∈ [0, 1] such that

|∇φ(z1) · (x− y)|
||x− y||

=
|φ(x)− φ(y)|
||x− y||

≤ c(x, y)

||x− y||
≤ ξ(z2)||x− y||

||x− y||

If we take y = x+ tv and take t→ 0 then z1, z2 → x and we will obtain

∇φ(x) · v
||v||

≤ ξ(x)

For every v ∈ Tx(Ω), the tangent space at point x ∈ Ω̊. This gives us the inequality
||∇φ|| ≤ ξ(x).
To prove the converse we assume ∇φ ≤ ξ(x) and we consider the geodesic γ of the cost c
that connects γ(0) = x and γ(1) = y. Then,

|φ(x)− φ(y)| =
∫ 1

0

∇φ · γ̇(t)dt ≤
∫ 1

0

||∇φ|| ||γ̇(t)||dt ≤
∫ 1

0

ξ(γ(t))||γ̇(t)||dt = c(x, y)

This gives rise to the following formulation of Optimal Transport

CDP = sup
φ

∫
Ω

φ(x)dµ(x)−
∫

Ω

φ(y)dν(y)

s.t. |∇φ(x)| ≤ ξ(x)

(3.11)

The two formulations that we have presented in this section have been used for multi-agent
transport in [30]. We will talk more about this approach in Chapter 5
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3.5 Fluid Mechanics interpretation of Optimal Trans-

port

In next section we will provide a fluid mechanics interpretation of Optimal Transport. We
will only give a very superficial treatment on the topics exposed, more information can be
found in Chapter 4 of [50].
In fluid mechanics there are two equivalent formalisms to describe the motion of particles,
the Lagrangian point of view and the Eulerian point of view. In the Lagrangian point of
view we label some particles at an initial time and follow the motion (position and velocity)
of the particles as time goes by. The Monge and the Kantorovich formulations of optimal
transport can be considered Lagrangian, since we start with a measure µ and follow how the
different points in the domain evolve. If there is a unique image the evolution is given by
a transport map T and if there are more than one images we have a transport plan π that
allows us to split the particle and the mass.
In the Eulerian point of view instead of following particles we focus on regions of space, we
describe the evolution by providing the velocity, the density of mass and/or directional flow
rate in each point of the space at every time. We distinguish two models within the Eulerian
point of view, static and dynamic. In the dynamic model we use the density ρ(x, t) and the
velocity field v(x, t) to describe the motion. We start with an initial density ρ0, the particles
are initially distributed following x ∼ ρ0 and the evolution is given by

ẏ(t) = vt(y(t))

y(0) = x
(3.12)

The particles evolve following the map Yt(x) = yx(t), the measure evolves with the push-
forward ρt = (Yt)#ρ0 and ρt, vt solve the continuity equation

δtρt +∇ · (ρtvt) = 0

We have already talked about this formulation when we considered absolutely continuous
curves in the Wasserstein space, which also satisfied the continuity equation. More informa-
tion about the continuity equation can be found in [2].
We will now introduce the static Eulerian framework. In this framework we consider a flow
rate w : P(Ω) → RN , which is a vector measure. w has units of density times velocity. We
consider µ as a source of flow and ν as a sink of flow. Then we can impose conservation of
flow in every measurable set A. ∫

δA

w · ndx =

∫
A

(µ− ν)dx

The flow that crosses through the border of A is equal to the difference of masses in the set
A. Using the Divergence theorem, we have,∫

A

∇ ·wdx =

∫
A

(µ− ν)dx
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This corresponds to a continuity equation,

∇ ·w = µ− ν

In the following subsections we show how this Eulerian transport models can give us Optimal
Transport formulations.

3.5.1 Benamou-Brenier formulation

We return to the dynamic formulation given by (ρt,vt) and the continuity equation

δtρt +∇ · (ρtvt) = 0

This formulation not only describes curves in the Wasserstein space, if the domain Ω ⊂ RN is
convex and compact and p > 1 we can Optimize the Transport cost searching for a constant
speed geodesic solving the Benamou-Brenier formulation [8].

W p
p (µ, ν) = min

ρt,vt

{∫ 1

0

∫
Ω

|vt|pdρtdt : δtρt +∇ · (vtρt) = 0, ρ0 = µ, ρ1 = ν

}
(3.13)

Solving this problem we can find (ρt,vt) belonging to the Optimal Transport geodesic, and
from that find the Optimal Transport plan. This has allowed the creation of numerical
algorithms to solve optimal transport, out of them we highlight the Computational Fluid
dynamics approach of [8]. The ideas described in this section were used by [6] in order to
implement a multi-agent transport algorithm.

3.5.2 Beckmann’s problem

In this section we will use the static Eularian formulation of transport and we introduce the
Beckmann minimal flow problem. This problem is sometimes used in traffic models and can
be related to the Kantorovich formulation of Optimal Transport.

CBP = inf
w:Ω→Rd

∫
Ω

ξ(x)|w(x)|dx

s.t. ∇ ·w = µ− ν
(3.14)

We will prove the equivalence of the Beckmann problem with the Kantorovich formulation
when c(x, y) = infγ

∫ 1

0
ξ(γ(t))|γ̇(t)|dt, which is a generalization of the cost c(x, y) = |x− y|.

We start by considering the constrain ∇ ·w = µ− ν, which taken in the weak sense becomes

−
∫

Ω

∇φ · dw =

∫
Ω

φd(µ− ν), ∀φ ∈ C1(Ω̄)
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If we take the supremum over φ we can rewrite the constrain

sup
φ

∫
Ω

∇φ · dw +

∫
Ω

φd(µ− ν) =

{
0 if ∇ ·w = µ− ν
+∞ otherwise

We can rewrite the objective function of the Beckmann problem as

inf
w

∫
Ω

ξ(x)|w(x)|dx+ sup
φ

∫
Ω

∇φ · dw +

∫
Ω

φd(µ− ν)

Interchanging the supremum and the infimum we get

sup
φ

∫
Ω

φd(µ− ν) + inf
w

∫
Ω

ξ(x)|w(x)|dx+

∫
Ω

∇φ · dw

The infimum term has the values

inf
w

∫
Ω

ξ(x)|w(x)|dx+

∫
Ω

∇φ · dw =

{
0 if |∇φ(x)| ≤ ξ(x)
−∞ otherwise

Giving us the dual formulation of the Beckmann problem

CDBP = sup
φ

∫
Ω

φ(x)dµ(x)−
∫

Ω

φ(y)dν(y)

s.t. |∇φ(x)| ≤ ξ(x) in Ω

(3.15)

We now recall the Kantorovich dual formulation when c is a cost (3.10)

CDP = sup
φ

∫
Ω

φ(x)dµ(x)−
∫

Ω

φ(y)dν(y)

s.t. |φ(x)− φ(y)| ≤ c(x, y)∀x, y ∈ Ω

(3.16)

The objective function of the Dual Beckmann problem and the Dual Kantorovich problem
are the same. If we consider a Riemannian metric given by

c(x, y) = inf
γ(t):[0,1]→Ω
γ(0)=x, γ(1)=y

∫ 1

0

ξ(γ(t))|γ̇(t)|dt

Then the constrains are also equivalent as we have already shown in (3.11). We note that
here we are using the L1 norm | · |. The equivalence between the Beckmann formulation and
the Kantorovich formulation only holds when the cost is c(x, y) = |x− y| or a conformal cost
with strictly positive conformal factor ξ(x) > 0.

During our early research we studied the possibility of using Beckmann’s problem to solve
a multi-agent transport problem. We were interested in the Beckmann problem because it
can be discretized in a graph, giving us the well known Network Flows problem of finding
the Minimum cost Flow over a graph. In our approach we tried to follow up on the results
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of [23] and provide some improvements. After some research we decided to terminate this
line of research. We won’t present the results of this research.

3.6 Functionals over probabilities and Gradient Flows

We will now talk about how we can define functionals on the probability space and mim-
imize them. This is one of the main uses of Optimal Transport. Our treatment will not be
complete and we will particularly focus on the Wasserstein distance to a target probability
density, W p

p (·, ν). For a more detailed treatment we recommend reading Chapters 7 and 8
of [50] and [51]. For a more in depth treatment we also recommend [3].
In the probability space P(Ω) we can define functionals F : P(Ω) → R. We start showing
different examples of functionals that can be defined.

• Integrals of a function (potential energy)

V(µ) =

∫
Ω

V dµ

• Double integrals of a function in µ× µ (interaction energy)

W(µ) =

∫
Ω

Wdµ× dµ

• The Wasserstein distance W p
p to a target probability measure W p

p (µ, ν)

µ→ W p
p (µ, ν)

• The integral of a function of the density

G(µ) =

{ ∫
Ω
g(ρ(x))dx if µ = ρdx
+ inf otherwise

• The sum of a function of the masses

H(µ) =

{ ∑
i h(ai) if µ =

∑
i aiδxi

+ inf otherwise

We recommend reading [48] to see how this functionals can be used to model different prob-
lems from different fields.

3.6.1 Continuity of functionals

After having defined functionals over the space of probabilities we are interested in mini-
mizing them. But first we must ask more basic questions. We will now concern ourselves
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with the existence of minimums and the convexity of the functionals. To find minimizers one
can rely on the fact that P(Ω) is compact if Ω is compact. Then if the functional F(µ) is
continuous from the Extreme Value Theorem we know that it will attain a maximum and a
minimum in P(Ω).
We note that when we talk about a continuous functional we refer to µn → µ =⇒ F(µn)→
F(µ), where µn → µ is the weak convergence of probability measures. We will work with
continuous functionals but we remark that this results can be relaxed considering semi-
continuous functions.

Definition 11. We say a function f : X → R ∪ {+∞,−∞} is upper semi-continuous if

lim sup
x→x0

f(x) ≤ f(x0)

We say a function f : X → R ∪ {+∞,−∞} is lower semi-continuous if

lim inf
x→x0

f(x) ≥ f(x0)

The Extreme Value Theorem will ensure that an upper semi-continuous function achieves a
maximum in a compact set and a lower semi-continuous function achieves a minimum in a
compact set.
We will now focus on the functional W p

p (µ, ν) = infπ∈Π(µ,ν)

∫
Ω
|x − y|pdπ(x, y) and the gen-

eralization for an arbitrary cost c : Ω× Ω→ R. Tc(µ, ν) = infπ∈Π(µ,ν)

∫
Ω
c(x, y)dπ(x, y).

The first step is to prove the continuity of the functionals.

Proposition 12 ( [50]). For any p ≤ +∞, the Wasserstein distance Wp(·, ν) to any fixed
measure ν ∈ P(Ω) is continuous with respect to the weak convergence provided Ω is compact.
More generally, for any continuous cost c : Ω × Ω → R the functional Tc(·, ν) is continuous
if Ω is compact.

3.6.2 First variation

We will continue by studying the derivatives of functionals. To define the notion of derivative
of a functional we will use the first variation of a functional δF

δρ
(ρ), which corresponds to

differentiating the functional with respect to perturbations in the probability measure µ. We
provide the definition of first variation from [51].

Definition 12. Given a functional F : P(Ω)→ R we call δF
δρ

(ρ), if it exists, the unique (up

to additive constants) function such that

d

dε
F(ρ+ εχ)|ε=0 =

∫
Ω

δF
δρ

(ρ)dχ

for every perturbation χ such that, at least for ε ∈ [0, ε0] the measure ρ+ εχ belongs to P(Ω).
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Example 5. We provide two examples of how to compute the first variation

F(ρ) =

∫
Ω

f(ρ(x))dx =⇒ δF
δρ

(ρ) = f ′(ρ)

V(ρ) =

∫
Ω

V (x)dρ(x) =⇒ δV
δρ

(ρ) = V

Now we will focus on the transport cost Tc(µ, ν) and its first variation. If we express the
transport cost Tc(µ, ν) in the dual formulation

Tc(µ, ν) = sup
φ∈c−conc(Ω)

∫
Ω

φdµ+

∫
Ω

φcdν

If we forget about the supremum the in the expression the first variation with respect to µ
will be given by the function φ inside the integral, as we have seen in the example. Then
the first variation of Tc(µ, ν) will be given by the Kantorovich potentials which maximize the
objective function. This leads to the following proposition.

Proposition 13 ( [50]). Let Ω ⊂ RN be compact and c : Ω × Ω → R be continuous. Then
the functional µ → Tc(µ, ν) is convex, and its sub-differential at µ is equal to the set of
Kantorovich potentials {φ ∈ C0(Ω) :

∫
Ω
φdµ +

∫
Ω
φcdν = Tc(µ, ν)}. Moreover, if the Kan-

torovich potential is unique up to constants there exists a first variation and it is given by
δTc(·,ν)
δρ

(µ) = φ.

In this proposition we have used the notion of sub-differential, that we have not defined
previously. A sub-differential is a generalization of a derivative for convex functions that
allows multiple values for the derivative.

Definition 13. For every convex function f we define its sub-differential at x as the set

δf(x) = {p ∈ RN : f(y) ≥ f(x) + p · (y − x) ∀y ∈ RN}

Fortunately for us, the assumption that the Kantorovich potential is unique is not very
restrictive, from (10), ∇φ = ∇xc(x0, y0) with (x0, y0) ∈ spt(π∗), it is easy to see that the
Kantorovich potential will be unique up to additive constants if the cost is C1.

Proposition 14. If Ω is the closure of a bounded connected open set, the cost c is C1 and at
least one of the measures µ, ν is supported on the whole Ω, then the c-concave Kantorovich
potential from µ to ν is unique up to additive constants.

Additionally, strict convexity of Tc(µ, ν) may be proved.

Proposition 15 ( [50]). If ν(x) = ρ(x)dx has a density and the cost c satisfies the Twist
condition (9), Tc(µ, ν) is strictly convex.

In our work when we talk about Kantorovich potentials we will always assume that they are
unique up to additive constants.
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3.6.3 Convexity

We will now focus on the notion of convexity, we will start by defining convexity in RN .

Definition 14. Let Ω ⊂ RN be a convex set and f : Ω → R, we say f is convex if for all
x, y ∈ Ω and t ∈ [0, 1] we have

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)

We note that in order to define convexity we have used a notion of interpolation, considering
the linearly interpolated points z = (1− t)x+ ty with t ∈ [0, 1].
When we talk about convexity in the probability space we must first clarify what notion of
interpolation we are using. In last section we have talked about the convexity of the transport
cost Tc(µ, ν) using the usual interpolation

µt = (1− t)µ0 + tµ1

This interpolation can be inconvenient in the context of Optimal Transport, if we consider
µ0 = δx0 and µ1 = δx1 then

µt = (1− t)δx0 + tδx1

A more suitable interpolation will be given by

µt = δ(1−t)x0+tx1

We will call this interpolation the displacement interpolation.

Definition 15. Let µ, ν ∈ P(Ω) such that there exist an optimal transport map T : Ω → Ω
from µ to ν that minimizes the Wasserstein-2 distance. Then the displacement interpolation
is given by

µt = ((1− t)id+ tT )#µ ∀t ∈ [0, 1]

We remember from (6) that if µ is atomless there will exist an optimal transport map T .

We note that this interpolation interpolates the points following the geodesics of the metric
space. We will now define geodesic convexity in an arbitrary geodesic metric space (a metric
space where the distance comes from the length of the geodesics).

Definition 16. In a geodesic metric space X, we define F : X → R∪{+∞} to be geodesically
convex if for every two points x0, x1 ∈ X there exists a constant speed geodesic γ connecting
γ(0) = x0 to γ(1) = x1 such that [0, 1] 3 t→ F (γ(t)) is convex.

We now want to prove that the Wasserstein distance W 2
2 (µ, ν) is geodesically convex using

the notion of displacement interpolation. Unfortunately for us, there exists counter examples
to the geodesic convexity of W 2

2 (µ, ν) in W2 [50].
This is quite counter-intuitive and raises some problems in the study of the Wasserstein space
and gradient flows. To bypass this problems we can use generalized geodesics, which we will
define next.
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Definition 17. If we fix ρ ∈ P(Ω), for every point µ0, µ1 ∈ P(Ω) we call generalized geodesic
between µ0 and µ1 with base ρ in W2(Ω) the curve µt = ((1− t)T0 + tT1)#ρ, where T0 is the
optimal transport map for the cost c(x, y) = ||x− y||2 from ρ to µ0 and T1 from ρ to µ1.

Then, t→ W 2
2 (µt, ρ) satisfies

W 2
2 (µt, ρ) ≤

∫
|(1− t)T0(x) + tT1(x)|2dρ(x) ≤

≤ (1− t)
∫
|T0(x)− x|2dρ(x) + t

∫
|T1(x)− x|2dρ(x) = (1− t)W 2

2 (µ0, ρ) + tW 2
2 (µ1, ρ)

3.6.4 Gradient flows in the Euclidean space

In the next sections we will study how to minimize functionals. We start by defining gra-
dient flows, which are the continuous time systems corresponding to the gradient descend
algorithm. We start by describing gradient flows in RN , which we will later extend to P(Ω).

Definition 18. Let F : RN → R and a point x0 ∈ RN . We consider the dynamic system

ẋ(t) = −∇F (x(t))

x(0) = x0

(3.17)

It can be easily proved that this dynamic system minimizes the function F . For simplicity
we show it when F is differentiable

dF

dt
(x(t)) =

dF

dx
· ẋ(t) = −‖∇F (x(t))‖2 ≤ 0

And we will converge to {x ∈ RN : ∇F (x) = 0}. Next we will discretize the gradient flow in
time, to do it we consider the proximal gradient descend recursion given by

xτk+1 = arg min
x
F (x) +

|x− xτk|2

2τ
(3.18)

This recursion is well defined when F is convex, but can be relaxed to λ-convex functions [50],
but we will work with convex functions. It is also important to note that the proximal gra-
dient recursion (3.18) can be interpreted as an implicit Euler integration.

arg min
x
F (x) +

|x− xk|2

2τ
=⇒ ∇F (xk+1) +

xk+1 − xk
τ

= 0 =⇒

xk+1 = xk − τ∇F (xk+1)

3.6.5 Gradient flows in W2

With the previous section results we can study the minimization functionals with gradient
flows in the Wasserstein space W2. We consider a functional F : P(Ω)→ R ∪ {+∞}, which
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we will assume continuous with respect to the weak convergence of probabilities. We start
by solving the proximal recursion

ρτk+1 = arg min
ρ
F(ρ) +

W 2
2 (ρ, ρτk)

2τ

When we achieve the minimimum the first variation or derivative is equal to 0, this gives us

δF
δρ

(ρ) +
φρ→ρk
τ

= constant

Where we have used (13) to write the first variation of the Wasserstein distance as the
Kantorovich potential φρ→ρk . Now we recall from (6) that T (x) = x−∇φ(x)ρ→ρk , giving us

T (x)− x
τ

= −∇φρ→ρk
τ

= ∇
(
δF
δρ

(ρ)

)
We can define v = x−T (x)

τ
= −∇

(
δF
δρ

(ρ)
)

. If we take τ → 0 the sequence {ρk}k becomes a

continuous curve, which as we have mentioned previously will be defined by the continuity
equation

δtρt +∇ · (ρtvt) = 0

Where vt = −∇
(
δF
δρ

(ρ)
)

. In particular when we consider the Wasserstein distance W 2
2 (µ, ν)

to a target probability measure ν as the functional to be minimized we have vt = −∇φµ→ν ,
and the transport generated by the gradient potential is a gradient flow if the Wasserstein
distance.

Remark 2. We have developed this section in the space W2 but the same techniques can be
generalized to the probability space P(Ω) with a more generalized transport cost Tc(µ, ν). We
leave the generalization to other spaces for more advanced texts [3].

We will use the results of this section in Chapter 5 to develop a multi-agent transport algo-
rithm.

3.6.6 The Fokker-Planck equation in W2

We will devote this small section to comment a particular gradient flow as an example of the
uses of Optimal Transport. The proofs of the results we state can be found in [50].
We start by defining the functional

J(ρ) =

∫
Ω

ρ log ρ+

∫
Ω

V dρ

Then, we can define a gradient flow on the functional and it can be proven, using the same
techniques that we have already discussed that the gradient flow is given by the Fokker-Plank
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equation
δtρ−∆ρ+∇ · (ρ∇V ) = 0

ρ(0) = ρ0

(3.19)

Which corresponds to the evolution of the position of a group of particles initially distributed
according to x0 ∼ ρ0 and following the evolution

dXt = −∇V (Xt)dt+ dBt

Where dBt accounts for Brownian motion.
This result is very important bacause if we take V = 0 the function we are minimizing is the
entropy

S(ρ) =

∫
Ω

ρ log ρ

And the diffusion equation is a gradient flow

δtρ−∆ρ = 0

And the evolution of a group of particles under Brownian motion dXt = dBt generates a
gradient flow on the entropy of the system. With this result we conclude our introduction to
Optimal Transport.



Chapter 4

Optimal Transport and Coverage
Control

In this short chapter we will study the transport problem in the case where one probability
measure is discrete and the other has a density. Starting from the Kantorovich dual form
we will find the Optimal Transport plan which will have a structure given by Voronoi Power
Diagrams.
Then we will talk about the Coverage problem and discuss the relations between Optimal
Transport and Coverage Control. We will see that the locational cost used in Coverage
Control cost is a relaxation of the Optimal Transport cost but there are some differences
between the two problems. We will also see that Coverage Control is not well-posed to be
analyzed macroscopically.

4.1 Semi-discrete Optimal Transport

In this section we follow [50] to find the transport plan of the Semi-Discrete Optimal Trans-
port. We consider µ(x) =

∑n
i=1 aiδxi(x) discrete and ν(x) = ρ(x)dx continuous. We start

recalling the definition of the Kantorovich dual formulation in (9).

CDP = sup
φ∈c−conc

n∑
i=1

aiφ(xi) +

∫
Ω

φc(y)dν(y)

We recall from our calculations of the Kantorovich dual form in 3.7 that

inf
π

∫
Ω×Ω

(c(x, y)− (φ(x) + φc(y)))dπ(x, y) =

{
0 if φ(x) + φc(y) ≤ c(x, y) on X × Y
−∞ otherwise

From that we know that φ(x) + φc(y) = c(x, y) on spt(π), which are the pairs (x, y) where
we have mass transport and we can find the points y ∈ Ω that are mapped to a point xi as

c(xi, y)− φ(xi) = φc(y)

39
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Recalling the definition of c− transform from 7 we have

c(xi, y)− φ(xi) = φc(y) = inf
xj∈Ω

c(xj, y)− φ(xj)

We can define the set,

Vφi = {y ∈ Ω : c(xi, y)− φ(xi) ≤ c(xj, y)− φ(xj) ∀j}

Which corresponds to the set of points y ∈ Ω that satisfy the equality φ(x) + φc(y) = c(x, y)
and the points y ∈ Vφi will be mapped xi. Additionally we note that the sets Vi correspond
to a Voronoi Power Cell 2 with weights (φ1, . . . , φn).
Next, we want to find the optimal weights (φ1, . . . , φn), which will assigns to the Voronoi
Power Cell Vφi the same amount of mass as the discrete value µ(xi) = ai . This can be done
by solving the finite dimensional problem of maximizing the objective in the Kantorovich
dual formulation

CDP = max
φ

n∑
i=1

aiφ(xi) +

∫
Ω

φc(y)dν(y)

From the definition of φc(y) we can deduce it’s derivative as

δφc

δφj
=


−1 if c(y, xj)− φj < c(y, xj′)− φj′ ∀j′ 6= j
0 if c(y, xj)− φj > φc(y)
not defined if c(y, xj)− φj = φc(y)

(4.1)

Using this equation we can show that

δCDP
δφj

= aj −
∫
Vφj

ρ(y)dy (4.2)

We will have a maximum when the derivative is equal to zero, assigning the same probability
aj to the Voronoi Power cell of ν(y). To find the exact value φ∗ that maximizes the dual cost
CDP we can use a gradient ascend algorithm,

φk+1
j = φkj + ∆t

δCDP
δφj

(4.3)

This approach can be refined and Newton methods for the calculation of Optimal the Voronoi
Power Diagram have been proposed in the literature [32], [40].

4.2 Relation with Coverage Control

We start recalling the Coverage Control problem introduced in Chapter 2 and we will relate
it to the Wasserstein distance. Our approach is inspired by the analysis of [28], where
the relationship between Coverage Control and Optimal Transport was also discussed. In
the Coverage problem we consider n sensors with positions P = (p1, . . . , pn), pi ∈ Ω and
we maximize the sensing of a density ρ(x), that represents the probability that some event
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occurs. Given the position of the sensors P = (p1, . . . , pn) and a partitionW = {W1, . . . ,Wn}
of Ω we define the coverage cost as

H(P,W) =
n∑
i=1

∫
Wi

||x− pi||2ρ(x)dx (4.4)

It can be proved that the Voronoi Partition (1) gives the optimal partition for a set of points
P = (p1, . . . , pn).

H(P ) =
n∑
i=1

∫
Vi

||x− pi||2ρ(x)dx

We note that the coverage cost (4.4) is very similar to the Wasserstein-2 distance (4.5)
between two densities, both exhibit the quadratic term ||x− y||2

W 2
2 (µ, ν) = inf

π∈Π(µ,ν)

∫
Ω×Ω

||x− y||2dπ(x, y) (4.5)

Since µ =
∑n

i=1 aiδxi(x) is discrete and ν(y) = ρ(y)dy is continuous we know from (6) that
there will exist a map T ∗ : Ω → Ω such that π∗ = (T ∗, id)#ν , and since T ∗ is single-valued
every transport plan π(x, y) will have the form

π(x, y) =
n∑
i=1

aiδxi(x)× ρ(y)1W ∗i dy

where 1W ∗i is the indicator function of the set W ∗
i = T ∗−1(xi) and W∗ = (W ∗

1 , . . . ,W
∗
n) is

a partition of spt(ν) = Ω. Additionally the mass is conserved, and we have ai = ν(W ∗
i ) =∫

W ∗i
ρ(y)dy. Taking into account this considerations we can rewrite (4.5) as

W 2
2 (µ, ν) = inf

π∈Π(µ,ν)

∫
Ω×Ω

||x− y||2
n∑
i=1

aiδxi(x)dx× ρ(y)1W ∗i dy =

W 2
2 (µ, ν) = inf

(W1,...,Wn)
ν(Wi)=ai

n∑
i=1

∫
Wi

||xi − y||2ρ(y)dy (4.6)

In the coverage problem, if we consider P constant our objective is

min
W
H(P,W) = min

(W1,...,Wn)

n∑
i=1

∫
Wi

||x− pi||2ρ(x)dx

The objective function of coverage cost (4.4) and the Wasserstein distance (4.6) is the same,
but we can see that when choosing the partition W in the Optimal Transport problem we
need to impose that the mass is conserved in ν(Wi) = ai while in the coverage problem we
don’t impose this constrain. Additionally the optimal partition for the Coverage problem is
given by the Voronoi Partition V = (V1, . . . , Vn), with this considerations we can establish
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that the coverage cost is a relaxation of the Optimal Transport cost

min
(a1,...,an)∈Rn≥0

inf
(W1,...,Wn)
ν(Wi)=ai

W 2
2

(
n∑
i=1

aiδxi(x), ν

)
= min

(W1,...,Wn)
H(P,W)

And the minimum will be achieved when ai = ν(Vi) for all i. If the weights ai 6= ν(Vi), we
have discussed at the beginning of the chapter that the optimal partition of the Optimal
Transport problem will be given by a Voronoi Power cell. We note that Voronoi cells and
Voronoi Power cells have a very similar structure. In the literature this considerations have
been used to develop a generalization of Lloyd algorithm [10] that take into account the fixed
mass constrains. This results were presented in the context of Quantization Theory, the
study of discretization of continuous signals in space. The ideas of capacity constrains was
also implemented in [44], in which capacity constrains were added to Coverage Control.

Remark 3. It is important to note that while Lloyd’s algorithm is a gradient flow of the
Coverage cost H(P ) it is not a gradient flow of Optimal Transport W 2

2 (µ, ν). In Lloyd’s
algorithm the set of admissible measures is always discrete, while in optimal transport we
allow the measures to be continuous. To see this we will consider a discrete measure µ(y) =∑n

i=1 aiδxi(x) and a continuous measure ν(y) = ρ(y)dy. Since ν is continuous there exists
an optimal transport map Tν→µ : Y → X and the geodesic between ν and µ is given by

νt = (1− t)y + tTν→µ(y) y ∈ spt(ν)

And the measures νt will be continuous for t ∈ [0, 1).

4.3 The continuous limit

Our next objective will be to study the continuous limit n → ∞ of the Coverage Control
algorithm, we will follow the developments of [28]. We will consider n agents with positions
samples following xi ∼ µ, with µ a continuous distribution. From

H(x1, . . . , xn) = W 2
2 (

n∑
i=1

ν(Vi)δxi(x), ν)

We can consider the measure

µ̂c(x) =
n∑
i=1

ν(Vi)δxi(x)

and set n→∞. If spt(ν) ⊂ spt(µ) applying the Glivenko Cantelli Theorem [4], the measure
µ̂c(x) =

∑n
i=1 ν(Vi)δxi(x) will converge weakly almost surely to the measure ν,

lim
n→∞

n∑
i=1

ν(Vi)δxi(x) = ν
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In this situation, considering xi ∼ µ, the Coverage cost between the density µ and the density
ν will be given by

lim
n→∞

H(x1, . . . , xn) = lim
n→∞

W 2
2

(
n∑
i=1

ν(Vi)δxi(x), ν

)
= W 2

2 (ν, ν) = 0

This result tells us that Coverage Control cannot be analyzed macroscopically, since every
measure µ such that spt(ν) ⊂ spt(µ) will give us a null coverage cost.

In [28] they proposed to consider a set of points xi ∼ µ and define the empirical probability
measure

µ̂n(x) =
1

n

n∑
i=1

δxi(x)

When we consider n→∞ we will have µ̂n → µ almost everywhere, from the Glivenko-Cantelli
theorem [4]. Additionally,

lim
n→∞

W 2
2 (µ̂n, ν) ≤ lim

n→∞
W 2

2 (µ̂n, µ) +W 2
2 (µ, ν) = W 2

2 (µ, ν)

In next chapter we will use this model to formulate a Multi-Agent transport model.



Chapter 5

A Multi-agent Optimal Transport
algorithm

In this section we will study the problem of transportation of large swarms of robots, dif-
ferent approaches have been proposed in the literature to treat this problem, some of them
include Markov Transition matrices [5], [7], [16] and continuum models [29], [22]. We will
focus on continuum models, where the swarm can be abstracted as a fluid and we study how
the density of the agents evolve. The study of continuum models allows us to use tools like
Lyapunov analysis and PDE analysis in order to prove convergence of the algorithms.
Recent work [30], [28] has studied the application of Optimal Transport to develop Multi-
Agent transport algorithms. In this chapter we will focus on their approach and study the
algorithms they proposed. Their approach to the Multi-Agent Transport problem consists
in an iterative scheme that updates the position of the agents following a proximal point
algorithm. It can be proven that this iterative scheme is equivalent to a gradient flow of
the Wasserstein distance and the swarm will evolve following the Wasserstein geodesic. To
implement the algorithm they rely on the Kantorovich potential, which can be estimated
following a primal-dual algorithm.
We have joined the project and we have provided small modifications in the theory that
improve the convergence of the algorithm. We have also observed that the algorithm that
was presented can be used with non-convex domain and we have provided some simulations
in non-convex domain. Finally we have started studying possible ways to implement collision
avoidance in the movement of the swarm but our work is still in its early stages.

5.1 Problem definition

We start considering n identical agents with sensing and communicating capabilities located
at positions x = (x1, . . . , xn), which are sampled xi ∼ µ from a continuous probability
distribution. We will consider the empirical distribution of the agents, given by

µ̂(x) =
1

n

n∑
i=1

δxi(x)

44
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When n → ∞ the Glivenko-Cantelli theorem [4] guarantees that the discrete probability
measure coverges µ̂→ µ almost everywhere. We will develop our algorithm with the discrete
measure µ̂ and analyze it using the continuous model µ. This approximation will be sound
when n is large. Our objective will be to efficiently transport µ into µ∗, a target probability
measure, that represents the demand of agents in the space. We will assume µ∗ continuous.
We will minimize the transport cost between µ and µ∗ according to a cost function c : Ω×Ω→
R≥0 that satisfies the following assumption.

Assumption 1. We assume that the cost function is a Riemannian metric and is conformal
to the Euclidean distance with a strictly positive conformal factor ξ(x) ∈ C1(Ω) and

c(x, y) = inf
γ(t):[0,1]→Ω
γ(0)=x, γ(1)=y

∫ 1

0

ξ(γ(t))||γ̇(t)||dt

We note that this cost is defined as a geodesic cost, and as such is well defined for path-
connected non-convex domains. We would also like to point out that most of the results that
we have studied in Chapter 3 still hold for a Riemannian metric, for a detailed treatment we
refer the reader to [53].
Finally, it is important to note that there may be cases in which the cost that we are
considering doesn’t satisfy the Twist condition and we cannot prove the existence of an
optimal transport map T ∗ that minimizes the Monge problem. We will provide an example
of one of such cases in Annex A of how the Twist condition may be violated in a non-convex
domain. To bypass this problems we will rely on rely on (6)

Proposition 16. Let Ω be compact, µ, ν ∈ P(Ω) and c : Ω × Ω → R continuous. Then
the Kantorovich problem admits a solution. Moreover, if the measure µ is atom-less (i.e
µ({x}) = 0, ∀x ∈ X), we have

min(KP ) = inf
T#µ=ν

∫
X

c(x, T (x))dµ(x)

Despite not knowing if there exist an actual minimizer T ∗ of the Monge problem we can
consider a transport map T that achieves a cost arbitrarily close to the infimum cost. We
will call Tε such that

∫
X
c(x, Tε(x))dµ(x) < min(KP ) + ε an ε-sub-optimal transport map. In

the rest of the chapter we will only talk about optimal transport maps T ∗, making the abuse
of notation T ∗ = Tε, for some 0 < ε� 1 when an optimal transport map doesn’t exist.

5.2 An iterative transport method

In order to transport the source probability density µ into µ∗ we will study the optimal
transport geodesics, which will be parametric curves µt with µ0 = µ and µT = µ∗ that
minimize the Wasserstein distance. We will discretize the Wasserstein distance geodesic into
a sequence of points {µk}k=1,...,K with µ0 = µ and µK = µ∗. From the triangular inequality
in the Wasserstein space, we know that the intermediate points µk will belong to a geodesic
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if and only if

Wp(µ, µ
∗) =

K∑
k=1

Wp(µk−1, µk)

From this we can generate the sequence {µk}k=1,...,K following

µk+1 ∈ arg min
ρ∈P(Ω)

Wp(µk, ρ) +Wp(ρ, µ
∗)

s.t Wp(µk, ρ) ≤ ε
(5.1)

We can evaluate this scheme in every point of the domain, giving us

x(k + 1) ∈ arg min
z∈Ω

c(x(k), z) + c(z, T ∗(x(k)))

s.t c(x(k), z) ≤ ε
(5.2)

Likewise, the law of (5.2) with x(0) ∼ µ evolves as (5.1). This equivalence allows us to update
the positions in Ω and lift the update to the probability space. Now we introduce the process

x(k + 1) ∈ arg min
z∈Ω

c(x(k), z) + φµk→µ∗(z)

s.t c(x(k), z) ≤ ε
(5.3)

In the next proposition we will show that this new iterative scheme (5.3), which formulates
the problem in the Kantorovich formulation, is equivalent to the iterative scheme (5.2), that
formulates the problem in the Monge formulation. This result will be fundamental, allowing
us to develop an Optimal Transport algorithm without having to calculate the transport map
T ∗(x).

Proposition 17. The process (5.2) and (5.3) are equivalent. The equivalence is in the sense
that the set of minimizers are equal.

Proof. We start with the c-conjugate property of the Kantorovich potential (7),

φµk→µ∗(x) = inf
z
c(x, z)− φcµk→µ∗(z)

From (1) we know that φcµk→µ∗(z) = −φµk→µ∗(z) and,

φ(x) = inf
z
c(x, z)− φµk→µ∗(z)

Then,
φµk→µ∗(x) ≤ c(x, z)− φµk→µ∗(z) (5.4)

Taking z = Tk(x) and integrating we have∫
Ω

(φµk→µ∗(x)−φµk→µ∗(Tk(x)))dµk(x) =

∫
Ω

φµk→µ∗(x)dµk(x)−
∫

Ω

φµk→µ∗(y)dµ∗(y) ≤
∫

Ω

c(x, Tk(x))dµk(x)

Where the RHS of the inequality corresponds to the Monge Optimal Transport cost and the
LHS of the inequality corresponds to the Kantorovich Transport cost. From (6) we know
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that the cost of both formulations is equal.
This gives us the equality

φµk→µ∗(x)− φµk→µ∗(Tk(x)) = c(x, Tk(x))

We now observe that c(x, Tk(x) = c(x, z) + c(z, Tk(x)) if and only if z belongs to the geodesic
between x and Tk(x). Taking z in the geodesic we can write

φµk→µ∗(x) + φµk→µ∗(z)− φµk→µ∗(z)− φµk→µ∗(Tk(x)) = c(x, z) + c(z, Tk(x))

Rearranging terms,

[φµk→µ∗(x)− φµk→µ∗(z)− c(x, z)] + [φµk→µ∗(z)− φµk→µ∗(Tk(x))− c(z, Tk(x))] = 0

We know from (5.4) that each of the terms is non-negative, so they must be 0. This gives
us φµk→µ∗(x) = c(x, z) + φµk→µ∗(z). Then if c(x, z) ≤ ε z is a minimizer of (5.3). Since z
can only be choosen as a point that belongs to the geodesic it is also a minimizer of (5.2),
proving the equivalence of the minimizers of (5.3) and (5.2).

5.2.1 Estimating the Kantorovich Potential

In order to be able to implement the update scheme (5.3) we need to know the Kantorovich
potential. In this section we will construct a primal-dual algorithm that will allow us to
estimate the Kantorovich potential φµk→µ∗ .
We start with the Kantorovich dual formulation of Optimal Transport, which we recall from
(3.10),

CDP = sup
φ

∫
Ω

φ(x)dµ(x)−
∫

Ω

φ(y)dµ∗(y)

s.t. |φ(x)− φ(y)| ≤ c(x, y)

(5.5)

In the multi-agent transport problem we only have n agents with positions x = (x1, . . . , xn)
that make up the support of µ̂ = 1

n

∑n
i=1 δxi(x), then∫

Ω

φ(x)
1

n

n∑
i=1

δxi(x)dx =
n∑
i=1

1

n
φi

The Kantorovich potential can be estimated as Φ : N × Ω → R generated by the values
(φ1(k), . . . , φn(k)) defined at time t = k on the positions of the agents, Φ(k, xi(k)) = φi.
To extend this definition to the rest of the points in Ω we can use a piece-wise constant
interpolation generated by the Voronoi Partition (1) of the domain Ω with respect to the
cost, V = (V1, . . . , Vn). Then Φ(k, x) = φi ∀x ∈ Vi.
The Voronoi partition allows us to define a graph G = ({xi}i=1,...,n, E) where we say we have
an edge (i, j) ∈ E if Vi ∩ Vj 6= ∅. To obtain a decentralized and efficient algorithm we will
only impose the constrain |φ(xi)− φ(xj)| ≤ c(xi, xj) if (i, j) ∈ E.
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Taking into account these considerations we can rewrite the problem as

CDP = max
(φ1,...,φn)

n∑
i=1

φi
1

n
− φiµ∗(Vi)

s.t. |φi − φj| ≤ c(xi, xj) ∀(i, j) ∈ E
(5.6)

Where µ∗(Vi) =
∫
Vi
dµ∗(x). This is a linear programming problem and it can be solved using

a primal-dual method. The first step is to define the Lagrangian of (5.6),

L(φ, λ) =
N∑
i=1

κφi
(

1

N
− µ∗(Vi)

)
− 1

2

N∑
i=1

∑
j∈Ni

λij
(
|φi − φj|2 − c2

ij

)
(5.7)

Where κ is a constant that we will denote as gain and λ ≥ 0 is a Lagrange Multiplier. From
the Lagrangian we can write a primal ascend, dual descend algorithm using the dynamics

φi(l + 1) = φi(l) +
δL

δφi
(φ, λ)

λij(l + 1) = max

{
0, λij(l)−

δL

δλij
(φ, λ)

}
Which results in

φi(l + 1) = φi(l) + τ

(
κ

(
1

N
− µ∗(Vi)

)
−
∑
j∈Ni

λij(l)(φ
i(l)− φj(l))

)
λij(l + 1) = max

{
0, λij(l) +

τ

2

(
|φi − φj|2 − c2

ij

)}
with j ∈ Ni

(5.8)

The algorithm is decentralized because it only needs nearest neighbours information to per-
form the updates. In fact we can write λ as a weighted Laplacian of the Voronoi graph
G = ({xi}, E), (xi, xj) ∈ E if δVi ∩ δVj 6= ∅, with λij the weight of the edges.
The model that we have described is summarized in Algorithm 5.2.1. In the algorithm
the primal-dual method is applied during n steps before every update without waiting for
convergence.

5.3 Analysis of PDE model

In this section we will analyze the behaviour of Algorithm 5.2.1 for continuous time and
n→∞. This will allow us to use partial differential equations to study the behaviour of the
system.
We will start introducing some technical results that we will later use to prove the conver-
gence. Then we will write an alternative Continuous formulation of the Kantorovich Dual
Formulation and we will use this formulation to prove the convergence of the primal-dual
algorithm (5.8) in the continuum.
We will provide a continuous formulation of the transport update scheme (5.3). We will use
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Algorithm 1 Multi-agent (on-the-fly) optimal transport

Input: Target measure µ∗, transport cost c(x, y), Bound on step size ε, time step τ .
For each agent i at time instant k of transport:

1: Obtain positions xj(k) of neighbours within a communication radius r large enough to
cover all Voronoi neighbours.

2: Compute Voronoi cell Vi, the mass of the Voronoi cell µ∗(Vi) and the Voronoi neighbour
Ni

3: Initialize φi ← Φ(k − 1, xi(k)), λij ← λij(k − 1).
4: Implement n iterations of the primal-dual algorithm (5.8) synchronously in communica-

tion with j ∈ Ni to obtain φi(k), λij(k)
5: Communicate with neighbors j ∈ Ni to obtain φj(k) and construct a local estimate of

Φ(k, x) with multivariate interpolation.
6: Implement transport step (5.3) with the local estimate Φ(k, x), which approximates
φµk→µ∗

this formulation to prove exponential convergence of the algorithm in the continuum. We will
also discuss the convergence of the on-the-fly algorithm, where we implement the estimation
of the Kantorovich potential and the transport at the same time and consider a constant
Lagrange Multiplier λ = λ(x) > 0.

5.3.1 Technical helpers

We start introducing some results that will help us prove the convergence of the algorithm.

Lemma 2 (Rellich-Kondrachov Compactness Theorem). Let Ω ⊂ RN be a open, bounded
and such that δΩ is C1. Suppose 1 ≤ p < n then the Sovolev space W 1,p(Ω) is compactly
embedded in Lq(Ω) for each 1 ≤ q < pn

n−p . In particular, we have W 1,p(Ω) is compactly

contained in Lp(Ω).

Lemma 3 (LaSalle Invariance Principle). Let {P(t)|t ∈ R≥0} be a continuous semigroup of
operators on a Banach space U (closed subset of a Banach space with norm || · ||), and for
any u ∈ U , define the positive orbit starting for u at t = 0 as Γ+(u) = {P(t)u|t ∈ R≥0} ⊆ U .
Let V : U → R be a continuous Lyapunov functional on G ⊂ U for P (such that V̇ (u) =
d
dt
V (P(t)u) ≤ 0 in G). Define E = {u ∈ Ḡ|V̇ (u) = 0} and let Ê be the largest invariant

subset of E. If for u0 ∈ G, the orbit Γ+(u0) is pre-compact (lies in a compact subset of U),
then limt→+∞ dU(P(t)u0, Ê) = 0, where dU(y, Ê) = infx∈Ê ||y−x||U , where dU is the distance
in U .

Lemma 4 (Divergence Theorem). For a smooth vector field F over a bounded open set
Ω ⊂ RN with boundary δΩ, the volume integral of the divergence ∇ · F of F over Ω is equal
to the surface integral of F over δΩ:∫

Ω

(∇ · F )dµ =

∫
δΩ

F · ndS
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where n is the outward normal to the boundary and dS the measure on the boundary. For a
scalar field ψ and a vector field F defined over Ω ⊂ Rn:∫

Ω

(F · ∇ψ)dµ =

∫
δΩ

ψ(F · n)dS −
∫

Ω

ψ(∇ · F )dµ

5.3.2 A continuous formulation of the Kantorovich problem

Here we recall the theory that we have studied in Chapter 3 for costs that are a metric to
provide an alternative formulation to (5.5). We recall from Chapter 3 the following propo-
sition (11). We provide the proof again and note that we only require the domain Ω to be
path-connected, the domain may be non-convex.

Proposition 18. The constrain |φ(x)− φ(y)| ≤ c(x, y) is equivalent to ||∇φ(x)|| ≤ ξ(x)

Proof. Let x ∈ Ω̊ and y ∈ B(x, ε) ⊂ Ω̊. Using the Mean Value Theorem, there exist
z1 = m1x+ (1−m1)y, z2 = m2x+ (1−m2)y with m1,m2 ∈ [0, 1] such that

|∇φ(z1) · (x− y)|
||x− y||

=
|φ(x)− φ(y)|
||x− y||

≤ c(x, y)

||x− y||
≤ ξ(z2)||x− y||

||x− y||

If we take y = x+ tv and take t→ 0 then z1, z2 → x and we will obtain

∇φ(x) · v
||v||

≤ ξ(x)

For every v ∈ Tx(Ω), the tangent space at point x ∈ Ω̊. This gives us the inequality
||∇φ|| ≤ ξ(x).
To prove the converse we assume ∇φ ≤ ξ(x) and we consider the geodesic γ of the cost c
that connects γ(0) = x and γ(1) = y. Giving us

|φ(x)− φ(y)| =
∫ 1

0

∇φ · γ̇(t)dt ≤
∫ 1

0

||∇φ|| ||γ̇(t)||dt ≤
∫ 1

0

ξ(γ(t))||γ̇(t)||dt = c(x, y)

We also note that since the cost is C1 from (10) we know that ∇φ = ∇xc(x0, y0) ∀(x0, y0) ∈
spt(π∗) and we can deduce that the Kantorovich potential is C1 almost everywhere. Ad-
ditionally, if Ω is path-connected the equality of the gradients forces the uniqueness up to
additive constants of the Kantorovich potential, as we have discussed in (14). With this
considerations we can rewrite the Kantorovich dual formulation as

CDP = sup
φ

∫
Ω

φ(x)dµ(x)−
∫

Ω

φ(y)dµ∗(y)

s.t. |∇φ(x)| ≤ ξ(x)

(5.9)
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5.3.3 Convergence of the Primal-Dual Flow

We will see how we can use (5.9) to prove the convergence of the primal-dual scheme (5.8)
in continuous time and space (the limit n → ∞). The proof that we present is extracted
from [30] but we have made minor modifications.

We start by defining the Lagrangian of (5.9), which corresponds to the discrete time and
discrete space Lagrangian (5.7).

L(φ, λ) =

∫
Ω

κφ(ρ− ρ∗)− 1

2

∫
Ω

λ(|∇φ|2 − |ξ|2) (5.10)

Where we integrate with respect to the Lebesgue measure and κ is a constant. From the
Lagrangian we can obtain the optimality conditions.

Lemma 5. The necessary and sufficient conditions for a feasible solution φ̄ of (5.9) to be
optimal are:

−∇ · (λ̄∇φ̄) = κ(ρ− ρ∗) (in Ω)

λ̄∇φ̄ · n = 0 (on δΩ)

λ̄ ≥ 0, |∇φ̄| ≤ ξ (Feasibility)

λ̄(|∇φ̄| − ξ) = 0 a.e. (Complementary slackness)

(5.11)

Proof. We consider the Lagrangian (5.10),

L(φ, λ) =

∫
Ω

κφ(ρ− ρ∗)− 1

2

∫
Ω

λ(|∇φ|2 − |ξ|2)

We will now consider the first variation of the functional with respect to the variation δφ,
giving us 〈

δL

δφ
, δφ

〉
=

∫
Ω

κ(ρ− ρ∗)δφ−
∫

Ω

λ∇φ · ∇δφ

=

∫
Ω

κ(ρ− ρ∗)δφ+

∫
Ω

∇ · (λ∇φ)δφ−
∫
δΩ

λ∇φ · nδφ

where the last equality comes from the divergence theorem (4). If a solution (φ̄, λ̄) is a

stationary point of the L(φ, λ) then
〈
δL
δφ
, δφ
〉

= 0 for any variation δφ around the stationary

point (φ̄, λ̄). This gives us −∇ · (λ̄∇φ̄) = κ(ρ− ρ∗) in Ω and λ̄∇φ̄ · n = 0 on δΩ.
We remember that the objective function

∫
Ω
φ(x)dµ(x) −

∫
Ω
φ(y)dµ∗(y) is linear and the

constrains |∇φ(x)| ≤ ξ(x) are convex. We can the apply the Karush Kuhn Tucker condition
to obtain the necessary and suficient conditions for optimality. The feasibility condition for
Lagrange multiplier is λ̄ ≥ 0 and |∇φ̄| ≤ ξ is the feasibility condition of φ, the primal
variable. Finally λ̄(|∇φ̄| − ξ) = 0 a.e. is the complementary slackness condition.

From the optimality conditions we can define a primal-dual flow that converges to the saddle-
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point (φ̄, λ̄) of the Lagrangian (5.10).

δtφ = ∇ · (λ∇φ) + κ(ρ− ρ∗)
∇φ · n = 0 (on δΩ)

δtλ =
1

2

[
|∇φ̄|2 − ξ2)

]+
λ

φ(0, x) = φ0(x) λ(0, x) = λ0(x)

(5.12)

where [f ]+λ =

{
f if λ > 0

max{0, f}if λ = 0
is a projection operator. The PDE model corresponds

to the dynamics δtφ = δL
δφ

and δtλ = − δL
δλ

. In [30] the existence and uniqueness of solutions of
this PDE is discussed. We now present an assumption on the well-posedness of the primal-
dual flow.

Assumption 2. We assume that (5.12) is well posed, with solution (φ, λ) such that φ ∈
L∞(0,∞;H1(Ω)), the Lagrange multiplier function λ ∈ L∞(0,∞;L∞(Ω)) and is precompact
in L2(Ω).

This leads to the following lemma on the convergence of the primal-dual flow.

Lemma 6 (Convergence of Primal-Dual flow [30]). The solutions (φt, λt) to the primal-dual
flow (5.12), under Assumption 2 on the well-posedness of the primal-dual flow, converge to
an optimizer (φ̄, λ̄) given in (5.11) in the L2 norm as t→∞, for any fixed ρ, ρ∗ ∈ L2(Ω).

Proof. We start considering (φ̄, λ̄) a solution of the opitimality conditions (5.11), we will
consider a Lyapunov function V (φ, λ) = 1

2

∫
Ω
|φ−φ̄|2dx+ 1

2

∫
Ω
|λ−λ̄|2dx. We have V (φ, λ) > 0

for all φ, λ ∈ L2(Ω). We will see that the time derivative of the Lyapunov function is non-

increasing, V̇ ≤ 0. Using that δtφ = δL
δφ

and δtλ =
[
− δL
δλ

]+
λ

we can write the time derivative
of the Lyapunov function as

V̇ = 〈δL
δφ
, φ− φ̄〉+ 〈

[
−δL
δλ

]+

λ

, λ− λ̄〉 =

V̇ = 〈δL
δφ
, φ− φ̄〉 − 〈δL

δλ
, λ− λ̄〉+ 〈δL

δλ
+

[
−δL
δλ

]+

λ

, λ− λ̄〉 =

Since L(φ, λ) is concave in φ and convex in λ we get:

V̇ ≤ L(φ, λ)− L(φ̄, λ) + L(φ, λ̄)− L(φ, λ) + 〈δL
δλ

+

[
−δL
δλ

]+

λ

, λ− λ̄〉

V̇ ≤ L(φ̄, λ̄)− L(φ̄, λ) + L(φ, λ̄)− L(φ̄, λ̄) + 〈δL
δλ

+

[
−δL
δλ

]+

λ

, λ− λ̄〉

And since (φ̄, λ̄) is a saddle point of L(φ, λ) we have that L(φ̄, λ̄)−L(φ̄, λ) ≤ 0 and L(φ, λ̄)−
L(φ̄, λ̄) ≤ 0. Moreover, by definition, when λ(t, x) > 0 we have

[
− δL
δλ

]+
λ

= − δL
δλ

and when

λ(t, x) = 0 λ − λ̄ ≤ 0 and
[
− δL
δλ

]+
λ
≥ − δL

δλ
at (t, x). This leads to 〈 δL

δλ
+
[
− δL
δλ

]+
λ
, λ − λ̄〉 ≤ 0
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at any (t, x), therefore V̇ ≤ 0. Moreover, by Assumption (2) the problem is well posed and
the orbit φ is bounded in H1(Ω) which, by Lemma 2 it is compactly embedded in L2(Ω).
Moreover, by Assumption 2 we have that λ is pre-compact in L2(Ω). Additionally, V̇ = 0
only at an optimizer (φ̄, λ̄), which implies that the flow converges asymptotically to solution
(φ̄, λ̄) of the optimality conditions (5.11).

5.3.4 The transport equation

After studying the estimation of the Kantorovich potential in the continuous we will now
study the transport in continuous time. To do it we will consider the iteration scheme (5.3)
and study the limit ε → 0+, leading to a continuous dynamics, which will correspond to
a curve in the Wasserstein space. From the theory presented in Chapter 3 the absolutely
continuous curves in the Wasserstein space correspond to solutions of the Continuity equation
(3.5).

δtµt +∇ · (µtvt) = 0

We also proved that a gradient flow on the Wasserstein distance is generated by the vector
field vt = −∇φ. In this section we will see that the transport generated by the update
scheme (5.3) is given by a gradient flow of the Wasserstein distance, where vt = −α∇φ, with
α > 0 a positive function on Ω. We start with the iterative scheme (5.3),

x(k + 1) ∈ arg min
z∈Ω

c(x(k), z) + φµk→µ∗(z)

s.t c(x(k), z) ≤ ε

If x+ is a minimizer, we have
c(x, x+) + φ(x+) ≤ φ(x)

We will now consider a discrete time step for this evolution ∆t = g(ε) → 0, with g : R → R
monotonically increasing. Since φµ→µ∗ is bounded and continuously differentiable we know

that limε→0 x
+ = x exists. We define v(x) = lim∆T→0

x+−x
∆t

, and we have

lim
∆t→0

1

∆t
c(x, x+) ≤ lim

∆t→0

1

∆t
(φµ→µ∗(x)− φµ→µ∗(x+))

It follows that
ξ(x)|v(x)| ≤ −∇φµ→µ∗(x) · v(x)

And since we have |∇φµ→µ∗| ≤ ξ the inequality will only hold if

v = −α∇φµ→µ∗ (5.13)

With α = α(x) > 0 a non-negative function in Ω. We will see that the function α is related
to the choice of g such that ∆t = g(ε). Additionally we will show that we can choose a
non-increasing function g : R→ R such that α = ᾱ, a fixed value.

Proposition 19. The function α > 0 is uniquely defined for every choice of g : R → R
monotonically increasing function.
Conversely let ᾱ > 0, then there exists a monotonically increasing function ḡ : R → R such
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that v̄ = limε→0
x+−x
ḡ(ε)

, with x+ the update given by the iterative scheme (5.3), exists and
v̄ = −ᾱ∇φ.

Proof. For the first implication we note that v = limε→0
x+−x
g(ε)

is uniquely defined and from

(14) the Kantorovich potential is unique up to additive constants, giving us a unique α.
For the second implication we can use the first implication to get

v = lim
ε→0

x+ − x
g(ε)

= −α∇φ

For some g : R→ R monotonically increasing and α > 0. If we consider ḡ(ε) = g(ε)α(x)
ᾱ(x)

, the

function ḡ(ε) is monotonically increasing since α, ᾱ > 0 and we obtain

v̄ = lim
ε→0

x+ − x
ḡ(ε)

= lim
ε→0

x+ − x
g(ε)

ᾱ

α
= ᾱ∇φ

We also note that v(t, x) = limε→0
x+(t)−x(t)

g(ε)
defines a parametrization of the curve (ρt)t

defined through δtρt + ∇ · (ρtvt) = 0. When we change the function g : R → R we are
also changing the parametrization of the curve (ρt)t defined through v(t, x). The process of
finding a ḡ : R→ R such that v̄ = limε→0

x+−x
ḡ(ε)

= −ᾱ∇φ is a reparametrization of the curve.

5.3.5 Convergence of transport

We will now study the convergence of the transport

δtρ = −∇ · (ρv)

v = −α∇φµ→µ∗
(5.14)

In (17) we have discussed that the set of minimizers of (5.3) belong to the geodesic connecting
µ and µ∗. Since (5.14) is the continuous limit of (5.3) the solution of the PDE will be the
geodesic µt. Now we focus on the well-posedness of the problem.

Remark 4 (Existence and Uniqueness of solutions to the transport PDE). We refer the
reader to [2] for a detailed treatment of existence and uniqueness results for the transport
equation with transport vector fields that are well-posed.

Assumption 3 (Well-posedness of gradient flow on optimal transport). We assume that µ∗

is absolutely continuous with a density ρ∗ in H1(Ω) and spt(µ0) = Ω. Further we assume
that (3.5) is well-posed for the gradient flow on the optimal transport cost, with solution
ρ ∈ L∞(0,∞, H1(Ω)).

With this assumption we can state the following convergence theorem, that we have adapted
from [30], adding an exponential convergence rate κ.

Theorem 7. Under Assumption 3 on the well-posedness of the gradient flow on the optimal
transport cost and for absolutely continuous initial distributions µ0 with spt(µ0) = Ω, the
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solution to the transport 3.5 with transport vector v = −λµ→µ∗

ρ
∇φµ→µ∗, with λµ→µ∗ and φµ→µ∗

the Kantorovich potential and the Lagrange multiplier for the transport µ → µ∗, converges
exponentially ||ρ− ρ∗||L2(Ω) ∝ e−κt.

Proof. From the optimality conditions of the primal-dual flow (5.11) we have that ∇ ·
(λµ→µ∗∇φµ→µ∗) = κ(ρ∗−ρ) , which implies δtρ = −∇·(ρv) = ∇·(λµ→µ∗∇φµ→µ∗) = κ(ρ∗−ρ)
when ρ > 0. Moreover we have that ρ0 and ρ∗ are strictly positive in Ω. Therefore, for any
t ∈ [0,∞] and x ∈ Ω̊, we have ρ(t, x) > 0. Consequently, since ρ(t, x) > 0, the transport

vector field v = −λµ→µ∗

ρ
∇φµ→µ∗ is well-defined in Ω.

Let V : L2(Ω)→ R≥0 be defined by V (ρ) = 1
2

∫
Ω
|ρ− ρ∗|2dx, where ρ is the density function

of the continuous probability measure µ. The time derivative V̇ , under the transport (3.5)

by v = −λµ→µ∗

ρ
∇φµ→µ∗ is given by:

V̇ =

∫
Ω

(ρ− ρ∗)δtρ = −
∫

Ω

(ρ− ρ∗)∇ · (ρv) =

∫
Ω

(ρ− ρ∗)∇ · (λµ→µ∗∇φµ→µ∗)

Then,

V̇ = −
∫

Ω

κ|ρ− ρ∗|2 = −2κV

And V is a Lyapunov functional for the transport by the vector field v = −λµ→µ∗

ρ
∇φµ→µ∗ .

Moreover, by Assumption 3 the solution ρ is bounded in H1(Ω), which by the Rellich-
Kondrachov theorem 2 is embedded in L2(Ω). We then infer that the solution ρ to the

transport (3.5) by the vector field v = −λµ→µ∗

ρ
∇φµ→µ∗ is pre-compact and using LaSalle

Invariance Principle in Lemma 3 we know limt→∞ ||ρ−ρ∗||L2 = 0. Moreover, from V̇ = −2κV
we have ||ρ− ρ∗||2L2(Ω) ∝ e−2κt and ||ρ− ρ∗||L2(Ω) ∝ e−κt.

Remark 5. The exponential convergence of the algorithm permits the adaptation of the
multi-agent transport algorithm to tracking scenarios where the target distributions evolve on
a slower timescale.

Finally we consider the case where we don’t wait for the primal-dual flow to converge before
transporting the density. In this case the transport and the estimation of the Kantorovich
potential are performed jointly. We will show that we can consider a constant Lagrange
multiplier λ(x) > 0 and prove convergence. This leads to the following dynamics

δtφ = ∇ · (λ∇φ) + κ(ρ− ρ∗)
∇φ · n = 0 on δΩ

λ = λ(x) > 0

(5.15)

In [30] the existence and uniqueness of solutions of (5.15) was discussed, we will assume
existence and uniqueness of solutions.

Assumption 4. We assume that µ∗ is absolutely continuous with a density ρ∗ in H1(Ω) and
spt(µ0) = Ω. Further we assume that the primal flow (5.15) is well-posed and the transport
(3.5) are well-posed, with solution φ and ρ such that φ ∈ L∞(0,∞;H1(Ω)), and strictly
positive ρ ∈ L∞(0,∞;H1(Ω)).
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Finally we present a convergence theorem on the convergence of (5.15) and prove it follow-
ing [30].

Theorem 8 (Convergence of on-the-fly transport). Under Assumption 4, the solutions ρ to
(3.5) with v = −κλ

ρ
∇φ, with φ from (5.15) converge in the L2-norm to ρ∗ as t→∞, while the

solutions to the primal flow (5.15) converge to the optimality condition (5.11) corresponding
to ρ = ρ∗.

Proof. We note that from Assumption 4 ρ > 0 and the transport vector field v = −κλ
ρ
∇φ is

well-defined on Ω. We now consider the following Lyapunov functional:

E =
1

2

∫
Ω

λ|∇φ|2 +
1

2

∫
Ω

|ρ− ρ∗|2

The time derivative of E under the flow (5.15) and v = −κλ
ρ
∇φ is given by

Ė =

∫
Ω

λ∇φ · ∇δtφ+

∫
Ω

(ρ− ρ∗)δtρ

Applying the divergence theorem in the first term with the boundary condition ∇·n = 0 we
get

Ė = −
∫

Ω

|∇ · (λ∇φ)|2 −
∫

Ω

∇ · (λ∇φ)κ(ρ− ρ∗) +

∫
Ω

(ρ− ρ∗)δtρ

Applying the continuity equation (3.5)

Ė = −
∫

Ω

|∇ · (λ∇φ)|2 −
∫

Ω

∇ · (λ∇φ)κ(ρ− ρ∗)−
∫

Ω

(ρ− ρ∗)∇(ρv)

And since v = −κλ
ρ
∇φ we get

Ė = −
∫

Ω

|∇ · (λ∇φ)|2 −
∫

Ω

∇ · (λ∇φ)κ(ρ− ρ∗) +

∫
Ω

(ρ− ρ∗)κ∇ · (λ∇φ)

Then the last two terms cancel out and

Ė = −
∫

Ω

|∇ · (λ∇φ)|2

By Assumption 4 the orbits φ and ρ are bounded in H1(Ω) and from Rellich-Kondrachov
Theorem (2) the orbits are precompact in L2(Ω). From La Salle Invariance Principle (3) the
orbits converge to the largest invariant set in E−1(0). Ė = 0 implies ||∇ · (λ∇φ)||L2(Ω) = 0.
From δtφ = ∇ · (λ∇φ) + κ(ρ − ρ∗) we have that ρ = ρ∗ and the transport with vector
v = −κλ

ρ
∇φ converges ρ→ ρ∗ while φ reaches to optimality condition ∇·(λ∇φ)+κ(ρ−ρ∗) =

0.

With this theorem we can present the following algorithm
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Algorithm 2 Multi-agent (on-the-fly) optimal transport with fixed (dual) weighting

Input: Target measure µ∗, transport cost c(x, y), Weights (dual variable) λij, Bound on
step size ε, time step τ .
For each agent i at time instant k of transport:

1: Obtain positions xj(k) of neighbours within a communication radius r large enough to
cover all Voronoi neighbours.

2: Compute Voronoi cell Vi, the mass of the Voronoi cell µ∗(Vi) and the Voronoi neighbour
Ni

3: Initialize φi ← Φ(k − 1, xi(k))
4: Implement n iterations of the primal algorithm (5.15) synchronously in communication

with j ∈ Ni to obtain φi(k)
5: Communicate with neighbors j ∈ Ni to obtain φj(k) and construct a local estimate of

Φd(k, x) with multivariate interpolation.
6: Implement transport step (5.3) with the local estimate Φ(k, x), which approximates
φµk→µ∗

5.4 Simulations

We will now present the results of some simulations of Algorithm 2. We have implemented
the algorithm in convex domains, as it was implemented in [30] and we have also provided
new simulations in domains that present obstacles and are therefore not convex.
We start with the simulations in convex domains Ω. We have considered the Euclidean dis-
tance as a cost c(x, y) = ||x − y||, we have used N = 30 agents for the simulations and a
value of ε = 0.05. We have also considered a constant Lagrange multiplier λ = 1

Nmax
L with

Nmax = 10 and L the Laplacian of the graph G = ({xi}, E), with (xi, xj) ∈ E if δVi∩δVj 6= ∅.

We have considered a target distribution with a covariance of Σ =

[
2 0
0 2

]
and mean ran-

domly chosen in [0, 1]2. The agents are initially distibuted normally following a gaussian law

with a mean of [5, 5] and covariance of Σ =

[
2 0
0 6

]
In Figure 5.1 we can see how the agents

move towards the target probability distribution and we converge to the target probability
density.
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Figure 5.1: Evolution of a group of agents with their Voronoi partition towards the target
probability distribution, shown in grayscale. We provide images at times t = 0, 5, 10, 20, 30

We can then study the convergence of the algorithm. We have implemented the primal-dual
algorithm (2) with a time-step τ = 1 using n = 50 iterations before convergence. We have
measured the convergence using two metrics, the norm ||ρ− ρ∗||L2(Ω) and the variance of the
masses of the Voronoi cells µ∗(Vi). In Figure 5.2 we can see how the metrics decrease ex-
ponentially with time and how the constant κ can accelerate the convergence of the algorithm.

Figure 5.2: Convergence in the norm ||ρ− ρ∗||L2(Ω) (left) and convergence with V ar(µ∗(Vi))
(right). We have plotted the results for κ = 1, 2, 3, 4, 5, we can see that the two norms
decrease exponentially and we can increase the rate of convergence by increasing κ.

In our simulations we have observed that when κ = 1 the agents move towards the target
probability measure following a random motion, when we increase κ the agents will find the
desired direction easier, additionally we will converge to the target density measure with
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more precision, as we can see in Figure 5.3.

Figure 5.3: Convergence in the norm ||ρ− ρ∗||L2(Ω) (left) and convergence with V ar(µ∗(Vi))
(right), both plotted in a logarithmic scale. We can see that higher values of κ will provide
a more accurate convergence, with errors of the order of 10−3 for κ = 4, 5 while we achive a
convergence of the order of 10−2 for κ = 1, 2, 3.

We will now focus on implementing the same algorithm when the domain Ω is not convex.
We note that in non-convex domains the distance between points is given by the geodesic
distance on the set,

dg(x, y) = inf
γ(t):[0,1]→Ω
γ(0)=x, γ(1)=y

∫ 1

0

||γ̇(t)||dt

In order to implement the algorithm we would need to use a geodesic Voronoi partition,
which can be done following [43]. We also note that in order to implement the algorithm
with a geodesic Voronoi partition we would also need to estimate the geodesic distance in Ω
and we would need a path planning algorithm to generate an obstacle free path from position
xi(k) to position xi(k + 1).
This is rather inconvenient and we have decided to work with an Euclidean Voronoi partition.
From the Voronoi partition we can find the Voronoi graph GV = ({xi}, E) with (xi, xj) ∈ E
if δVi ∩ δVj 6= ∅. We will consider a subgraph of this graph, that only contains the edges

that don’t collide with obstacles, ĜV = ({xi}, Ê), where (xi, xj) ∈ Ê if δVi ∩ δVj 6= ∅ and
z = (1 − m)xi + mxj ∈ Ωfree for m ∈ [0, 1]. We will call this graph the visibility Voronoi
graph.
With the visibiility Voronoi graph we can define the constant Lagrange multiplier λ = 1

Nmax
L

with Nmax = 10 and L the Laplacian of the Visibility graph. Then we can use (5.8) to
estimate the Kantorovich potential in a decentralized way. Finally we note that when we
implement the transport scheme (5.3),

xi(k + 1) ∈ arg min
z∈Ω

||xi(k)− z||+ φµk→µ∗(z)

s.t ||xi(k)− z|| ≤ ε
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we must ensure that xi(k+ 1) ∈ Ω and that the points (1−m)xi(k) +mxi(k+ 1) = z ∈ Ω for
all m ∈ [0, 1]. As an optional improvement we can check if v = xi(k+1)−xi(k) doesn’t move
the agent towards an obstacles, we can check this by checking that xi(k) + γ v

||v|| = zi ∈ Ω for

all γ ∈ [0, 1].
Using this considerations we can run some simulations in an obstacle environment. We
consider the same situation as in the previous experiment but we add a square centered in
[3.5, 3.5] with a heigh and witdh of [1.5, 1.5]. In Figure 5.4 we can see how the agents avoid
the obstacle and converge to the desired location. We note that they require more time to
converge since they have to avoid the obstacle. Finally, in Figure 5.5 we can see in a loga-
rithmic plot how the error metrics decrease exponentially.

Figure 5.4: Evolution of a group of agents with their Voronoi partition towards the target
probability distribution in an obstacle space, shown in grayscale. We provide images at times
t = 0, 10, 20, 30, 40, 50
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Figure 5.5: Logarithmic plot of the convergence in the norm ||ρ− ρ∗||L2(Ω) (left) and conver-
gence with V ar(µ∗(Vi)) (right) when considering an obstacle space. We note that we require
50s in order to achieve convergence, while we only required 30s to achieve convergence when
we didn’t consider the obstacle (5.3). Choosing a higher value of κ speeds up the convergence
and gives us a more accurate solution.

5.5 Future Work: Collision Avoidance

We will now discuss some modifications that could be implemented in order to provide
collision avoidance to the Multi-agent transport algorithm. We will propose three different
models that could be adapted to our work. The models are unfinished and we leave their
implementations as future work.
In the first model we consider interaction potentials that produce a repulsive force between
the agents. In the second model we shortly talk about a Crowd Motion model that has been
used in the literature to model microscopically the motion of agents. More research needs to
be done in order to provide a good solution to the problem.

5.5.1 Interacting potentials

In the first model we will add a repulsive potential to the agents, following the ideas of [26].
We will consider a repulsive potential W (r), which is decreasing with respect to r the distance
between the agents. The potential of the agents defines an aggregate potential

V (x) =
n∑
i=1

W (x− xi)

When we jump to the continuous by taking n→∞ we obtain the interaction potential

I(µ) =

∫
Ω×Ω

W (x− y)dµ(x)dµ(y)
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And our objective will be finding a gradient flow of the functional

W 2
2 (µ, µ∗) + I(µ)

We now state some results about the interaction potential from [50].

Proposition 20. If W ∈ Cb(Ω) then I is continuous for the weak convergence of probability
measures. If W is lower semi-continuous and bounded from below then I is lower semi-
continuous.

We now analyze the displacement convexity of I in Wp, where µt = (πt)#γ, with γ(x, y) an
optimal transport plan for the cost c(x, y) = |x− y|p and πt(x, y) = (1− t)x+ ty.

Proposition 21. The functional I(µ) is displacement convex if W is convex. Likewise, I(µ)
is displacement concave if W is concave.

Proof.

I(µt) =

∫
W (x− x′)(πt)#γdγ(x, y)(πt)#γdγ(x′, y′) =

=

∫
W ((1− t)x+ ty − (1− t)x′ − ty′)dγ(x, y)dγ(x′, y′)

=

∫
W ((1− t)(x− x′) + t(y − y′))dγ(x, y)dγ(x′, y′)

And if W is convex W ((1 − t)(x − x′) + t(y − y′)) ≤ (1 − t)W (x − x′) + tW (y − y′), which
give us

≤
∫

(1− t)W (x− x′) + tW (y − y′)dγ(x, y)dγ(x′, y′) = (1− t)I(µ0) + tI(µ1)

Similarly if W is concave W ((1− t)(x− x′) + t(y− y′)) ≥ (1− t)W (x− x′) + tW (y− y′) and
we can prove

I(µt) ≥ (1− t)I(µ0) + tI(µ1)

Since our objective is to minimize W 2
2 (µ, µ∗) + I(µ) we would like the functional to be con-

vex. We note that the Wasserstein distance is convex in the generalized geodesics, as we
have shown in (16) but the interacting functionals that we will consider will be concave.
This may cause problems to achieve convergence. We leave for future work the analysis of
the feasibility of using repulsive potentials.

5.5.2 Fixed collision radius

Other approaches have been proposed in the literature, specially in the field of Crowd Motion,
that studies models of human motion in large gatherings. We remark the work of [37], and
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the adaptation of the work to the optimal transport formalism of [35], [36]. In their approach
they treat the agents as rigid disks of radius r. They assume that each agent has a desired
direction of movement vi. This is enforced by considering a feasible initial configuration

Q = {q ∈ R2n : Dij(q) ≥ 0 ∀i, j}

Where q is a vectorization of the positions of all agents and Dij(q) = |qi−qj|−2r corresponds
to checking that agent i and agent j are separated by a greater distance than 2r.
Then the feasible velocities are the ones that keep the initial position in the feasible set,

Cq = {v ∈ R2n : Dij(q) = 0 =⇒ Gij(q) · v ≥ 0}

With Gij(q) = (0, . . . , 0,−eij(q, 0, . . . , 0,−eij(q, 0, . . . , 0) and eij(q) =
qj−qi
|qj−qi| .

Meaning that when |qi−qj| = 2r we will impose that the projection of vj−vi in the direction
eij is non-negative, and the agents don’t get any closer.
With this they consider the transport given by

ẋ = PCqv

where PCq is a projection operator. This is traduced into they macroscopic transport

δtρ+∇ · (ρPCqv) = 0

We won’t get into further details about this approaches but we are interested in analyzing
how the algorithms perform for multi-agent robotic systems and also propose modifications.

5.5.3 Collision avoidance with bounds on the density function

We now present another approach that may be useful to consider and can be easily adapted
to our work. We will consider continuous measures with a density, µ(x) = ρ(x)dx, µ∗(x) =
ρ∗(x)dx and we propose to add a bound on the maximum value of the density ρ(x) ≤ ρmax,
with ρmax a constant.
To implement this constraint we can define a Lagrangian according to

L(µ, λ) = W 2
2 (µ, µ∗) + F (µ, λ)

with

F (µ, λ) =

∫
λ(ρ2 − ρ2

max)dx

Here λ > 0 is the Lagrange multiplier, which is a function and we will assume λ ∈ Lp(Ω).
We also note that the functional has the form

F (µ, λ) =

∫
fλ(ρ)dx

with fλ(ρ) = λ(ρ2 − ρ2
max).
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Primal flow

We will now consider a primal-dual gradient flow on the Lagrangian L(µ, λ) = W 2
2 (µ, µ∗) +

F (µ, λ), which depends on the density ρ and the function λ.
We start considering the minimization of L(µ, λ) over the primal variable ρ. We can formulate
this minimization as a gradient flow in the Wasserstein space W2. We can take the following
proximal gradient algorithm

µk+1 ∈ arg min
µ
W 2

2 (µ, µ∗) + F (µ, λ) +
1

2τ
W 2

2 (µ, µk)

We remember from the theory discussed in Chapter 3 that when the time-step τ → 0 the
iterative scheme converges to the transport equation

δtρt +∇ · (ρtvt) = 0

with vt = −∇
(
δL
δρ

(ρ, λ)
)

. We will now calculate the first variation of L(µ, ν).

δL

δρ
(ρ, λ) =

δW 2
2

δρ
(ρ, ρ∗) +

δF

δρ
(ρ, λ) = φµ→µ∗ + f ′λ(ρ) = φµ→µ∗ + 2λρ

Then the transport will be given by

vt = −∇ (φµ→µ∗ + 2λρ)

We will now remember from the theory that the transport equation is equivalent to the evolu-
tion of a group of particles, with initial positions distributed following the initial distribution
x0 ∼ µ0 which evolve following

ẋ(t) = −∇φµ→µ∗(x(t))− 2∇(λ(x(t))ρ(x(t)))

x(0) = x0

(5.16)

In order to implement this gradient flow in discrete time we can follow a proximal gradient
update

xk+1 ∈ arg min
x
φµ→µ∗(x) + 2λ(x)ρ(x) +

1

2τ
c(x, xk) (5.17)

Dual flow

We now present a the dual flow on λ. We note that λ ∈ Lp(Ω) is not a probability measure.
In order to maximize the functional L(µ, λ) we will define a gradient flow, but since λ is not
a probability measure the gradient flow won’t be defined on the Wasserstein space, it will be
defined in the Lp(Ω) function space. We start by defining the Fréchet derivative in Lp.

Definition 19 (Fréchet derivative in Lp). Let F : Lp(Ω) → R be a functional we will call
∇LpF the Fréchet derivative, if it exists, the functional ∇LpF : Lp(Ω)→ R such that

lim
λ→λ0

F(λ)−F(λ0)−∇LpF(λ− λ0)

||λ− λ0||Lp
= 0



5.5. Future Work: Collision Avoidance 65

We will denote the Fréchet derivative of the functional L(µ, λ) with respect to λ as∇λL(µ, λ).
We can now write the dual gradient flow as

δtλ = [∇λL(µ, λ)]+λ

where [f ]+λ =

{
f if λ > 0

max{0, f}if λ = 0
is a projection operator. We can calculate the Fréchet

derivative as
∇λL(µ, λ) = ∇λF (µ, λ) = ρ2 − ρ2

max

And we can write
δtλ =

[
ρ2 − ρ2

max

]+
λ

(5.18)

Future work

We leave for future work the analysis of the primal-dual flow that we have defined. We also
note that in order to implement this algorithm will need to estimate the density function ρ
and the Lagrange multiplier λ from the positions of the agents. Additionally the dynamics
of λ must be discretized in space. A possibility could be to only study the dynamics of λ on
the positions of the agents and interpolate the Lagrange multiplier on the other regions of
space. This are early ideas and we have not had time to implement them or evaluate their
feasibility.



Chapter 6

Conclusions and Future Work

In this thesis we have explored Coverage Control and Multi-Agent Transport of agents. We
have studied the Time-Varying Coverage Control problem and a Singular Perturbation The-
ory approach to solve the Time-Varying Coverage Control. We have provided additional
experimental validation to the algorithm and we have proposed a heuristic approach to en-
sure its convergence. We hope to publish our results soon.
We have presented the theory of Optimal Transport and we have related Optimal Transport
with Coverage Control, finding that the Coverage Control locational cost is a relaxation of
the Optimal Transport cost. Additionally we have see that Coverage Control cannot be
studied with macroscopic models.
Then we have presented a recent approach to solve Multi-Agent Transport using a continuum
model and Optimal Transport. We have contributed in the work increasing the convergence
rate of the algorithms and implementing simulations when the domain presents obstacles.
We have also explored Collision Avoidance for the Multi-Agent Optimal Transport algorithm
but our ideas still need refining. Our main approach of adding bounds to the density func-
tion is still incomplete, a proof of convergence for the primal-dual algorithm algorithm is
needed, otherwise it might be interesting to consider other models. The discretization of the
algorithm in space must also be studied carefully in order to provide a good implementation.
Our other approaches to tackle Collision Avoidance are also promising, especially the fixed
collision radius models that have been studied in the field of Crowd Motion. We believe
that the Crowd motion algorithms could be adapted for Multi-Agent transport and the ideas
presented in the Crowd Motion papers might lead to new approaches.

66
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Appendix A

A counter example to the Twist
Condition

Here we provide a counter example that shows that the Twist Condition (9) may not hold
in non-convex domains. We start reminding the Twist condition (9),

Definition 20 (Twist condition). For Ω ⊂ RN we say c : Ω × Ω → R satisfies the Twist
condition when c is differentiable with respect to x at every point and the map y → ∇xc(x0, y))
is injective for every x0.

When this condition holds we can deduce that if (x0, y0) ∈ spt(π) then y0 is uniquely defined
and there exist an optimal transport map.

We will now show how this condition can fail when the domain is not convex. We consider
the geodesic distance

dg(x, y) = inf
γ(t):[0,1]→Ω
γ(0)=x, γ(1)=y

∫ 1

0

||γ̇(t)||dt

And we set Ω = [−10, 10]×[−10, 10] ⊂ R2, with an obstacle O = {(x1, x2) ∈ R2 : x2
1+x2

2 < 9},
which defines the compact free space Ωfree = Ω \ O. We can now consider a point x0 and a
point y0 such that their linear interpolation z = (1−m)x0 +my0 for m ∈ [0, 1] doesn’t belong
in Ωfree for all m. An example would be x0 = (−5, 1), y0 = (5, 1). It is easy to see that the
geodesic γ∗ between this two points connects x0 with the boundary of O with a straight line
that is tangential to the boundary of O. Then the geodesic follows the boundary of O until
it connects with y0 with a tangential straight line. In Figure A.1 we can this graphically.
We denote z1 = γ∗(t1) ∈ δO, and z2 = γ∗(t2) ∈ δO, where t1, t2 are the first and the last
times such that the geodesic intersects with the boundary.
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Figure A.1: Graphical representation of the setting

We then note that we can write the distance as

dg(x0, y0) = ||x0 − z1||+ dg(z1, z2) + ||z2 − y0||

Then,
∇xdg(x0, y0) = ∇x(||x0 − z1||) +∇x(dg(z1, z2))

And the gradient of the cost only depends on x0 and z1. Then we can choose y′0 = (7, 1),
which will lead to z′2 but x0 and z1 will stay the same and we will have

∇xdg(x0, y0) = ∇xdg(x0, y
′
0)

And the function y → ∇xdg(x0, y) is not injective, contradicting the Twist condition.


