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Abstract

Unveiling the input a neuron receives and distinguishing between excitation and inhibition provides infor-
mation on local connectivity and brain operating conditions. However, experimental techniques do not
allow direct recordings of synaptic inputs, and thus inverse methods are sought to retrieve synaptic cur-
rents/conductances from cell voltage. We propose a new method to estimate synaptic currents in neuron
models using control theory (equivalent control and robust exact differentiation) and disentangle excitatory
from inhibitory synaptic conductances.

Some irregularities make it impossible to deduce these conductances from the estimation of the synaptic
current, therefore we introduce a second algorithm to estimate conductances inspired in an oversampling
method presented by Bédard et al. that gives more successful results.
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1. Introduction

Dynamical systems theory has always interested me, and these last years, one of my priorities has been
studying its applications, which span to a wide variety of fields such as physics, engineering, chemistry, or
economics. In this project, we will focus on the applications in biology, specifically in neuroscience.

Computational neuroscience is a branch of neuroscience that uses mathematical models to understand
the principles that govern the development of the nervous system. The field of computational neuroscience
began to be explored at the beginning of the last century.

Louis Lapicque was the first one to publish, in 1907, an article developing a model for a neuron, the
integrate and fire model. However, a lot of people consider that the field of computational neuroscience
started with the 1952 paper of Hodgkin and Huxley in which they describe, through nonlinear partial
differential equations, the genesis of the action potential in the giant axon of the squid. The Hodgkin-
Huxley equations have been the basis of the modern computational neuroscience and have inspired the
development of new mathematics. The dynamical systems and computational methods are essential tools
for the development of this field.

The main goal of these models is to understand the behavior of the neurons, and the interaction be-
tween them.

Neurons are cells that have the ability to communicate with each other through electrical or chemical
signals. The information transmitted can amplify (excitation) or reduce (inhibition) the activity of the
receiving neurons and so the activity of the brain. This exchange of information between neurons is called
the synapse. The brain of an animal is formed by a large number of neurons (from thousands to billions).
This increases the number of total connections between them (between 1014 and 1015, for the human
brain), so, increase the complexity of the brain.

A typical problem in computational neuroscience is the search of which signal is receiving a single neuron
from the neurons it is connected to (synaptic signal), and then discern the temporal contributions of
excitation from those of global inhibition.

A large number of synaptic contacts make unreachable to obtain directly the measurements of the synaptic
currents that a neuron is receiving at each instant of time. A lot of methods have been developed in order
to distinguish these two signals and despite of being based on different arguments, most of them have in
common the use of inverse methods.

In this project, we will introduce a method to obtain the temporal contributions of global excitation and
of global inhibition from experimental observation. So, we will be using an inverse method as a structure
for the algorithm. Also, this method is based on control theory tools that we will present later.

In the Chapter 2, we will present an overview of how dynamical systems and computational analysis
have been used in the construction of the main models that come out of neuroscience. This will give us
the main idea of how a neuron works and the importance of understanding the role of the main variables
and parameters on the behavior of the cell. We will focus on the construction of the Hodgkin-Huxley equa-
tions and the Morris-Lecar equations. These two models will be the basis of the method that we will present.
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Synaptic parameter estimation

Chapter 3 is dedicated to the development of the control method for the synaptic term and the distinction
of the excitatory and inhibitory signal from this synaptic current. We will explain the main arguments for
the use of this method and the advantages and disadvantages that we have.

The algorithm used and the main results are presented in Chapter 4 we will be able to see that using
the control method we obtain a good estimation of the synaptic term. However, some irregularities make it
impossible to distinguish the excitatory and inhibitory signals. This forces us to introduce another method
for the estimation of these signals even if the control theory is not going to be the basis of this alternative
method.

We have to notice that this new method has not been developed with the precision that we have
developed the control method because the main goal of this project was the use of the control method for
the estimation of the excitatory and inhibitory signals.

For the development of this method, we have used C language to construct the necessary algorithms
for the estimation of synaptic conductances. We can find the code in the next url: https://web.mat.

upc.edu/antoni.guillamon/Code/SynapticEstimationViaControl.
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2. Background

It is important to introduce background concepts about neuroscience and mathematics to deal with the
problem that concerns us. This chapter will give us relevant information about the behavior of the brain,
useful for the explanation, and construction of the main neuronal mathematical models.

We could write an entire work taking about all the concepts that we will introduce in this chapter be-
cause there is a large amount of information available talking about these topics, but we will only define
and focus on the relevant concepts and necessary information to deal with the different models that we
will use further and to understand the neurobiological problem under study.

We will start with the most important concept in brain science and the most basic structure in this
field, the neuron. Our goal is to explain how a neuron works and the meaning of its behavior. Related to
the neuron we have a lot of parameters and variables that influence the behavior of this type of cell. It is
important to conjecture the meaning of these elements to have a general view of the neuron.

We also introduce the interaction between neurons, the synapse. We will explain how a neuron connects
with other neurons of the network and how we can model this type of connection.

2.1 Important concepts about neurons

A human brain is formed by 1011 neurons, much fewer than the number of non-neuronal cells. But neurons
are unique in the sense that they are the only cells that can transmit electrical signals over long distances.

A neuron typically has three parts: the soma, which contains the nucleus of the cell, the dendrites, the
part of the neuron that receives the information that comes from other cells, and the axon, which is the
part of the neuron that sends the information from the neuron to the others.

As every cell, a neuron has a membrane that distinguish the interior of the cell with the exterior. The utility
of the membrane is to separate the concentration of ions of the two sides of it. This gives two different
voltages: the voltage outside the cell, called Vout , and the voltage inside the cell, called Vin.

The study of a neuron is generally focused on the study of the potential due to charge separation across
the cell membrane V = Vin − Vout , but by convention, it is taken Vout = 0. This potential is called the
membrane potential, and most of existing models assume that it is homogeneous in all the soma.

A typical neuron receives inputs from more than 10 000 other neurons. The inputs produce electrical
currents that change the membrane potential of the neuron, generally from the dendrites to the soma.
Large electrical currents can lead to the generation of an action potential or spike, an abrupt and transient
change of membrane voltage that propagates to other neurons via the axon. The spike is propagated along
all the neurons of a network and it’s the responsible of the information transmission between neurons. In
general, neurons do not fire on their own, the generation of a spike is given by the result of incoming spikes
from another neurons.

Now we have to introduce important concepts to understand the changes in the membrane potential
that we could have during an action potential.
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2.1.1 Resting potential

First of all, we introduce the resting potential, the potential across the membrane when the cell is at rest.
A typical neuron has a resting potential of about −70mV .

The potential inside the cell will vary because of the exchange of ions between the interior and exterior of
the neuron.

An inward current corresponds to a positively charged ion, such as Na+, entering the cell. This inward
current raises the membrane potential, the cell is depolarized. An outward current corresponds to a posi-
tively charged ion, such as K+, leaving the cell. The membrane potential decreases and the cell becomes
hyperpolarized. In the membrane of the cell there are channels that are responsible for these changes in
the membrane potential, allowing the influx and outflux of ions that increase or decrease the membrane
potential.

The principal ions that we can find on either side of the cell membrane are sodium (Na+), potassium
(K+), chloride (Cl−) and calcium (Ca2+). Inside the cell, the concentration of K+ is 10 times larger than
outside. On the other hand, the concentration of Na+ and Cl− outside of the cell is larger than inside.

As we have said above, the exchange of ions between the inside and outside of the cell is possible thanks
to channels contained in the membrane of the neuron, the most common ones being ionic chanels such
that the Na+, K+, Cl− and Ca2+ channels. We have two types of ionic channels in the membrane: the
leak channels and the voltage-gated channels.

The voltage-gated channels are typically exclusive for a single ion. The membrane will be more permeable
to the ions that have a larger number of open channels selective to them. Normally, the voltage-gated
channels are closed when the cell is at rest. Those responsible for maintaining this state are the leak chan-
nels that are always open and make remain the neuron at the resting potential. So, the resting potential
will be amplified by an incoming spike from other neurons, the voltage-gated channels will open and will
lead to the generation of an action potential or spike.

The main goal of the cell is to maintain the charges inside and outside the neuron in equilibrium. During
the action potential, when the membrane potential increases, some voltage-gated channels are open in
order to decrease it.

The simplest theory of neuroscience describes the neurons as integrators with a threshold. A neuron
may receive inputs from other neurons, called postsynaptic potentials, which modify the neuron’s mem-
brane potential. If the new value of the membrane potential holds below a given threshold, the neuron
remains in the resting potential. If the postsynaptic potential is above the threshold, then the voltage-gated
channels are open, an action potential occurs, and then resets its membrane potential.

2.1.2 Synapse

A synapse consists of an exchange of voltage between the pre-synaptic neuron and the post-synaptic neuron.
The action potentials or spikes activate this transmission of information.

In the synapse, the action potential comes from the terminal part of the axon of the pre-synaptic neuron
to the dendrite of the post-synaptic neuron. Except for electrical synapses the two implicated neurons are

6



not in touch, there is a space between the axon and the dendrites, also called gap junctions.

The last part of the axon of a pre-synaptic neuron contains small vesicles with different kinds of neu-
rotransmitters inside such as Glutamate and GABA. When a synapse occurs, the vesicles are disintegrated
and release the neurotransmitters at the free space which are eventually captured by the receptors of the
dendrites that allow them to enter into the post-synaptic neuron. The entrance of these neurotransmitters
can cause an increase, decrease of the membrane potential, or a non-response in the neuron.

2.2 Neuronal biophysics and modeling

In this chapter, we will formalize and mathematize the concepts introduced above. It’s is important to
understand and be familiarized with all these formalisms in order to construct the models used in this
project. We will see that the neuron can be understood as a circuit in the electrical point of view, and we
will explain how to model it. Also, we want to deal with the ionic channels and the ionic currents in order
to model how the influx and outflux of ions vary the membrane potential.

2.2.1 Leak and ionic currents

The electric impulses of the neurons are generated and propagated via ionic currents. As we have said
before, the concentration of these involved ions is different inside and outside of a cell, which creates
electrochemical gradients. Outside the cell there is a larger concentration of Na+ and Cl−, and inside the
cell we can find a higher concentration of K+, and molecules with a negative charge (denoted as A−).
This concentration gradient, together with and electric potential gradient cause a constant exchange of
ions between inside and outside of the neuron using the ionic channels.

For example, when the concentration of K+ inside is higher than outside, then the leak channels al-
low the exit of the ions. While the ions are leaving, the cell carries a positive charge outside the neuron,
and leaves a negative charge inside the cell. This two different charges accumulated on the opposite sides
of the membrane surface create an electric potential gradient across the membrane. This electric potential
reduces the outflux of K+ caused by the attraction between K+ and the interior of the cell that now has
negative charge, and the repulsion from the positively charged exterior. We can see it in Figure 1.

When the concentration and electric gradient exert equal and opposite forces, they counterbalance each
other and an equilibrium state is reached. This equilibrium is given by the Nernst equation:

Vion =
RT

zF
ln

[Ion]out
[Ion]in

where [Ion]in and [Ion]out are concentrations of the ions inside and outside the cell respectively. R is
the universal gas constant with value 8, 315 mJ

(Ko·Mol) , T is temperature in degrees Kelvin, F is Faraday’s

constant, and z is the valence of the ion (z = 1 for K+ and Na+ and z = −1 for Cl−).

We consider that V denotes the membrane potential and VNa, VCa and VK denote the Nerst equilib-
rium potentials or reverse potentials. Now using the definition of these concepts, we can define the net
ion current that will describe the exchange of ions between the outside and inside of the cell membrane in
terms of potential. We denote it as Iion, and as it is clear that Iion is equal to zero when V = Vion. In
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Figure 1: (a) In this figure we can see that the cell allows the outflux of K+, and the concentration
gradient of K+ moves K+ ions out of the cell. (b) The concentration of positive charge ions outside the
cell increases, so, we have to reach an equilibrium when the electrical and chemical forces are equal and
opposite. Image from [2].

general, the net ion current is proportional to the difference of potential:

Iion = gion(V − Vion)

where gion is called ionic conductance with units (mS/cm2).

In general, the conductances are not constant and depend on time. It is the time-dependent variation
in conductances that allows a neuron to generate an action potential.

In the same way that we have introduced the ionic currents, we can introduce the leak current, IL =
gL(V −VL) that controls the aperture of the leak channels. It corresponds to passive flow of ions through
non-gated channels. Most of them control the inflow and outflow of K+, so VL will be close to VK .

The leak conductance gL, is constant. The conductances gNa and gK may change with time.

2.2.2 The analogy with an electric circuit.

To create the model of the neuron, first of all, we have to understand that we can represent the electric
model of the neuron as an electrical circuit. This interpretation will give us a qualitative knowledge of the
behavior of the membrane potential affected by the exchange of ions along the cell membrane.

A circuit consists of three components: The resistors, that will represent the ionic channels, the bat-
teries, that will represent the concentration gradient of the ions, and the capacitors, representing the ability
of the membrane to store charge.
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The cell membrane is formed by a lipid bilayer and be interpreted as a capacitor. Using that, we can
relate the charge stored and the potential in the following way:

q = CV

where q denotes the total charge, V is the potential, and the constant C is called the membrane capacitance.
Notice that for larger neurons, we have larger total capacitance. Knowing that the current is the time

Figure 2: Representation of a neuron membrane as a circuit.

derivative of charge, differentiating the equation q = CV , we obtain the expression of the capacitance
current:

icap = C
dV

dt

We also have seen that the ionic current is:

Iion = INa + IK + ICl

Krichhoff’s current law says that the total current into the cell must sum to zero. Adding to that the
equivalent circuit representation, we obtain:

icap + Iion = 0

C
dV

dt
= −Iion

Assuming that we have a current source, called Iapp, flowing into the cell membrane we have:

C V̇ = −INa − IK − ICl + Iapp

Notice that the membrane potential is typically bounded by the equilibrium potentials in the following way:

VK < VCl < V < VNa < VCa
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So, we have that INa, ICa < 0. The negative sign of the currents means that are inward currents, and as
IK, ICl > 0, they are outward currents.

We have to notice that ICl is an outward current even though the flow of Cl− ions is inward, but these
ions are negatively charged, so it is equivalent to positively charged ions leaving the cell.

2.2.3 Resting potential

We have modeled the membrane potential as a differential equation, and we want to find for which value
of the membrane potential the inward and outward currents balance each other. This value is called the
resting membrane potential. If we only have K+ channels and Iapp = 0, the membrane potential would
tend to K+ equilibrium potential which is around −90 mV.

0 = C V̇ = −gK(V − VK)

Veq = VK

In the general case we have channels for each ion, so, we will have for example that the K+ channels will
produce a outward current of ions, so will decrease the membrane potential, but the Na+ channels will
allow the entrance of positive ions inside the cell. We have to find a equilibrium where the inflow and
outflow of ions are balanced.

0 = C V̇ = −INa − IK − ICl + Iapp

Veq =
gClVCl + gNaVNa + gKVK + Iapp

gCl + gNa + gK

If we consider that Iapp = 0 we have that:

Vrest =
gClVCl + gNaVNa + gKVK

gCl + gNa + gK

and we can write the circuit equation as:

C V̇ = Iapp − gion(V − Vrest)

where gion is the total membrane conductance. We finally we can deduce that:

V −→ Vrest + Iapp
1

gion

We have to notice that the total ionic conductance is dependent of V and time.

2.2.4 Ionic conductances

As we have said before, ionic channels let the inflow and outflow of the different ions. The conductances
try to model the action of the gates, which switches the channels between open and closed states. These
gates are sensitive to the membrane potential.

The ionic conductances can change along time, so we have to model them.

Knowing that, we rewrite the ionic currents as:

Iion = ¯gionpion(V − Vion)
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where pion is the average proportion of the ionic channels in the open state, that will depend on V and t,
and ¯gion is the maximal conductance of this ionic channels. Let’s define more precisely pion.

There exist two types of gates. The gates that open the channels, and the gates that close them.

Hodgkin and Huxley studied the dynamics of K+ and Na+ conductances, and proposed a description
of pion. This variable will depend on two different variables, m, and h.

• m denotes the probability of an activation gate being in the open state. Also can be denoted by
the variable n. This variable is bounded by 0 and 1. We will consider m = 0 when the channel is
deactivated and m = 1 when the channel is completely activated.

• h denotes the probability of an inactivation gate being in the open state. This variable also is bounded
by 0 and 1, and we consider h = 0 when the channel is inactivated, and h = 1 when the channel is
released from inactivation.

Using that, the proportion of open channels is:

p = mahb

where a is the number of activation gates, and b is the number of inactivation gates per channel.

There exist some channels that do not inactivate so, we have persistent currents. In this case b = 0
and p = ma. If we have channels that can be inactivated we have transient currents.

Let’s describe the dynamics of the variables defined before. First of all we describe the dynamics of
the activation variable m. As we have said before, we consider that the gates can be either open or closed.
The probability that a gate is open or close will depend on the membrane potential. αm(V ) is the prob-
ability of a gate to go from closed to open state, and βm(V ) is the probability of a gate to go from the
open to closed state. If we consider that m is the fraction of open gates, then 1 − m is the fraction of
closed gate, so:

ṁ = αm(V )(1−m)− βm(V )m =
m∞(V )−m

τm(V )

where:

m∞(V ) =
αm(V )

αm(V ) + βm(V )
, and, τm(V ) =

1

αm(V ) + βm(V )

If V is constant, we have that the solution will be:

m(t) = m∞(V ) + (m(0)−m∞(V ))e−t/τm(V )

Using that, we can see that m(t) −→ m∞(V ).

The same can be done for the deactivation variable h. We will denote as αh(V ) the probability of a
gate to go from open to closed state, and βh(V ) the probability of a gate to go from closed to open state.
h is the fraction of closed gates. We have:

ḣ = αh(V )(1− h)− βh(V )h =
h∞(V ) − h

τh(V )
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where:

h∞(V ) =
αh(V )

αh(V ) + βh(V )
, and, τh(V ) =

1

αh(V ) + βh(V )

Hodgkin-Huxley proposed a expression for these expressions, α(V ) and β(V ). The idea is that the proba-
bility of opening or closing a channel depends exponentially on the potential:

α(V ) = Aαexp(−BαV )

β(V ) = Aβexp(−BβV )

2.3 Neuron models

In the previous chapter we have seen how we can model and understand the most important concepts in
neurophisiology. We can use all these concepts to construct and develop the basic models of neuroscience.
The main tool in the construction of these models is the dynamical systems theory, for analyzing nonlinear
systems of differential equations. This theory allows as to study the geometric structure of phase space,
and classify the types of solutions and extract some conclusions from that. In the case of the neuroscience,
the dynamical systems can often predict if a model neuron will generate an action potential, if we will have
oscillations, etc.

There are a lot of different neuroscience models, and each one is useful in different ways. Depending
on your goal you will take a model or another. In this project we will focus on the Hodgkin-Huxley model,
and the Morris-Lecar model.

2.3.1 Hodgkin-Huxley formalism

The Hodgkin-Huxley model is the most important in computational neuroscience. In 1952 Hodgkin and
Huxley developed a theory that assumes that the squid axon carries three major currents: Voltage-gated
persistent K+ current with four activation gates, voltage-gated transient Na+current with three activation
gates and one inactivation gate, and the leak current, IL, which allows the pass of Cl− ions.

Knowing that we develop the following equations that will describe the model.
C V̇ = − ¯gNam3h(V − VNa)− ḡKn4(V − VK)− gL(V − VL) + Iapp

ṁ = φ(m∞(V )−m
τm(V ) )

ḣ = φ(h∞(V )−h
τh(V ) )

ṅ = φ(n∞−nτn(V ) )

The parameter φ represents the temperature factor. The temperature at which an experiment is done can
be determinant. The parameter φ appears when we model the channels gates because the channels are
sensitive to the temperatures. Higher temperatures cause faster switching. The expression of this factor is
the following one:

φ = Q
(T−Tbase)/10

10

where T is the ambient temperature and Q10 is the ratio of the rates for an increase in temperature of
10oC. For the squid giant axon Tbase = 6.3oC and Q10 = 3.
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Also, Hodgkin and Huxley chose the following parameters and gating functions:

¯gNa = 120mS/cm3 , ḡK = 36mS/cm3 , gL = 0.3mS/cm3

VNa = 50mV , VK = −77mV , VL = −54.4mV

The gate probabilities used are the following:

αn(V ) = 0.01
V + 55

1− exp
(
−(V+55)

10

) , βn(V ) = 0.125exp

(
−(V + 65)

80

)

αm(V ) = 0.1
V + 40

1− exp
(
−(V+40)

10

) , βm(V ) = 4exp

(
−(V + 65)

18

)

αh(V ) = 0.07exp

(
−(V + 65)

20

)
, βh(V ) =

1

1 + exp
(
−(V+35)

10

)
If we plot the curves n∞(V ), m∞(V ) and h∞(V ) in Figure 3, we can see that n∞ and m∞ increase when

Figure 3: m∞, n∞ and h∞ depending on V .

we increase the values of V. When we have a small value of V these functions approach to 0, and when we
increase the value of V , the functions approach to 1. The function h∞(V ) is a decreasing function, and
we can see that when the membrane potential is depolarized, h∞ ≈ 0. We can say that while we increase
the membrane potential V , the K+ channels open, whereas Na+ channels both activate and inactivate.

In Figure 4 we can see the plots of τm, τh and τn. We can see that τm is much smaller than τh and
τn, so, the Na+ channels activate much faster than they inactivate or K+ channels open. This follows that
gNa will increase faster than gK.

Knowing this we can deduce the different changes in the membrane potential during an action potential. If
the cell is at rest, if gNa increases, then IK = gNa(V −VNa) also will increase. The membrane potential V
will increase because it will be dominated by Na+ current until V approach to VNa. When V arrive to this
point, then, as we have seen before, the Na+ channels inactivate, because at this point, h ≈ h∞(V ) ≈ 0.
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Figure 4: τm, τn, τh depending on V .

In the other hand, for this values of V , the K+ channels open up, because n ≈ n∞(V ) ≈ 1. The K+ let
the exit of positive ions, so the membrane potential will decrease until V approach to VK.

After an action potential we reset the previous variables: m∞ = 0, n∞ = 0 and h∞ = 1.

In this project, instead of working with the Hodgkin-Huxley equations, we will work with a simplicity
of this model: The reduced Hodgkin-Huxley model.

The aim of this reduction is to transform the fourth dimensional Hodgkin-Huxley model into a two
dimensional dynamical system. In the original Hodgkin-Huxely equations we have four variables (V , n, m, h)
where V corresponds to the membrane potential and n, m, h are gatting variables. Now we introduce the
two dimensional reduced Hodgkin-Huxley equations for (V , n).{

C V̇ = − ¯gNam3h(V − VNa)− ḡKn4(V − VK)− gL(V − VL) + Iapp
ṅ = φ(n∞−nτn(V ) )

The gating variables m and h are defined in the following way:

• In the original Hodgkin-Huxley equations we know that the dynamics of the gating variable m is the
following:

ṁ = φ(
m∞(V )−m

τm(V )
)

We can see that this equation has an invariant manifold m(V ) = m∞(V ). Assuming that V0

is the initial membrane potential, in the reduced Hodgkin-Huxley equations we will assume that
m(V0) = m∞(V0) so the trajectory of m will follow the trajectory of m∞(V ).

• To define the dynamics of h we will assume that h depends on n. It can be seen in Figure 3 and 4
that h∞ ≈ 0.8 − n∞ and τh and τn has similar behaviours. So, knowing that the gating variable h
can be estimated knowing n in the following way:

h(V ) = 0.8− n(V )
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2.3.2 Morris-Lecar model

The Morris-Lecar equations are a reduced two-variable model. This model is considerably simpler than the
Hodgkin-Huxley model but is able to exhibit the most important properties of the neuronal activity.

This model was proposed by Catherine Morris and Harold Lecar. It was developed to reproduce the
variety of oscillatory behavior in relation to Ca+ and K+ conductance in the muscle fiber of the giant
barnacle. They construct the model, assuming that the neuron has only three channels: A potassium
channel, a leak channel and a calcium channel. We can simplify this model considering that the calcium
conductance depends only on the voltage. Assuming that, we can construct the Morris-Lecar model in the
following way: {

C V̇ = −ḡKw(V − VK)− ¯gCam∞(V )(V − VCa)− gL(V − VL) + Iapp

ẇ = φ(w∞(V )−w
τw (V ) )

where

m∞(V ) =
1

2

(
1 +

tanh(V − V1)

V2

)
w∞(V ) =

1

2

(
1 +

tanh(V − V3)

V4

)
τw (V ) =

1

cosh
(
V−V3

2V4

)
and V1, V2, V3, V4 are chosen parameters.

The interpretation of the dynamics of w is analog to the dynamics of the gating variables that appear
in the Hodgkin-Huxley model explained in the previous chapter.

If we are interested in proving some properties of the neurons and in developing some theoretical re-
sults, the Morris-Lecar is a good model to start with because it’s a simple and qualitative model. As

Figure 5: Solution of the Morris-Lecar system considering Iapp = 45.

we can see in Figure 5, the Morris-Lecar equations give a good approximation of the neuronal activity

15



Synaptic parameter estimation

and shows the main properties displayed by neurons. If we increase the value of Iapp, the frequency of
oscillations increase.

2.4 Synaptic Channels

Until now we have explained how to model a single neuron, the behavior of the neuron, and the different
channels under the influence of an external potential Iapp. If we want to construct a more realistic model of
the neuronal activity we have to take into account that the neurons are in touch and they are connected.

We have seen that the membrane of the cell contains ionic and leak channels that allow the exchange
of ions between the interior and the exterior of the neuron. There are many other channels on the mem-
brane, and they are activated in different ways. In this chapter, we introduce the mechanism that allows
the transmission of voltage between the different neurons of a network, the synapse.

The synapse involves two neurons: the pre-synaptic neuron, the neuron that transmits the information,
and the post-synaptic neuron, which receives the voltage. The aperture of the synaptic channels and the
transmission of the action potential between the pre-synaptic neuron and the post-synaptic neuron is given
in the following way:

• The action potential of the pre-synaptic travels along the axon and arrives at the final part of the
neuron called the synaptic terminal. There we have calcium channels that are activated by the action
potential and release calcium.

• This calcium, at the same time, activates a calcium-binding protein that causes the release of neu-
rotransmitters, which are in the interior of a vesicle, at the exterior of the cell, in the space between
the two neurons called the synaptic cleft.

• The receptors on the dendrites of the post-synaptic cell receive the chemical signal of the transmitters
and open some channels allowing the entrance of the neurotransmitters. These neurotransmitters
can depolarize or hyperpolarize the neuron depending on their nature.

In order to add the synaptic term at the models defined in the previous chapter, we have to define some
equations to model the synaptic current.

As for other currents, we model the synaptic currents as a product of conductance with a voltage
difference:

Isyn = gsyn(t)(V − Vsyn)

where gsyn is the synaptic conductance, that depends on the pre-synaptic voltage, and Vsyn is the synaptic
reversal potential.

As we have said before, there a lot of different neurotransmitters, and when the post-synaptic neuron
captures them, they can excite or inhibit the cell. To differentiate that in the formula of the synaptic
current, we can express the previous expression is a sum of two parts: The excitatory current, and the
inhibitory current.

Isyn = gE (t)(V − VE ) + gI (t)(V − VI )

were gE and VE are the excitatory conductance and excitatory reversal potential respectively and gI and
VI are the inhibitory conductance and inhibitory reversal potential respectively.
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There are several ways to construct the conductance gE , gI , and gsyn. The modeling of this functions
is not the principal aim of this project. We opt for a simple expression for the synaptic current because we
are interested in the total excitatory and inhibitory conductances. To find more information about other
constructions of the synpatic current look at [2].

The excitatory and inhibitory reversal potentials depend on the model that we are working on. In
Hodgkin-Huxley equations we use VE = 0mV and VI = −80mV. In Morris-Lecar equations we use
VE = 10mV and VI = −50mV.

To complete the model of the neuron that we have seen above, we have to add the synaptic current
in order to model the connection of the cell with the neuronal network. For example, if we add the synaptic
term in the Hodgkin-Huxley model we will finally have:

C V̇ = Iapp − ¯gNam3h(V − VNa)− ḡKn4(V − VK)− gL(V − VL)− Isyn

ṁ = φ(m∞(V )−m
τm(V ) )

ḣ = φ(h∞(V )−h
τh(V ) )

ṅ = φ(n∞−nτn(V ) )

(1)

In the Morris-Lecar equations, the synaptic current Isyn = gE (t)(V − VE ) + gI (t)(V − VI ) appears in
the formula in the same way:{

C V̇ = −ḡKw(V − VK)− ¯gCam∞(V )(V − VCa)− gL(V − VL) + Iapp − Isyn

ẇ = φ(w∞(V )−w
τw (V ) )

(2)

2.5 Sliding mode control

The main tool of the method presented at this project is the sliding mode control. Therefore, let’s construct
the fundamental background of theory of control to understand the construction of the method presented
at the following chapter.

A plant (process) can be understood as a system with an input, and an output. A control system regulates
the behavior of the process using control loops. In a control system we can identify the following elements:
The feedback controller is the responsible of control the process. The control system compares the actual
value of a process variable being controlled with the desired value or setpoint, and we use the difference
as a control signal to modify the process to bring the process variable output to the setpoint.

There are two classes of control systems depending on the influence of the process variable on the
behaviour of the system.

Systems in which the output quantity has no effect upon the input of the control process are called
open-loop control systems. The control action from the controller is independent of the process variable.
An example of open-loop system is a central heating boiler controlled only by a timer. The controller is
the timer and the process variable is the building temperature.

The Close-loop Systems use the output of the system (or feedback signal) to both control and adjust
the system. Therefore a closed-loop control system has the role of keeping a measured physical signal to the
a predefined value (setpoint). An example of a closed-loop system is the same central heating boiler adding
a thermostat. This system will give as feedback the actual temperature of the boiler and when the temper-
ature reach the setpoint, the controller turns off. In Figure 6 we can see a diagram of a closed-loop system.
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Figure 6: Diagram of a closed-loop system.

There are a lot of methods to control the behaviour of these variable. In this project we will have as
process a non-linear differential equation, so, we will need a control method for non-linear differential equa-
tions. We will be using the sliding mode control.

The sliding mode control is a nonlinear control method that alters the dynamics of a nonlinear system
by application of a discontinuous control signal (u) that forces the system to ”slide” along a cross-section
(sliding surface) of the system’s normal behavior. Instead the control signal is not a continuous function
of time, the system can switch from one continuous structure to another based on the current position in
the state space. Let’s explain a simlper idea of the sliding mode control.

Imagine that we want a ball to follow a desired trajectory (for example a straight). We get this kicking
the ball in a transversal direction to the straight and against it. If the kicking frequency is infinite the ball
will converge along the straight. See it in Figure 4.

Figure 7: Example of a sliding mode control.

The main idea of the sliding mode control is that given a nonlinear system, we add a control action
to this system to make converge the trajectories to a given surface. Let’s see it with an example.

Given the following linear system: {
ẋ = y
ẏ = k1x + k2y

(3)

depending on k1 and k2. Assume that k2 = 0.1. We have that:(
ẋ
ẏ

)
= M

(
x
y

)
, where, M =

(
0 1
k1 0.1

)
Let’s compute the eigenvalues of the matrix M to understand the behavior of the system. Take two different
values of k1.
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• If k1 = 1.5, we have eig(M) = {1.2758,−1.1758}. This means that p = (0, 0) will be a saddle point.

• If k1 = −1.5, we have eig(M) = {0.05 + 1.22i, 0.05 − 1.22i}. This means that p = (0, 0) will be a
unstable focus.

See that in both cases, we have that p = (0, 0) is an unstable equilibrium point.

Figure 8: Phase space of the differential equation 3 taking k1 = −1.5 (left figure) and k1 = 1.5 (right
figure).

The main propose of this example is the generation of a new differential equation combining the two
previous equations and switching from one to the other using a control action. We want to create a new
differential equation having p = (0, 0) as a globally asymptotically stable equilibrium point.

We will assume that the following straight r : y + x = 0 is dividing our state space. Then, taking
s = y + x , we will consider the following control action: u = −k1|x |sign(s). See that u will switch between
u = −k1|x | and u = k1|x | depending on whether we are above or below the stright r .

Taking this expression for u, let’s define the following differential equation taking k1 = 1.5 and k2 = 0.1:{
ẋ = y
ẏ = u + k2y

(4)

If we take an initial condition above the straight r , we have that u = −k1|x | < 0. Knowing this we have
that:

• If x > 0, the dynamic of y can be written as ẏ = −k1x + k2y , therefore, at this region (x , y) follows
the dynamics of a focus.

• If x < 0, the dynamics of y can be written as ẏ = k1x + k2y , therefore, at this region (x , y) follows
the dynamics of a saddle.

If we take an initial condition below the straight r , we have that u = k1|x | > 0. Knowing this we have
that:

• If x < 0, the dynamic of y can be written as ẏ = −k1x + k2y , therefore, at this region the dynamics
(x , y) follows the dynamics of a focus.
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• If x > 0, the dynamics of y can be written as ẏ = k1x + k2y , therefore, at this region (x , y) follows
the dynamics of a saddle.

Using this, let’s plot the dynamics of equation 4 in order to understand the previous arguments. We have
computed them using a numerical integrator.

Figure 9: Phase space of the differential equation 4. See that all trajectories converge to p = (0, 0),
therefore this system has a globally asymptotically stable equilibrium point. Notice that the trajectories
converge to p sliding along the straight r : y + x = 0.

Let’s explain the convergence of every trajectory to the equilibrium point p = (0, 0). The idea of the
sliding mode control is to define a sliding surface s(x , y) = 0 and the variable u(x , y) to get the con-
vergence of the dynamics to the surface s(x , y) = 0. Therefore we need to define u such that given
(x , y) ∈ R2:

• If s(x , y) > 0 the dynamic of (x , y) have to point to s. Therefore ds
dt < 0.

• If s(x , y) < 0 the dynamics of (x , y) have to point to s. Therefore ds
dt > 0.

• If s(x , y) = 0 the dynamics of (x , y) must to stay on the straight. Therefore ds
dt = 0.

Assuming that s(x , y) = x + y , p = (0, 0) is a stable equilibrium point respect to the differential equation
ṡ(x , y) = 0. Therefore, if all trajectories converge to s(x , y) = 0, the system will slide along the sliding
surface toward this equilibrium. Notice that in the computational case a trajectory does not slide along the
sliding surface. Instead of this the trajectory will oscillate around this straight r because u will be switching
depending if we are above or below the straight.

In Figure 10 we can see how the variable u is switching the trajectory around the sliding surface r . In a
general case, this constant switching, with high frequency around r , can lead to a failure. For this reason,
in most of the sliding control methods we have an integrated hysteresis (hys).

The control variable u with hysteresis will not switch around the sliding surface but between an upper
and a lower limit. This way, the frequency of the switching will decrease but the variation around the
sliding surface will increase.

20



Figure 10: Oscillating behavior of the trajectory

Notice that if we take δ as integration step, and we assume that:

δ, hys → 0

we will not have the oscillation behavior of the trajectories any more. In this case the trajectory will slide
along the sliding surface until p.

For more information about control theory and sliding mode methods see [5].
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3. Control method for the synaptic parameter esti-
mation

3.1 Introduction to the problem

In a neuronal network, the number of synaptic contacts is very large. There is a constant exchange of infor-
mation between neurons and it is very difficult to obtain directly the synaptic currents that a neuron receives
at every moment from an experiment. The extraction of the synaptic conductances from an experiment is a
problem that has been extensively treated in the literature and many (partial) solutions have been suggested.

The general idea is to use an inverse method to estimate the synaptic conductances from experimen-
tal measures. From an experiment, it is relatively easy to extract the membrane potential at each moment
of time from intracellular recordings of cortical cells. After getting it, we need a mathematical method in
order to relate in some way the observed membrane potential to the synaptic conductances that we want
to get.

Therefore, the use of this inverse method can provide some important errors in the estimation. In order to
obtain effective solutions from it, we have to deal with some obstacles that can have a huge influence on
the results.

The main problems that we can find are the choice of the model that we are going to use, the pres-
ence of noise in the observable data, the necessity of recording several membrane potential time courses
and the inverse estimation problems that appear when we work with non-linear models. For each prob-
lem we can find in the literature a lot of articles with different methods to deal with them. Let us give a
small explanation for every problem and see how this can affect the estimation of the synaptic conductances.

Assuming that we have a trajectory of the membrane potential as input, we have to notice that the
extraction of data from an experimental observation is something delicate. The presence of noise into
it can be determinant during the estimation. Some solutions have been developed for the treatment of
the noise, both experimentally, and theoretically. Filtering the data before the use of a model is a typical
strategy to treat the noise.

After solving this problem we need to fit the data into a mathematical model for a neuron in which
the synaptic conductances are well identified. Most of the articles try to present a method as general as
possible. The variety of neuron types makes it not highly recommended to use specific models because the
membrane potential for these models will be very different for each type of neuron. It is more useful to use
more qualitative methods that will provide the general behavior of a neuron.

Another important obstacle that all inverse methods, both experimentally and theoretically, have to take
into account is the necessity of having to record a large number of membrane potential time courses as-
suming the invariance of the conductances for all recordings.

However, inverse methods provides excellent estimations in particular circumstances, special in subthreshold
regimes, but we have problems when we try to use a linear models in the spiking regime. Most of the
existent methods try to explain how to deal with these inverse estimations when the model is no longer

22



linear.

In the spiking regime, some nonlinear terms are active, and even filtering the membrane potential, the
input-output relation is no longer linear. Also, this does not happen exclusively into the spiking zones since
this nonlinear behaviour is present in the subthreshold regime due to the eventual activity of subthreshold
ionic channels.

In this project, we present an inverse method for the estimation of the synaptic conductances based
on the use of control theory techniques. Particularly, the method consists on using this techniques for the
estimation of the synaptic current. This is something innovative in the sense that there are no previous
works using this type of strategy for this problem.

The main idea is the creation of a variable u(t) that we are going to control in order to approximate
its values to the synaptic term Isyn, minimizing the errors as much as possible.

As we have said above, to develop the method that we want to present we have to deal with the
possible obstacles.

We will see that using this method, the synaptic current Isyn can be estimated quite accurately, even
in the spiking regimes. This means that we will not have problems to estimate the synaptic term in the
non-linear zones. Also, we will see that to obtain a copy of the trajectory of Isyn we only need to record
a single register of the membrane potential. However, we will see that the choice of the model that we
are going to use is really important. The method is developed in such a way that can be adapted to any
conductance-based models. Recall that the conductance-based models are the basic biophysical represen-
tation of an excitable cell, see Chapter 2.3.

We will see that our method works thanks to the gating variables having the following dynamics:

ẇ = φ(
w∞(V )− w

τw (V )
).

Therefore, our method will be extremely dependent on the model.

Let us introduce the main ideas of the method that we have developed and some of the theory behind the
construction arguments.

3.2 Control theory method

The main idea of the method is the use of a sliding mode control with a control action u that, one filtered,
will provide the trajectory of Isyn. After that, we can identify the excitatory and inhibitory conductances
from Isyn by solving a system of equations.

As we have said above, we are talking about an inverse method whose goal is to estimate Isyn from
experimental data of the membrane potential of a neuron. In this project we will develop this method using
the Morris-Lecar equations and the reduced Hodgkin-Huxley model as connection between the observable
data and the synaptic term. To avoid redundancies we will only construct the method using the Morris-
Lecar equations. It is important to notice that this method is done once we have already registered the
membrane potential from an experiment.
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Suppose that this membrane potential V (t) follows the following equations:{
C V̇ = Iapp − ḡKw(V − VK)− ¯gCam∞(V )(V − VCa)− gL(V − VL)− Isyn

ẇ = φ(w∞(V )−w
τw (V ) )

We will create a copy of the Morris-Lecar model with an extra input term u instead of the synaptic
input Isyn. With this change we will have to define two new variables V̂ and ŵ instead of V and w in the
following way: {

C ˙̂V = Iapp − ḡKŵ(V − VK)− ḡCam∞(V )(V − VCa)− gL(V − VL)− u
˙̂w = φ(w∞(V )−ŵ

τw (V ) )
(5)

Notice that we are using the known variable V that we have obtained from experimental measurements
for the construction of the new model that describes the dynamics of V̂ and ŵ .

Our objective is to obtain the trajectory of the variable u(t) so that u ' Isyn. At first, we can not
assure that u = Isyn, so, we have to introduce these two new variables V̂ and ŵ to describe the new model.
Let us see how we can work with these variables in order to reach our goal.

We define two new variables: eV = V − V̂ and ew = w − ŵ . If we design u(t) so that

eV , ew −→ 0, (6)

then we can conclude that for ε << 1, ∃tV > 0 such that ∀t > tV |V (t)− V̂ (t)| < ε, and ∃tw > 0 such
that ∀t > tw |w(t)− ŵ(t)| < εw . If we see (6), then it is clear that u ' Isyn.

To see whether eV and ew converge to zero, we can construct the dynamics of eV and ew and work
from these two equations: {

C ˙eV = −ḡKew (V − VK) + Isyn − u
˙ew = −φ 1

τw (V ) ew

Also, we will try to do the same assuming that the membrane potential V (t) follows the reduced Hodgkin-
Huxley model.

As we have done with the Morris-Lecar equations, we will make a copy of the reduced Hodgkin-Huxley
model: {

C ˙̂V = Iapp − ¯gNam3h(V − VNa)− ḡKn̂4(V − VK)− gL(V − VL)− u
˙̂n = φ(n∞−n̂τn(V ) )

(7)

So, after this introduction, the main goal of the project will be the definition of the variable u so that
(6) is fulfilled.

We will define the variable u(t) for the Morris-Lecar equations. The construction of u(t) using the
reduced Hodgkin-Huxley equations will be analogous to the u(t) of the Morris-Lecar construction, so we
will not focus on it.

First of all let’s see if ew converges to zero for every expression of u.
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3.2.1 Convergence of ew

As we have said before, the trajectory of ew will depend on the observable data of the membrane potential
V and time t:

dew
dt

= −f (V )ew

where f (V ) = φ 1
τw (V ) .

Let us study the behavior of f (V ). Remember that

τw (V ) =
1

cosh
(
V−V3

2V4

)
defines a probability, so τw (V ) ∈ [0, 1], ∀V . In Figure 11 we can see the graph of this function.

Since φ > 0 is a positive parameter different from 0, it is clear that f (V ) will be a positive-definite
function, f (V ) > 0, for any value of V .

Figure 11: Graphic of τw with V3 = 12 and V4 = 17.4.

Now, let us study the dynamics of ew . First of all, we need to introduce some definitions that will be
useful to study the dynamics of the variable ew .

Definition 3.1. A Lyapunov function for an autonomous dynamical system{
g : Rn −→ Rn

ẏ = g(y)

with an equilibrium point at y = 0 is a scalar function L : Rn −→ R that is continuous, has continuous
first derivatives, is locally positive-definite, and the time derivative of the Lyapunov function is locally
positive-definite.
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We want to define a Lyapunov function for the dynamics of ew .

We can see that in our case, we have an autonomous dynamical system with g(ew ) = −f (V )ew . Let
us find if we have equilibrium points:

dew
dt

= 0⇐⇒ −φ 1

τw (V )
ew = 0

Since f (V ) > 0, for whatever value of V, we have:

−f (V )ew = 0⇐⇒ eeqw = 0

So, there is only one equilibrium point, eeqw = 0. Let us study the stability of eeqw = 0.

We define a new scalar function L in the following way:

L : R −→ R

ew 7→ e2
w

Let us see if this function L is a Lyapunov function. It is easy to prove that it is continuous and its derivative
L′(ew ) = 2ew is also continuous. Also it is a positive-definite function.

Let us compute the time derivative of the Lyapunov function:

dL

dt
=

dL

dew

dew
dt

= 2ew · (−f (V )ew ),

and let us see if it is locally positive-definite:

dL

dt
= −2f (V )e2

w .

We know that both f (V ) and e2
w are positive-definite, so dL

dt will be negative-definite.

We conclude that L(ew ) = e2
w is a Lyapunov function for the dynamics of ew . Knowing that, we in-

troduce a new theorem.

Theorem 3.2. If the Lyapunov-candidate function L is globally positive-definite, radially unbounded, the
equilibrium isolated and the time derivative of the Lyapunov-candidate function is globally negative-definite:

L̇(x) < 0 , ∀x ∈ Rn\{0},

then the equilibrium is globally asymptotically stable.

In our case, we have already seen that the Lyapunov function is globally positive-definite. Also, it is radially
unbounded since:

lim
ew→∞

L(ew ) =∞
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We can see that ew = 0 is isolated because is the unique equilibrium point of the system. Previously we
have seen that the time derivative of the Lyapunov function is globally negative-definite.

Under these assumptions we finally can conclude that ew → 0.

This shows us what we were looking for:

lim
t→∞

ew (t) = 0.

That is, the error for w will converge to zero.

Notice that for the reduced Hodgkin-Huxley equations, en have similar behavior as ew : en = 0 is the
unique equilibrium point, and L(en) = e2

n is a Lyapunov function for the reduced Hodgkin-Huxley model
and the equilibrium point.

Therefore, also the error for n will converge to zero.

3.2.2 Convergence of eV

The dynamic of eV is the following:

C ˙eV = −ḡKew (V − VK) + Isyn − u

We will use a sliding mode control to define u in order to force eV converge to zero.

The sliding mode control will be used to maintain the trajectory of eV near to zero along time to converge
to zero in finite time. For this purpose, we are going to define a new function U(t) such that:

U(t) ≥ | − gK(V (t)− VK)ew (t) + Isyn(t)|.

Using this last definition we will introduce the function u as:

u(t) = U(t) · sign(eV (t))

Let us see how this control works at instant t∗:

• If eV (t∗) > 0, we want to decrease eV in order to force eV converge to zero.

We need ˙eV (t∗) < 0, and so, we need to define u(t∗) such that:

−ḡKew (t∗)(V (t∗)− VK) + Isyn(t∗)− u(t∗) < 0,

or, equivalently,
u(t∗) > −ḡKew (t∗)(V (t∗)− VK) + Isyn(t∗).

Therefore, u(t∗) = U(t∗) = U(t∗) · sign(eV (t∗)).

• If eV (t∗) < 0 we want to increase eV in order to force eV converge to zero

We need to ˙eV (t∗) > 0, so, we need to define u(t∗) so that:

−ḡKew (t∗)(V (t∗)− VK) + Isyn(t∗)− u(t∗) > 0

or, equivalently,
u(t∗) < −ḡKew (t∗)(V (t∗)− VK) + Isyn(t∗)

Therefore, u(t∗) = −U(t∗) = U(t∗) · sign(eV (t∗))
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Using this sliding mode control, we maintain eV oscillating around 0. The control action u = U · sign(eV )
forces eV converge to zero in finite time.

3.2.3 Estimation of Isyn

Let us try to give a more specific definition of the function U.

We have seen that limt→∞ ew (t) = 0, so, it is clear that

lim
t→∞

U(t) ≥ lim
t→∞

| − gK(V (t)− VK)ew (t) + Isyn(t)| = |Isyn(t)| (8)

Assuming that Isyn(t) is a bounded function,8 has an absolute minimum msyn and an absolute maximum
Msyn.

We can define U as U(t) = max{|Msyn|, |msyn|}. Then u is going to oscillate between U and −U in
order to control the trajectory of eV . In Figure 12 we can see the oscillating behaviour of u.

Figure 12: Plot of the trajectory u(t).

Filtering the input u(t) we obtain an estimation of Isyn. To filter the control action u(t) we define a
filtration variable y following the differential equation filter{

τy ẏ = −(y − u)
u(t) = U(t) · sign(t)

The filtration variable y will be an approximation of the synaptic term Isyn.

3.2.4 Estimation of the synaptic conductances

Remember that the expression of the synaptic current is

Isyn(t) = gE (t)(V (t)− VE ) + gI (t)(V (t)− VI ) (9)

where V (t), VE and VE are assumed to be known. Applying the methodology explained in the previous
chapters, we are also able to approximate the time course of Isyn.

From this information, we would like to distinguish the synaptic conductances gE (t) and gI (t). It’s clear
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that we don’t have enough information to determine the two conductances, from the synaptic current, at
every instant of time. Let’ see that.

We assume that, as input, we have a discretization of the trajectory of V . We have defined V for a
set of instant of time {t0, t1, ..., tn, ..., tN}. We have the same for the trajectory of Isyn.

Therefore, to distinguish the synaptic conductances from 9 we make the following “oversampling” ap-
proximation: we suppose that gE and gI can be represented with half the sampling frequency as that of
Isyn, which corresponds to the time series of N/2 values.

This means that assuming the previous discretitzation of the membrane potential, we impose that
∀n ∈ [0, N−1

2 ] ∩N:
gE 2n = gE 2n+1

gI 2n = gI 2n+1

where gE n = gE (tn) and gI n = gI (tn).

Using that, ∀n ∈ [0, N−1
2 ] ∩N we can construct the following system of equations:{

Isyn2n = gE 2n(V2n − VE ) + gI 2n(V2n − VI )
Isyn2n+1 = gE 2n(V2n+1 − VE ) + gI 2n(V2n+1 − VI )

Solving it, we will get the trajectories of the synaptic conductances gE and gI .

This idea for the distinction of the synaptic conductances from the estimated synaptic current is simi-
lar to a method presented by Bédard et al., see [1]. The authors propose a method for the extraction
of the excitatory and inhibitory conductances from a single-trial membrane potential recordings, based on
oversampling the membrane potential.
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4. Algorithm and numerical results

In the previous chapter, we have explained the main idea of the method that we have used and the theo-
retical background that support it. In this chapter, we will explain the main steps of a numerical algorithm
that develops the method from above. At the same time, we will show some of the results that we have
obtained using this algorithm.

We have seen that this conductance estimation method is an inverse method that uses experimental
observable data only. Even if it is typical to have observable data of the membrane potential of a neuron
as input, in our algorithm, we use a generated data of the synaptic conductances gE and gI . Specifically
a file with values of gE and gI at every 0.01 milliseconds. We have taken this synaptic conductances
from a computational model because in the absence of experimental conductances the optimal move is to
choose them from a realistic neuronal network. In this case we have taken them that a neuron from hte
McLaughlin network receive over one second (see it [4]). Let’s plot the synaptic conductances:

Figure 13: Trajectory of the synaptic conductances gE and gI .

Thanks to this, once we get the estimation of the synaptic parameters, we will be able to compare it
with the original ones and see if they are a good approximation or not.

To develop this method we have to deal with some differential equations so, we have to use a numer-
ical integrator to integrate the systems 1 and 2. Since we have values of gE and gI every 0.01 millisecond
(a typical sample step in electrophysiology), we will use a numerical integrator with a constant step. In this
case, to simplify the complexity of the algorithm, we have used the simplest one: The forward Euler method.

Using the known data of the synaptic conductances, taking initial conditions for V and the gating variables,
and the forward Euler method as the integration method, we can compute the numerical solutions of the
membrane potential V and the gating variables. Also, we can compute the original time course trajectory
of Isyn. It is important to have a basic knowledge of the different behaviour of the membrane potential
of a neuron that we could have depending on the different values of Iapp. Therefore, we integrate the
Morris-Lecar and Hodgkin-Huxley models with a synaptic input Isyn.

Using the Morris-Lecar equations we know that for Iapp ≈ 39.96 we have a Hopf bifurcation: For smaller
values of Iapp the system has a stable fixed point which, at the bifurcation, loses the stability and a periodic
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solution appears. In Figure 14, we plot the trajectory of V (t) considering Iapp = 30 and Iapp = 45. As we

Figure 14: Membrane potential solution of the Morris-Lecar equations with a synaptic input Isyn taking
Iapp = 30 and Iapp = 45.

can see in the left image of Figure 14, when Iapp = 30, the cell is at rest. There is an stable equilibrium
point, Veq ≈ −39mV , and the voltage will converge at this point. In the right image of Figure 14, when
Iapp = 45, we can see the appearance of a stable limit cycle; the membrane potential oscillates and we can
identify the action potentials.

The same happens with the reduced Hodgkin-Huxley model. For Iapp ≈ 6.7 we have also a Hopf bi-
furcation. As in Figure 14, in the left image of Figure 15 we can see the subthreshold behaviour of the

Figure 15: Membrane potential solution of the reduced Hodgkin-Huxley equations with a synaptic input
Isyn taking Iapp = 0 and Iapp = 20

membrane potential, and at the right image we can see the periodic solutions and the oscillatory behaviour
of the voltage.
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4.1 Estimation of Isyn

In Chapter 3 we have seen that to estimate the synaptic current Isyn, we start copying the model and ob-
taining a new dynamics for (V̂ , ŵ) or (V̂ , n̂) (depending if we are working with the Morris-Lecar equations
or the reduced Hodgkin-Huxley model), replacing the synaptic input Isyn by a new variable u (equations 5
and 7). After computing the dynamics of the membrane potential error (eV ) and the gating-variable error
(ew or en), we define u so that the errors converge to zero. We have proven that the gating-variable error
has a fast convergence to zero, see Figure 16.

Figure 16: Fast convergence of the gating-variable error (ew ) for the Morris-Lecar model.

In the computational case, to impose that eV converges to zero let’s define the hysteresis εhys = 0.01
and the open set H = (−εhys , εhys). Using a control action we will force eV to converge into it.

Assuming that the integration time set is {t0, t1, ..., tN}, given n ∈ [0, N] ∩N we have that:

• If eV (tn) ∈ H and eV (tn+1) > εhys , using an interpolation we look for t∗ ∈ (tn, tn+1), such that

eV (t∗) = εhys , we impose that deV (t∗)
dt < 0 and integrate until tn+1 again.

• If eV (tn) ∈ H and eV (tn+1) < −εhys , using an interpolation we look for t∗ ∈ (tn, tn+1), such that

eV (t∗) = −εhys , we impose that deV (t∗)
dt > 0, and integrate until tn+1 again.

We repeat these steps until we get that eV (tn+1) ∈ H.

In Figure 17 we can see an examples of the plots eV to understand the control action.

A more general plot of ev (t), integrating until Tmax = 200ms and plotting only some of the points of
the trajectory, is seen in Figure 18. This shows that ev (t) ∈ H for t ∈ [0, Tmax ].

In the previous chapter, we have seen that the dynamic of eV is controlled by the function u. So, as
we have seen above, if eV (tn) ∈ H and eV (tn+1) /∈ H, at instant t∗ we have to define u(t∗) in order to

have deV (t∗)
dt < 0 or deV (t∗)

dt > 0 depending on the value of eV (tn+1).
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Figure 17: Plot of the membrane potential error when Iapp = 45 and C = 20.

Figure 18: Plot of the membrane potential error when Iapp = 45 and C = 1.

The dynamic of eV using the Morris-Lecar equations, is the following:

C ėv = −ḡKew (V − VK) + Isyn − u

If we have that eV (tn+1) > εhys , we want:

−ḡKew (t∗)(V (t∗ − VK) + Isyn(t∗)− u(t∗)

C
< 0

or, equivalently,
u(t∗) + ḡKew (t∗)(V (t∗)− VK) > Isyn(t∗)

Denoting Msyn as the maximum value of Isyn, and imposing that u(t∗) = Msyn − ḡKew (t∗)(V (t∗)− VK),

then the condition is reached and dev (t∗)
dt < 0.

If eV (tn+1) < −εhys , we define u(t∗) so that:

u(t∗) + ḡKew (t∗)(V (t∗)− VK) < Isyn(t∗)
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Denoting msyn as the minimum value of Isyn, and imposing u(t∗) = msyn − ḡKew (t∗)(V (t∗) − VK), then

the condition is reached and dev (t∗)
dt < 0.

Now, in both cases, we integrate from t∗ until tn+1:

eV (tn+1) = eV (t∗) + (tn+1 − t∗)
deV (t∗)

dt

• If ev (tn+1) /∈ H, then we have to repeat the process.

• If ev (tn+1) ∈ H, then we have that u(tn+1) = u(t∗).

In the case that for some value of n, ev (tn) ∈ H and ev (tn+1) ∈ H, then we have that u(tn+1) = u(tn).

Let us plot the trajectory of u(t) in order to check the previous assumptions. In the Morris-Lecar model,
we choose Msyn = 50 and msyn = −50, see Figure 19.

Figure 19: Plot of the trajectory u(t) for the Morris-Lecar model with Iappa = 45.

An analogous definition for u is done when we use the Hodgkin-Huxley equations instead of the Morris-Lecar
model. We are not going to explain it, but notice that using this model we take Msyn = 19 and msyn = −59.

Filtering the input u(t) we expect to obtain an approximation of the original synaptic current Isyn. We
will denote with Îsyn the trajectory of this estimated function. We have computed this new function using
the Morris-Lecar equations and the reduced Hodgkin-Huxley model. In Figures 20 and 21, we compare the
trajectory of the original synaptic current with the estimated one.

In Figure 20 we can see the estimation of the function Isyn using the Morris-Lecar model. It is clear
that Îsyn is a good approximation, and the behaviour of the estimated function is similar to the original
one.

The same happens with the estimation of the function Isyn using the reduced Hodgkin-Huxley equations,
see Figure 21.
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Figure 20: Comparison between Îsyn and Isyn from Morris-Lecar equations using Iapp = 30 and Iapp = 45.

Figure 21: Comparison between Îsyn and Isyn from Hodgkin-Huxley equations using Iapp = 0 and Iapp = 20.
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To compare numerically the functions Îsyn and Isyn we can compute the error between the two tra-
jectories. We will compute the root mean square error between them.

Assuming that Isyn and Îsyn are evaluated at tn ∀n ∈ [0, N] ∪ N, and denoting Isyn(tn) = Isynn and

Îsyn(tn) = Îsynn , we will be able to compute the square mean square error as:

RMSE (Îsyn) =

√√√√ 1

N

N∑
n=0

(Isynn − Îsynn)2.

The relative RSME can be computed in the following way:

relRSME (Îsyn) =
RMSE

Msyn −msyn

Let us compute this error for the previous trajectories. Using the Morris-Lecar model we obtain that:

• With Iapp = 30 we have that RMSE (Îsyn) = 0.341 and relRMSE (Îsyn) = 3.73 · 10−2.

• With Iapp = 45 we have that RMSE (Îsyn) = 0.425 and relRMSE (Îsyn) = 1.38 · 10−2.

Using the Hodgkin-Huxley equations we obtain that:

• With Iapp = 0 we have that RMSE (Îsyn) = 0.493 and relRMSE (Îsyn) = 8.79 · 10−3.

• With Iapp = 20 we have that RMSE (Îsyn) = 1.009 and relRMSE (Îsyn) = 1.48 · 10−2.

We can see that the used method gives a good approximation of the synaptic current Isyn, but there is a
small error that has to be studied in order to improve our method. In the following chapter we will try to
understand this error and reduce it.

We have to notice that, in the experimental case, it is not possible to compare the estimated function
Îsyn with the original (because we do not know it). This means that we will not be able to analyze this error
in the estimated function Îsyn comparing it with the original synaptic current, and as consequence, we can
not reduce it. Hence, this computation has to be interpreted as a prospective computational experiment
to assess how much the estimation is wrong because of this lag.

However, knowing that, in the experimental case we have as input the membrane potential trajectory
V , we can get the original trajectory of w and we will be able to compute Îsyn with the explained method.

Knowing this obtained function Îsyn, we can integrate the following system: C ˙̂V = Iapp − ḡKŵ(V̂ − VK)− ḡCam∞(V )(V̂ − VCa)− gL(V̂ − VL)− Îsyn
˙̂w = φ(w∞(V̂ )−ŵ

τw (V̂ )
)

and compute the trajectory of V̂ using as initial conditions V̂0 = V0 and ŵ0 = w0 where (V0, w0) are
points of the original trajectory of V and w .

So, comparing the trajectories of V and V̂ we will be able to see if Îsyn is a good approximation of
the original synaptic current. Let’s analyze the error.
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4.2 Correction of Isyn

Looking at Figures 20 and 21, we can see that there is a lag in the estimated function with respect to the
original Isyn, see Figure 22.

Figure 22: Spike region of the estimation of Isyn using the Morris-Lecar equations respect to the original
function. We can see that the estimated function is a little behind of time compared to the original.

In order to go in depth in the causes of this lag, let us consider an idealized sinusoidal signal. If we
solve a linear system of ODEs with a sinusoidal excitation (a sin(ωt)), we will obtain as a solution a sinus
signal with the same frequency as the input, different amplitude, and with a small lag. This solution is a
linear combination of trigonometric functions with the same frequency and the solution can be written as:

x(t) = b sin(ωt + ϕ)

We can see an example of this solution in Figure 23.

Figure 23: Comparison between the excitation and the solution of the linear system. We have taken ω = 1
2 ,

a = 2, b = 1 and ϕ = 1
3 .
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In our algorithm, we have, as input, the excitatory and inhibitory synaptic parameters, and with them,
we can recreate the synaptic term Isyn. If we decompose this signal in a Fourier series, we have some
frequencies that will define our original input.

We know that to obtain an estimation of this signal, Îsyn we define the variable u and we apply a lin-
ear filter:

d

dt
Îsyn = − Îsyn − u

τy

If we consider the function Isyn as a Fourier series, we have a set of frequencies and, in fact, we are applying
this filter at each one. Therefore, as output we will have a lag for each frequency. This induces a small lag of
the estimated Isyn compared with the original signal. However, the differential equation itself, generates the
general lag on the responses for the same reason explained above. The lag induced by the filter is secondary.

To have a better estimation of the synaptic term Isyn, we will try to correct this small lag. We will
construct this correction method for the Morris-Lecar model, but as above, the argument for the reduced
Hodgkin-Huxley equations is analogous and we are not going to focus on it. In this chapter we want to
explorer if this observable lags are the main responsible for the error between Isyn and Îsyn. As we have said
above we will try to correct this lag working with V and V̂ .

In our algorithm, we have as input the synaptic conductances and we can use them to compute the
trajectory of V using the forward Euler method as integration method. With the same integration method
we compute the trajectory of V̂ in order to have the functions V and V̂ evaluated at the same time values.
Comparing the trajectories of V and V̂ we will be able to see if we have a lag between these two functions.
In Figure 24 we can see the plot of the comparison between the two trajectories. In this case, we have
integrated until TMax = 400ms and the root mean square error of two functions is RMSE (V̂ ) = 0.9334.

Figure 24: Comparison between V and V̂ .

In Figure 25 we can see the trajectories of the two functions at the first spike. It is clear that the lag
between the two functions is similar to the lag between Isyn and Îsyn. We will try to correct the estimated
synaptic trajectory correcting the lag between the trajectories of the voltage.
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Figure 25: Comparison between V and V̂ , first spike.

Having a lag between two trajectories means that, ∀t, ∃∆t such that V̂ (t − ∆t) = V (t). It can be
seen that the lag in Figure 25 is similar to the lag in Figure 26 so we will assume that ∆t = ∆ ∀t.

Figure 26: Comparison between V and V̂ , second spike.

With that, we conclude that given the trajectories of V and V̂ , exists a parameter ∆ ≥ 0 that for
every value of t, V̂ (t) = V (t −∆).

To correct the trajectory of V̂ we will give different values to this new parameter ∆ ≥ 0, and for each ∆
we define a new function V̂∆.

Given a value for ∆, we will define V̂∆ in the following way:

V̂∆(t) = V̂ (t + ∆) , ∀t ≥ 0.

After finding this new trajectory we can compute, again, the root square mean error between V̂∆(t) and
the original trajectory V . The main goal of this part is to find the optimum value for ∆ for which the error
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between the voltages is minimal.

Some computations shows us that for ∆ = 0.52 ms, we have the minimal error with value RMSE (V̂∆) =
0.211. In Figure 27 we compare the original and the corrected trajectories. As we can see, we have reduced
the original root square mean error from RMSE (V̂0) = 0.9334 to RMSE (V̂0.52) = 0.211.

Figure 27: Comparison between the original voltage V and the corrected estimated voltage V̂∆.

Using the same argument as above, we can compute the corrected function Î ∆
syn using the previous assump-

tion:

Î ∆
syn(t) = Îsyn(t + ∆)

We will compute this new function using that ∆ = 0.52ms because is the optimal ∆ that reduce the error.

Figure 28: Comparison between Isyn, Îsyn, and the corrected function Î ∆
syn.

Figure 28 shows the comparison between the three trajectories of the synaptic current: the original, the
estimated and the corrected one. It can be seen that the lag that we had before is reduced and we have a
better approximation of the synaptic term Isyn.
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Even if we have improved the estimation of Isyn we can deduce that the root square mean error be-
tween the two trajectories will not be close enough to zero. Notice that minimal error between the voltages
is RMSD(V̂∆) = 0.211, so we only have divided the original error by 4, so, it means that aldought we have
corrected the lag between Isyn and Îsyn, there exists an important error between these two functions.

We have commented that the observable lag from above is generated principally for the action of the
differential equation (as a filter) from the model and secondary for the use of the linear filter for the esti-
mation of Îsyn. Therefore if we would like to minimize the actual error we could change the actual linear
filter for a more complex one. We should use a superior order filter. However the main goal of this project
is not the design of superior order filters and the use of it so, we are going to try to distinguish the synaptic
conductances from the actual estimation of Isyn.

Now we check if this approximation of Isyn is closer enough to the original one to find a good estimation
of the synaptic conductances gE (t) and gI (t).

4.3 Estimation of the synaptic conductances.

Our goal is to deduce the expression of ĝE and ĝI from the equation of the synaptic current:

Îsyn(t) = −ĝE (t)(V (t)− VE )− ĝI (t)(V (t)− VI )

where Îsyn is the trajectory of the synaptic term estimated before. As we have two unknowns and only one
equation, we need to construct another equation to solve a linear system. While we are integrating the
system, we will consider that these two conductances are constant during two integration steps. With this
assumption, and using that the integration times are t0, t1, ..., tN , we can construct the following system
of equations and solve it to get ĝE ĝI :{

Isyn2n
= gE2n(V2n − VE ) + gI2n(V2n − VI )

Isyn2n+1
= gE2n(V2n+1 − VE ) + gI2n(V2n+1 − VI )

∀n ∈ [0,
N − 1

2
] ∩ N.

Our algorithm uses as input a known data of the original gE (t) and gI (t) trajectories, specifically a file
with values of gE (t) and gI (t) for every 0.01 milliseconds. In Figure 29 we can see the trajectory of the
synaptic conductances gE and gI .

Figure 29: Trajectory of the original synaptic conductances gE and gI .
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We will integrate our system to compute V and Îsyn with an integration step equal to δ = 0.005 in
order to read a value of the original trajectories gE and gI every two integration steps.

This means that, considering that the input file we have values of the trajectory of gE and gI for
this set of times {t0, t1, ..., tN}, in our integration method we consider that the integration times are
{t0, tδ, t1, t1+δ, ..., tN , tN+δ}, where tn+δ = tn + δ. We will impose that:{

gEn = gEn+δ

gIn = gIn+δ

, ∀n ∈ [0, N] ∩ N

After computing the trajectory of V and Îsyn we try to estimate the synaptic conductances gE , gI solving
the previous system: {

Îsynn = ĝEn(Vn − VE ) + ĝIn(Vn − VI )

Îsynn+δ
= ĝEn(Vn+δ − VE ) + ĝIn(Vn+δ − VI )

∀n ∈ [0, N] ∩ N

In Figure 30 and 31 we can see the comparison between the original and estimated trajectories. It is
clear that there is a large difference between the two trajectories, and the amplitude of the estimated
synaptic conductances is so much bigger than the original one. Let us see what is happening and also try
to explain the oscillatory behavior of the two estimated functions.

Figure 30: Comparison between the original gE , and the estimated synaptic conductance ĝE .

It is clear that if we solve the same system of equations but instead of using Îsyn we use the original
trajectory of Isyn, the solutions that we will obtain will be exactly the trajectory of gE and gI because, for
every two integration steps, we recuperate the parameters that we have used to construct Isyn.

Let us introduce the notation An = −(Vn − V E ) and Bn = −(Vn − V I ) that we will use from now
on.

As the integration step is so small (δ = 0.005), it is clear that during two integration steps, the trajectory
of V will change smoothly, so, ∃ε << 1 such that ∀n ∈ [0, N] ∩ N, |Vn − Vn+δ| < ε, so consecutively
|An − An+δ| < ε and |Bn − Bn+δ| < ε.
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Figure 31: Comparison between the original gI , and the estimated synaptic conductance ĝI .

The same happens with the original trajectory of Isyn; |Isynn − Isynn+δ
| < ε for a small value of ε.

On the other hand, because of the control action that we are applying and the simplicity of the filter,
we have that the trajectory of Îsyn oscillates around the trajectory of the original trajectory Isyn. See it in
Figure 32.

Figure 32: Oscillations of Îsyn around the original trajectory Isyn

So, we can see that given n ∈ [0, N]∩N, ∃ε << 1 such that |Isynn − Isynn+δ
| < ε, and |̂Isynn − Îsynn+δ

| >> ε.

Let us try to solve the system presented before:{
Îsynn = AnĝEn + BnĝIn
Îsynn+δ

= An+δĝEn + Bn+δĝIn
, ∀n ∈ [0, N]
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so,

ĝIn =
Îsynn − AnĝEn

Bn

ĝIn =
Îsynn+δ

− An+δĝEn

Bn+δ

We can equalize the two equations:

Îsynn − AnĝEn

Bn
=

Îsynn+δ
− An+δĝEn

Bn+δ

Bn+δ

(
Îsynn − AnĝEn

)
= Bn

(
Îsynn+δ

− An+δĝEn

)
and finally we get:

ĝEn =
Bn+δ Îsynn − Bn Îsynn+δ

Bn+δAn − BnAn+δ

We can do the same using now the original values of Isyn we have that:

gEn =
Bn+δIsynn − BnIsynn+δ

Bn+δAn − BnAn+δ

Now let us compute the difference between gEn and ĝEn .

gEn − ĝEn =
Bn+δ(Isynn − Îsynn)− Bn(Isynn+δ

− Îsynn+δ
)

Bn+δAn − BnAn+δ

Using that |Bn − Bn+δ| < ε, we will assume that Bn ≈ Bn+δ, and with that:

gEn − ĝEn =
Bn(Isynn − Isynn+δ

− Îsynn + Îsynn+δ
)

Bn(An − An+δ)
=

Isynn − Isynn+δ
− Îsynn + Îsynn+δ

An − An+δ

Since |An −An+δ| < ε, |Isynn − Isynn+δ
| < ε and |̂Isynn − Îsynn+δ

| >> ε, we will have that |gEn − ĝEn | will be
very large for every value of n. Something similar happens for gI , and this explains the large amplitude of
the trajectories of gE and gI .

Also, it is clear that the oscillatory behaviour of the two trajectories comes from the oscillatory behaviour
of the estimated function Îsyn. In Figure 33 we can see the comparison between Îsyn and the synaptic
conductances to compare the oscillatory behaviour of both.

It can be seen that the trajectories of gE and gI will be oscillating around zero. This happens because
during these two integration steps the trajectory of Îsyn can be growing or decreasing, therefore:

• If the trajectory of Îsyn is growing: Îsynn < Îsynn+δ

• If the trajectory of Îsyn is decreasing: Îsynn > Îsynn+δ

These two options will give us the oscillatory behavior around zero of the synaptic conductances.
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Figure 33: Comparison between the oscillatory behaviour of Îsyn with the oscillatory behaviour of ĝE and
ĝI .

4.3.1 Least square method

After doing these computations we can conclude that the method to differentiate the synaptic conductances
explained previously is not efficient enough and we do not reach satisfactory solutions. Observe that the
problem appears when we try to use the estimated function Îsyn as input to solve the linear system with
the small step δ = 0.005.

To reduce the error, we can try to assume that the synaptic conductances are constant in a larger number
of integration steps. Looking at the original trajectories of gE and gI we can see that using δ = 1 as period,
the trajectories do not change abruptly, so, in our algorithm we will consider that gE and gI are constant
during every 1 ms period.

Considering that the original file has as time step 0.01, we will integrate the system of equations us-
ing this same integration step, and, using the previous assumptions, we construct a overdetermined system
with 1/0.01 = 100 equations:

Îsynn = AnĝEn + BnĝIn
Îsynn+1

= An+1ĝEn + Bn+1ĝIn
Îsynn+2

= An+2ĝEn + Bn+2ĝIn
...

Îsynn+19
= An+19ĝEn + Bn+99ĝIn

, ∀n ∈ {0, 100, 200, 300, ...}

To solve the overdetermined system we will use the least-squares method. Solving this system we will have
a value of ĝE and ĝI for t ∈ {0, 1, 2, 3, ...}. In Figure 34 we can see the comparison between the original
and estimated synaptic conductances. It is clear that the results have not improved substantially, but the
amplitude of the functions is smaller.

On the other hand, it can be seen in Figure 35 that if we reduce the amplitude of the two estimated
functions, we have a similarity between the shape of the original and estimated functions. Even if we can
see a similarity between the behaviours of the synaptic conductances, it is clear that the solutions are not
optimal. It is clear that the error between the functions is so large and we have to assume that the method
is no functional.
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Figure 34: Comparison between the original synaptic conductances and the estimated ones.

Figure 35: Comparison between the shape of the original synaptic conductances and the estimated ones.

We can conclude that the method explained in this project is useful to estimate the synaptic term Isyn.
We have seen that the trajectories V and the corrected estimated function V̂∆ are closer enough to ensure
that we have obtained a good copy of the synaptic current Isyn. We have to notice that this method is also
efficient in the spiking regimes.

The estimated function Îsyn oscillates around the original trajectory of the synaptic term because of the
control action applied in the method, and even if we have obtained a good approximation of the synaptic
term Isyn, the simplicity of the linear filter provokes that the estimation of the synaptic conductances gE
and gI are very far to the original ones.

The method could be further improved by applying a higher order filter to reduce the small fluctuations
of the Isyn estimation, which propagate dramatically in the estimation of the conductances.

4.4 Alternative synaptic parameter estimation method

In the previous chapters, we have concluded that using the control method presented in this project, even
if the main idea of the method and the theoretical background are consistent, we have not obtained the
expected results. The failure with the results of the method presented above force us to search for an
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alternative method to estimate the synaptic conductances from experimental data.

In this chapter, we will present a new method assuming that, as above, we have an observable data
of the membrane potential of a neuron.

Before presenting the method, we have to notice that the idea of this algorithm for the estimation of
the synaptic conductances is similar to the idea of the method explained above of solving a linear system
assuming the invariance of the synaptic conductances along a small period of time. But, even if they are
similar in this aspect, this new method is not based on control theory as the previous one.

Also like the first method, the new algorithm is also extremely dependent on the model. We will explain
the algorithm using the Morris-Lecar equations. As always, we will have an analogous algorithm for the
reduced Hodgkin-Huxley model.

This method is inspired in the oversampling method to extract excitatory and inhibitory conductances
from single-trial membrane potential recordings presented by Claude Bédard, Alain Destexhe. For more
details, see [1].

We have as input an observable data of the membrane potential of a neuron. Assuming that the time set
where V is evaluated is {t0, t1, t2, ..., tN}, with a constant time step, we have as input a set of values of
the trajectory of the voltage V , {V0, V1, V2, ..., VN}, where Vn = V (tn), ∀n ∈ [0, N] ∩ N.

Knowing the trajectory of the voltage, using the Morris-Lecar equations we are able to compute the
trajectory of the gating variable w , integrating the following differential equation:{

ẇ = φ(w∞(V )−w
τw (V ) )

w(t0) = w0

Integrating with a constant step method as the Euler method, the output of this integration will be the
following set {w0, w1, w2, ..., wN}.

Using the knowing trajectory {(Vn, wn)}n∈[0,N]∩N we compute the synaptic conductances. As the con-
trol method that we have presented, we will assume that the synaptic conductances are constant along
two time steps. This means that for n = 2i , ∀i ∈ [0, N−1

2 ] ∩ N:

gE n = gE n+1

gI n = gI n+1

So, as output, we expect to obtain the set {gE 0, gE 2, gE 4, ..., gEN−1}, and the set {gI 0, gI 2, gI 4, ..., gI N−1}.
Let’s explain how to obtain this results.

First of all we have to assume that the trajectory of the voltage can be integrated using the Morris-Lecar
equations. This means that the input voltage is the solution of the following differential equation:{

C V̇ = Iapp − ḡKw(V − VK)− ¯gCam∞(V )(V − VCa)− gL(V − VL)− Isyn

ẇ = φ(w∞(V )−w
τw (V ) )

This means that, if we integrate the previous differential equation with a constant step integration method,
using as initial conditions V (t0) = V0 and w(t0) = w0 and the constant time step δ = ti+1 − ti ,
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∀i ∈ [0, N−1], we have to obtain a trajectory similar to the original input. So, using the Euler discretization,
we have that:

Vn = Vn−1 + δf (Vn−1, wn−1)

where Vn and Vn−1 are input values of the voltage, and δ is the constant time step, and f is the Morris-
Lecar differential equation.

Using that, we can define this system of equations:{
Vn+1 = Vn + δf (Vn, wn)
Vn+2 = Vn+1 + δf (Vn+1, wn+1)

where we known the values of Vn, Vn+1 and Vn+2, and wn, wn+1 and wn+2.

Assuming that the voltage follows the Morris-Lecar equations, we have that:

f (Vn, wn) =
1

C

[
f1(Vn, wn)− Isynn

]
where:

f1(Vn, wn) = Iapp − ḡKwn(Vn − VK)− ¯gCam∞(V )(Vn − VCa)− gL(Vn − VL)

So, we have that: {
Vn+1 = Vn + δ

C

[
f1(Vn, wn)− Isynn

]
Vn+2 = Vn+1 + δ

C

[
f1(Vn+1, wn+1)− Isynn+1

]
Now, using the synaptic current equation:

Isynn = −gE n(Vn − VE )− gI n(Vn − VI )

and assuming that the synaptic conductances are constant along two time steps, we will have finally the
following system of equations:{

Vn+1 = Vn + δ
C [f1(Vn, wn) + gE n(Vn − VE ) + gI n(Vn − VI )]

Vn+2 = Vn+1 + δ
C [f1(Vn+1, wn+1) + gE n(Vn+1 − VE ) + gI n(Vn+1 − VI )]

with gE n, gI n as unknowns.

If we solve it for n = 2i , ∀i ∈ [0, N−1
2 ] ∩ N, we will obtain the trajectory of the synaptic conductances.

4.4.1 Algorithm and results

The algorithm that we want to develop has as input an observable data of the synaptic conductances that
we want to estimate. This allows as to compare the obtained estimations with the original conductances.

We consider that we have a time set {t0, ..., tN} where the functions gE and gI are evaluated, giving
the following two sets as inputs: {gE0 , ..., gEN

} and {gI0 , ..., gIN}.

To estimate the trajectories of gE and gI we have to have the trajectory of the variables V and w , so,
the first step will be the computation of this trajectories. Assuming that the trajectory of the membrane
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potential follow the Morris-Lecar equations, and defining the initial conditions V (t0) = V0 and w(t0) = w0,
we can obtain the trajectories of V and w integrating the differential equation:{

C V̇ = Iapp − ḡKw(V − VK)− ¯gCam∞(V )(V − VCa)− gL(V − VL)− Isyn

ẇ = φ(w∞(V )−w
τw (V ) )

where Isyn will be the original synaptic current defined by the knowing original trajectories of gE and gI .

For the integration of this system we will consider that time step integration is δ = ti+1−ti
2 , ∀i ∈ [0, N−1]∩N,

and that the synaptic conductances are held constant for two integration steps:

gE n = gE n+δ

gI n = gI n+δ

for ∀n ∈ [0, N], where gE n+δ = gE (tn + δ).

The solution of this integration will be the following two sets: {V0, Vδ, V1, V1+δ, ..., VN , VN+δ, VN+1}
and {w0, wδ, w1, w1+δ, ..., wN , wN+δ, wN+1}.

After this computations we construct the system of equations and, solving it, we look for the estima-
tion of the synaptic conductances that we will the following notation ĝE and ĝI . So, ∀n ∈ [0, N] we solve
the system of equations:{

Vn+δ = Vn + δ
C [f1(Vn, wn) + ĝE n(Vn − VE ) + ĝI n(Vn − VI )]

Vn+1 = Vn+δ + δ
C [f1(Vn+δ, wn+δ) + ĝE n(Vn+δ − VE ) + ĝI n(Vn+δ − VI )]

In this chapter, we have constructed this algorithm in order to find the estimation of the synaptic con-
ductances ĝE and ĝI . In order to have more general results, we have implemented this algorithm using
different integration methods for the computation of the trajectory of V and w .

First of all we have used the Euler method to integrate numerically the Morris-Lecar equations. This
means that given the input set {(gE n, gI n)}∀n∈[0,N], and the initial conditions V (t0) = V0 and w(t0) = w0,
we compute the trajectory of V and w .

So, it’s clear that if we try to solve the system of equations presented above in order to estimate the
synaptic conductances ĝE and ĝI , as we are integrating the system using the Euler method and recuperating
the synaptic conductances also using the Euler equation, ∀n ∈ [0, N] ∩ N we would expect to have that:

ĝE n = gE n

ĝI n = gI n

In Figure 36 it can be seen the estimated and original trajectories. As we have said, the trajectories co-
incide at each instant of time. We can compute the root square mean error between the estimated and
the original trajectories, and we can see that the RSMD(ĝE ) = 6.86×10−7 and RSMD(ĝI ) = 1.06×10−6.

The obtained results are the expected ones because we have used the same integration method for the
obtaining of the trajectory of V and for the reconstruction of the trajectory of the synaptic conductances
from the voltage.
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Figure 36: Comparison between the estimated and original synaptic conductances.

The following natural step is to try to do the same but using different methods for the integration of
the membrane potential.

For the integration of the ODE we are going to use the Runge-Kutta 4th order method. Given a or-
dinary differential equation: {

ẏ = f (t, y)
y(t0) = y0

Then, denoting with δ the constant integration step, the Runge-Kutta 4th order method for this problem
is given by the following equation:

yn+1 = yn +
1

6
δ(k1 + 2k2 + 2k3 + k4)

where: 
k1 = f (tn, yn)
k2 = f (tn + 1

2δ, yn + 1
2 k1δ)

k3 = f (tn + 1
2δ, yn + 1

2 k2δ)
k4 = f (tn + δ, yn + k3δ)

After computing the trajectory of V and w using the Runge-Kutta 4th order method, we find ĝE and ĝI
as before. If, we compute the root square mean error of the estimations we have that RSMD(ĝE ) = 0.108
and RSMD(ĝI ) = 0.037. It is clear that the estimation is not as good as the obtained using the Euler
integration method, but as we can see in Figure 37 this larger error seems to be caused by the points where
the estimated function increase or decrease abruptly. At these points it seams that we have an asymptote.
As we can see in Figure 38, the asymptotic points correspond to a maximum and minimum points of the
membrane potential function V . This causes the asymptotic behaviour at the points where |Vn+1−Vn| < ε
with ε << 1.

So, to have a better approximation of the synaptic conductances, we try to avoid the points where we can
have this problem. So, we are going to save the trajectory of ĝE and ĝI where |Vn+1 − Vn| > 10−5.

In Figure 39 we can see that we have eliminated the problematic points when t ∈ [50, 100], but in
the spikes region we continue having the same problems.
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Figure 37: Comparison between the estimated and original synaptic conductances.

Figure 38: Comparison between the estimated and original synaptic conductances with the membrane
potential trajectory.

Figure 39: Trajectory of the estimated function ĝE eliminating the problematic points.

In this last part we have shown theoretically that it is possible to extract conductances from single trances
of the membrane potential recordings, under some conditions. First of all the membrane potential must be
subthreshold. In this case that the equation that models V remains linear and the synaptic conductances
can be estimated rigorously. If V contains spiking regimes then the estimation of gE and gI in this zones
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have to be avoid because the underlying membrane equation is nonlinear.

To conclude, the previous method gives a better approximation estimation of the synaptic conductances
than the control method presented at this project. However, the method presented by Claude Bédard and
Alain Destexhe is not functional when the membrane potential contains actions potentials.
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5. Discussion

In this project, we have presented two different methods for the estimation of synaptic conductances from
an experimentally observable membrane potential of a neuron.

The main method is based on the use of control theory tools for the estimation of the synaptic cur-
rent Isyn from a single trace of membrane potential recording. Notice that in Chapter 3 we have introduced
some of the main obstacles that appear on the use of inverse methods. Knowing them we can conclude
that the control method presented for the estimation of the synaptic current gives satisfactory results and
it is functional because it avoids most of these problems.

First of all, to obtain a copy of the trajectory of Isyn we only need to record a single register of the
membrane potential. Also, we have seen that the method gives an accurate estimation of the synaptic
current in the spiking regimes where the underlying membrane equation is nonlinear. However, it is possible
to estimate this synaptic parameter under some conditions.

This method is really dependent on the model that we are using as a connection between the observable
membrane potential and the synaptic current. Further, this method is been developed for the utilization
of conductance-based models, see Chapter 3.2. To solve this dependence in the neuronal model, we could
use model’ estimation methods from the observable membrane potential. There is a line of research called
genetic programming that tries to do that.

For the extraction of the synaptic conductance from the estimated synaptic current we require an oversam-
pling factor between the time course Îsyn and the conductances to extract. During two integration steps
we impose that the synaptic conductances remain constant. Even if we have an accurate estimation of the
synaptic current, the estimated Îsyn is not close enough to the original to have a good estimation of the
synaptic conductances.

To improve the estimation of the synaptic current we could try to apply to the control variable u a
more complex filter. In this project, we have used a simple linear filter and this can help to the generation
of the small root mean square error between the original and estimated synaptic current. For example, a
non-linear filter could reduce this error, and consecutively the method could give a more accurate estimation
of the synaptic conductances gE and gI .

However, we have implemented an alternative way to extract the synaptic conductances from an ex-
perimental membrane potential in order to present a method that gives successful results.

With this alternative method, we can extract the synaptic conductances when we avoid the spiking
regime. In these zones, the model that we are using becomes nonlinear and the method fails.

We have to note that these two methods are interesting because most of the existent methods for the
estimation of the synaptic conductances can not extract the full-time course of them from a single trace of
the membrane potential activity. For example, one can extract excitatory and inhibitory conductances from
a membrane potential by building current-voltage relations with repeated trials. However, this approach
requires repeated trials at different values of Iapp.

An extension of this project could be the solution to the main problems that we have obtained during
the estimation of the synaptic current using the control method. We have seen that this method gives
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successful results for the estimation of the function Isyn, even in the non-linear zones. Therefore, if we use
a more complex filter for u we could reduce the root mean square error obtained between the estimated
and original synaptic current and obtain a better estimation of gE and gI even in the spiking regimes.
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