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Abstract. The Paper focusses on the development of a numerical method to simulate
ship motions under arbitrary external forces. Based on impulse response functions, the de-
veloped method benefits from the computational efficiency of boundary element methods
in frequency domain to determine hydrodynamic forces acting on the vessel. Major non-
linear effects are captured directly in time domain. To capture the vessels drift motion,
second-order wave excitation is considered. Wind and current induced forces complete
the modelling of environmental loads. An interface to MATLAB/SIMULINK simplifies
an efficient representation of the vessels control system and the dynamics of its propul-
sion plant. This finally allows time-domain simulations of complex dynamic positioning
manoeuvres in natural seaways

1 INTRODUCTION

Up to now, the dynamic positioning capability of ships is mainly judged by balancing
available thrust against wind, current and wave induced loads at different encounter angles
and sea states. If for a given environmental specification a static equilibrium condition is
achieved, the vessel is considered to be able to maintain position. This static procedure
neglects several important effects, originating on the one hand from unsteady environ-
mental forces and on the other hand from dynamic interaction between the individual
components of the dynamic positioning system itself. In reality, this can lead either to in-
sufficient dynamic positioning performance or high fuel consumption. In contrast, it seems
more reasonable to assess the dynamic positioning capability from unsteady seakeeping
simulations including the dynamics of the vessels control system and its propulsion plant.
Therefore, an efficient method to simulate ship motions in natural seaways under arbitrary
external forces in time domain has been developed.
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2 IMPULSE RESPONSE FUNCTIONS

The governing equation used for time domain simulations based on impulse response
functions was formulated by Cummins [1] already in 1962:

(M+A)�̈ξ +

∞∫

0

B(τ)�̇ξ(t− τ)dτ + S�ξ(t) = �F (t) (1)

In the so-called Cummins Equation, Eqn.(1), �ξ states a ship motion vector in all six

degrees of freedom arising from an arbitrary time domain load �F (t). M and A are the
ship’s inertia and hydrodynamic mass matrices. Damping forces and fluid-memory effects
are modeled by the convolution integral. S states a linear coefficent matrix for restoring
forces and moments. In 1964, Ogilvie [2] shows that instead of solving the non-steady
flow potential around the hull directly in each timestep to determine the hydodynamic
forces acting on the ship, one can derive the added mass and damping coefficent matrices
from more efficient freqency domain based calculations. By comparing the equation of a
harmonic ship motion in time domain with its equivalent formulation in frequency domain,
Ogilvie states the following relationship for the hydrodynamic mass in time and frequency
domain:

A = a(ω) +
1

ω

∞∫

0

B(τ) sin(ωτ)dτ (2)

Equation(2) obviously holds for any frequency. For an infinite frequency, the second part
of the expression is vanishing, which leads to the hydrodynamic mass in time domain as:

A = a(ω = ∞) (3)

From the comparison of coefficients follows analogously for the hydrodynamic damping:

B(τ) =
2

π

∞∫

0

b(ω) cos(ωτ)dω (4)

The hydrodynamic damping coefficents in time domain can then be obtained from inverse
fourier transformation of the freqency dependent hydrodynamic damping matrices in Eqn.
(4). To determine the hydrodynamic mass and damping in frequency domain, a two
dimensional boundary element method [3] is applied. Figure 1 shows the hydrodynamic
mass and damping for a wide frequency range. For high frequencies the hydrodynamic
mass converges to a constant value, therefore it seems reasonable to evaluate the added
mass at a high frequency to fullfill Eqn. (3). The corresponding hydrodynamic damping
in time domain, the so-called retardation force, meaning the time decreasing damping
force due to a single impulse is plotted on the right.
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Figure 1: Frequency dependent hydrodynamic mass and damping of pure sway motion
for the S-175 containership (left) and retardation function for pure sway motion (right)

3 NUMERICAL SIMULATION METHOD

Within the numerical simulation, the following equation of motion is solved:

(M+A) �̈ξ(t) + �FB(�̇ξ, t) + �FQ(�̇ξ) + �S(�ξ, t) = �F
(1)
Wave(t) +

�F
(2)
Wave(t) +

�FExt(t) (5)

Herein, M is again the matrix of the ship’s inertia, where A is the hydrodynamic mass
matrix according to Eqn.(3) and �ξ is the ship motion vector respective its time derivatives:

�ξ =
(
ξ0 η0 ζ0 ϕ ϑ ψ

)
(6)

�FB(�̇ξ, t) states the non-steady retardation forces vector arising from the convolution inte-
gral in Eqn.(1):

�FB(�̇ξ, t) =

∞∫

0

B(τ)�̇ξ(t− τ)dτ (7)

�FQ is a six component vector representing quadratic damping force contributions caused
by cross-flow-drag phenomena, viscous surge and roll damping:

�FQ(�̇ξ) = �Fq(�̇ξ) +
(
Fξ(ξ̇0) 0 0 Mϕ(ϕ̇) 0 0

)T
(8)

Especially for slow-speed-manoeuvring cross-flow-drag is the dominating damping effect
and can not be neglected [4]. Therefor a simple two dimensional approach is used here
[4,5]. Considering the transverse flow at one section of the ship a sectional damping force
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vector �fx(�̇ξ) can be calculated as:

�fx(�̇ξ) = −1

2
ρ



1 0
0 1
zD yD



(
T (x)CDyuy,x(�̇ξ)|uy,x(�̇ξ)|
B(x)CDzuz,x(�̇ξ)|uz,x(�̇ξ)|

)
(9)

Herein uy,x(�̇ξ) and uz,x(�̇ξ) are the relative velocities in the section plane depending on

the ship motion velocity �̇ξ. T (x) is the draft of the section, B(x) its breadth. CDy and
CDz are numerically or experimentally determined cross-flow-drag coefficients. A common
used estimation is CDy = 0.8...1.2 (depending on bilge sharpness) and CDz = 0.6 [3]. The
integration over the ship’s length then yields to the global damping force:

�Fq(�̇ξ) =

∫

L

V(x)�fx(�̇ξ)dx (10)

The matrix V transforms sectional forces into global ship fixed forces. In longitudinal
direction also a quadratic damping approach is introduced [6]:

Fξ(ξ̇0) = −1

2
ρS(1 + kf )Cf (ξ̇0)|ξ̇0|ξ̇0 (11)

S is the wetted hull area. kf is a viscous form factor and Cf (ξ̇0) a modified friction drag
coefficient according to Fossen [6]. A quadratic roll damping moment is stated as in [7]:

Mϕ(ϕ̇) = (dL + dQ|ϕ̇|)ϕ̇ (12)

Herein, dL and dQ are linear and quadratic roll damping coefficents which have to be
determined externally, for example using model tests or CFD calculations.

�S(�ξ, t) are time-dependent nonlinear restoring forces. Based on a sectional approach,
the submerged volume and its center of bouyancy is determined in every timestep, ac-
cording to the actual heel, trim and sinkage of the ship as well as the instantenous wetted
surface due to the incident waves. This leads directly to the restoring forces and moments.

�F
(1)
Wave(t) and �F

(2)
Wave(t) are first respective second order wave excitation forces and

moments. As natural seaways are modelled through superposition of regular waves, the
first order wave excitation can be calculated also from the superposition of the excitation
forces of each wave component [7]:

�F
(1)
Wave(t) =

N∑
j=1

Re
[(

�̂FFK(ωj) + �̂FDF (ωj)
)
ζ̂je

iωe,jt
]

(13)

Herein, �FFK(ωj) and �FDF (ωj) state Froude-Krilov respective diffraction force and moment
contributions of the j-th wave component. As first order wave excitation alone does not
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cause any drift motion of the vessel, it is necessary for DP-related simulations to consider
also nonlinear wave excitation. Even though the applied frequency domain boundary
element method is just from first order, it allows sufficient information to determine mean
second order wave drift forces and moments. The time-averaged mean longitudinal wave
drift force for a regular wave can be estimated from first order frequency domain results
as follows [3]:

F̄
(2)
ξ =

1

2

(
mω2

eRe
(
Ŷ2sŶ

∗
6 − Ŷ3sŶ

∗
5

)
+

1

2
ρg

∑
Stb,Port

∫

L

|Ŷzr|2
dy+W
dx

dx

+
1

2
ρg

(
|Ŷ4|2 − |Ŷ5|2

)
[Ax0 (T + zx0)]transom

)
ζ2a (14)

The first term in Eqn. 14 is caused by the ship motion itself, while the second term
results from the change in buoyancy due to relative motion alongside the waterline of the
ship. A correction for flow separation at an immersed transom at higher forward speeds is
introduced by the last term, it can be neglected in case of slow-speed manoeuvring. The
time-averaged mean transverse drift force is derived accordingly [3]:

F̄ (2)
η =

1

2

(
ρg

∑
Stb,Port

∫

L

y+WRe
(
Ŷzr0ŶζWy

)
dx−mω2

eRe
(
Ŷ1sŶ

∗
6

))
ζ2a (15)

According to Söding [8], a time-averaged yaw drift moment can be derived as:

M̄
(2)
ζ = − 1

2
ω2
eRe

[
�̂α∗ ×Θ�̂α

]
ζ
+

∑
WL−Panels

(
(�x− �xG)×

[
|p̂w|2

4ρg
�∆s(0, 0,−1)

])

ζ

+ xGF̄
(2)
η − yGF̄

(2)
ξ (16)

Herein, the first component results from rotational ship motions. The next term follows
from the integrated second order wave pressure over the wetted hull surface. Finally, the
yaw moment originating from longitudinal and transverse drift force is added in the last
term. From the time-averaged mean values a time series of drift forces and moments
can be generated again. Therefor, a simple but reasonable approach [9] derived from
statistical description of natural seaways is used. Assuming that the second order drift
forces and yaw moment are varying with the square of the seaway envelope a2(t), one
obtains a time domain drift force as [9]:

F (2)(t) =
1

2
ρgL α2

0 a
2(t) (17)

The significant drift force coefficient α2
0 for a given seaway can be calculated as the

weighted mean average of the wave components drift forces according to their energy
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Figure 2: Significant drift forces and yaw moment vs. encounter angle(left), generated
time domain drift forces and yaw moment (right)

contribution to the whole seaway:

α2
0 =

∞∫
0

α2(ω)Sζ(ω)dω

∞∫
0

Sζ(ω)dω

(18)

Herein, Sζ(ω) states the energy density spectrum of the seaway, whereas α2(ω) is a nondi-
mensional drift force coefficient of a wave component:

α2(ω) =
F (2)(ω)

1
2
ρgLζ2a(ω)

(19)

Using the significant wave frequency ω0 = 2π/T0 of the seaway, the seaway envelope then
follows as:

a2(t) = ζ2(t) +

(
dζ
dt

)2
ω2
0

(20)
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Figure 3: Flowchart of the numerical method and possible coupling to a DP system

Figure 2 shows examplarily mean longitudinal and transverse drift forces and the yaw
drift moment depending on the wave encounter angle. On the right a corresponding time
domain drift force signal is shown. One observes that the generated drift force signals are
following the seaway envelope.

�FExt(t) is a six component vector allowing the consideration of arbitrary external forces
and moments.

The numerical method is implemented in Fortran. Figure 3 shows the flowchart of the
simulation method. As input, a three dimensional surface descripton of the hull geometry
is needed. A .xml-file is used to define the simulation settings, e.g. the vessel’s load-
case, seaway settings or damping coefficients. Within the initialisation, two dimensional
sections are generated from the hull geometry. Then PdStrip [3], a two dimensional
boundary element method (strip method) is applied to compute the hydrodynamic mass
and damping and the wave excitation forces in frequency domain. A second sectional ge-
ometry is created, including all watertight compartments of the vessel which contribute to
hydrostatic restoring forces. The hydrostatic restoring forces and moments are calculated
at the beginning of each timestep. Then the retardation forces are evaluated and viscous
damping contributions are added. After the wave excitation forces have been determined,
the external forces are taken into account, e.g. wind and current loads or forces arising
from thrusters or other manouevring devices. The equation of motion is then solved using
a fourth order Runge-Kutta integration scheme and the simulation proceeds with the next
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timestep. To simplify the modelling of further external forces and to allow an easy rep-
resentation of vessel control and allocation systems for dynamic positioning simulations,
the simulation method has been cast into the Matlab-MEX API. Major simulation rou-
tines then can be called directly from Matlab or Simulink and are handled like built-in
functions.

4 VALIDATION

The developed simulation method has been validated with the results of a model tests
conducted at the Potsdam Model Basin. For the seakeeping tests, a tug model equipped
with two Voith Schneider propellers was used. The ship motions have been measured in
several regular and irregular waves at zero speed. To allow a direct comparision of mea-
sured and calculated motions, the wave train used in the model test tank was decomposed
into 200 wave components using fourier transformation. The same wave components have
then been used as input for the simulations. Figure 4 shows exemplarily the compari-
son between tank test and simulation results in irregular waves at an encounter angle of
µ = 180◦. The motions show reasonable agreement, especially phase and frequency of
the motion are matching very well. It seems that the damping used in the simulation is
less than in the model test. During the seakeeping tests, the tug model was secured with
lines, which causes the visible low frequency motion in the model test. Other encounter
angles show the same good agreement of simulated and measured motions [5].

5 APPLICATION TO DYNAMIC POSITIONING

5.1 Modelling of wind and current induced loads

To complete the modelling of environmental loads, wind and current forces are con-
sidered. To capture the wind speed fluctuations, a dynamic wind model according to
Blendermann is used [10]. From a statistical analysis of the wind speed fluctuation the
following non dimensional wind gust spectrum according to Davenport can be stated [10]:

fSGust(f)

C10ū2
10

=
1[

1 +
(
Loa

L

)4/3
f̃ 4/3

]2
4(

1 + f̃
)4/3

, f̃ =
fL

ū10

(21)

Like the superposition of regular waves to represent natural seaways, the superposition of
wind gusts leads to a non-steady wind signal [10]:

uw(t) = ū10 +
n∑

i=1

√
2SGust(fi)∆fi cos(2πfit+ ϕi) (22)

Figure 5 shows a typical Davenport wind gust spectrum and a corresponding time domain
wind signal. A common way to calculate wind loads for given wind speeds uw and angles
of attack ε is the usage of experimentally or numerically determined non-dimensional wind
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Figure 4: Comparison between ship motions in irregular waves obtained by model test
and simulation
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load coefficients [10]:

�FWind(t) =
(
CX(ε) CY (ε) 0 CK(ε)H̄ 0 CN(ε)Loa

)T ρair
2

ua(t)
2AL (23)

In case of vanishing or small ship speed like at DP operations, the apparent wind speed
ua equals the true wind speed uw. AL is the lateral plane area, where Loa is considered
to be the reference length and H̄ the mean height of the lateral plane.

For current induced loads, a static approach seems reasonable enough, because current
speed variations, e.g. caused by tidal flow, occur at very low frequencies. As for the wind
loads, a coefficient based approach [11] is used again to compute current induced forces
and moments for a static current speed uc:

�FCurrent(t) =
(
CX,c(ε)B CY,c(ε)Loa 0 0 0 CN,c(ε)L

2
oa

)T ρ

2
u2
cT (24)

CX,c,CY,c and CN,c are externally determined current load coefficients, while B and T are
the vessel’s breadth and draft.

The wind and current induced forces and moments are then considered in the simulation
using the external forces interface:

�FExt(t) = �FWind(t) + �FCurrent(t) (25)

5.2 Representation of the DP system

For an easy representation of the vessels DP system, the simulation method has been
integrated into a Simulink model. To determine the required longitudinal and transverse
forces and the yaw moment to hold position, a nonlinear PID controller is used. Within
the allocation module the thrust is distributed between the two Voith-Schneider units,

10

759



Ole Detlefsen, Lasse Theilen and Moustafa Abdel-Maksoud

-0.1

-0.05

0

0.05

0.1

-0.1 -0.05 0 0.05 0.1

y
[m

]

x [m]

Position

0

10

20

30

40

50

60

0 50 100 150 200 250 300

P
[W

]

t [s]

Power Demand

VSP 1
VSP 2

VSP 1+2

Figure 6: A DP-simulation with the tug model: Position of the vessel (left) and power
demand of the Voith Schneider propulsion units (right)

taking into account the dynamics of the propulsion train. Because only the drift motion of
the vessel should be compensated, a Kalman filter is used to seperate the wave frequency
contributions from the ship motion.

Figure 6 shows the results of a DP simulation for the tug model. The tug model is
exposed to short crested waves at an encounter angle of µ = 135◦ with T0 = 1.225s
and H1,3 = 0.2m. The mean wind speed is set to ū10 = 2.0m/s at the same angle of
attack. Current is assumed with uc = 0.4m/s in the same direction. The Figure shows
the position of the vessel during the manoeuvre and the power demand of the Voith
Schneider propellers. In the examined case, the deviation from the desired position at
(0, 0) is remarkable small, which is caused in the fast reaction capacity of the Voith
Schneider propellers.

6 CONCLUSION AND OUTLOOK

The paper outlines the development of a robust and efficient numerical method to sim-
ulate ship motions in seaways under the consideration of arbitrary external loads. Based
on impulse response functions, the developed method benefits from the computational
efficiency of boundary element methods in frequency domain to determine hydrodynamic
mass and damping forces, whereas important nonlinear force components are treated di-
rectly in time domain. The method is currently validated. First comparisons with model
test results of a tug boat show good agreement. For the application to dynamic positioning
related problems, the simulation method has been extended to capture wave drift forces
and loads arising from wind and current. To allow an easy integration of control systems,
an interface to MATLAB has been implemented. The simulation method is currently used
to investigate different dynamic positioning configurations and to optimize their control
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and allocation systems. After conducting hardware-in-the-loop tests with the later on
board installed automation system hardware, wherefore the simulation method is also
used, final model tests with full equipped and actuated models are planned. In the near
future the strip method is replaced with three dimensional boundary element methods to
obtain hydrodynamic force coefficients. This can result in a further increase of accuracy,
especially for more blunt ship shapes, where three dimensional effects are dominating.
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[9] Clauss, G., and Lehmann, E., and Östergaard, C. Offshore Structures Volume II:
Strength and Safety for Structural Design, (1994).

[10] Blendermann, W. Practical Ship and Offshore Structure Aerodynamics, (2011).

[11] Journée, J. M. J. and Massie, W. W. Offshore Hydromechanics, (2001).

12

761




