
Universitat Politècnica de Catalunya

Bachelor’s degree in Industrial Electronics and
Automatic Control Engineering

Bachelor’s Thesis

WIFI REMOTE CONTROLLED RC CAR
COMMANDED BY A C#

APPLICATION & ESP32 ARDUINO
WI-FI MODULE

Author:
Guillem Cornella Barba
Eudald Sangeńıs Rafart

Supervisor:
Leslie Tekamp

Raúl Beńıtez Iglesias

June 22, 2020

Wi-Fi Robot Eudald Sangeńıs

Summary
English: In this project, it is expected to build a robot from an RC car that will be
controlled through Wi-Fi. The robot will be controlled from a Windows application
programmed in the C# language, that will be connected to the ESP32 Wi-Fi module,
programmed in Arduino language, to give instructions to the robot. The robot contains
an IP camera whereupon its operator can access live to the robot’s vision and he can
control it from his PC through an Xbox controller.

Key words: Windows application, C#, Arduino, ESP32 Wi-Fi module, IP
camera & Xbox controller.

Català: En aquest treball es pretén construir un robot a partir d’un cotxe teledirigit que
serà controlat mitjançant Wi-Fi. El robot es controlarà des d’una aplicació Windows
programada en llenguatge C#, que es connectarà amb el mòdul Wi-Fi ESP32 progra-
mat en llenguatge Arduino, per tal de donar instruccions al robot. El robot conté una
càmera IP per la qual el seu operador pot accedir en directe a la visió del robot i el pot
controlar des del seu PC mitjançant un controlador Xbox.

Paraules clau: aplicació Windows, C#, Arduino, mòdul Wi-Fi ESP32, càmera
IP & controlador Xbox.

Castellano: En este trabajo se pretende construir un robot a partir de un coche teledi-
rigido que será controlado mediante Wi-Fi. El robot se controlará desde una aplicación
Windows programada en lenguaje C#, que se conectará con el módulo Wi-Fi ESP32
programado en lenguaje Arduino, para dar instrucciones al robot. El robot contiene
una cámara IP con lo cual su operador puede acceder en directo a la visión del robot y
lo puede controlar desde su PC mediante un controlador Xbox.

Palabras clave: aplicación Windows, C#, Arduino, módulo Wi-Fi ESP32,
cámara IP & controlador Xbox.

1

Wi-Fi Robot Eudald Sangeńıs

Acknowledgements
This project was made possible thanks to the collaboration between Universitat Politèc-
nica de Catalunya (UPC), the University of Colorado Colorado Srings (UCCS) and the
funding of the Balsells Foundation.

We would like to thank our advisor Leslie Tekamp from the electrical and computer
engineering department for his weekly supervision and for his advice. Last but not
least, we would like to thank the UCCS IT department for their readiness at all times.

This project has been challenging and multidisciplinary. Without your help achiev-
ing the end results would not have been possible. We thank you all for giving us the
opportunity of learning as much as we have learned.

2

Wi-Fi Robot Eudald Sangeńıs

Scope
Project Justification: Among all the proposals provided from Prof. Tekamps, this
project was chosen because of our interest in designing and coding an interface that
could be able to control a robot through Wi-Fi.

Project Scope: This project consists of creating a remote-controlled robot using a
Windows application written in C# that sends data to the robot through Wi-Fi. The
microcontroller of the robot is an ESP32 module and it receives the data from the
computer in order to control the robot.

Project Deliverables: At the beginning of the project, a schedule was elaborated
in order to know when to deliver the sections that were being done:

MONTH WEEK WORK
JANUARY 19 - 25 Create a list of materials and do research

26 - 1 Buy materials and plan the project

FEBRUARY 2 - 8 Dissemble RC car, understand its functionality
and draw the electrical scheme draft

9 - 15 Create the interface ‘PC-camera’ using C#
16 - 22 Create the interface ‘PC-robot’ using C#

23 - 29 Test the ESP32 Wi-Fi module and control lights,
servos and the motors of the robot

MARCH 1 - 7 Design and 3D print all support Assemble and
weld all the components of the robot

8 - 14 Spring Brake
15 - 21 Code the behavior of the Xbox controller with C#
22 - 28 Control the robot with the PC using the ESP32
29 - 4 Test the robot and resolve errors

APRIL 5 - 11 Write the report
15 - 21
19 - 25 Deliver the report
26 - 2 -

MAY 3 - 9 -
10 -16 -

Table 1: Schedule of the project.

Project Success: The project will be determined successfully if the robot runs per-
fectly using the designed application.

3

Wi-Fi Robot Eudald Sangeńıs

Contents
1 Introduction 8

2 List of materials 9

3 Hardware 10
3.1 Motor Driver L298N . 10
3.2 Servomotors . 13

3.2.1 Camera control - MG996R . 13
3.2.2 Steer control - SG90 . 14

3.3 Power supply - Battery . 15
3.4 ESP32 DEVKITV1 Wi-Fi Module . 16

4 Telecommunications 17
4.1 Network Systems . 17
4.2 Wi-Fi protocols . 20

4.2.1 TCP . 20
4.2.2 UDP . 21

4.3 Network’s security . 22
4.4 Device connection . 24

5 Application Code 25
5.1 Libraries . 26

5.1.1 NuGet libraries . 26
5.1.2 System libraries . 27

5.2 Camera characteristics & code . 28
5.3 Controller code . 32

5.3.1 Keyboard . 32
5.3.2 Xbox Controller . 34

6 Arduino Code 38
6.1 Setup . 39
6.2 Loop . 40

7 Building the robot 43
7.1 Research and material acquisition . 43
7.2 Disassemble the RC car . 44
7.3 Design of a 3D support . 44
7.4 Initial connections in the breadboard and first test of the code 45
7.5 Weld the components to the PCB circuit board 45
7.6 Final base design and 3D supports . 46
7.7 Assembling . 48
7.8 Electrical diagram . 49

4

Wi-Fi Robot Eudald Sangeńıs

7.8.1 Analysis of the servo motors . 49
7.8.1.1 Servo’s current consumption without load: 50
7.8.1.2 Servo’s current consumption with load: 52

7.8.2 Current analysis of the DC motors 53
7.8.2.1 Current analysis of the DC without friction: 53
7.8.2.2 Current analysis of the DC with friction: 54

7.8.3 Current consumption . 54
7.9 Final testing . 55

8 Problems faced & solutions 56

9 Conclusion 57

A C# Code 60
A.A MainWindow.xaml.cs . 60
A.B MainWindow.xaml . 70
A.C IpWindow.xaml.cs . 74
A.D IpWindow.xaml . 75
A.E Global Variables.cs . 79

B Arduino Code 80

C Electrical Diagram 87

5

Wi-Fi Robot Eudald Sangeńıs

List of Figures
1 Spot Boston Dynamics’ robot [1]. 8
2 Rover NASA’s robot [2]. 8
3 Pulse Width Modulation explanation [7]. 10
4 H-Bridge schema using switches to control the rotation direction. [7]. . 11
5 This is the module L298N with two terminal blocks for the motors A

and B, and one terminal block for the GND pin, the VCC to power the
motor and a 5V pin (input or output). 11

6 Input pins from left to right: ENA, IN1, IN2, IN3, IN4, ENB. 12
7 Angle position depends on the length of the pulse [8]. 13
8 MG996R Servomotor. 13
9 SG90 Servomotor. 14
10 LG-ZJ04 Servomotor. 14
11 SG90 Servomotor inside the LG-ZJ04. 14
12 1600 mAh 7.4V 2S 25C LI-PO Rechargeable Battery [12]. 15
13 Block diagram ESP32 [14]. 16
14 ESP32 DEVKIT V1 - DOIT, version with 30 GPIOs, PINOUT scheme

[15]. 16
15 Network structure. 18
16 TCP/IP stack [16]. 18
17 TCP/IP protocol [17]. 20
18 UDP protocol [18]. 21
19 Network structure with protocol communication. 22
20 Structure code. 25
21 Camera AMCREST IP2M-841B . 28
22 Cisco Surveillance IP Camera 2500 . 28
23 Keyboard Controller application interface. 32
24 IP Window interface. 34
25 Xbox Controller application interface. 35
26 Acquisition of the materials. 43
27 Disassemble of the RC car. 44
28 Design of a support base using SketchUp 3D Software. 44
29 First testing of the code using a breadboard. 45
30 PCB circuit board . 46
31 Battery support design. 46
32 Smartphone support design. 47
33 Servo motor support design. 47
34 Usage of a methacrylate plastic base. 48
35 Assembling process. 48
36 Electrical diagram. 49
37 Servo’s current consumption without load. 51
38 Servo’s current consumption with loads. 52

6

Wi-Fi Robot Eudald Sangeńıs

39 Motor’s current consumption without friction. 54
40 Upper picture of the final testing. 55
41 Frontal picture of the final testing. 55
42 Xbox Controller application interface. 73
43 IP Window interface. 78

List of Tables
1 Schedule of the project. 3
2 List of materials. 9
3 How to configured the motor rotation with the pins IN1, IN2, IN3, IN4. 12
4 Wi-Fi router properties depending on which band is working on. 17
5 The existing types of Wi-Fi and the ability to connect of the devices. . 24
6 Power study of the robot. 54

7

Wi-Fi Robot Eudald Sangeńıs

1 Introduction
Robots are remotely controlled from their beginnings. They have infinity applications
in several different camps. In the industry they are usually used to do repetitive tasks
and help carrying weights but also they are used for avoiding the direct manipulation
of toxic components, in the health field there are robots that help to make surgeries
like the appendicitis operation. . . All these robots have in common two things. The
first one is that there is a person who makes the decisions for the robot and order what
the robot has to do. The second one is that since the operator has to make a decision,
they have to be able to see the vision of the robot. Like Spot [1] a Boston Dynamics
robot which is mainly used to carry weight for avoiding causing injuries to workers,
which is remotely controlled with a controller where the user can see the vision of the
robot in a live feed and it connects to a wireless network to communicate. This robot
also has an autonomous mode that records in a video all his activity. However, there
are also robots that are autonomous and send afterwards images to the user to make
a report. For example, Rovers [2] (NASA’s robot which is working in Mars) is able to
send images to Earth. On the other hand, rescue robots [3] also have remote-control
system but also have an autonomous system because when natural disasters happen,
usually the communications also fall down. Even though, it is to important to note
that there is always a record of images of the rescue mission.

Figure 1: Spot Boston Dynamics’ robot [1]. Figure 2: Rover NASA’s robot [2].

The purpose of this report is to explain how it was created a remote-control robot
through Wi-Fi from an RC car and be able to reproduce creation in a project class of
the University of Colorado Colorado Springs. This will ensure that the students learn
about Wi-Fi communications, and the importance of creating robots that can see the
environment. The robot was controlled from a Windows application programmed in the
C# language. The application sent the datagrams needed to give instructions to the
ESP32 Wi-Fi module program in the Arduino language. The robot also contains an IP
camera whereupon its operator can access live to the robot’s vision and control it from
their PC. To maneuver the robot, an Xbox controller is connected to a PC through an
USB input. The C# application can read the data from the Xbox controller, process
it and send the data packages back to the robot.

8

Wi-Fi Robot Eudald Sangeńıs

2 List of materials
The cells in orange indicate the unused components.
The cells in light red indicate the returned components.

PRODUCT COST/UNIT QUANTITY COST ($)
Arduino Mega 14.99 2 29.98
Arduino pack 34.99 2 69.98
Welding pack 19.99 2 39.98
1:10 Scale Large RC Car 164.97 1 164.97
ESP8266 Wi-Fi module 12.99 2 25.98
Arduino wires 6.98 2 13.96
4 Channel DC 5V Relay Module 7.99 2 15.98
Converter motors 7.49 2 14.98
AMCREST Camera 84.99 2 169.98
L298N Motor Drive 8.89 4 35.56
Arduino Motor Shield 19.99 4 79.96
PCBs 9.99 2 19.98
Servo motor big 19.99 1 19.99
Servo camera support 12.9 1 12.9
XBOX Controller 16.8 1 16.8
Wi-Fi router Linksys AC1000 37.98 1 37.98
12 V power bank 33.99 1 33.99
IP camera 44.99 1 44.99
Cisco camera 299 1 299
TOTAL PAID BY UNI WITHOUT RETURNS 1146.94
TOTAL PAYED BY UNI 677.96
AC/DC power adapter 12.9 1 12.9
Power bank red 15.99 1 15.99
Power bank black 12.99 1 12.99
Electrical wire 8.38 1 8.38
Switches 6.99 1 6.99
Welding tube 8.79 1 8.79
ESP32 module 14.89 1 14.89
Capacitors pack 10.62 1 10.62
PAID BY US 91.55
COST TOTAL AMAZON STUFF 1238.49
COST MINUS RETURNED STUFF 769.51
COST MINUS NOT USED STUFF 570.72
COST OF THE ROBOT 570.72

Table 2: List of materials.

9

Wi-Fi Robot Eudald Sangeńıs

3 Hardware

3.1 Motor Driver L298N
In order to control the DC motors [4](LG-DJ01 Laegendary) from the RC car it was
cut the connection to the speed controller [5](ZJ07A Laegendary) and the L298N DC
motor driver [6] was connected.

To maneuver the robot it is needed to control two variables of the motors, the speed
and the direction. This can be achieved by combining two techniques:

• Pulse Width Modulation (PWM): this technique allows the user to adjust
the average of the voltage by sending a series of ON-OFF pulses. Depending on
the duty cycle (relation between the amount of time the signal is ON and OFF
in one period) the average voltage supply change.

D = PW

T
∗ 100

D: duty cycle; PW: pulse active time; T: total time period.

Figure 3: Pulse Width Modulation explanation [7].

10

Wi-Fi Robot Eudald Sangeńıs

• H-Bridge: to control the direction (forward & backward) the H-Bridge tech-
nique was used. This technique consists of inverse the direction of the current
flow through the motor. Seeing the electrical schema (see figure 4), the diagram
contains four switches that go odd symmetry, and depending on if one pair of
switches are open or closed the flow of the current indicates the direction of the
motor. Actually, the switches are transistors MOSFETs but the schema is a
simplification.

Figure 4: H-Bridge schema using switches to control the rotation direction. [7].

To control the motors the L298N motor driver was used. According to the datasheet
of the component this motor driver can control DC motors between 5 and 35 V, with
peak current up to 2A. Hence, the motors of the car suit perfectly to this driver because
they can receive a maximum input voltage of 7.4 V.

Figure 5: This is the module L298N with two terminal blocks for the motors A and B,
and one terminal block for the GND pin, the VCC to power the motor and a 5V pin
(input or output).

11

Wi-Fi Robot Eudald Sangeńıs

In figure 5 the connection between DC motors and the module is explained. Focusing
in the pinout of the L298N module, this motor driver has a jumper to control the 5 V
regulator, the power supply pins, the logic pins, and the output pins.

If the jumper is set, the motors will work at maximum speed. Instead of that, if
the jumper is removed, the motors’ speed will be controlled by a pulse width modula-
tion through the supplied voltage pin.

There exist two output pins, each one can control only one motor. It must be said
that between the input voltage in the input pins and the output pins there exists a 2 V
drop. This phenomenon happens for how it is built in this module. That means that if
the module is 7 V supplied, then the output is going to be of 5 V.

Finally there are the logic control inputs, as illustrated in figure 6, which can be used
to control the speed of the motors through the pulse width modulation (ENA & ENB)
and the rotation direction (IN1, IN2, IN3, IN4).

Motor
Rotation

Motor 1 (IN1)
Motor 2 (IN2)

Motor 1 (IN2)
Motor 2 (IN4)

Stop 0 0
Clockwise 0 1

Anticlockwise 1 0
Stop 1 1

Table 3: How to configured the motor rotation with the pins IN1, IN2, IN3, IN4.

As for motor A, the Input 1 and Input 2 pins are used and for motor B, the inputs 3
and 4. These pins are equivalent to the H-bridge switches. To go forward, the input 1
must be LOW and the input 2 HIGH. To go backward, the input 1 must be HIGH and
the input 2 LOW. When both inputs are the same, the motor will stop.

Figure 6: Input pins from left to right: ENA, IN1, IN2, IN3, IN4, ENB.

12

Wi-Fi Robot Eudald Sangeńıs

3.2 Servomotors
The servomotors usually have three wires, two are for the power and the third one is for
the signal. The signal is a pulse width modulator (PWM) input. The period usually
is for 20 ms (T = 20 ms). And controlling the the duty cycle (DC) can configure the
position of the servo. As illustrated in the figure 7, if the duty cycle is 1 millisecond,
the servo is positioned at 0 degrees. And if the duty cycle is 2 ms the servo position is
the maximum angle possible.

Figure 7: Angle position depends on the length of the pulse [8].

3.2.1 Camera control - MG996R

The MG996R servomotor [9] controls the movement of the camera. According to the
datasheet, here are some servo characteristics:

Figure 8: MG996R Servomotor.

• Operating Voltage: +5V typically

• Current: 2.5A (6V)

• Stall Torque: 9.4 kg/cm (at 4.8V)

• Maximum Stall Torque: 11
kg/cm (6V)

• Operating speed: 0.17 s/60°

• Gear Type: Metal

• Rotation: 0°-180°

13

Wi-Fi Robot Eudald Sangeńıs

3.2.2 Steer control - SG90

The SG90 servomotor [10] controls the direction of the robot. According to the
datasheet, here are some features:

Figure 9: SG90 Servomotor.

• Stall torque: 1.8 kg/cm (4.8 V)

• Gear type: POM gear set

• Operating speed: 0.1 sec/60degree
(4.8 V)

• Operating voltage: 4.8 V

• Temperature range: 0 ℃ 55 ℃

• Dead band width: 1 us

• Power Supply: Through External
Adapter

The RC car has a specific place to fit the LG-ZJ04 servo [11] in to control the steer
of the car. Nonetheless, the ”servo.h” library from Arduino is programmed to control
servos with three wires and not with five. So, the main problem was that the majority
of the RC car servos have five wires (see figure 12). Finally, it was opted to disassemble
the LG-ZJ04 and try to fit SG90 inside the casing of the original servo as illustrated
in figure 11.

Figure 10: LG-ZJ04 Servo-
motor.

• Torque: 2.2 kg

• Wires: 5

• Fits perfectly on
LEGEND truck be-
cause it is an origi-
nal accessory of LEG-
END RC car

Figure 11: SG90 Servomo-
tor inside the LG-ZJ04.

14

Wi-Fi Robot Eudald Sangeńıs

3.3 Power supply - Battery
Two Li-Po batteries LG-DJ02 [12] with 1600 mAh, 7.4 V were used. The first one was
meant to supply the DC motors and the ESP32 Wi-Fi module and the second one was
used to supply the servos. These batteries are the originals from the Laegendary RC car.

One external battery to supply the servomotors was used since the ESP32 does not
supply the necessary current to power the servomotors. Thus, only one battery is used
to feed two servos.

In the first prototype a power bank of 2000 mAh, 5 V was used to supply the ser-
vomotors but it did not work because, the power bank does not allow low currents.
Therefore, when the servo is stopped it uses 6 mA to maintain the torque, and when
the servo is turning, it uses 150 mA. The reason for this bad functioning was because
a power bank has an internal battery of 3.7 V and in order to get 5 V from an output
there is a step-up converter. Such a circuit draws current even when not loaded with
anything and it drains the battery even when not charging anything.

To try to fix the problem of the low current when the servomotor is stopped, to cut the
power supply a relay was used. This solution worked well because the consumption was
null but also, the response was slow. Also, it was tried to put a resistor in series with
the servo to increase the current to 6 mA to 20 mA but when the servo was turning,
it did not have sufficient torque to move it. So finally, the LG-DJ02 Li-Po battery was
used.

Figure 12: 1600 mAh 7.4V 2S 25C LI-PO
Rechargeable Battery [12].

• Peak performance: Increase the
runtime.

• Stable performance: A LiPo will
hold a steady voltage for most of your
run.

• More energy density: LiPo bat-
tery have about four times the en-
ergy of density of nickel-cadmium or
nickel-metal hydride batteries

15

Wi-Fi Robot Eudald Sangeńıs

3.4 ESP32 DEVKITV1 Wi-Fi Module
To communicate the laptop with the robot the ESP32 DEVKITV1 module [13] was
used. The communication via Wi-Fi was established but also, this module has Blue-
tooth. The ESP32 was chosen because it is easy to implement it with Arduino and
have more pins than the ESP8266 Wi-Fi module.

According to the datasheet, the ESP32 overview specifications are the following ones:

Figure 13: Block diagram ESP32 [14].

• Dual Core

• RAM of 512 KB

• Frequency of 240 MHz

• Admitted peripherals see figure 13.

• Admit Wi-Fi and Bluetooth commu-
nication.

• 30 pins

Figure 14: ESP32 DEVKIT V1 - DOIT, version with 30 GPIOs, PINOUT scheme [15].

16

Wi-Fi Robot Eudald Sangeńıs

4 Telecommunications
The purpose of this section is to explain how the module ESP32 and the camera interact
via wireless communication with the computer.

4.1 Network Systems
The wireless communication is one in which the ends of the communication (sender/re-
ceiver) are not linked by a physical means of propagation, but rather that, the modula-
tion of electromagnetic waves through space is used. In this sense, the physical devices
are only present in the signal transmitters and receivers.

Wi-Fi is a technology that enables the wireless interconnection of electronic devices.
The enabled devices (such as personal computers, telephones, televisions ...) can con-
nect to each other or to the internet through a wireless network access point. This
communication can be produced in short distances, normally, a Wi-Fi router working
on the traditional 2.4 GHz band reach up to 150 feet (46 m) indoors and 300 feet (92 m)
outdoors unless there are used repeaters to maximizes the range. But the routers that
use the 5.0 GHz band, reach up approximately one-third of these distances. The range
is lower in the 5 GHz band because higher frequencies cannot penetrate solid objects,
such as walls and floors. However, higher frequencies allow data to be transmitted
faster than lower frequencies, so the 5 GHz band allows you to upload and download
files faster.

Frequency Theoretical Speed Indoor distance Outdoor distance
2.4 GHz 300 Mpbs 150 feet - 46 m 300 feet - 92 m
5.0 GHz 900 Mbps 50 feet - 15 m 100 feet - 30 m

Table 4: Wi-Fi router properties depending on which band is working on.

So, to communicate the computer to the robot a 2.4 GHz band was used because long
distances were needed to run. Thanks to using the 2.4 GHz band, the computer was
inside the house and the robot was outside about 100 feet and the communication was
fluid.

The router created a LAN1 to be able to interconnect the applications without needed
to connect to the internet as it is illustrated in figure 15. A WAN2 network is not used
because there is no need to cover more space than a campus.

1Local Area Network: is a computer network that interconnects computers within a limited area.
2Wide Area Network: is a telecommunications network that extends over a large geographical area

for the primary purpose of computer networking.

17

Wi-Fi Robot Eudald Sangeńıs

Figure 15: Network structure.

This communication was possible due to how the packet of the data was structured.
Those packets were layered as illustrated in figure 16.

Figure 16: TCP/IP stack [16].

18

Wi-Fi Robot Eudald Sangeńıs

The following example pretends to explain how the stack of the message that the camera
sends to the laptop to be able to reproduce the video would be:

The video is the user data.

The camera send the video through a HTTP3 protocol to distribute the video.

—————————————————————————————————

1. The application data is the video plus the protocol to distribute it.

—————————————————————————————————

The camera has a port (origin port).

The laptop has a port (destination port).

The user data has to be sent it to another device by TCP or UDP.

—————————————————————————————————

2. The TCP Header is the protocol that indicates how the devices have to commu-
nicate, in this case UDP, plus the origin and destined ports.

—————————————————————————————————

The camera has an IP (origin IP).

The laptop has an IP (destination IP).

—————————————————————————————————

3. The IP Header is the origin IP plus the destination IP.

—————————————————————————————————

4. The Ethernet Header is how the data can be linked, in that case is used a PPP 4

protocol.

—————————————————————————————————

3Hypertext Transfer Protocol: is an application protocol for distributed, collaborative, hypermedia
information systems..

4Point-to-Point Protocol: is a data link layer communications protocol between two applications
directly without any host or any other networking in between.

19

Wi-Fi Robot Eudald Sangeńıs

4.2 Wi-Fi protocols
4.2.1 TCP

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet
protocol suite. Therefore, the entire suite is commonly referred to as TCP/IP. TCP
provides reliable, ordered, and error-checked delivery of a stream of bytes between
applications running on hosts communicating via an IP network. TCP is connection-
oriented, and a connection between client and server is established before data can be
sent (see figure 17).

The Transmission Control Protocol provides a communication service at an intermedi-
ate level between an application program and the Network Protocol (see figure 16). It
provides host-to-host connectivity at the transport layer of the Internet model. At the
transport layer, TCP handles all handshaking and transmission details and presents an
abstraction of the network connection to the application typically through a network
socket interface.

A TCP connection is managed by an operating system through a resource that repre-
sents the local end-point for communications, the Internet socket. During the lifetime of
a TCP connection, the local end-point undergoes a series of state changes as illustrated
in figure 17:

Figure 17: TCP/IP protocol [17].

TCP is used for organizing data in a way that ensures the secure transmission between
the server and the client. It guarantees the integrity of data sent over the network,
regardless of the amount.

20

Wi-Fi Robot Eudald Sangeńıs

4.2.2 UDP

User Datagram Protocol is mainly used for establishing loss-tolerating and low-latency
connections between applications on the internet. It is used as an alternative to TCP
protocol.

UDP provides checksums for data integrity, and port numbers for addressing different
functions at the source and destination of the datagram. It has no dialogues between
the server and the client (see figure 18), and thus there is no guarantee of delivery,
ordering, or duplicate protection. UDP sends data packets (datagrams) to recipients
without checking for missed packets. It is used when error correction is not necessary,
and speed is desirable. UDP is often used for online games and live broadcasts.

Figure 18: UDP protocol [18].

That properties make the User Datagram
Protocol ideal to the project because it is
sent two types of data, the camera sends
video and the computer sends strings to
the ESP32 module. When the video is sent
it is interesting to have a low-latency con-
nection and if a frame of the video is lost is
not a big deal. And about the datagrams
that the computer sends every 40 ms if a
package is lost it makes no difference be-
cause the robot has inertia and there is no
effect if the interval is upped at 80 ms. So,
in that case, it was more important the
velocity than the security of receiving the
data.

21

Wi-Fi Robot Eudald Sangeńıs

Figure 19: Network structure with protocol communication.

4.3 Network’s security
At the university there were three networks, each one with its security:

• UCCS-Guest [19] ”is an open (unsecure) network which does not require any user-
name or password to join - similar to your experience at a place such as a coffee
shop. This network does not provide full access. It offers basic http and https
access (for general web browsing), but no access to on-campus resources such as
network drives. Advanced functionality is limited (some ports and applica-
tions are blocked). Should you need access to on-campus resources such as
shared network drives, you will need to utilize the UCCS-Wireless network.”

• UCCS-Wireless [19] ”is the full-access secure network intended to be used by all
students, faculty, and staff. This network uses WPA2 Enterprise encryption
to ensure security. This network provides full access to the Internet. This network
requires a username and password to join.”

• Eduroam [19] ”is the secure, world-wide roaming access service developed for the
international research and education community. Eduroam allows students, re-
searchers, faculty and staff from participating institutions to obtain Internet con-
nectivity across campuses and when visiting other participating institutions. In
other words, if you visit another participating campus, you would connect to the
Eduroam wireless network there and enter your UCCS username and password as
your credentials in order to gain wireless internet access at that location.” This
network uses WPA2 Enterprise encryption to ensure security.

Finally, due to the COVID-19, the project has to be finished with the home’s network
with a WPA2 personal encryption to ensure security. This network provides full

22

Wi-Fi Robot Eudald Sangeńıs

access to the Internet and there are no limits in advance functionalities. This network
requires a password to join.

To sum up, these are the differences in the security’s types:

• WPA2 personal: requires a password

• WPA2 enterprise: requires a username an a password

• Unsecure: no requisites but with university restrictions.

23

Wi-Fi Robot Eudald Sangeńıs

4.4 Device connection

UCCS-Guest
Unsecure

UCCS-Wireless
WPA2 enter.

Eduroam
WPA2 enter.

Home Network
WPA2 per.

Amcrest No connect No connect No connect Connect
Cisco No connect Connect No connect Connect
Cell Phone Connect Connect Connect Connect
ESP32 Connect No connect No connect Connect

Table 5: The existing types of Wi-Fi and the ability to connect of the devices.

After evaluating the options, the cell phone’s camera was the best option to connect to
the UCCS-Guest and therefore it was chosen but it was not able to visualise the images
on the application. Seeing that, the IT department was asked and said that to send
video with this network was not possible due to the university policies. The university
does not want the students to install cameras on campus so, the ports of the network
were blocked.

Therefore, the IT department proposed to create a network only for this project with
WPA2 personal security but owing to the emergency sanitary of COVID-19 the univer-
sity had to be closed. Hence, the project was required to be finished at home. Finally,
due to the AMCREST and Cisco camera had been returned it was chosen to use the
cell phone camera to lower the cost of the project.

24

Wi-Fi Robot Eudald Sangeńıs

5 Application Code
The Visual Studio v.2019 (therefore onwards VS) was decided to use as the code editor
of the application because it allows the developer to code easily computer programs, as
well as websites, web apps, web services, and mobile apps. VS uses Microsoft Software
development platforms such as Windows API and Windows Forms.

VS is the code editor to make the application for Windows, creating a WPF (.NET
Framework) project. WPF is useful because it allows the programmer to separate the
design from the logic. It employs XAML language for the design and for the logic it
uses principally C# code but also it can be combined with MySQL if you are working
with databases or other languages. So, following the rules of the WPF projects, the
project is structured as illustrated in figure 20:

Figure 20: Structure code.

25

Wi-Fi Robot Eudald Sangeńıs

5.1 Libraries
In order to be able to program the application, some functions from libraries were used.
Mainly there existed two options. The first one was to download the packages that were
needed from NuGet5. The other one was to just call the libraries that were already
downloaded when they have been installed the VS.

5.1.1 NuGet libraries

To develop the GUI6 some Nu packages from NuGet were needed to be installed. Usu-
ally, when these packages are automatically installed, they are added to references.
However, if they have already been installed and a new project is created, it is needed
to add the .dll document to the references. To build the application some packages
have been needed to be installed:

• MaterialDesingColors – to be able to have templates for design the interface.

• VisioForge – to be able to reproduce the video in the API.

• SharpDx – to be able to install the Nu package SharpDX.Input.

• SharpDX.Input – to be able to read inputs from the COM (Xbox Controller).

• OpenJiWare – to be able to interpret the values from the Xbox Controller.

After that, it is required to include them in your program. In the case of MaterialDesing-
Colors because it is related to the design of the GUI, it has to be called through the
App.xaml as illustrated in the following code fragment:

<Appl i ca t ion . Resources>
<ResourceDict ionary>

<ResourceDict ionary . MergedDict ionar i e s>
<ResourceDict ionary Source=”pack :// a p p l i c a t i o n
: , , , / MaterialDesignThemes . Wpf ; component/Themes/
MaterialDesignTheme . Light . xaml” />
<ResourceDict ionary Source=”pack :// a p p l i c a t i o n
: , , , / MaterialDesignThemes . Wpf ; component/Themes/
MaterialDesignTheme . De fau l t s . xaml” />

</ ResourceDict ionary . MergedDict ionar i e s>
</ ResourceDict ionary>

</ Appl i ca t ion . Resources>

Listing 1: Import MaterialDesingColors NuGet package in the App.xaml.

5NuGet is the package manager for .NET.
6GUI: Graphic User Interface

26

Wi-Fi Robot Eudald Sangeńıs

Nevertheless, the other packages are easier to be included in the libraries of the refer-
ences of the documents. In the MainWindow.xaml, the following ones are used:

us ing Vis ioForge . Types . OutputFormat ;
us ing OpenJigWare ;

Listing 2: Import VisioForge & OpenJigWare NuGet package in the MainWindow.xaml.

Finally, there is no need to call the SharpDX.Input, but it has to be installed if it has
to be avoided a break down of the program. The main reason behind it is that the
program is not going to be able to read the inputs from the Xbox controller. This error
happens because inside the OpenJiWare library there are references to commands from
SharpDX.Input.

5.1.2 System libraries

The System libraries contain fundamental classes and base classes that define commonly
used value and reference data types, events and event handlers, interfaces, attributes,
and processing exceptions. In the program only the following ones are needed:

us ing System ;
us ing System . Windows ;
us ing System . Windows . Contro l s ;
us ing System . Text ;
us ing System . Timers ;
us ing System . Net . Sockets ;

Listing 3: System libraries that is needed to import in the project.

• System.Windows.Controls:
Provides classes to create elements that enable a user to interact with an appli-
cation.

• System.Text:
It contains classes that represent ASCII and Unicode character encoding to treat
the data.

• System.Timers:
The timer is useful to call the function to read the values from the Xbox Controller
every 40 ms.

• System.Net.Sockets:
The Socket library is necessary to establish the UDP connection between the
robot and the application.

27

Wi-Fi Robot Eudald Sangeńıs

5.2 Camera characteristics & code
First of all, to determine which camera had to be used to display the vision of the
remote-controlled car the university’s IT department was asked. They required some
specifications that the camera had to accomplish.

• Connect via IP

• Be able to connect to 2.4GHz

• Be able to connect to Wi-Fi with a security WPA2

With those details it was decided to buy the AMCREST IP2M-841B(see figure 21).
This camera allowed the control not only of the video but also the pan, the tilt and the
zoom.

Figure 21: Camera AMCREST IP2M-841B

When it was tried at home it worked perfectly but, when it was proved at the univer-
sity’s wireless network it did not connect. Consequently, the IT department updated
the given security details specifying that the security network is WPA2 enterprise.

Based on the new specifications, some cameras were researched and found that the
best camera that complied with the details was the Video Surveillance IP Cameras
from Cisco (see figure 22). Following the discovery the model 2500 of the camera was
bought, but when it arrived some parts of it were missing. In order to try to search for
a solution, it was decided to go to the Cisco department in Colorado Springs, but they
were not able to be of any assistance. So, it was agreed to return the camera to Cisco
and try to find another solution.

Figure 22: Cisco Surveillance IP Camera 2500

28

Wi-Fi Robot Eudald Sangeńıs

Finally, it was opted to use the camera of a mobile phone. So, Reading this article
titled Using an Android phone as a webcam from GitHub [20] suggested that down-
loading the IP Webcam App from the Play Store and configuring some parameters,
the camera from a phone would be able to be transformed to an IP camera. It was a
perfect solution since the mobile phone connects to the UCCS-Guest, UCCS-Wireless
or Eduroam networks easily.

The code starts with the design code implemented in the MainWindow.xaml. Firstly,
it is needed to call the library of the VisioForge mentioned earlier as is written in the
following fragment of the program.

xmlns :WPF=” c l r−namespace : Vis ioForge . Contro l s . UI .WPF;
assembly=Vis ioForge . Contro l s . UI”

Listing 4: XAML implementation of the VisioForge library to create the view.

After the library is implemented it is possible to create the view of the camera in the
GUI.

<WPF: VideoCapture Name=” videoCapture1 ”
HorizontalAl ignment=” Le f t ”
Vert ica lAl ignment=”Top”
Height=” 336 ” Width=” 450 ”
Grid . Column=”1” Grid .Row=”1”>

</WPF: VideoCapture>

Listing 5: XAML implementation to create the view interface.

Then there is the behind code of the design in the MainWindow.xaml.cs document. Four
event functions are created, and they raise the event when the buttons are pressed. The
following fragment of code shows the headers of these event functions:

p r i v a t e void Connect (ob j e c t sender , RoutedEventArgs e) ;
p r i v a t e void Disconnect (ob j e c t sender , RoutedEventArgs e) ;
p r i v a t e void Snapshot (ob j e c t sender , RoutedEventArgs e) ;
p r i v a t e void Record (ob j e c t sender , RoutedEventArgs e) ;

Listing 6: Headers of the functions to control the camera.

The first one is used to establish a connection between the app and the phone and
display the image. The communication is made through a URL7 given by the IP
Webcam App. Also, the function throws error messages in an attempt to not breakdown
the code. In the following fragment of the ”Connect” function shows how connect the
camera.

7Uniform Recurs Location colloquially termed a web address is a reference to a web resource that
specifies its location on a computer network

29

Wi-Fi Robot Eudald Sangeńıs

/// i n i t i a l i z e the image
videoCapture1 . IP Camera Source = new
Vis ioForge . Types . Sources . IPCameraSourceSettings ()
{

/// E s p e c i f i c URL to connect to S8
URL = ” http : / ” + Globa l Var i ab l e s . ip cam + ” : ”
+ Globa l Var i ab l e s . port cam . ToString () + ”/ video ” ,
///Type HTTP: we obte in the image through
///and URL, LowLatency : we want the image
/// in r e a l time , but we l o s t r e s o l u t i o n .
Type = Vis ioForge . Types . VFIPSource .

HTTP MJPEG LowLatency
} ;
/// i n i t i a l i z e the audio
videoCapture1 . Audio PlayAudio = f a l s e ;
videoCapture1 . Audio RecordAudio = f a l s e ;
///Mode IP cam
videoCapture1 . Mode = Vis ioForge . Types .
VFVideoCaptureMode . IPPreview ;
connect cam = true ;
///Method to s t a r t connect ion
videoCapture1 . S ta r t () ;

Listing 7: Fragment of the ”Connect function”.

The second one is used to cut the connection and disable the video when the Disconnect
Button is pressed. So, when the method ”.Stop()” it is used the connection stops.

///Method to stop the c o n n e c t i v i t y
videoCapture1 . Stop () ;

Listing 8: Fragment of the ”Disconnect function”.

The third one is used to take a picture of the view and save it to the indicated folder
of your computer.

///Number o f snapshot button c l i c k s
count btn snap++;
///Save the snapshot to mypictures f o l d e r
videoCapture1 . Frame Save (Environment .

GetFolderPath (Environment . Spec i a lFo ld e r .
MyPictures) + $”\\ f rame { count btn snap } . jpg ” ,
Vis ioForge . Types . VFImageFormat .JPEG, 85) ;

Listing 9: Fragment of the ”Snapshot function”.

30

Wi-Fi Robot Eudald Sangeńıs

Finally, the fourth one is used to record a video of the robot’s view and save it to
the indicated folder. This function is similar to the ”Connect” function but it has to
be added the video format, the type of video and the way how to save it. Also, this
function has to have into account if the connection is already set up to close it and
restart it.

///number o f record button c l i c k s
count btn recd++;
/// i f the streaming i s enable i t c l o s e
i f (videoCapture1 . IsEnabled) videoCapture1 . Stop () ;
/// Create a new videoCapture1 ob j e c t l i k e the connect func .
. . .
///Audio S e t t i n g s l i k e the connect func t i on
. . .
/// save the video to myvideos f o l d e r
videoCapture1 . Output Filename =
Environment . GetFolderPath (Environment . Spec i a lFo lde r
. MyVideos) + $”\\ v id { count btn recd } .mp4” ;
///Output video format
videoCapture1 . Output Format = new VFWMVOutput() ;
///Type o f v ideo
videoCapture1 . Mode = Vis ioForge . Types .

VFVideoCaptureMode . IPCapture ;
///Method to s t a r t connect ion
videoCapture1 . S ta r t () ;

Listing 10: Fragment of the ”Record function”.

31

Wi-Fi Robot Eudald Sangeńıs

5.3 Controller code
To be able to control the robot two applications were designed. The first one was a
prototype because a platform was needed to try to send data to the robot. In this
prototype the robot was controlled through the laptop’s keyboard. The second one was
the final application controlled with the Xbox controller.

5.3.1 Keyboard

Firstly, an application to be able to send data to the ESP32 module and see how it
responded was designed. The main problem that was faced was the maneuverability
of the robot. To pilot the car the velocity and the steer are needed to be controlled.
Hence, a packet of data (datagram) sent via UDP protocol to the ESP32 every 40 ms.
This packages contained the information to say to move forward ”x” distance when the
event of the key ”w” was key up and the velocity. So, to control the steer four buttons
were created, and to manipulate the velocity a slicer was designed As illustrated in
figure 23.

This type of control created two problems. The first one was that the robot did not
change the direction unless the ”x” distance had finished and if the robot wanted to
continue to keep forward, the ”w” key was needed to press again. The second one
occurred when the velocity was tried to be set up because it was not very intuitive and
dynamic.

Figure 23: Keyboard Controller application interface.

32

Wi-Fi Robot Eudald Sangeńıs

The following fragment of code illustrates how to declare a private function to raise
buttons events when a keyboard key is pressed.

/// Keyboard c o n t r o l
p r i v a t e void key event (ob j e c t sender , KeyEventArgs e)
{

switch (e . Key)
{

case Key .A:
BtnA . RaiseEvent
(new RoutedEventArgs (Button . ClickEvent)) ;
break ;

/// Changing the Key .A, the keyword key i s changed
. . .

}
}

Listing 11: Fragment of the function to raise buttons events when a keyboard key is
press.

The next fragment of code is an example of how the application is able to send the
datagrams via UDP protocol to the ESP32 when button A is pressed.

///Text to send to the arduino
Globa l Var i ab l e s . cmd = ”A” ;
///Connect to the ip & port o f the ESP32
udpSender . Connect (G loba l Var i ab l e s . ip rob ,

G loba l Var i ab l e s . por t rob) ;
///Transform to cod i ASCII the ”A”
Byte [] sendBytes =
Encoding . ASCII . GetBytes (G loba l Var i ab l e s . cmd) ;
/// send ”A” in cod i ASCII
udpSender . Send (sendBytes , sendBytes . Length) ;

Listing 12: Fragment of the ”A function”

From this example is easy to extrapolate how functions should be programmed to go
forward, backward, and rightward.

To connect to the IP and the port of the ESP32 device, the IP Window (see in figure
43) was designed. This interface asks for the camera’s and the robot’s IP number and
the camera’s and robot’s port number to be set up. Those values had to be entered
manually and saved clicking to the ”Apply” button.

33

Wi-Fi Robot Eudald Sangeńıs

Figure 24: IP Window interface.

5.3.2 Xbox Controller

Once the robot had been driven, improve the maneuverability of the car buying an
Xbox controller was decided. So, another interface (see figure 42) was decided to be
built but maintaining the IP Window interface (see figure 43). The Xbox commander is
constituted by two joysticks with two-axis each one (jx0, jy0, jx1, jy1) and 14 buttons
(four arrows, back, start, X, A, B, Y, RB, LB, RT, and LT). It is only used ten
commands over eighteen possible to control the robot:

• X - Connect camera

• Y - Disconnect camera

• A - Available start driving

• RB - Film video

• LB - Take snapshot

• jx0 - Camera tilt

• jx1 - Steer

• jy1 - Speed

• Left arrow - Turn off light

• Down arrow - Turn on light

34

Wi-Fi Robot Eudald Sangeńıs

Figure 25: Xbox Controller application interface.

In order to read the joysticks values, a timer object that raises his event every 40 ms
and set it up when the main window interface is initialized was required.

/// c r e a t e a new timer ob j e c t
p r i v a t e s t a t i c Timer t imer ;

pub l i c MainWindow ()
{

In i t i a l i z eComponent () ;
/// Set t imer up
t imer = new Timer () ;
/// I n t e r v a l 40ms
t imer . I n t e r v a l = 40 ;
/// Ca l l the func t i on when the event r a i s e .
t imer . Elapsed += new
ElapsedEventHandler (t h i s . t imer Tick) ;
///Enable the t imer
t imer . Enabled = true ;

}

Listing 13: Create a timer object and set it up.

Every 40 ms was called the timer Tick function. This one calls the m CJoy.Update
function to update the data from the joystick and from the Joystick Check Data func-
tion to read the data, processed and send it to the ESP32 module.

35

Wi-Fi Robot Eudald Sangeńıs

/// Joys t i ck Dec la ra t i on
p r i v a t e Ojw . CJoyst ick m CJoy = new
Ojw . CJoyst ick (Ojw . CJoyst ick . ID 0) ;

pub l i c void t imer Tick (ob j e c t sender , EventArgs e)
{

// update j o y s t i c k in fo rmat ion
m CJoy . Update () ;
// Joy s t i ck Data Check
Joyst ick Check Data () ;

}

Listing 14: timerT ickfunction.

As was said before, to read the data, processed, and send it to the ESP32 module the
Joystick Check Data function was used. So, the function is divided by regions (arrows,
buttons, RB and LB buttons, joystick values, and send and print data to the text boxes
of the interface).

The following fragment of code is just a few lines of the function Joystick Check Data,
just to give an idea of how to program this function. This example shows how to call
the function Connect if the X button from the Xbox controller is pressed, how to obtain
the joysticks information, and finally, how to send the information through the UDP
protocol.

///BUTTON X
i f (m CJoy . IsDown Event (Ojw . CJoyst ick . PadKey . Button3)

== true && XBOX X == f a l s e)
{

t h i s . Dispatcher . Invoke (() =>
{

BtnConnect . RaiseEvent (new
RoutedEventArgs (Button . Cl ickEvent)) ;

}) ;
XBOX X = true ;

}

//DATA FROM JOYSTICK
///camera servo
jx0 = Math . Round(m CJoy . dX0 , 1) . ToString () ;
/// s t e e r se rvo
jx1 = Math . Round(m CJoy . dX1 , 1) . ToString () ;
/// v e l o c i t y
jy1 = (1−Math . Round(m CJoy . dY1 , 1)) . ToString () ;

36

Wi-Fi Robot Eudald Sangeńıs

//SEND DATA TO ESP32
/// in fo rmat ion to send
var j o y s t i c k v a l u e s = ” jx0 ” + jx0 + ” jx1 ” + jx1 + ” jy1 ” +
jy1 + ”LED” + l e d s ;
/// Es tab l i sh the connect ion with the ip & port
udpClient . Connect (G loba l Var i ab l e s . ip rob ,
G loba l Var i ab l e s . por t rob) ;
///Transform the in fo rmat ion to ASCII
Byte [] s endBytes jx0 = Encoding . ASCII .
GetBytes (j o y s t i c k v a l u e s) ;
///Send the in fo rmat ion
udpClient . Send (sendBytes jx0 , sendBytes jx0 . Length) ;

Listing 15: Joystick Check Data function.

Finally, to see the full code implementation is possible to access in the following GitHub
[21].

37

Wi-Fi Robot Eudald Sangeńıs

6 Arduino Code
The purpose of this section is to explain how the Arduino code works step by step. In
other words, how the ESP32 receives the data from the laptop, how it processed and
which is the response.

Firstly, the ESP32 board was installed in the Arduino program.

1. In your Arduino IDE, go to File – Preferences.

2. Enter https://dl.espressif.com/dl/package esp32 index.json into the “Additional
Board Manager URLs” field. Then, click the “OK” button.

3. Open the Boards Manager. Go to Tools ¿ Board ¿ Boards Manager. . .

4. Search for ESP32 and press install button for the “ESP32 by Espressif Systems“.

5. It should be installed after a few seconds.

Secondly, the ESP32 libraries were installed and declared.
#inc lude <WiFiUdp . h>
#inc lude <WiFi . h>
#inc lude <ESP32Servo . h>
#inc lude <MapFloat . h>

Listing 16: Libraries necessary for Arduino code.

• WiFiUdp.h: This library is used to create the instances necessary to send and
receive UDP packets.

• WiFi.h: This library does not support the WPA2-Enterprise security, only allow
to connect to the networks with WPA2-Personal security (SSID & password).

• ESP32Servo.h: This library permits the ESP32 board to control the servomo-
tors using the ESP32 PWM timers programming with Arduino.

• MapFloat.h: This library contains the mapFloat function which re-maps a
floating-point number from one range to another.

The next step after declaring the libraries was to define the variables that were used
during the program. In the following fragment of code is possible to see how the name
of the router and the password can be declared.

const char ∗ s s i d = ” name of router ” ;
const char ∗ password = ” password goes here ” ;

Listing 17: Defining the router variables.

38

https://dl.espressif.com/dl/package_esp32_index.json

Wi-Fi Robot Eudald Sangeńıs

6.1 Setup
The connection between the WiFi module and the network needed to be completed.
The begin method was called on the WiFi object, passing as arguments the SSID and
the password variables. This line started the connection to the network:

WiFi . begin (s s id , password) ;

Listing 18: Start to try to connect to the network specified.

After beginning the connection it was necessary to wait until the ESP32 was connected.
To do so, a while loop was created to print in the serial window a list of points every
100 ms to show that the program is waiting to connect to the network.

whi le (WiFi . s t a t u s () != WL CONNECTED)
{

Serial . p r i n t (” . ”) ;
de lay (100) ;

}

Listing 19: Waiting the connection to be established.

Once the connection was done, the serial monitor printed the IP of the module and the
port. These values in the IP Window of the C# application were uploaded to establish
a connection between the PC with the ESP32.

Serial . p r i n t l n (WiFi . l o c a l I P ()) ;
udp . begin (udpPort) ;
Serial . p r i n t l n (udpPort) ;

Listing 20: Print the IP and the Port in wich the ESP32 module is connect.

Now the program was ready to run its main loop to control the outputs of the robot
(lights, servo motors and DC motors).

39

Wi-Fi Robot Eudald Sangeńıs

6.2 Loop
The C# application every 40 ms was sending the data received by the Xbox controller
to the Arduino module through an UDP protocol. This protocol was basically sending
a packet of information in ASCII format using the IP and port of the module. This
packet of data is a String type of 22 characters. Every character uses 1 byte (8 bits),
then the packet in total uses 8*22 = 176 bits or 22 bytes from a maximum capacity of
255 bits.

i n t packe tS i z e = udp . parsePacket () ;
i f (packe tS i z e)
{

IPAddress remoteIp = udp . remoteIP () ;
i n t l en = udp . read (packetBuf fer , 255) ;
i f (l en > 0) packetBuf f e r [l en] = 0 ;
S t r ing udp packet sent = packetBuf f e r ;
}

Listing 21: Transform the ASCII packet information to string.

This String was named “udp packet sent” and it contained 4 sub-packages of informa-
tion which needed to be separated in order to obtain the information needed for each
output. For instance, as for the servo controls, a substring was created in order to
obtain information regarding the tilt value expressed as “jx0—“. The program then
converted these Strings into ‘int’ variables.

St r ing v a l t i l t c a m e r a = udp packet sent . s ub s t r i ng (0 , 6) ;
v a l t i l t c a m e r a = v a l t i l t c a m e r a . s u b s t r i n g (3 , 6) ;
f l o a t v a l t i l t c a m e r a f = v a l t i l t c a m e r a . toF loat
v a l t i l t c a m e r a f = v a l t i l t c a m e r a f − 0 . 5 ;
f l o a t se rvo cam ang le =
mapFloat (v a l t i l t c a m e r a f , −0.5 , 0 . 5 , 170 .0 , 1 0 . 0) ;
i n t s e r v o c a m a n g l e i n t = (i n t) se rvo cam ang le ;

Listing 22: Processing the tilt data from the string udp packedt sent.

The same structure was used for the Servo that is controlling the steer.

To light on the lights of the robot a substring was also used in order to obtain just
the information needed. Then, the program analyzed the String and compared it with
the 3 different options available. If it had received “LED1” for example, it would create
a Boolean variable called ‘led’ and then the light could turn on.

40

Wi-Fi Robot Eudald Sangeńıs

St r ing l i g h t = udp packet sent . s ub s t r i ng (18 ,22) ;
i f (l i g h t==”LED1”)
{

l ed = true ;
d i g i t a l W r i t e (LED,HIGH) ;

}
e l s e i f (l i g h t==”LED2”)
{

l ed = f a l s e ;
d i g i t a l W r i t e (LED, LOW) ;

}
e l s e i f (l i g h t==”LED0”) {

d i g i t a l W r i t e (LED,LOW) ;
i f (l ed==true) d i g i t a l W r i t e (LED,HIGH) ;
e l s e d i g i t a l W r i t e (LED,LOW) ;

}

Listing 23: Processing the LEDs data from the string udp packedt sent.

In order to go forwards and backwards, the first step was to convert the string received
by the computer into an ‘int’ variable, the same procedure was used for the servos.
Then, the program distinguished from positive values (forward) and negative values
(backwards), ranged between -0.5 and 0.5. Finally, the code was mapped to reconvert
the float value into the velocity value, which was saved as an ‘int’.

// to go FORWARD
e l s e i f (v a l v e l f > 0 . 1)
{

// Set Motor A forward :
d i g i t a l W r i t e (in1 , LOW) ;
d i g i t a l W r i t e (in2 , HIGH) ;
// Set Motor B forward :
d i g i t a l W r i t e (in3 , LOW) ;
d i g i t a l W r i t e (in4 , HIGH) ;

f l o a t motorSpeedA f =
mapFloat (v a l v e l f , 0 . 1 , 0 . 5 , 400 .0 , 1000 .0) ;
f l o a t motorSpeedB f =
mapFloat (v a l v e l f , 0 . 1 , 0 . 5 , 400 .0 , 1000 .0) ;
motorSpeedA = (i n t) motorSpeedA f ;
motorSpeedB = (i n t) motorSpeedB f ;

}

Listing 24: Processing the velocity for each motor.

41

Wi-Fi Robot Eudald Sangeńıs

The last lines of the code enabled both motors which run at a specific speed.

// Send PWM s i g n a l to motor A
analogWrite (enA , motorSpeedA) ;
// Send PWM s i g n a l to motor B
analogWrite (enB , motorSpeedB) ;

Listing 25: Enable motors at the correspondence velocity.

42

Wi-Fi Robot Eudald Sangeńıs

7 Building the robot
In this chapter, a detailed explanation of the construction process of the robot is going
to take place. Step by step, the construction process consisted on:

1. Research and material acquisition.

2. Disassemble the RC car.

3. Design of a 3D support.

4. Initial connections in the breadboard and first test of the code.

5. Weld the components to the PCB circuit board.

6. Final base design and 3D supports.

7. Assembling.

8. Electrical diagram.

9. Final tests.

7.1 Research and material acquisition
A first brainstorming and research process through the internet was done in order to
find the best materials possible with the project budget. Using the economical resources
provided by our undergraduate instructor, the following materials had collected:

Figure 26: Acquisition of the materials.

For any further information of the materials that were bought go to the chapter List of
materials.

43

Wi-Fi Robot Eudald Sangeńıs

7.2 Disassemble the RC car
At this point in the building process, the RC car had to be disassembled with the
purpose of understanding the internal electronic architecture. Thanks to this previous
analysis, a proper understanding of the functionality of each component was possible.

Figure 27: Disassemble of the RC car.

Regarding the electric circuit, some modifications took place. In order to run the first
tests, the battery was disconnected from the original spot and reconnected to the L982N
driver module. Another important change to mention is that the cables form the DC
motors were elongated and reconnected to the motor’s driver module.

7.3 Design of a 3D support
A support base for all the components was of relevant importance. For doing so, the
following prototype was designed:

Figure 28: Design of a support base using SketchUp 3D Software.

44

Wi-Fi Robot Eudald Sangeńıs

Regarding the printing process of Figure 28, the piece was not possible to be printed
all at once and was printed in two parts because of the printer’s base size. As can be
seen, the support includes a hollow for the Arduino UNO board and the servo.

7.4 Initial connections in the breadboard and first test of the
code

Before welding the final connections, test first the Arduino code was important. Using
a breadboard, the code was checked using the Wi-Fi module and smaller DC motors.

Figure 29: First testing of the code using a breadboard.

7.5 Weld the components to the PCB circuit board
Due to organizational reasons, all the wires and components were weld to a PCB. This
decision was taken also for space and efficiency purposes. At this stage, the PCB circuit
board looked like that:

45

Wi-Fi Robot Eudald Sangeńıs

Figure 30: PCB circuit board

7.6 Final base design and 3D supports
In order to fit the battery of the robot, the following support was designed:

Figure 31: Battery support design.

As it was explained in previous chapters, a smartphone was used as an IP camera.
Support for protecting the device was designed:

46

Wi-Fi Robot Eudald Sangeńıs

Figure 32: Smartphone support design.

The servomotor needed also a cavity. In order to guarantee its locomotion, the next
image is the same support from figure 32 from the bottom.

Figure 33: Servo motor support design.

Once the project evolved, it was found experimentally that the printed base support
was not that stable as was thought. A new idea popped up where a methacrylate
plastic base with more rigidity was able to sustain all the components using only once
a structural piece instead of two. At this stage, the final shape of the robot was the
following:

47

Wi-Fi Robot Eudald Sangeńıs

Figure 34: Usage of a methacrylate plastic base.

7.7 Assembling
When every part was properly designed and tested, the assembly took place. After
checking there was no short-circuits problems in the electrical system, the robot was
finally tested. At this point, the robot had the next appearance:

Figure 35: Assembling process.

48

Wi-Fi Robot Eudald Sangeńıs

7.8 Electrical diagram
The scheme that summarize the electrical diagram was done:

Figure 36: Electrical diagram.

7.8.1 Analysis of the servo motors

At this stage of the project, an analysis of the current that flowed across the servos was
done. For obtaining its values, an Arduino program was coded using the analog pins.
The servos were connected to them and a voltage fall was detected in four resistors of
value 10 Ω.

Always bearing in mind whenever the domain of degrees of the servo motors, some
test programs were used. As an example, the following code shows an iterative loop
that increased the servo’s degrees and after calculated the mean current consumption.
In a physical way, the next conversion was applied for converting an analog value into
current:

Resistance = 1
1

R1 + 1
R2 + 1

R3 + 1
R4

= 10
4 (1)

As it is already known:
R1 = R2 = R3 = R4 = 10Ω

49

Wi-Fi Robot Eudald Sangeńıs

Therefore, the current is:

I = 5V

1023(analog) · V (analog) · 4
10(1

Ω) · 1000mA

1A
(2)

The following code was written:
for (int servo1Position = 20; servo1Position < 160;

servo1Position += 2){
t++;
servo1.write(servo1Position);
delay(200);
voltageVal1 = analogRead(analogPin0);
currentVal1=((5.0*voltageVal1)/1023.0)*

(4.0/10.0)*1000.0;
c1+=currentVal1;
mean1=c1/(t*2);
servo2Position+=1;
servo2.write(servo2Position);
delay(200);
voltageVal2 = analogRead(analogPin1);
currentVal1=((5.0*voltageVal1)/1023.0)*

(4.0/10.0)*1000.0;
c2+=currentVal2;
mean2=c2/t;
sum=mean1+mean2;

Listing 26: how to convert from an analog value into current)

For understanding the current consumption of the servos, two plots were obtained: with
and without a load in the servo that controlled the audiovisual devices.

7.8.1.1 Servo’s current consumption without load: Because of the presence
of an excessive number of pikes, an average value was also plotted by the program
meansum. It can be seen that the mean current consumption had a value of around
150 mA in the case of both servos when they were running at the same time. Once
they stopped, the current consumption reduced at an approximate value of 6 mA.

Another important value to analyze is the 600 mA peak, which was nothing that the
LI-PO battery could not supply. Nonetheless, the mean value was required for obtain-
ing consumption.

50

Wi-Fi Robot Eudald Sangeńıs

With detail in the first part of the graph, an initial current peak can be observed
when powering occurs for the first time. The reason why this happens is because
of inertia reasons when starting. In a stationary state, only its armature resistance
limits the current flow. Once the motor starts functioning, an opposite power supply is
generated. This fact explains that when a servo makes small movements, higher peaks
can be observed in contrast with moving the servos a larger distance. In the latter case,
the effective voltage is less and current drops.

Figure 37: Servo’s current consumption without load.

51

Wi-Fi Robot Eudald Sangeńıs

7.8.1.2 Servo’s current consumption with load: Once the cameras were added
to the system, some changes were detected:

Figure 38: Servo’s current consumption with loads.

The current consumption was detected to increase up to a 175 mA. Although, the
steering servo was not tested with load because of difficulties moving the wheels in a
stationary state, it was estimated to reach 200 mA values.

52

Wi-Fi Robot Eudald Sangeńıs

7.8.2 Current analysis of the DC motors

Due to the incapability of obtaining the DC motors current consumption, the Arduino
Serial Plotter was used again with the following current estimation using analog values:

I =
AnalogV alue

1024 · 5000mV −OffsetV alue(mV)
Sensitivity(mV/A) (3)

For this purpose, the following code was made to print the values in the Serial Plotter:
// Variables used and declaration of values
const int currentPin = A0;
int sensitivity = 100; //it is a 20A type sensor
int adcValue= 0;
int offsetVoltage = 2500;
double adcVoltage = 0;
double currentValue = 0;

// Then the calculations
adcValue = analogRead(currentPin);
adcVoltage = (adcValue / 1024.0) * 5000;
currentValue = ((adcVoltage-offsetVoltage)/sensitivity);

Serial.println(currentValue);

Listing 27: Program to calculate the current from DC motors.

7.8.2.1 Current analysis of the DC without friction: An overheat of the sink
in the first prototype was detected. Doing a consummation study it was seen that the
motors when were stopped it consumes about 1000 mA. To sort out this problem, in
the final project a relay was added. This relay cut the power supply of the motor driver
L982N when the motors were stopped. As illustrated in figure 39 there are four relevant
aspect to discuss.

• When the joystick of the Xbox Controller is in the center, the current is 0 mA so
the motors are stopped.

• When the motors turn on for the first time it makes a 5 A pick. That is another
reason that produces a heat of the sink because the L982N sink allows a great
dissipation until 3 A. So, to improve this project is recommended to use the L923D
motor driver.

• When the motors turn on for the second time due to the wheels’ inertia because
there is no friction the current necessary to start is less than 5 A, specifically 3
A.

53

Wi-Fi Robot Eudald Sangeńıs

• The mean value of the current drawn when the motors are running at maximum
speed is 1100 mA.

Figure 39: Motor’s current consumption without friction.

7.8.2.2 Current analysis of the DC with friction: Unlikely for the analysis,
there is no data obtained with the DC motors with load. Because the robot could not
be in touch with the floor during the serial data measurement with Arduino, this study
was not possible. However, it is estimated that this consumption is higher if the terrain
and the elevation are modified.

7.8.3 Current consumption

The total consumption of the robot was 1.34 A when the robot had no friction but
when it comes to the friction, the current estimation was about 2.79 A but it depended
on the type of the terrain and the slop.

No friction/
No load

Friction/
load

Servomotors 150 mA 175-200 mA
DC motors 1100 mA 2000-2500 mA
LED 20 mA x 2 LEDS 20 mA x 2 LEDS
ESP32 50 mA 50 mA
TOTAL MAX 1340 mA 2790 mA

Table 6: Power study of the robot.

54

Wi-Fi Robot Eudald Sangeńıs

7.9 Final testing

Figure 40: Upper picture of the final testing.

Figure 41: Frontal picture of the final testing.

55

Wi-Fi Robot Eudald Sangeńıs

8 Problems faced & solutions
• Steer’s servo: To control the steer of the robot the SG90 servomotor was used.

The servo originally from the RC car LG-ZJ04 could not be implemented because
it has five wires and the ”servo.h” Arduino’s library can only control a servo with
three wires. So, it was opted to disassemble the original servo and fit the i inside
the casing of the LG-ZJ04 (see page 14).

• Power supply: In order to power the robot a power bank of 5V and 2000 mAh
was chosen. The main problem was that the power bank can not supply low
currents and when the servomotors stop, the servos consume 6 mA and while
they are turning they consume 150 mA. So, when the power bank had to provide
only 6 mA, due to the internal circuit it could not supply it (see pag. 15).

• Wi-Fi module: Firstly, the ESP8266 module was used. Seeing that this module
did not have sufficient pins to control all the outputs, the ESP32 Wi-Fi module
was bought. The ESP8266 has seven outputs otherwise the ESP32 has more
than twenty output pins and the project needed nine outputs to control the robot
(see page 16).

• University’s Wi-Fi: The biggest problem of the project was how to connect to
the university network with the Wi-Fi module and the camera. None of the three
networks could suit the project. The security of Eudoram and UCCS-Wireless was
WPA2 enterprise and the ESP32 can not connect to it. In regard to the UCCS-
Guest, the camera can not send the video through the router ports because of
the university’s policies not allow it. To sort out the problem, the IT department
offered to integrate another wireless network only for the project but due to the
COVID-19, the project had to be finished at home (see page 23).

• Cameras: A few cameras were tested before chose the camera of the cell phone.
The AMCREST IP camera was bought, nevertheless, it did not connect to the
university’s Wi-Fi since it did not support WPA2-Enterprise. After that, the
Cisco Surveillance IP Camera 2500 was bought but when it arrived some pieces
were missing. Seeing that, it was returned. So finally because all the people have
a cell phone and it connects to the university network, the camera of the cell
phone was used. This change allowed to reduce the cost of the project. (see page
27)

• Overheating of the sink: A high heat of the sink of the motor driver L982N
was experimented. This heat was due to the initialize current when the motors
turn on because a 5 A peak of current was produced and the motor driver only
allows 3 A. So, the L923D motor driver is recommended to replace the L982N
(see page 53).

56

Wi-Fi Robot Eudald Sangeńıs

9 Conclusion
In this project, an application to control a robot through Wi-Fi has been developed.
This robot is commanded via the Xbox controller. In order to do the application a
C# language has been used. To be able to communicate the app with the robot via
Wi-Fi, an ESP32 module has been implemented in the car. This Wi-Fi module has
been programmed with the Arduino language. The robot also contains an IP camera
whereupon its operator can access live to the robot’s vision through the application.

The main goal of this project was to be able to create a project that could be im-
plemented in a semester course at the University of Colorado Colorado Springs. After
thoroughly reading this report and having the full project into GitHub [21], we be-
lieve that it is possible to recreate it if the students already have notions of C# and
Arduino. This is a useful project to go deep into creating Windows applications and
internet communications protocols (UDP vs TCP).

Out of the scope of this project and a wonderful idea to amplify this project could be
to implement an algorithm to detect objects while the car is driven. Another thought
could be to extract data from the robot with sensors and print it to the app, like the
Rovers (NASA robot) does.

57

Wi-Fi Robot Eudald Sangeńıs

References
[1] Boston Dynamics. Spot. https://www.bostondynamics.com/spot. 2020.
[2] NASA. Mars Exploration Rovers. https://mars.nasa.gov/mer/mission/rover/

eyes-and-senses/. 2019.
[3] BuiltIn. 12 examples of rescue robots. https://builtin.com/robotics/rescue-robots.

2020.
[4] Legendary. 390 MOTOR - PART NUMBER LG-DJ01. https://laegendary.com/

products/rc- car- 390motor- includes- gear- accessory- spare- parts- 25- dj01- for-
legend-rc-car. Feb. 2020.

[5] Laegendary. ESC ELECTRONIC SPEED CONTROLLER. https://laegendary.
com/collections/rc - car - parts/products/ rc - car - electronic - speed - controller/ -
assembly-accessory-spare-parts-25-zj07-for-legend-rc-car. 2020.

[6] How to mechatronics. Arduino DC Motor Control Tutorial – L298N — PWM —
H-Bridge. https://laegendary.com/products/rc- car- 390motor- includes- gear-
accessory-spare-parts-25-dj01-for-legend-rc-car. Feb. 2020.

[7] Mechatronics. Arduino DC Motor Control Tutorial. https://howtomechatronics.
com/tutorials/arduino/arduino-dc-motor-control-tutorial-l298n-pwm-h-bridge/.
2020.

[8] AI Shack. Positioning a servo. https://aishack.in/tutorials/servo-motors/. 2020.
[9] Components 101. MG996R Servo Motor. https://components101.com/motors/

mg996r-servo-motor-datasheet. Mar. 2020.
[10] Tower Pro. SERVO MOTOR SG90 - Datasheet. http : / / www . ee . ic . ac . uk /

pcheung/teaching/DE1 EE/stores/sg90 datasheet.pdf. Mar. 2020.
[11] Legendary. 5 WIRES SERVO - PART NUMBER LG-ZJ04. https://laegendary.

com/products/rc-car-5-wires-servo-accessory-spare-parts-25-zj04-for-legend-rc-
car. Mar. 2020.

[12] Legendary. 1600 MAH 7.4V 2S 25C LI-PO RECHARGEABLE BATTERY. https:
//laegendary.com/collections/rc-car-parts/products/rc-cars-1pc-7-4v-1600mah-
25c-t-connector-li-polymer-rechargeable-battery-for-/legend-high-speed-remote-
control-truck-accessory-supplies. Apr. 2020.

[13] ESPRESSIF. ESP32 overview. https://www.espressif.com/en/products/hardware/
esp32/overview. Jan. 2020.

[14] Espressif Systems. ESP32 Datasheet. https://www.espressif.com/sites/default/
files/documentation/esp32 datasheet en.pdf. 2020.

[15] Random Nerds Tutorial. Getting Started with the ESP32 Development Board.
https://randomnerdtutorials.com/getting-started-with-esp32/. Feb. 2020.

58

https://www.bostondynamics.com/spot
https://mars.nasa.gov/mer/mission/rover/eyes-and-senses/
https://mars.nasa.gov/mer/mission/rover/eyes-and-senses/
https://builtin.com/robotics/rescue-robots
https://laegendary.com/products/rc-car-390motor-includes-gear-accessory-spare-parts-25-dj01-for-legend-rc-car
https://laegendary.com/products/rc-car-390motor-includes-gear-accessory-spare-parts-25-dj01-for-legend-rc-car
https://laegendary.com/products/rc-car-390motor-includes-gear-accessory-spare-parts-25-dj01-for-legend-rc-car
https://laegendary.com/collections/rc-car-parts/products/rc-car-electronic-speed-controller/-assembly-accessory-spare-parts-25-zj07-for-legend-rc-car
https://laegendary.com/collections/rc-car-parts/products/rc-car-electronic-speed-controller/-assembly-accessory-spare-parts-25-zj07-for-legend-rc-car
https://laegendary.com/collections/rc-car-parts/products/rc-car-electronic-speed-controller/-assembly-accessory-spare-parts-25-zj07-for-legend-rc-car
https://laegendary.com/products/rc-car-390motor-includes-gear-accessory-spare-parts-25-dj01-for-legend-rc-car
https://laegendary.com/products/rc-car-390motor-includes-gear-accessory-spare-parts-25-dj01-for-legend-rc-car
https://howtomechatronics.com/tutorials/arduino/arduino-dc-motor-control-tutorial-l298n-pwm-h-bridge/
https://howtomechatronics.com/tutorials/arduino/arduino-dc-motor-control-tutorial-l298n-pwm-h-bridge/
https://aishack.in/tutorials/servo-motors/
https://components101.com/motors/mg996r-servo-motor-datasheet
https://components101.com/motors/mg996r-servo-motor-datasheet
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf
https://laegendary.com/products/rc-car-5-wires-servo-accessory-spare-parts-25-zj04-for-legend-rc-car
https://laegendary.com/products/rc-car-5-wires-servo-accessory-spare-parts-25-zj04-for-legend-rc-car
https://laegendary.com/products/rc-car-5-wires-servo-accessory-spare-parts-25-zj04-for-legend-rc-car
https://laegendary.com/collections/rc-car-parts/products/rc-cars-1pc-7-4v-1600mah-25c-t-connector-li-polymer-rechargeable-battery-for-/legend-high-speed-remote-control-truck-accessory-supplies
https://laegendary.com/collections/rc-car-parts/products/rc-cars-1pc-7-4v-1600mah-25c-t-connector-li-polymer-rechargeable-battery-for-/legend-high-speed-remote-control-truck-accessory-supplies
https://laegendary.com/collections/rc-car-parts/products/rc-cars-1pc-7-4v-1600mah-25c-t-connector-li-polymer-rechargeable-battery-for-/legend-high-speed-remote-control-truck-accessory-supplies
https://laegendary.com/collections/rc-car-parts/products/rc-cars-1pc-7-4v-1600mah-25c-t-connector-li-polymer-rechargeable-battery-for-/legend-high-speed-remote-control-truck-accessory-supplies
https://www.espressif.com/en/products/hardware/esp32/overview
https://www.espressif.com/en/products/hardware/esp32/overview
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://randomnerdtutorials.com/getting-started-with-esp32/

Wi-Fi Robot Eudald Sangeńıs

[16] Micrium. TCP/IP Protocol Stack. https : / / www . micrium . com / iot / internet -
protocols/. 2019.

[17] Wikipedia. TCP/IP Protocol. https : / / ca . wikipedia . org / wiki / Transmission
Control Protocol. Mar. 2020.

[18] MUVI. UDP(User Datagram Protocol). https://www.muvi.com/wiki/udpuser-
datagram-protocol.html. 2020.

[19] UCCS. UCCS Wireless. https://wireless.uccs.edu/. 2020.
[20] OctoPrint. Using an Android phone as a webcam. https://github.com/OctoPrint/

OctoPrint/wiki/Using-an-Android-phone-as-a-webcam. Oct. 2020.
[21] Guillem Cornella and Eudald Sangeńıs. WIFI Robot Controlled Through Xbox

Controller. https://github.com/eudald-sangenis/WIFI Robot Controlled Xbox.
Apr. 2020.

59

https://www.micrium.com/iot/internet-protocols/
https://www.micrium.com/iot/internet-protocols/
https://ca.wikipedia.org/wiki/Transmission_Control_Protocol
https://ca.wikipedia.org/wiki/Transmission_Control_Protocol
https://www.muvi.com/wiki/udpuser-datagram-protocol.html
https://www.muvi.com/wiki/udpuser-datagram-protocol.html
https://wireless.uccs.edu/
https://github.com/OctoPrint/OctoPrint/wiki/Using-an-Android-phone-as-a-webcam
https://github.com/OctoPrint/OctoPrint/wiki/Using-an-Android-phone-as-a-webcam
https://github.com/eudald-sangenis/WIFI_Robot_Controlled_Xbox

Wi-Fi Robot Eudald Sangeńıs

A C# Code

A.A MainWindow.xaml.cs

us ing System ;
us ing System . Windows ;
us ing System . Windows . Contro l s ;
us ing Vis ioForge . Types . OutputFormat ;
us ing OpenJigWare ;
us ing System . Net . Sockets ;
us ing System . Text ;
us ing System . Timers ;

namespace WIFI Robot Controlled Xbox
{

/// <summary>
/// I n s t a l l NuGet Pakages :
/// − Vis ioForge
/// − Mater ia l Theme
/// − Sharp DX
/// − Sharp DX Input
/// − OpenJigWare
/// </summary>

pub l i c p a r t i a l c l a s s MainWindow : Window
{

/// v a r i a b l e s i n t
i n t count btn snap = 0 ;
i n t count btn recd = 0 ;
/// v a r i a b l e s bool
bool connect cam ;
bool XBOX X;
bool s t a r t p i l o t ;
bool l i g h t s b o o l ;
/// v a r i a b l e s s t r i n g
s t r i n g l e d s ;
s t r i n g jx0 ;
s t r i n g jx1 ;
s t r i n g jy1 ;

/// c r e a t e a new UDP ob j e c t in the port 2000
UdpClient udpClient = new UdpClient (2000) ;
/// c r e a t e a new timer ob j e c t
p r i v a t e s t a t i c Timer t imer ;

60

Wi-Fi Robot Eudald Sangeńıs

pub l i c MainWindow ()
{

In i t i a l i z eComponent () ;

/// Set up t imer
t imer = new Timer () ;
t imer . I n t e r v a l = 40 ;
t imer . Elapsed += new ElapsedEventHandler (t h i s .
t imer1 Tick 1) ;
t imer . Enabled = true ;

}

//−−−−−−−−−−−−−−−−−−−−−−−−−−
// CAMARA' S CONTROLS
//−−−−−−−−−−−−−−−−−−−−−−−−−−
#reg ion CAMARA' S CONTROLS
///Camara connect ion
p r i v a t e void Connect (ob j e c t sender , RoutedEventArgs e)
{

i f (G loba l Var i ab l e s . ip cam == n u l l | | Globa l Var i ab l e s .
port cam == 0)
{

MessageBox . Show(” IP Camera or Port Camera isn ' t
f u l f i l l e d . ”) ;

}
/// Error − Port number over f l ow
e l s e i f (G loba l Var i ab l e s . port cam > 65536)
{

MessageBox . Show(” Camera ' s Port number i s over f lowed
. ” + ”\n” + ” I t has to be sma l l e r than 65536”) ;

}
/// Error − IP number over f l ow
e l s e i f (G loba l Var i ab l e s . ip cam . Length > 15)
{

MessageBox . Show(” Camera ' s IP number i s over f lowed . ”
+ ”\n” + ” I t has to be sma l l e r than 15 d i g i t s ”) ;

}
/// Error − F i r s t f i l l the Ip Conf igurat ion :
e l s e
{

/// i n i t i a l i z e the image
videoCapture1 . IP Camera Source = new
Vis ioForge . Types . Sources . IPCameraSourceSettings ()
{

/// E s p e c i f i c URL to connect to S8
URL = ” http : / ” + Globa l Var i ab l e s . ip cam + ” : ”

61

Wi-Fi Robot Eudald Sangeńıs

+ Globa l Var i ab l e s . port cam . ToString () +
”/ video ” ,

///Type HTTP: we obte in the image through and
///URL, LowLatency : we want the image in r e a l
///time , but we l o s t r e s o l u t i o n .

Type = Vis ioForge . Types . VFIPSource .
HTTP MJPEG LowLatency

} ;
/// i n i t i a l i z e the audio
videoCapture1 . Audio PlayAudio = videoCapture1 .
Audio RecordAudio = f a l s e ;
videoCapture1 . Mode = Vis ioForge . Types .
VFVideoCaptureMode . IPPreview ;

connect cam = true ;
videoCapture1 . S ta r t () ;

}
}

///Camara d i s connec t i on
p r i v a t e void Disconnect (ob j e c t sender , RoutedEventArgs e)
{

connect cam = f a l s e ;
videoCapture1 . Stop () ;
XBOX X = f a l s e ;

}

///Camera record
p r i v a t e void Record (ob j e c t sender , RoutedEventArgs e)
{

i f (connect cam == f a l s e)
{

MessageBox . Show(” F i r s t Connect the Camera ”) ;
}
e l s e
{

///number o f record button c l i c k s
count btn recd++;

/// i f the streaming i s enable i t c l o s e the ob j e c t
/// videoCapture1
i f (videoCapture1 . IsEnabled)
{

videoCapture1 . Stop () ;

62

Wi-Fi Robot Eudald Sangeńıs

}

/// Create a new videoCapture1 ob j e c t
videoCapture1 . IP Camera Source = new Vis ioForge .
Types . Sources . IPCameraSourceSettings ()
{

URL = ” http : / ” + Globa l Var i ab l e s . ip cam + ” : ”
+ Globa l Var i ab l e s . port cam . ToString () +
”/ video ” ,

Type = Vis ioForge . Types . VFIPSource .
HTTP MJPEG LowLatency

} ;
///Audio S e t t i n g s
videoCapture1 . Audio PlayAudio = videoCapture1 .
Audio RecordAudio = f a l s e ;
/// save the video to myvideos f o l d e r with the name
/// o f v id { count btn recd } .mp4
videoCapture1 . Output Filename = Environment .
GetFolderPath (Environment . Spec i a lFo ld e r .
MyVideos) + $”\\ v id { count btn recd } .mp4” ;
///Output video format
videoCapture1 . Output Format = new VFWMVOutput() ;
///Type o f v ideo
videoCapture1 . Mode = Vis ioForge . Types .
VFVideoCaptureMode . IPCapture ;

videoCapture1 . S ta r t () ;
}

}

///Camara snapshoot
p r i v a t e void Snapshot (ob j e c t sender , RoutedEventArgs e)
{

i f (connect cam == f a l s e)
{

MessageBox . Show(” F i r s t Connect the Camera ”) ;
}
e l s e
{

///number o f snapshot button c l i c k s
count btn snap++;
/// save the snapshot to mypictures f o l d e r with the
///name o f frame { count btn snap } . jpg
videoCapture1 . Frame Save (Environment . GetFolderPath
(Environment . Spec i a lFo lde r . MyPictures) + $”\\ f rame

63

Wi-Fi Robot Eudald Sangeńıs

{ count btn snap } . jpg ” , Vis ioForge . Types .
VFImageFormat .JPEG, 85) ;

}

}
#endreg ion CAMARA' S CONTROLS

//−−−−−−−−−−−−−−−−−−−−−−−−−−
// IP CONFING WINDOW
//−−−−−−−−−−−−−−−−−−−−−−−−−−
#reg ion IP CONFING WINDOW
p r i v a t e void I p c o n f i g C l i c k (ob j e c t sender ,
RoutedEventArgs e)
{

IP Window iP Window = new IP Window () ;
iP Window . Show () ;

}
#endreg ion IP CONFING WINDOW

//−−−−−−−−−−−−−−−−−−−−−−−−−−
// Joys t i ck
//−−−−−−−−−−−−−−−−−−−−−−−−−−
#reg ion Joys t i ck

/// Joys t i ck Dec la ra t i on
p r i v a t e Ojw . CJoyst ick m CJoy = new Ojw . CJoyst ick (
Ojw . CJoyst ick . ID 0) ;

///Timer to p e r i o d i c a l l y check j o y s t i c k connect ion
p r i v a t e Ojw . CTimer m CTmr Joystick = new Ojw . CTimer () ;

// a n a l i z e data and send i t
#reg i on Joys t i ck data
p r i v a t e void FJoystick Check Data ()
{

#reg ion Joys t i ck Check Data
#reg i on arrows
/// l e d s o f f − arrow l e f t
i f (m CJoy . IsDown (Ojw . CJoyst ick . PadKey . POVLeft))
{

l e d s = ”2” ;
}

64

Wi-Fi Robot Eudald Sangeńıs

/// l e d s on − arrow down
e l s e i f (m CJoy . IsDown (Ojw . CJoyst ick . PadKey .POVDown) ==
true)
{

l e d s = ”1” ;
}
/// maintain the l ed s t a t u s
e l s e
{

l e d s = ”0” ;
}
#endreg ion arrows

#reg i on buttons
// Button A
i f (m CJoy . IsDown (Ojw . CJoyst ick . PadKey . Button1) ==
true)
{

/// Error − Null va lue s i p rob or por t rob
i f (G loba l Var i ab l e s . i p r ob == n u l l | |
Globa l Var i ab l e s . por t rob == 0)
{

MessageBox . Show(” IP Robot or Port Robot isn ' t
f u l f i l l e d . ”) ;

}
/// Error − Port number over f l ow
e l s e i f (G loba l Var i ab l e s . por t rob > 65536)
{

MessageBox . Show(” Robot ' s Port number i s
over f lowed . ” + ”\n” + ” I t has to be
sma l l e r than 65536”) ;

}
/// Error − IP number over f l ow
e l s e i f (G loba l Var i ab l e s . i p r ob . Length > 15)
{

MessageBox . Show(” Robot ' s IP number i s
over f lowed . ” + ”\n” + ” I t has to be
sma l l e r than 15 d i g i t s ”) ;

}
/// Error − F i r s t f i l l the Ip Conf igurat ion :
e l s e
{

///To be ab le to send the j o y s i t c k s
/// value data to the robot
s t a r t p i l o t = true ;

}

65

Wi-Fi Robot Eudald Sangeńıs

}
// Button X
i f (m CJoy . IsDown Event (Ojw . CJoyst ick . PadKey . Button3)

== true && XBOX X == f a l s e)
{

t h i s . Dispatcher . Invoke (() =>
{

BtnConnect . RaiseEvent (new RoutedEventArgs (
Button . Cl ickEvent)) ;

}) ;
XBOX X = true ;

}
// Button Y
i f (m CJoy . IsDown Event (Ojw . CJoyst ick . PadKey . Button4)

== true)
{

t h i s . Dispatcher . Invoke (() =>
{

BtnDisconnect . RaiseEvent (new RoutedEventArgs (
Button . Cl ickEvent)) ;

}) ;
}
#endreg ion buttons

#reg i on R & L buttons
//Button LB −− Photo
i f (m CJoy . IsDown Event (Ojw . CJoyst ick . PadKey . Button5)

== true)
{

t h i s . Dispatcher . Invoke (() =>
{

BtnSnap . RaiseEvent (new RoutedEventArgs (Button .
Cl ickEvent)) ;

}) ;
}
//Button RB −− Record
i f (m CJoy . IsDown Event (Ojw . CJoyst ick . PadKey . Button6)

== true)
{

t h i s . Dispatcher . Invoke (() =>
{

BtnRecord . RaiseEvent (new RoutedEventArgs (Button
.

Cl ickEvent)) ;
}) ;

}

66

Wi-Fi Robot Eudald Sangeńıs

#endreg ion R & L buttons

#reg i on J o y s t i c k s va lue s
//DATA TO SEND:
//camera servo
jx0 = Math . Round(m CJoy . dX0 , 1) . ToString () ;
// s t e e r se rvo
jx1 = Math . Round(m CJoy . dX1 , 1) . ToString () ;
// v e l o c i t y and d i r e c t i o n
jy1 = (1−Math . Round(m CJoy . dY1 , 1)) . ToString () ;

jx0 = jx0 . Replace (” , ” , ” . ”) ;
jx1 = jx1 . Replace (” , ” , ” . ”) ;
jy1 = jy1 . Replace (” , ” , ” . ”) ;

i f (jx0 == ”0”) jx0 = ” 0 . 0 ” ;
i f (jx1 == ”0”) jx1 = ” 0 . 0 ” ;
i f (jy1 == ”0”) jy1 = ” 0 . 0 ” ;
i f (jx0 == ”1”) jx0 = ” 1 . 0 ” ;
i f (jx1 == ”1”) jx1 = ” 1 . 0 ” ;
i f (jy1 == ”1”) jy1 = ” 1 . 0 ” ;

//DATA TO SHOW TO THE SCREEN
var c a m e r a t i l t = (Math . Round(m CJoy . dX0 , 1) − 0) ∗
(170 − 10) / (1 − 0) + 10 ;
var s t e e r = (Math . Round(m CJoy . dX1 , 1) − 0) ∗(110 − 70)
/ (1 − 0) + 70 ;

var v e l o c i t y = 0 . 0 ;
var l i g h t s = ” ” ;
var d r i ve = ” ” ;

i f ((1 − Math . Round(m CJoy . dY1 , 1)) >= 0 . 5)
v e l o c i t y = ((1 − Math . Round(m CJoy . dY1 , 1)) − 0 .5 − 0)
∗ (100 − 0) / (0 . 5 − 0) + 0 ;

e l s e
v e l o c i t y = ((1 − Math . Round(m CJoy . dY1 , 1)) − 0 .5 − 0)
∗ (100 − 0) / (0 . 5 − 0) + 0 ;

i f (l e d s == ”1”)
{

l i g h t s = ”on ” ;
l i g h t s b o o l = true ;

}

67

Wi-Fi Robot Eudald Sangeńıs

i f (l e d s == ”2”)
{

l i g h t s = ” o f f ” ;
l i g h t s b o o l = f a l s e ;

}
i f (l e d s == ”0”)
{

i f (l i g h t s b o o l == true) l i g h t s = ”on ” ;
e l s e l i g h t s = ” o f f ” ;

}
i f (s t a r t p i l o t == true) d r i v e = ” Ava i l ab l e ” ;
e l s e d r i v e = ” Disab le ” ;

#endreg ion J o y s t i c k s va lue s

//SEND DATA & RECIVE
#reg ion Send & pr i n t data

t h i s . Dispatcher . Invoke (() =>
{

i f (s t a r t p i l o t == true)
{

// send data to arduino
var j o y s t i c k v a l u e s = ” jx0 ” + jx0 + ” jx1 ” + jx1
+ ” jy1 ” + jy1 + ”LED” + l e d s ;

udpClient . Connect (G loba l Var i ab l e s . ip rob ,
G loba l Var i ab l e s . por t rob) ;

Byte [] s endBytes jx0 = Encoding . ASCII . GetBytes (
j o y s t i c k v a l u e s) ;

udpClient . Send (sendBytes jx0 , sendBytes jx0 .
Length) ;

}

// p r in t data
l b j o y s t i c k s . Text = ” Camera : ” + c a m e r a t i l t +
” degree s ” + ”\n\n” + ” Stee r : ” + s t e e r +
” degree s \n\n” + ” Ve loc i ty : ” + v e l o c i t y ;

l b but tons . Text = ” Drive : ” + dr ive + ”\n\n” +
” Lights : ” + l i g h t s ;

}) ;
#endreg ion Send & p r in t data
#endreg ion Joys t i ck Check Data

68

Wi-Fi Robot Eudald Sangeńıs

}
#endreg ion Joys t i ck data

// t imer event
#reg i on t imer event
pub l i c void t imer1 Tick 1 (ob j e c t sender , EventArgs e)
{

// update j o y s t i c k in fo rmat ion
m CJoy . Update () ;
// Joy s t i ck Data Check
FJoystick Check Data () ;

}
#endreg ion t imer event

#endreg ion Joys t i ck
}

}

69

Wi-Fi Robot Eudald Sangeńıs

A.B MainWindow.xaml

<Window
xmlns=”http : // schemas . m i c ro so f t . com/ winfx /2006/xaml/

p r e s en t a t i on ”
xmlns : x=”http : // schemas . m i c ro so f t . com/ winfx /2006/xaml”
xmlns : d=”http : // schemas . m i c ro so f t . com/ expr e s s i on / blend

/2008”
xmlns :mc=”http : // schemas . openxmlformats . org /markup−

c o m p a t i b i l i t y /2006”
xmlns : l o c a l =”c l r−namespace : WIFI Robot Controlled Xbox ”
xmlns :WPF=”c l r−namespace : Vis ioForge . Contro l s . UI .WPF;

assembly=Vis ioForge . Contro l s . UI”
x : Class=”WIFI Robot Controlled Xbox . MainWindow”
mc : Ignorab l e=”d”
T i t l e=”WIFI RC ROBOT” Height =”515” Width=”1000” ResizeMode

=”NoResize ” Background=”Gainsboro”>

<!−−Outside Grid−−>
<Grid x :Name=”OutsideGrid”>

<!−−Work Space De f i n i t i on−−>
<Grid . ColumnDef init ions>

<ColumnDefinit ion Width=”15”/>
<ColumnDefinit ion Width=”450”/>
<ColumnDefinit ion Width=”∗”/>
<ColumnDefinit ion Width=”15”/>

</Grid . ColumnDefinit ions>
<Grid . RowDefinit ions>

<RowDefinit ion Height=”10”/>
<RowDefinit ion Height=”336”/>
<RowDefinit ion Height=”∗”/>
<RowDefinit ion Height=”10”/>

</Grid . RowDefinit ions>

<!−−Camara Grid−−>
<Grid x :Name=”InnerCameraGrid ” Grid . Column=”1” Grid .Row

=”2”>
<Grid . ColumnDef init ions>

<ColumnDefinit ion Width=”20”/>
<ColumnDefinit ion Width=”∗”/>
<ColumnDefinit ion Width=”∗”/>
<ColumnDefinit ion Width=”20”/>

</Grid . ColumnDefinit ions>
<Grid . RowDefinit ions>

<RowDefinit ion Height=”20”/>
<RowDefinit ion Height=”50”/>

70

Wi-Fi Robot Eudald Sangeńıs

<RowDefinit ion Height=”50”/>
<RowDefinit ion Height=”∗”/>

</Grid . RowDefinit ions>

<!−−Buttons Camara−−>
<Button x :Name=”BtnConnect” Cl i ck=”Connect ” Content=”

Connect ”
Height =”35” Width=”140”
Grid . Column=”1” Grid .Row=”1”>

</Button>
<Button x :Name=”BtnDisconnect ” Cl i ck=”Disconnect ”

Content=”Disconnect ”
Height =”35” Width=”140”
Grid . Column=”2” Grid .Row=”1”>

</Button>
<Button x :Name=”BtnRecord” Cl i ck=”Record ” Content=”

Record ”
Height =”35” Width=”140”
Grid . Column=”1” Grid .Row=”2”>
<Button . ContentTemplate>

<DataTemplate>
<Image Source=”C:\ Users \ c a r l e \Documents\

GitHub\WIFI Robot Controlled Xbox\ r e c . png” Vert ica lAl ignment=”
Center ” Height=”50”/>

</DataTemplate>
</Button . ContentTemplate>

</Button>
<Button x :Name=”BtnSnap” Cl i ck=”Snapshot ” Content=”

Snapshot ”
Height =”35” Width=”140”
Grid . Column=”2” Grid .Row=”2”>
<Button . ContentTemplate>

<DataTemplate>
<Image Source=”C:\ Users \ c a r l e \Documents\

GitHub\WIFI Robot Controlled Xbox\ snap . png” Vert ica lAl ignment=”
Center ” Height=”20”/>

</DataTemplate>
</Button . ContentTemplate>

</Button>
</Grid>

<!−−Contro l s Robot & Camara Grid−−>
<Grid x :Name=”Contro lsGrid ” Grid . Column=”2” Grid .Row=”1”>

<Grid . RowDefinit ions>
<RowDefinit ion Height=”15”/>
<RowDefinit ion Height=”∗”/>

71

Wi-Fi Robot Eudald Sangeńıs

</Grid . RowDefinit ions>
<!−− Image −−>
<Image Source=”C:\ Users \ c a r l e \Documents\GitHub\

WIFI Robot Controlled Xbox\ xbox cont ro l s . png” St re t ch=” F i l l ”
Grid .Row=”1”/>

<Label Content=”Xbox C o n t r o l l e r Commands” Grid .Row=”1”
FontSize =”25” Vert ica lAl ignment=”Top” HorizontalAl ignment=”
Center ” FontWeight=”Bold” Foreground=”#333333”/>

<!−−IP c o n f i g u r a t i o n Btn−−>
<Button x :Name=”BtnIP” Height =”15” Width=”15” Grid .

Column=”0” Grid .Row=”0” Cl i ck=” I p c o n f i g C l i c k ”
Vert ica lAl ignment=”Top” HorizontalAl ignment=”

Le f t ” Margin =”5 ,0 ,0 ,0”
ToolTipServ ice . In i t ia lShowDelay =”500”

ToolTipServ ice . ShowDuration=”3000” ToolTipServ ice .
BetweenShowDelay=”10000” ToolTip=”Conf igurate IP.”>

<Button . Template>
<ControlTemplate>

<Image Source=”C:\ Users \ c a r l e \Documents\
GitHub\WIFI Robot Controlled Xbox\ gear . png”/>

</ControlTemplate>
</Button . Template>

</Button>
</Grid>

<!−− Sensor ing Grid + Leds−−>
<Grid x :Name=”Sensor ing ” Grid . Column=”2” Grid .Row=”2”>

<Label Content=”J o y s t i c k s in fo rmat ion : ”
Hor izontalAl ignment=”Le f t ” Vert ica lAl ignment=”Top” FontStyle=”
Normal” FontSize =”14” Margin =”65 ,0 ,10 ,0” FontWeight=”Bold”/>

<Label Content=”Buttons in fo rmat ion : ”
Hor izontalAl ignment=”Right ” Vert ica lAl ignment=”Top” FontStyle=”
Normal” FontSize =”14” Margin =”10 ,0 ,65 ,0” FontWeight=”Bold”/>

<TextBox x :Name=” l b j o y s t i c k s ” Vert ica lAl ignment=”Top”
HorizontalAl ignment=”Le f t ” Margin =”40 ,30 ,40 ,0” Height =”90”
Width=”200” Background=”White”/>

<TextBox x :Name=”lb but tons ” Vert ica lAl ignment=”Top”
HorizontalAl ignment=”Right ” Margin =”40 ,30 ,40 ,0” Height =”90”
Width=”200” Background=”White”/>

</Grid>

<!−−Camara Vision−−>
<Frame Grid . Column=”1” Grid .Row=”1” Height =”336” Width

72

Wi-Fi Robot Eudald Sangeńıs

=”450” Background=”#333333”>
<Frame . Content>

<TextBlock Text=”No S igna l ” FontSize =”20” FontStyle
=” I t a l i c ” Foreground=”#FFFFFF” HorizontalAl ignment=”Center ”
Vert ica lAl ignment=”Center”/>

</Frame . Content>
</Frame>

<WPF: VideoCapture Name=”videoCapture1 ” HorizontalAl ignment
=”Le f t ” Vert ica lAl ignment=”Top”

Height =”336” Width=”450”
Grid . Column=”1” Grid .Row=”1”/>

</Grid>
</Window>

Figure 42: Xbox Controller application interface.

73

Wi-Fi Robot Eudald Sangeńıs

A.C IpWindow.xaml.cs

us ing System ;
us ing System . Windows ;

namespace WIFI Robot Controlled Xbox
{

/// <summary>
/// I n t e r a c t i o n l o g i c f o r Window1 . xaml
/// </summary>
pub l i c p a r t i a l c l a s s IP Window : Window
{

pub l i c IP Window ()
{

In i t i a l i z eComponent () ;
}

p r i v a t e void Apply Cl ick (ob j e c t sender , RoutedEventArgs e)
{

Globa l Var i ab l e s . ip cam = txb Ip cam . Text ;
G loba l Var i ab l e s . i p r ob = txb Ip rob . Text ;
G loba l Var i ab l e s . port cam = Convert . ToInt32 (
txb Port cam . Text) ;
G loba l Var i ab l e s . por t rob = Convert . ToInt32 (
txb Port rob . Text) ;

}
}

}

74

Wi-Fi Robot Eudald Sangeńıs

A.D IpWindow.xaml

<Window
xmlns=”http : // schemas . m i c ro so f t . com/ winfx /2006/xaml/

p r e s en t a t i on ”
xmlns : x=”http : // schemas . m i c ro so f t . com/ winfx /2006/xaml”
xmlns : d=”http : // schemas . m i c ro so f t . com/ expr e s s i on / blend

/2008”
xmlns :mc=”http : // schemas . openxmlformats . org /markup−

c o m p a t i b i l i t y /2006”
xmlns : l o c a l =”c l r−namespace : WIFI Robot Controlled Xbox ”
xmlns :WPF=”c l r−namespace : Vis ioForge . Contro l s . UI .WPF;

assembly=Vis ioForge . Contro l s . UI”
x : Class=”WIFI Robot Controlled Xbox . MainWindow”
mc : Ignorab l e=”d”
T i t l e=”WIFI RC ROBOT” Height =”515” Width=”1000” ResizeMode

=”NoResize ” Background=”Gainsboro”>

<!−−Outside Grid−−>
<Grid x :Name=”OutsideGrid”>

<!−−Work Space De f i n i t i on−−>
<Grid . ColumnDef init ions>

<ColumnDefinit ion Width=”15”/>
<ColumnDefinit ion Width=”450”/>
<ColumnDefinit ion Width=”∗”/>
<ColumnDefinit ion Width=”15”/>

</Grid . ColumnDefinit ions>
<Grid . RowDefinit ions>

<RowDefinit ion Height=”10”/>
<RowDefinit ion Height=”336”/>
<RowDefinit ion Height=”∗”/>
<RowDefinit ion Height=”10”/>

</Grid . RowDefinit ions>

<!−−Camara Grid−−>
<Grid x :Name=”InnerCameraGrid ” Grid . Column=”1” Grid .Row

=”2”>
<Grid . ColumnDef init ions>

<ColumnDefinit ion Width=”20”/>
<ColumnDefinit ion Width=”∗”/>
<ColumnDefinit ion Width=”∗”/>
<ColumnDefinit ion Width=”20”/>

</Grid . ColumnDefinit ions>
<Grid . RowDefinit ions>

<RowDefinit ion Height=”20”/>
<RowDefinit ion Height=”50”/>

75

Wi-Fi Robot Eudald Sangeńıs

<RowDefinit ion Height=”50”/>
<RowDefinit ion Height=”∗”/>

</Grid . RowDefinit ions>

<!−−Buttons Camara−−>
<Button x :Name=”BtnConnect” Cl i ck=”Connect ” Content=”

Connect ”
Height =”35” Width=”140”
Grid . Column=”1” Grid .Row=”1”>

</Button>
<Button x :Name=”BtnDisconnect ” Cl i ck=”Disconnect ”

Content=”Disconnect ”
Height =”35” Width=”140”
Grid . Column=”2” Grid .Row=”1”>

</Button>
<Button x :Name=”BtnRecord” Cl i ck=”Record ” Content=”

Record ”
Height =”35” Width=”140”
Grid . Column=”1” Grid .Row=”2”>
<Button . ContentTemplate>

<DataTemplate>
<Image Source=”C:\ Users \ c a r l e \Documents\

GitHub\WIFI Robot Controlled Xbox\ r e c . png” Vert ica lAl ignment=”
Center ” Height=”50”/>

</DataTemplate>
</Button . ContentTemplate>

</Button>
<Button x :Name=”BtnSnap” Cl i ck=”Snapshot ” Content=”

Snapshot ”
Height =”35” Width=”140”
Grid . Column=”2” Grid .Row=”2”>
<Button . ContentTemplate>

<DataTemplate>
<Image Source=”C:\ Users \ c a r l e \Documents\

GitHub\WIFI Robot Controlled Xbox\ snap . png” Vert ica lAl ignment=”
Center ” Height=”20”/>

</DataTemplate>
</Button . ContentTemplate>

</Button>
</Grid>

<!−−Contro l s Robot & Camara Grid−−>
<Grid x :Name=”Contro lsGrid ” Grid . Column=”2” Grid .Row=”1”>

<Grid . RowDefinit ions>
<RowDefinit ion Height=”15”/>
<RowDefinit ion Height=”∗”/>

76

Wi-Fi Robot Eudald Sangeńıs

</Grid . RowDefinit ions>
<!−− Image −−>
<Image Source=”C:\ Users \ c a r l e \Documents\GitHub\

WIFI Robot Controlled Xbox\ xbox cont ro l s . png” St re t ch=” F i l l ”
Grid .Row=”1”/>

<Label Content=”Xbox C o n t r o l l e r Commands” Grid .Row=”1”
FontSize =”25” Vert ica lAl ignment=”Top” HorizontalAl ignment=”
Center ” FontWeight=”Bold” Foreground=”#333333”/>

<!−−IP c o n f i g u r a t i o n Btn−−>
<Button x :Name=”BtnIP” Height =”15” Width=”15” Grid .

Column=”0” Grid .Row=”0” Cl i ck=” I p c o n f i g C l i c k ”
Vert ica lAl ignment=”Top” HorizontalAl ignment=”

Le f t ” Margin =”5 ,0 ,0 ,0”
ToolTipServ ice . In i t ia lShowDelay =”500”

ToolTipServ ice . ShowDuration=”3000” ToolTipServ ice .
BetweenShowDelay=”10000” ToolTip=”Conf igurate IP.”>

<Button . Template>
<ControlTemplate>

<Image Source=”C:\ Users \ c a r l e \Documents\
GitHub\WIFI Robot Controlled Xbox\ gear . png”/>

</ControlTemplate>
</Button . Template>

</Button>
</Grid>

<!−− Sensor ing Grid + Leds−−>
<Grid x :Name=”Sensor ing ” Grid . Column=”2” Grid .Row=”2”>

<Label Content=”J o y s t i c k s in fo rmat ion : ”
Hor izontalAl ignment=”Le f t ” Vert ica lAl ignment=”Top” FontStyle=”
Normal” FontSize =”14” Margin =”65 ,0 ,10 ,0” FontWeight=”Bold”/>

<Label Content=”Buttons in fo rmat ion : ”
Hor izontalAl ignment=”Right ” Vert ica lAl ignment=”Top” FontStyle=”
Normal” FontSize =”14” Margin =”10 ,0 ,65 ,0” FontWeight=”Bold”/>

<TextBox x :Name=” l b j o y s t i c k s ” Vert ica lAl ignment=”Top”
HorizontalAl ignment=”Le f t ” Margin =”40 ,30 ,40 ,0” Height =”90”
Width=”200” Background=”White”/>

<TextBox x :Name=”lb but tons ” Vert ica lAl ignment=”Top”
HorizontalAl ignment=”Right ” Margin =”40 ,30 ,40 ,0” Height =”90”
Width=”200” Background=”White”/>

</Grid>

<!−−Camara Vision−−>
<Frame Grid . Column=”1” Grid .Row=”1” Height =”336” Width

77

Wi-Fi Robot Eudald Sangeńıs

=”450” Background=”#333333”>
<Frame . Content>

<TextBlock Text=”No S igna l ” FontSize =”20” FontStyle
=” I t a l i c ” Foreground=”#FFFFFF” HorizontalAl ignment=”Center ”
Vert ica lAl ignment=”Center”/>

</Frame . Content>
</Frame>

<WPF: VideoCapture Name=”videoCapture1 ” HorizontalAl ignment
=”Le f t ” Vert ica lAl ignment=”Top”

Height =”336” Width=”450”
Grid . Column=”1” Grid .Row=”1”/>

</Grid>
</Window>

Figure 43: IP Window interface.

78

Wi-Fi Robot Eudald Sangeńıs

A.E Global Variables.cs

pub l i c c l a s s G loba l Var i ab l e s
{

// ip v a r i a b l e s
pub l i c s t a t i c s t r i n g ip cam ;
pub l i c s t a t i c s t r i n g ip rob ;
// port v a r i a b l e s
pub l i c s t a t i c i n t port cam ;
pub l i c s t a t i c i n t por t rob ;

}

79

Wi-Fi Robot Eudald Sangeńıs

B Arduino Code

// UDP WIFI TRANSMISSION BETWEEN ARDUINO AND VISUAL STUDIO
// WIFI ROBOT CONTROLLED USING A XBOX CONTROLLER
// EUDALD SANGEN S & GUILLEM CORNELLA

// Inc lude a l l the l i b r a r i e s
#inc lude <WiFiUdp . h> // f o r programming UDP r o u t i n e s
#inc lude <ESP32Servo . h> // to c o n t r o l the se rvo motors
#inc lude <WiFi . h> // to connect to the WIFI module
#inc lude <MapFloat . h> // to be ab le to do Maps us ing f l o a t

v a r i a b l e s

// Def ine the p ins o f the motor s h i e l d module
#d e f i n e enA 14 // enable the motor A
#d e f i n e enB 32 // enable the motor B

// Pins that act as a switch , to c o n t r o l the d i r e c t i o n o f the motor
:

#d e f i n e in1 27
#d e f i n e in2 26
#d e f i n e in3 25
#d e f i n e in4 33

// Def ine the speed o f the motors , s t a r t i n g at 0
i n t motorSpeedA = 0 ;
i n t motorSpeedB = 0 ;

// Def in ing the servo motors
Servo servo cam ; // The name o f the servo that we are

us ing f o r the camera c o n t r o l
Servo s e r v o s t e e r ; // The name o f the servo that we are

us ing f o r robot s t e e r i n g

// Def ine the i n i t i a l p o s i t i o n degree o f the s e rvo s
i n t i n i t i a l p o s c a m = 90 ; // The i n i t i a l p o s i t i o n o f the camera

w i l l c ente red at 90 degree s
i n t i n i t i a l p o s s t e e r = 115 ; // The i n i t i a l p o s i t i o n o f the servo

s t e e r w i l l be at 115 degree s to have the robot s t r a i g h t
i n t s e r v o c a m a n g l e i n t y = 0 ; // The past va lue o f the v a r i a b l e

that the servo had be f o r e the new loop
i n t s e r v o s t e e r a n g l e i n t y = 0 ;

// Def ine the PWM pins o f the s e rvo s
i n t servo cam pin = 4 ;

80

Wi-Fi Robot Eudald Sangeńıs

i n t s e r v o s t e e r p i n = 5 ;

// Def ine the p ins o f the s e rvo s connected to the r e l a y
i n t s e rvo cam re lay = 18 ;
i n t s e r v o s t e e r r e l a y = 19 ;

// Def ine the route r
const char ∗ s s i d = ”EBG3808 2 .4 ” ; // The name o f your WIFI

route r
const char ∗ password = ” ventana2 . 4 ” ; // The password o f your

route r

// Def ine v a r i a b l e s o f the incoming packets from the C# a p p l i c a t i o n
WiFiUDP udp ; // Create a udp ob j e c t
unsigned i n t udpPort = 2000 ; // The port to l i s t e n to incoming

packets
char packetBuf f e r [5 0] ; // Set up a b u f f e r f o r incoming

packets (abans era [5 0])

// Other d e f i n i t i o n s
#d e f i n e LED 2 // Def in ing a LED connected to

the GPIO 2
bool l ed ; // Def ine the v a r i a b l e ” l ed ” as a

bool

// Write the code to i n i t i a l i z e the board , c r e a t e the SETUP
void setup () {

Serial . beg in (115200) ; // Sets the data ra t e in b i t s per
second (baud) f o r s e r i a l data t ransmi s s i on .

de lay (500) ; // Wait f o r 500ms

pinMode (enA , OUTPUT) ; // Def ine the p ins o f the motor s h i e l d
as outputs

pinMode (enB , OUTPUT) ;
pinMode (in1 , OUTPUT) ;
pinMode (in2 , OUTPUT) ;
pinMode (in3 , OUTPUT) ;
pinMode (in4 , OUTPUT) ;
pinMode (LED, OUTPUT) ; // Def ine the LED that w i l l act as the

robot ' s l i g h t s
pinMode (servo cam pin ,OUTPUT) ;
pinMode (s e r v o s t e e r p i n ,OUTPUT) ;
pinMode (servo cam re lay ,OUTPUT) ;
pinMode (s e r v o s t e e r r e l a y ,OUTPUT) ;

81

Wi-Fi Robot Eudald Sangeńıs

servo cam . attach (servo cam pin) ; // Attach the servo to the
pin GPIO 4 , the same as D2 f o r the ESP8266 module

s e r v o s t e e r . attach (s e r v o s t e e r p i n) ; // Attach the servo to the
pin GPIO 5 , the same as D1 f o r the ESP8266 module

servo cam . wr i t e (i n i t i a l p o s c a m) ; // Set the i n i t i a l
p o s i t i o n to 0

s e r v o s t e e r . wr i t e (i n i t i a l p o s s t e e r) ; // Set the i n i t i a l
p o s i t i o n to 45

d i g i t a l W r i t e (LED, LOW) ; // Turn o f f the Led On Board

// Wifi c o n f i g u r a t i o n and connect ion :
WiFi . begin (s s id , password) ; // Connect to your WiFi

route r
Serial . p r i n t l n (””) ; // Pr int a blank space
Serial . p r i n t (” Connecting ”) ; // Pr int ” Connecting ” to

the S e r i a l Monitor
whi l e (WiFi . s t a t u s () != WL CONNECTED) // Make the Led Flash whi l e

connect ing to the w i f i r out e r
{

Serial . p r i n t (” . ”) ; // Pr int a dot ” . ” whi l e
t ry ing to connect

d i g i t a l W r i t e (LED, LOW) ; // Turn o f f the LED on
board

de lay (250) ; // Wait f o r 250ms
d i g i t a l W r i t e (LED, HIGH) ; // Turn on the LED on board
de lay (250) ; // Wait f o r 250ms

}
// I f s u c c e s s f u l l y connected to the w i f i router , the IP Address

and port are d i sp layed in the s e r i a l monitor
Serial . p r i n t l n (””) ;
Serial . p r i n t (” S u c c e s s f u l l y connected to : ”) ;
Serial . p r i n t l n (s s i d) ;
Serial . p r i n t (”NodeMCU IP address : ”) ;
Serial . p r i n t l n (WiFi . l o c a l I P ()) ;
udp . begin (udpPort) ; // Once connect ion i s

e s t a b l i s h e d , you can s t a r t l i s t e n i n g to incoming packets .
Serial . p r i n t (” Local Port : ”) ;
Serial . p r i n t l n (udpPort) ; // Pr int the number o f the port

that ' s going to be used
}

// Write the loop code to run the program
void loop ()
{

r e c e i v e p a c k e t () ;}

82

Wi-Fi Robot Eudald Sangeńıs

// Waiting to r e c e i v e incoming UDP packets
void r e c e i v e p a c k e t ()
{

i n t packe tS i z e = udp . parsePacket () ;
i f (packe tS i z e) {

IPAddress remoteIp = udp . remoteIP () ;
i n t l en = udp . read (packetBuf fer , 255) ;
i f (l en > 0) packetBuf f e r [l en] = 0 ;
S t r ing udp packet sent = packetBuf f e r ; // St r ing that

conta in s a l l the data sent by C#.

Serial . p r i n t (”UDP packet sent by PC: ”) ;
Serial . p r i n t l n (udp packet sent) ; // Pr int in the s e r i a l

monitor the long s t r i n g conta in ing a l l the in fo rmat ion

// SERVO CAMERA MOVEMENT
Str ing v a l t i l t c a m e r a = udp packet sent . s ub s t r i ng (0 , 6) ; //

Creat ing a s ub s t r i n g from the packet sent to obta in in fo rmat ion
regard ing the t i l t va lue ” jx0−−−”

v a l t i l t c a m e r a = v a l t i l t c a m e r a . s u b s t r i n g (3 , 6) ; //
Creat ing a s ub s t r i n g again to obta in the numeric v a r i a b l e s and
removing the l e t t e r s ” jx0 ”

f l o a t v a l t i l t c a m e r a f = v a l t i l t c a m e r a . toF loat () ; //
Converting the St r ing in to a f l o a t v a r i a b l e

v a l t i l t c a m e r a f = v a l t i l t c a m e r a f − 0 . 5 ; //
Subs t rac t ing 0 .5 to the value so we can have 0 in the the center
, −0.5 the minimum , and 0 .5 the maximum
Serial . p r i n t (” Value o f the camera sent by c#:”) ;
Serial . p r i n t l n (v a l t i l t c a m e r a f) ;
f l o a t se rvo cam ang le = mapFloat (v a l t i l t c a m e r a f , −0.5 , 0 . 5 ,

170 .0 , 1 0 . 0) ; // Maping the value obtained , −0.5 in the j o y s t i c k
equa l s 170 and 0 .5 equa l s 10
i n t s e r v o c a m a n g l e i n t = (i n t) se rvo cam ang le ; //

Converting the value in degree s in to an <int > v a r i a b l e

i f (s e r v o c a m a n g l e i n t == s e r v o c a m a n g l e i n t y) {
d i g i t a l W r i t e (se rvo cam re lay ,LOW) ;
servo cam . detach () ;
Serial . p r i n t l n (” Servo camera OFF”) ;
de lay (200) ;

}
e l s e i f (s e r v o c a m a n g l e i n t != s e r v o c a m a n g l e i n t y) {

d i g i t a l W r i t e (se rvo cam re lay ,HIGH) ;
servo cam . attach (servo cam pin) ;
servo cam . wr i t e (s e r v o c a m a n g l e i n t) ; //

83

Wi-Fi Robot Eudald Sangeńıs

Move the servo accord ing to the degree s maped
Serial . p r i n t l n (” Servo camera ON”) ;
Serial . p r i n t (” Angle o f the camera ' s se rvo : ”) ;
Serial . p r i n t l n (s e r v o c a m a n g l e i n t) ;
Serial . p r i n t (” Antique ang le o f the camera ' s se rvo : ”) ;
Serial . p r i n t l n (s e r v o c a m a n g l e i n t y) ;
de lay (200) ;

}
s e r v o c a m a n g l e i n t y=s e r v o c a m a n g l e i n t ;

// STEER OF THE ROBOT
Str ing v a l s t e e r = udp packet sent . s ub s t r i ng (6 , 12) ; //

Creat ing a s ub s t r i n g from the packet sent to obta in in fo rmat ion
regard ing the s t e e r va lue ” jx1−−−”

v a l s t e e r = v a l s t e e r . s ub s t r i ng (3 , 6) ; //
St r ing sent by the PC to c o n t r o l the robot and go r i g h t and l e f t

f l o a t v a l s t e e r f = v a l s t e e r . toF loat () ; //
Converting the St r ing in to a f l o a t v a r i a b l e

v a l s t e e r f = v a l s t e e r f − 0 . 5 ; //
Subs t rac t ing 0 .5 to the value so we can have 0 in the the center
, −0.5 the minimum , and 0 .5 the maximum
Serial . p r i n t l n (” v a l s t e e r f : ”) ;
Serial . p r i n t l n (v a l s t e e r f) ;
f l o a t s e r v o s t e e r a n g l e = mapFloat (v a l s t e e r f , −0.5 , 0 . 5 ,

85 . 0 , 145 . 0) ; // Maping the value obtained , −0.5 in the j o y s t i c k
equa l s 85 − l e f t and 0 .5 equa l s 145 −r i g h t .
Serial . p r i n t l n (s e r v o s t e e r a n g l e) ;
i n t s e r v o s t e e r a n g l e i n t = (i n t) s e r v o s t e e r a n g l e ; //

Converting the value in degree s in to an <int > v a r i a b l e

i f (s e r v o s t e e r a n g l e i n t == s e r v o s t e e r a n g l e i n t y) {
d i g i t a l W r i t e (s e r v o s t e e r r e l a y ,LOW) ;
s e r v o s t e e r . detach () ;
de lay (200) ;

}
e l s e i f (s e r v o s t e e r a n g l e i n t != s e r v o s t e e r a n g l e i n t y) {

d i g i t a l W r i t e (s e r v o s t e e r r e l a y ,HIGH) ;
s e r v o s t e e r . attach (s e r v o s t e e r p i n) ;
s e r v o s t e e r . wr i t e (s e r v o s t e e r a n g l e i n t) ;

// Move the servo accord ing to the degree s maped
Serial . p r i n t l n (” Servo s t e e r ON”) ;
Serial . p r i n t (” Angle o f the s t e e r : ”) ;
Serial . p r i n t l n (s e r v o s t e e r a n g l e i n t) ;
Serial . p r i n t (” Antique ang le o f the s t e e r se rvo : ”) ;
Serial . p r i n t l n (s e r v o s t e e r a n g l e i n t y) ;
de lay (200) ;

84

Wi-Fi Robot Eudald Sangeńıs

}
s e r v o s t e e r a n g l e i n t y = s e r v o s t e e r a n g l e i n t ;

// ROBOT FORWARD AND BACKWARDS
Str ing v a l v e l = udp packet sent . s ub s t r i ng (12 ,18) ; //

Creat ing a s ub s t r i n g from the packet sent to obta in in fo rmat ion
regard ing the s t e e r va lue ” jy1−−−”

v a l v e l = v a l v e l . s u b s t r i n g (3 , 6) ; //
St r ing sent by the PC to c o n t r o l the robot and go forward and
backwards

f l o a t v a l v e l f = v a l v e l . toF loat () ; //
Converting the St r ing in to a f l o a t v a r i a b l e

v a l v e l f = v a l v e l f − 0 . 5 ; //
Subs t rac t ing 0 .5 to the value so we can have 0 in the the center
, −0.5 the minimum , and 0 .5 the maximum
Serial . p r i n t (” Value o f the v e l o c i t y : ”) ;
Serial . p r i n t l n (v a l v e l f) ;

//LEDS ON − LEDS OFF
Str ing l i g h t = udp packet sent . s ub s t r i ng (18 ,22) ; //

Creat ing a s ub s t r i n g from the packet sent to obta in in fo rmat ion
regard ing the LED value ”LED−”

i f (l i g h t==”LED1”) { // When
the s ub s t r i n g analyzed i s ”LED1” then l i g h t on the LED

led = true ;
d i g i t a l W r i t e (LED,HIGH) ;

}
e l s e i f (l i g h t==”LED2”) { // When
the s ub s t r i n g analyzed i s ”LED2” then l i g h t o f f the LED

led = f a l s e ;
d i g i t a l W r i t e (LED, LOW) ;

}
e l s e i f (l i g h t==”LED0”) { // When
the s ub s t r i n g analyzed i s ”LED0” , i f the LED was on , turn i t

o f f , and v i c e versa .
d i g i t a l W r i t e (LED,LOW) ;
i f (l ed==true) d i g i t a l W r i t e (LED,HIGH) ;
e l s e d i g i t a l W r i t e (LED,LOW) ;

}
// Y−a x i s used f o r forward and backward c o n t r o l

// to go BACKWARDS
i f (v a l v e l f < −0.1) {

// Set Motor A backward
d i g i t a l W r i t e (in1 , HIGH) ;
d i g i t a l W r i t e (in2 , LOW) ;
// Set Motor B backward

85

Wi-Fi Robot Eudald Sangeńıs

d i g i t a l W r i t e (in3 , HIGH) ;
d i g i t a l W r i t e (in4 , LOW) ;
// Convert the d e c l i n i n g Y−a x i s r ead ings f o r going backwards ,

−0.1 equa l s 400 and −0.5 equa l s 1000 . The PWM s i g n a l i s
i n c r e a s i n g the motor speed .

f l o a t motorSpeedA f = mapFloat (v a l v e l f , −0.1 , −0.5 , 400 .0 ,
1000 .0) ;

f l o a t motorSpeedB f = mapFloat (v a l v e l f , −0.1 , −0.5 , 400 .0 ,
1000 .0) ;

motorSpeedA = (i n t) motorSpeedA f ; // convert the f l o a t
v a r i a b l e o f the speed o f the motor A to an i n t

motorSpeedB = (i n t) motorSpeedB f ; // convert the f l o a t
v a r i a b l e o f the speed o f the motor B to an i n t
}
// to go FORWARD
e l s e i f (v a l v e l f > 0 . 1) {

// Set Motor A forward
d i g i t a l W r i t e (in1 , LOW) ;
d i g i t a l W r i t e (in2 , HIGH) ;
// Set Motor B forward
d i g i t a l W r i t e (in3 , LOW) ;
d i g i t a l W r i t e (in4 , HIGH) ;
// Convert the growing Y−a x i s r ead ings f o r going forward , 0 . 1

equa l s 400 and 0 .5 equa l s 1000 . The PWM s i g n a l i s i n c r e a s i n g
the motor speed .

f l o a t motorSpeedA f = mapFloat (v a l v e l f , 0 . 1 , 0 . 5 , 400 .0 ,
1000 .0) ;

f l o a t motorSpeedB f = mapFloat (v a l v e l f , 0 . 1 , 0 . 5 , 400 .0 ,
1000 .0) ;

motorSpeedA = (i n t) motorSpeedA f ; // convert the f l o a t
v a r i a b l e o f the speed o f the motor A to an i n t

motorSpeedB = (i n t) motorSpeedB f ; // convert the f l o a t
v a r i a b l e o f the speed o f the motor B to an i n t
}
// I f j o y s t i c k s tays in middle the motors are not moving (to

avoid warming the motors)
e l s e {

motorSpeedA = 0 ;
motorSpeedB = 0 ;

}
}

analogWrite (enA , motorSpeedA) ; // Send PWM s i g n a l to motor A
analogWrite (enB , motorSpeedB) ; // Send PWM s i g n a l to motor B

}

86

Wi-Fi Robot Eudald Sangeńıs

C Electrical Diagram

87

	Introduction
	List of materials
	Hardware
	Motor Driver L298N
	Servomotors
	Camera control - MG996R
	Steer control - SG90

	Power supply - Battery
	ESP32 DEVKITV1 Wi-Fi Module

	Telecommunications
	Network Systems
	Wi-Fi protocols
	TCP
	UDP

	Network's security
	Device connection

	Application Code
	Libraries
	NuGet libraries
	System libraries

	Camera characteristics & code
	Controller code
	Keyboard
	Xbox Controller

	Arduino Code
	Setup
	Loop

	Building the robot
	Research and material acquisition
	Disassemble the RC car
	Design of a 3D support
	Initial connections in the breadboard and first test of the code
	Weld the components to the PCB circuit board
	Final base design and 3D supports
	Assembling
	Electrical diagram
	Analysis of the servo motors
	Servo's current consumption without load:
	Servo's current consumption with load:

	Current analysis of the DC motors
	Current analysis of the DC without friction:
	Current analysis of the DC with friction:

	Current consumption

	Final testing

	Problems faced & solutions
	Conclusion
	C# Code
	MainWindow.xaml.cs
	MainWindow.xaml
	IpWindow.xaml.cs
	IpWindow.xaml
	Global_Variables.cs

	Arduino Code
	Electrical Diagram

