
dislib: Large Scale High Performance Machine
Learning in Python

Javier Álvarez Cid-Fuentes, Rosa M. Badia
Barcelona Supercomputing Center, Barcelona, Spain

E-mail: {javier.alvarez, rosa.m.badia}@bsc.es

Keywords—machine learning, python, distributed computing,
high performance computing

I. EXTENDED ABSTRACT

In recent years, machine learning has proven to be an
extremely useful tool for extracting knowledge from data.
This can be leveraged in numerous research areas, such as
genomics, earth sciences, and astrophysics, to gain valuable
insight. At the same time, Python has become one of the most
popular programming languages among researchers due to its
high productivity and rich ecosystem. Unfortunately, existing
machine learning libraries for Python do not scale to large data
sets, are hard to use by non-experts, and are difficult to set
up in high performance computing clusters. These limitations
have prevented scientists from exploiting the full potential of
machine learning in their research. In this work, we present
dislib [1], a distributed machine learning library on top of
PyCOMPSs programming model [2] that addresses the issues
of other similar existing libraries.

A. Overview

As said before, dislib is built on top of PyCOMPSs
programming model. PyCOMPSs is a task-based programming
model that makes the development of parallel and distributed
Python applications easier. PyCOMPSs consists of two main
parts: programming model and runtime. The programming
model provides a series of simple annotations that developers
can use to define potential parallelism in their applications.
The runtime analyzes these annotations at execution time, and
distributes the computation automatically among the available
resources. In essence, dislib is a collection of PyCOMPSs
applications that exposes two main interfaces to developers:
a distributed data structure called distributed array (ds-array),
and an estimator-based API. A ds-array is a 2-dimensional
matrix divided in blocks that are stored accross different
computers. Ds-arrays offer a similar API to NumPy [3], which
is one of the most popular numerical libraries for Python. The
difference between NumPy arrays and ds-arrays is that ds-
arrays are internally parallelized and use distributed memory.
This means that ds-arrays can store and process much larger
data than NumPy arrays. Implementing a NumPy-like API
makes ds-arrays easy to use and intuitive to developers already
familiar with NumPy. It also allows to parallelize NumPy
codes by just replacing NumPy arrays with ds-arrays.

Distributed arrays serve as a building block for machine
learning algorithms included in dislib. These algorithms are

exposed through an estimator-based API inspired by scikit-
learn [4], a widely used machine learning library for Python.
The typical dislib application consists of the following steps:

1) Load data into a ds-array
2) Instantiate an estimator object with parameters
3) Fit the estimator with the loaded data
4) Retrieve information from the estimator or make

predictions on new data

Each machine learning model in dislib is enclosed in a
class implementing the estimator interface, where an estimator
is anything that learns from data that implements two main
methods: fit and predict. Using the estimator abstraction
provides a unified API across different algorithms, which
reduces the complexity of dislib, and facilitates the imple-
mentation of high level applications and utilities that can use
different algorithms in an interchangeable manner. Distributed
arrays and dislib estimators allow non-expert developers to
easily create distributed machine learning applications using
regular sequential code. Figure 1 shows an example application
that runs the K-means clustering algorithm [5].

1 from dislib.cluster import KMeans
2 from dislib.data import load_txt_file
3

4 x = load_txt_file("data.csv", block_size=...)
5 kmeans = KMeans(n_clusters=10)
6 kmeans.fit(x)
7 print(kmeans.centers)

Figure 1: dislib code.

B. Performance evaluation

We compare dislib’s performance to two similar libraries:
MLlib and Dask-ML. We use these libraries because they
share many characteristics with dislib, including an interface
based on estimators, automatic data management and dis-
tribution, and support for HPC clusters. We use K-means
as a benchmark, which is a popular unsupervised learning
algorithm, and we run our experiments on the MareNostrum 4
supercomputer1.

Figure 2 shows execution times and speedup of the K-
means algorithm in MLlib, Dask-ML, and dislib. We exper-
iment with two different granularities: 50 features and 50

1https://www.bsc.es/marenostrum



48 192 384 768 1536
96

Cores

250

500

750

1000

1250

Ti
m

e 
(s

)

dislib
dislib-12
dask-ml

48 192 384 768 1536
96

Cores

100

200

300

Sp
ee

du
p

(a) 1 billion samples with low granularity (50 features and 50 clusters).

48 192 384 768 1536
96

Cores

0

500

1000

1500

2000

2500

Ti
m

e 
(s

)

dislib
dislib-12
dask-ml
mllib

48 192 384 768 1536
96

Cores

100

200

300

400

Sp
ee

du
p

(b) 500 million samples with high granularity (100 features and 500 clusters).

Figure 2: Execution times and speedup of K-means.

clusters (low granularity), and 100 features and 500 clusters
(high granularity). We run the algorithm for 5 iterations with
randomly generated data divided in 1,536 partitions in all
cases. Missing points in the plots mean that the execution failed
due to memory issues. In the case of dislib, we run two sets
of experiments: using 48 and 12 processes per node (labeled
in Figure 2 as dislib and dislib-12 respectively). This is to get
a better comparison against Dask-ML, which can only use 12
processes per node due to memory limitations.

We see that dislib outperforms MLlib and Dask-ML both
in terms of execution time and data size. More precisely,
dislib can be up to 4 times faster than MLlib and Dask-
ML. When running with 192 and 384 cores with 500 million
samples, Dask-ML achieves similar performance to dislib with
12 processes per node. This means that some of the difference
in performance between dislib and Dask-ML is due to dislib
being able to utilize all the available cores. However, when
running with 768 and 1,536 cores, dislib with 12 processes
per node outperforms Dask-ML. This means that dislib scales
better in terms of the number of nodes.

Our evaluation shows that dislib greatly outperforms MLlib
and Dask-ML, both in execution time and ability to process
large data sets. Moreover, running dislib using HPC queue
systems like Slurm is completely automatic, whereas MLlib
and Dask-ML require writing custom deployment scripts, and
fiddling with configuration parameters to obtain good perfor-
mance. Moreover, Dask-ML provides limited code portability
as the IP of the Dask scheduler needs to be defined in the
source code of the application. In terms of memory manage-
ment, our experiments show that both Dask-ML and MLlib
often raise out-of-memory errors when processing large data
sets, while dislib is much more robust. Dask-ML can handle
larger data sets than MLlib, but cannot use all the available
computational resources. Unlike dislib, both MLlib and Dask-
ML required manual configuration of the number of workers
per node, and the amount of CPU and memory per worker. This
makes MLlib and Dask-ML less accessible to non-experts,
as finding the optimal configuration for a particular cluster

is a difficult task that requires an extensive trial and error
process. Moreover, this means that the performance of MLlib
and Dask-ML is limited by the ability of the user to tune the
configuration parameters.

II. ACKNOWLEDGMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement H2020-MSCA-
COFUND-2016-754433. The research leading to these results
has also received funding from the collaboration between
Fujitsu and BSC (Script Language Platform).

REFERENCES

[1] J. Álvarez Cid-Fuentes, S. Solà, P. Álvarez, A. Castro-Ginard, and
R. M. Badia, “dislib: Large Scale High Performance Machine Learning
in Python,” in Proceedings of the 15th International Conference on
eScience, 2019, pp. 96–105.

[2] F. Lordan, E. Tejedor, J. Ejarque, and et al., “ServiceSs: an interoperable
programming framework for the Cloud,” Journal of Grid Computing,
vol. 12, no. 1, pp. 67–91, 2014.

[3] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array:
A Structure for Efficient Numerical Computation,” Computing in Science
& Engineering, vol. 13, no. 2, p. 22, 2011.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and Édouard
Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal of
Machine Learning Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[5] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-Means
Clustering Algorithm,” Journal of the Royal Statistical Society. Series
C (Applied Statistics), vol. 28, no. 1, pp. 100–108, 1979.

Javier Álvarez Cid-Fuentes is a researcher at the
Workflows and Distributed Computing group of the
Barcelona Supercomputing Center. His research in-
terests include large scale distributed machine learn-
ing and parallel programming models for distributed
infrastructures. Álvarez Cid-Fuentes received a Ph.D.
in computer science from the University of Adelaide
in 2018.




