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Abstract

This thesis studies the problem of inferring topology from signal graphs. For this reason,
the Master’s Thesis is part of the current of thought, growing in recent years, in which
the structure of the network is not assumed to be known.

The problem of inferring topology is approached from two angles. The first one, studies
how to find the structure of a graph from spectral templates which can be noisy. Thus,
from observations of the network, the spectral template of the graph that makes up the
network is inferred. In previous works, like my Degree’s Thesis, the algorithms for the
inference of incomplete spectral templates were studied. In this Master’s thesis, we go
one step further by demonstrating why the techniques studied do not always work and
proposing an algorithm based on LASSO to infer the network topology when the spectral
templates are noisy. The proposed algorithm is compared with those previously studied
obtaining better results in terms of RMSFE and reliability.

The second point of view addressed in this thesis is the inference of the network from
statistical techniques. It is common to find networks whose nodes have some relation.
These techniques are based on, from some observations of the network, trying to find the
existing relationships between the different nodes of the graph. These techniques can be
used in a more generic way than those based on spectral templates. Statistical methods
are studied in more depth in this Master’s Thesis. Initially, the Pearson correlation
coefficient is explained. After studying it, some limitations are found. Thus, a new
approach is proposed based on the conditional covariance. Then, it is assumed that the
signals follow a Gaussian distribution which brings us to study the Maximum Likelihood
estimator while considering the graph’s sparsity. Although, the previous approach was
improved, we are interested in finding even a better one. Hence, we study an approach
based on linear regression. In this last algorithm, we include a term to promote sparsity
when finding the solution.

To conclude, the statistical methods studied, are compared by performing some sim-
ulations. By performing these simulations, it is observed that the best technique to infer
the graph’s topology is the one based on linear regression.
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Resumen

Esta tesis estudia el problema de inferir la topologia de la red a partir de las sefiales grafo.
Por esta razon, la Tesis Final de Master se inscribe en la corriente actual de pensamiento,
creciente en los ultimos anos, en la que se supone no conocida la estructura de la red.

El problema de la inferencia de la topologia se aborda desde dos angulos. El primero,
estudia como encontrar la estructura de un grafo a partir de plantillas espectrales que
pueden ser ruidosas o no. Asi, a partir de las observaciones, se infiere la plantilla espectral
del grafo que compone la red. En trabajos anteriores, como mi Tesis de Final de Grado,
se estudiaron los algoritmos para la inferencia de plantillas espectrales incompletas. En
esta trabajo, vamos un paso mas alla demostrando por qué las técnicas estudiadas no
siempre funcionan. Seguimos, proponiendo un algoritmo basado en LASSO para inferir
la topologia de la red cuando las plantillas espectrales son ruidosas. El algoritmo propuesto
se compara con los anteriormente estudiados obteniendo mejores resultados en términos
de RMSE y fiabilidad.

El segundo punto de vista abordado en esta tesis es la inferencia de la red a partir
de técnicas estadisticas. Es comun encontrar redes cuyos nodos tienen alguna relacion
entre ellos. Estas técnicas se basan, a partir de algunas observaciones de la red, en tratar
de encontrar las relaciones existentes entre los diferentes nodos del grafo. Estas técnicas
pueden ser utilizadas de manera més genérica que las basadas en plantillas espectrales.
Por ese motivo, los métodos estadisticos se estudian con mas profundidad en esta Tesis
de Master. Inicialmente, se explica el coeficiente de correlacién de Pearson. Después de
estudiarlo, se detecta una limitacién. Por ese motivo, se propone un nuevo enfoque basado
en la covarianza condicional. Luego, se asume que las sefiales siguen una distribucion
Gaussiana, lo que nos lleva a estudiar el estimador de Maxima Verosimilitud, también
considerando que la matriz solucion es dispersa. Aunque con esta técnica se mejora el
enfoque anterior, estamos interesados en encontrar una técnica ain mejor. Por lo tanto,
estudiamos un enfoque basado en la regresion lineal. En este tltimo algoritmo, incluimos
un término para promover la que la soluciéon sea una matriz dispersa.

Para concluir, los métodos estadisticos estudiados, se comparan realizando algunas
simulaciones. Al realizarlas, se observa que la mejor técnica para inferir la topologia del
grafo es la que se basa en la regresion lineal.






Resum

Aquesta tesi estudia el problema d’inferir la topologia d’una xarxa a partir dels senyals
graf. Per aquesta rad, la Tesi Final de Master s’inscriu en el corrent actual de pensament,
creixent en els darrers anys, en la que se suposa no coneguda 'estructura de la xarxa.

El problema d’inferencia de la topologia s’aborda des de dos angles. El primer, estudia
com trobar I'estructura d’un graf a partir de plantilles espectrals que poden ser sorolloses
o no. Aixi, a partir de les observacions, s’infereix la plantilla espectral del graf que compon
la xarxa. En treballs anteriors, com la meva Tesi de Final de Grau, es van estudiar els
algoritmes per a la inferencia de plantilles espectrals incompletes. En aquest treball,
anem un pas més enlla demostrant per que les técniques estudiades no sempre funcionen.
Seguim, proposant un algoritme basat en LASSO per inferir la topologia de la xarxa
quan les plantilles espectrals son sorolloses. L’algoritme proposat es compara amb els
anteriorment estudiats obtenint millors resultats en termes de RMSFE i fiabilitat.

El segon punt de vista abordat en aquesta tesi és la inferencia de la xarxa a partir de
tecniques estadistiques. Es comt trobar xarxes on els nodes tenen alguna relaci6 entre
ells. Aquestes tecniques es basen, a partir d’algunes observacions de la xarxa, a tractar
de trobar les relacions existents entre els diferents nodes del graf. Aquestes tecniques
poden ser utilitzades de manera més generica que les basades en plantilles espectrals.
Per aquest motiu, els metodes estadistics s’estudien amb més profunditat en aquesta
Tesi de Master. Inicialment, s’explica el coeficient de correlacié de Pearson. Després
d’estudiar-lo, es detecta una limitacié. Per aquest motiu, es proposa un nou enfocament
basat en la covariancia condicional. Després, s’assumeix que els senyals segueixen una
distribucié Gaussiana, el que ens porta a estudiar ’estimador de Maxima Versemblanca,
també considerant que la matriu solucié és dispersa. Encara que amb aquesta técnica es
millora I’enfocament anterior, estem interessats a trobar una técnica encara millor. Per
tant, estudiem un enfocament basat en la regressié lineal. En aquest tultim algoritme,
incloem un terme per promoure que la solucié sigui una matriu dispersa.

Per concloure, els metodes estadistics estudiats, es comparen realitzant algunes simu-
lacions. En realitzar-les, s’observa que la millor tecnica per inferir la topologia del graf és
la que es basa en la regressio lineal.
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A column vector.

A matrix.

Identity matrix.

All-zeros vector or matrix.

All-ones vector or matrix.

A column vector containing the diagonal entries of X.
The trace of matrix X.

A column vector representing the vectorized form of X.
The Moore-Penrose pseudoinverse of X .

The conjugate operator.

The transpose operator

The hermitician operator, transpose and conjugate
Khatri-Rao or column-wise Kronecker product.
The Kronecker product.

The Hadamard product.

The absolute value of x.

The Euclidian norm of x.

The {o-norm of X.

The ¢1-norm of X.

The real number’s field.

The imaginary number’s field.

The mathematical expectation operator.

The classic indicator function

Variance between x; and z;

Covariance between z; and x;

Number of dimensions of vector x

Vector with all entries equal 0 but entry ¢ equal 1
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Chapter 1

Introduction

1.1 Scope

The world of graph theory is very extensive as well as its applications. The Graph Signal
Processing (GSP) implementation in different applications is increasing over the year.
There are multiple applications like the study of people movement. Reference [3], studies
the taxi movement in New York City in the period between 2010 and 2013. They use GSP
to discover underlying behaviors in people movements. Another interesting application
is rating prediction. In [4], authors present a new approach for recommendation systems
by using graph’s filters. This use brings us into another interesting application, filter
design based on graphs [5] [6]. Applications in the field of medicine could not be missing.
The GSP is used in the study of cancer [7]. In this field, nodes and edges represent
molecular elements and the correlation existing between them. With the arrival of the
fiftth generation technology 5G it is increasing the number of sensors. This amount will
increase even more with the use of sensors in what are called Smart Cities [8]. The GSP
is also being applied in the study of data taken from sensors [9]. In this study, data about
pollution is taken from different sensors placed around Poland. Much more interesting
applications can be found such as: applications to management of energy systems, smart
grids, environmental monitoring, or analyzing epidemiological data. An example about
this last application can be found this year. The COVID-19 pandemic is being studied
by using graph models [10]. In this paper, it is studied a new COVID-19 case prediction
that learns from a large spatio-temporal graph.

As introduced in the abstract, when studying this theory or applying it in different
fields and working with GSP, in general, it is considered that the network that generates
the graph signal is known. From this assumption, the analysis of how the network topology
influences the graph signal is constructed. However, a trend is growing more and more in
which the network is not assumed to be known. Due to the great growth in applications,
it is increasingly necessary to establish robust topology inference techniques that can work
in optimal and non-optimal conditions in terms of the amount of information available.
For this reason, multiple studies have appeared on topology inference on graph networks
11, 12].

Network topology inference can be divided in three different families. As can be seen in
figure , the three big families are: Statistical Methods, Diffusion Processes and Smooth
Signals. The first family, represented as the blue color branch in figure [I.1] includes these
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2 CHAPTER 1. INTRODUCTION

networks that present similarities between signal elements. This is a huge group where
it can be include almost all possible networks. In order represent data using a the graph
representation, it is necessary to find some relations between pairs of nodes. There are
different approaches to decide the weight, or in other words the importance, that these
connections must have. The goal when applying techniques over this family of graphs,
is to estimate the best undirected graph based on the available data. The only requisite
necessary in order to use these techniques, is to have few snapshots in order to compute
the relations between nodes.

The second big family of graphs are those produced by diffusion processes. This second
family, is represented as the green branch in figure[I.1l This group includes all those graph
signals that can be modeled as the output of a graph filter when a driving noise is applied
to its input. In order to use the techniques related with this family, it is necessary to do
the assumption, or to be certain, that the graph signal can be modeled as the output of
a graph filter. Thus, this family includes less graphs than the previous one.

The third big family of graphs are those which present a regularity between the signals
in each node. This third family, is represented in yellow branch in figure These graph
signals have the particularity that, the observations are smooth. This family is a particular
case of graphs which is widely found in different scenarios.

In this project, we will review the diffusion processes branch which was studied in the
Degree’s Thesis represented in green in figure We will review the most important
concepts, as well as all the notation introduced in the Degree’s Thesis, and that will be
used in this Master’s Thesis. Then, the scope is divided in two parts. The first one
is, by using these formulation and knowledge, the study of the topology inference when
working with noisy spectral templates. We will search for a robust algorithm to infer the
graph’s topology when facing spectral templates which include a noise component. This
will led us to the study of the implementation of LASSO to the considered approaches
to improve the reliability of the techniques. The second part of the scope is to study the
most generic group of techniques which are the Statistical Methods represented in blue
in figure [I.1} This family is divided in: Correlation Networks, Gaussian graphical models
and Sparse Linear Regression. We will study the behavior of these three approaches while
comparing them. Then, two scenarios will be simulated to better see the performance of
these techniques. The first one will be performed where enough data will be available what
will end in a well conditioned problem. The second scenario will be more interesting, the
non-well conditioned problem will be studied with all three methods. This will allow us
to see the strengths and weaknesses of the techniques.

In chapter 2, we will see that the algorithm that two of the algorithms studied in the
Degree’s Thesis [I] were not reliable because of the Restricted Isometry Property (RIP)
can not be guaranteed. Thus, the solution obtained by the convex relaxation using the ¢;-
norm will not be equivalent to the solution obtained using the £y-norm. Then, we will see
that the Least Absolute Shrinkage and Selection Operator (LASSO) approach will provide
us better results when applied to noisy spectral templates. By doing some simulation,
we will see that this algorithm performs better than the algorithms studied during the
Degree’s Thesis. Furthermore, we will see that when the number of nodes increases the
RMSE when applying LASSO will tend to 0.

In chapter 3, we will see that statistical methods can obtain really impressive results
when estimating the graph’s topology. Moreover, two of the techniques, which include a
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Figure 1.1: General schema of the theoretical part explained in this thesis

sparsity promotion term, will be able to estimate quite well the relations between nodes
although working with low information. By comparing the three approaches explained in
this chapter, we will see that the Linear Regression will be the most optimal one in terms
of reliability, robustness, and computational complexity.

In chapter 4, we will perform some simulations to better compare the techniques
studied in chapter 3. With these simulations we will perfectly realize about the great
performance of the Linear Regression. We will see that, if this technique does not consider
the sparsity promotion term it will obtain the same result as the Conditional Covariance.
We will see that although having less snapshots than nodes in the graph, the Linear
Regression will be able to correctly estimate the most important relations between pairs
of nodes.



4 CHAPTER 1. INTRODUCTION

1.2 Organization

This thesis is focused in network topology inference with graph signals. In chapter 2[2.1] it
is reviewed the most important concepts and formulation introduced during the Degree’s
Thesis [I]. With this knowledge, it is presented the reason why the algorithms called Basis
Pursuit (BP) and Orthogonal Matching Pursuit (OMP) do not always work. The RIP
is studied and it is demonstrated that it can not be guaranteed. Thus, the algorithms
are not always working as expected. Then, we are focused in studying the topology
inference when working with noisy spectral templates. Hence, the LASSO algorithm is
considered, and it is merged with the existing techniques studied in the Degree’s Thesis.
To conclude this chapter, some conclusions are extracted were the main concepts studied
in this chapter are reviewed. This chapter makes reference to the branch represented in
green in figure

In chapter [3] statistical methods are studied. This type of networks are analyzed
in this chapter by using three different techniques: Conditional Correlation, Gaussian
graphical models and Sparse Linear Regression. The Pearson correlation is presented
as a first approach to assign values to the relations between pairs of nodes. Then, it
is improved by considering the conditional correlation. By using this relation, we are
able to avoid possible influences of a third node when computing the relation between a
pair. Some simple and controlled simulations are performed to better understand some
concepts. These tests also allow us to validate the correctly implementation of the method.
Then Gaussian distribution assumption is done, taking us to Gaussian graphical models.
In this section, the mazimum likelihood estimator (ML) is derived. In order to take into
account the sparsity of the solution, it is incorporated a sparsity promotion term to the ML
estimator. Then simulations are performed where the graph topology is equal to the one
used to validate the conditional correlation implementation. At the end of this chapter,
the Linear Regression predictor is studied. Then, we include the sparsity promotion term
to the linear regression approach. The same simulations as in both previous cases are
executed, to validate the correctly implementation of the method. This chapter makes
reference to the branch represented in blue in figure [I.1

In chapter ] some simulations are performed to compare the techniques studied in this
thesis. In these simulations the number of nodes is increased. It is possible to better see
the performance, limitations, and reliability of the techniques studied when the number
of nodes increases. Also, it is interesting to see the performance of the techniques when
working with a low number of snapshots.

Finally, in chapter [] we present the conclusions to this thesis. The most important
ideas and concepts are reviewed. It is also presented the future work where there are
explained some of the topics that remain opened after this project.



Chapter 2

Topology Inference Facing with
Diffusion Processes

2.1 Introduction

As presented in 1} there are different approaches to infer the topology of a network. One
of them is from spectral templates. It allows us to introduce the notation and some
theoretical concepts that are used during this thesis. Some theoretical concepts will be
explained and the results will be commented. In this chapter,the problem is approached
from another point of view. It is assumed that diffusion processes produce the graph
signals [I]. This is the signal graph that can be seen as the output of a filter when the
input is an activation noise, see figure In section [2.2.1] a more detailed explanation
can be found.

X w

H

Figure 2.1: Schema of the graph-signal activation by the Filter H and the driving noise,
this figure is based on the figure in [I]

As it is reviewed, the information obtained from the observations can be complete,
imperfect or incomplete. In this chapter, contrary to chapter [3] the connection between
two nodes is established in templates based on connectivity instead of templates based
on statistical dependencies. Some assumptions are needed in order to work with spectral
templates:



CHAPTER 2. TOPOLOGY INFERENCE FACING WITH DIFFUSION
6 PROCESSES

1. Graphs are stationary and undirected.
2. Graphs have no nodes with self-loops.

3. The main focus is data locality and flow simplicity. Therefore, our goal will be to
find the sparsest solution to the problem. In different fields it is interesting to find
the sparsest solution possible [13].

This type of graphs can be found in different fields such as social networking platforms
[T4] or vehicular mobility patterns [12, [15].

2.2 Previous Work

In this section, as explained in 2.1} the formulation and notation is reviewed, which
is deeply studied in previous works, the Final Degree Thesis [1I]. This notation and
formulation is fundamental to understand the new method studied in this thesis based of
working with noisy spectral templates in section Furthermore, the same notation is
used in chapter |3|to study the statistical methods which are based on a more general signal
model. Firstly, it is reviewed the signal model when working with Diffusion Processes.
Then the Basis Pursuit (BP) is explained and some results are reviewed. From these
results, the need of improving the inference technique appears. This is what sections
2.2.4] and, review. To summarize, this section reviews how to infer the graph
topology when working with imperfect spectral templates. In this thesis, we are interested
in the study of how to infer the topology when working with noisy spectral templates. This
new approach is explained in section [2.3] To finalize this chapter, there is a conclusions
section that introduces the need of studying the next branch of figure which are
Statistical Methods.

2.2.1 Signal Model

Let us start by defining a graph § with a set of NV nodes and a set of links £. The
adjacency matrix is defined as A which is sparse and its dimensions are N x N. It has
entries different from zero A;; if (i, 5) € £. These entries represent the importance of the
connection between nodes 7 and j. Another important concept is the graph-shift operator
S. The pattern of the graph-shift operator S and the adjacency matrix are equivalent in
terms of information regarding the graph’s structure. Now, the next step is to define the
signal model that is used in this chapter. Let & = [z 2o --- xN]T € RN be a graph
signal in which each element i denotes the signal at node i. The graph filter H and the
driving noise w activate the graph’s connections. At a given instant n, the graph signal

(see figure is

x (n) = [z1(n) 23 (n) --- ay (n)]" (2.1)
while the driving noise is
w (n) = [wy (n) ws (n) - wy (n)]". (2.2)

Without loss of generality, and in order to simplify the expressions, let us consider that
the noise is AWGN. Thus,
E {wa] =1. (2.3)
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The graph signal activated by filter H is defined as
L—1
H=> ns, (2.4)
1=0
where S is the shift matrix and h; the filter coefficients. Let us continue by analyzing the
shift matrix with further detail. As we are working with undirected graphs, S must be
symmetric and real.

2.2.2 First Approach into Graph’s Topology Inference

When facing a topology inference problem based on this type of graph signals, generated
by a filter when its input is a driving noise, two different scenarios can be found when
obtaining the nodes information from the graph. In the first, not common, scenario the
technique has enough information, snapshots, to correctly estimate the covariance matrix
of the obtained data, C,. In this first part, we are focused in this scenario. It is the
simplest one of the both. The algorithm Basis Pursuit (BP), [16], is used to solve the
problem. In a second, usually found, scenario the available information is limited. Thus,
the covariance matrix may not be correctly estimated due to lack of information. This

case is deeply explained in section and [2.2.5]

Problem Formulation

By performing the eigendecomposition of S, the shift matrix can be written in terms of
its eigenvectors, V', and eigenvalues, A, as

S=VAVT, (2.5)

Let us study now statistical values of our problem by analyzing the covariance matrix.

By taking into account equations (2.3)), (2.4), and (2.5)), the covariance matrix can be
expressed as

L—1
C,=EHH"| =V g\hlPA?lVT. (2.6)

It is important to note that the eigenvectors of the covariance and the shift matrix are
equal. The eigenvalues are multiplied by unknown factors, h;. This is a really interesting
result as it shows that computing the eigenvectors of the covariance matrix we can learn
the eigenvectors of the shift matrix.

We are interested in finding the sparsest solution [I3] as described in chapter [3] This
is, to minimize the fo-norm taking into account that the eigenvectors of the solution shift
matrix must be equal to the covariance matrix eigenvectors. The diagonal of the solution
matrix must be equal to zero, because nodes do not have self-loops. The solution matrix
must be symmetric because the graph is undirected. Last but not least, it is important
to avoid the trivial solution where the shift matrix is equal to 0. Thus,

N
S* = argm}anSHO st §S=VAV' =Y Nl
k=1 (2.7)
diag(S) =0, S=8"Y"85;, =1
J
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As can be seen, due to the optimization of the fy-norm, the expression (2.7) is not a
convex function, which implies that it is NP-hard. In order to solve the problem, a
common convex relaxation is applying the ¢;-norm [13]. Thus,

N
S* =argmin|[ Sl st S= 3 Nl diag(S) = 0, § =57, 3 S =1 (28)
' k=1 J

To solve the problem by using the well known algorithm BP[[][16], we need to reformulate
the optimization problem. In order to do it, it is necessary to carry out some more
definitions starting by the Khatri-Rao product EI, W =V oV [17,[1§]. The shift matrix
can be written s = vec(S) as s = W where A = diag (A). At this point, it is necessary
to define set D, containing the indices of s corresponding to the diagonal elements of the
shift matrix. So, by using this set it is possible to take the corresponding rows of W to
form Wp. Then it is necessary to define

M=(IT-WW') e gN=V (2.9)

where D¢ denotes the complement set of D. Note that matrix M is the orthogonal
projector onto the kernel of W7 constrained to elements in D¢. Now, let us define vector
e; to denote the first canonical basis vector and 1y_; being a ones vector with N — 1
entries. With these new definitions, we are able to construct

R=[M,e; Iy 4] € RV NN+ (2.10)
The optimization problem can be now written as
argminsll; st (I-WW)s=0,sp=0, (e,@1y) s=1. (2.11)

In order to finally obtain the problem in a formulation able to be solved using the BP
algorithm, it is important to note that the projector I — W W is symmetric. This allows
us to write the first equality in (2.11]) as

(I-WW') sp+M"sp =0. (2.12)

T
D
Finally, having b=[000 ---1 ]T, the problem can be seen as

. st RTsp. =b. (2.13)

arg min||spe
Spc

2.2.3 Results

In order to evaluate the performance of the techniques, a benchmark is used in the rep-
resentation of the estimated connections. At the right side of the figure 2.2 we have the
most important or weighted connections while in the left side we have the unconnected
pair of nodes, with weight 0. If the technique estimates a connection that exists in the

'Basis Pursuit form: arg ming||z||; subject to y = Az
2Khatri-Rao also known as the column-wise Kronecker product
3Kronecker product.
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real adjacency matrix, the counter represented with the blue line is increased. On the
other hand, in case the technique estimates a false connection, in other words, creates a
false connection between a pair of nodes 7 and j, the counter represented by the red line is
increased. Both of these counters are accumulative. The black horizontal line represents
the number of connections that the graph, this is the adjacency matrix, has. To sum up,
the objective is to reach this horizontal line, that represents the number of real connec-
tions, with the blue counter, correct estimations, while having 0 errors in the red counter,
or in other words errors in the connections estimation, see figure 2.3
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Figure 2.2: Simulation 1, Cumulative correct and failed connections. This simulation can
be found in [I]

By monitoring the difference between the estimated eigenvalues, it is possible to see
that when two of them, )\; and );, are really or totally similar there is a flip in the
eigenvectors’ matrix between columns ¢ and j. This flip is the responsible for the errors
produced while performing the estimation. By comparing figure 2.2] and figure [2.3] it
can be seen that the technique studied is not reliable enough in all cases. It works
correctly when there are not two similar eigenvalues. Hence, there is not a flip between
two contiguous eigenvectors.

Thus, our next objective is to try to avoid these possible flips between the columns of
the eigenvectors matrix to avoid committing estimation errors.
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Figure 2.3: Simulation 2, Cumulative correct and failed connections. This simulation can
be found in [I]

2.2.4 Orthogonal Matching Pursuit

As it was explained in it is common to find scenarios where the available information
is limited. In those cases the algorithm BP is not reliable under any condition, see figure
2.2l This is the reason why a relaxation to the BP problem is used [19]. This new
algorithm is called Orthogonal Matching Pursuit (OMP).

Problem Formulation

In order to estimate the graph spectral template when
e the number of realizations is not high, or
e the knowledge about the signal or the noise subspaces is limited

the OMP algorithm can be used. It has more degrees of freedom than the BP that allows
the algorithm to provide a solution to the problem when the BP is incapable. This new
algorithm has a form similar to the BP but with a relaxation that takes the form of an
error

a@%yMWMSiﬂﬁ%w—bmge (2.14)

In order to work, this algorithm needs to know the percentage of connectivity of the
adjacency matrix. This is a critical design parameter but, in order to compare both al-
gorithms, BP vs. OMP, the exact graph’s connectivity is used. By indicating a lower
connectivity, the algorithm estimates a more sparse solution to the problem. This means
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that by controlling this parameter it is possible to manage the importance of the con-
nections that the algorithm estimates. The degree of sparsity is usually an unknown
parameter and sparsity estimators are really complex to design.

Results

This example has a connectivity percentage of the 60% and the available data are 10N
snapshots. In order to estimate the most important connections, the algorithm is config-
ured with a 40% of connectivity. As can be seen in figure the algorithm is not reliable
enough because it creates a lot of false connections. As it was explained, the main goal is
to estimate all the connections without creating any false one. In the next section, a new
algorithm is presented to improve the BP and OMP algorithms.

70 T T T T T

© Correct connections
o © Failed connections

60 7

50 T

30 - n
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Number of Connections

0 SRR
0 10 20 30 40 50 60 70 80

Figure 2.4: Example when using OMP algorithm. This simulation can be found in [I]

2.2.5 Searching for a Robust Algorithm

As seen in the results section [2.2.3] it is necessary to find a more robust algorithm when
trying to estimate the graph’s topology. In this section, we attempt to improve the
estimation by distinguishing two different subspaces from the taken data. The expected
result is that by differentiating the eigenvectors that give us more information from those
that do not contribute with reliable information it is possible to improve the performance
of the topology inference techniques.
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Problem Formulation

In this section, the starting conditions are equal as in the previous one. Given a graph
signal , = Hw,, being H the graph filter, it is possible to recover the sparsest shift
matrix S by means of BP (2.13). The problem is that this algorithm needs a perfect
knowledge of covariance matrix eigenvectors. Most of times, this is impossible because
not enough data is available. When only K out of NV eigenvectors are perfectly known,
we face with an incomplete spectral template. A new idea is presented in this section,
where only a fraction of the total eigenvectors is considered to be perfectly known. Let us
formulate our new problem where matrix V}, contains the known eigenvectors’ subspace.
The complementary subspace, containing the unknown eigenvectors is defined as V;.
In order to decide whether an eigenvector belongs to the known or unknown subspace,
the difference between consecutive eigenvalues is used. If this value is less than a fixed
threshold, this pair of eigenvalues are considered to be equal. Thus, the eigenvectors
associated belong to the unknown subspace. Because of that, it is important to note
that eigenvectors must be put in the unknown subspace at least by pairs. Taking these
concepts into account, the new conditions can be written as

K
S* =arg min ||S|l; st S=8;+> A\ vp vy, S;Vi =0,
St =1 (2.15)
diag(S) =0, =S", > S;; =1.
i

As before, our objective is to write the problem in order to use the algorithm BP but
considering the new constraints. Thus, it is necessary to vectorize them. Following the
same procedure as in the previous section [2.2.2]

K
S=8;+> Mo v] = s=s5;+ WA, (2.16)
k=1
where, as before, W;, = V,, © V.. To ensure the symmetry of the estimated shift matrix,
the second constraint is used
Bs =0, (2.17)
where B € R(2)*M indicates which rows are the vectorized forms of BU) Vi, j €
{1,---,N}and B®) ¢ RNV V< jsuchthat B{)” = 1 and B;” = —1. The third
and forth constraints do not change in comparison to (2.11). Finally,

SVi=0= (IoV])s; =0 (2.18)

It is important to note that in this problem formulation, by contrast to the one in [2.2.2]
there are constraints on S and Sz. Some further modifications are needed to allow us to
formulate the problem in a BP format,

t = [s"s]|, X = [Iy2 Onoune], PT = [P PJ] 6" = |07 1], (2.19)

where z = N2 + N + (g ) + NK + 1. Let us explain how the constraints matrix P is
defined.

T
b= {(I N WWT) , Ip, B, Oy, (@@ 1N)T:| ; (2.20)
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and

P2:{(WWT_I)Ta O],I\}XN27 Or{f;’) (I®V;9T>T7 O{XNQ

(2.21)

X N2

These constraints are the same as in [2.2.2 but applied to the known, P;, and the un-
known, Ps, subspace. Thus, at this point it is possible to write the optimization problem
considering both subspaces as

argmin||Xt||; st PTt=b. (2.22)

Results

In this simulation, it can be seen that this method is much more reliable than the previous
one. In this case, the algorithm is able to estimate the graph’s connections without
creating any false connection. This allows us to set a threshold to decide when the
estimated connection is considered zero or not. As can be seen, the margin to decide this
threshold is quite wide because there is a considerable distance between the last values of
the connections and the point when the algorithm estimates a false connection.
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Figure 2.5: Example when using the robust algorithm. This simulation can be found in

[

2.2.6 Robust Orthogonal Matching Pursuit
Problem Formulation

Let us remember that, in some cases the available information or signal knowledge is not
enough to use the BP. Furthermore, in section it was appreciated that the OMP
algorithm does not provide a reliable solution to the problem. In this section, the OMP
assembles with the Robust Method to try to improve its performance and reliability. By
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following the same notation as in section [2.2.5| and section [2.2.4] it is derived that the
optimization problem is

argmin||Yt|; st |[PTt—b|, <e. (2.23)

In ([2.23)) it is seen that the restrictions are applied to both subspaces while a certain error
is allowed.

Results

As studied in [2.2.4] the OMP algorithm is not reliable enough. In this section, the results
of applying this algorithm jointly with the robust method are shown. This simulation was
done with 10 nodes with a graph’s percentage of connectivity of 80%. In order to show
the potential of this combined techniques to estimate the most important connections
without making any errors, a percentage of 40% was indicated in the algorithm.
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Figure 2.6: Robust OMP. This simulation can be found in [I]

In some applications, it might be interesting to know the most important connections
instead of trying to estimate all the graph connections. As it was shown, to obtain a
reliable result when using this technique it must exist an agreement between the number
of connections we are interested in and the number of errors we will allow.

2.3 New Robust Enhanced Network Topology
Inference with Noisy Spectral Templates

In the previous section, the techniques to infer graphs’ topology from imperfect spectral
templates were reviewed. In this section, it is studied the case of having noisy spectral
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templates. It starts by explaining why the OMP algorithm is not reliable enough. Then,
it is proposed a method to work with noisy spectral templates. To finish this section,
some simulations are performed to better compare the techniques.

2.3.1 Restricted Isometry Property

In the Final Degree thesis it was seen, in a heuristic way, that the OMP algorithm was
not performing as well as it might be expected. In later studies, it was seen that the OMP
algorithm does not always work. Let us suppose that, we have an observation such as

y = o, (2.24)

where € R is the object, or in our case the graph signal, that we want to recover. The
available snapshots are represented as y € R, and ® is a known matrix. As explained
in section 2.2.4] it is not always possible to have all the information needed to correctly
estimate the covariance matrix. Thus, the case with fewer equations than unknowns
was studied and the OMP was proposed as an algorithm to recover the graph signal.
Nonetheless, this approach was not always working. Let us study whether it is possible
to recover the graph signal . By doing the same assumption as in the previous section
[2.2] let us suppose that the solution to the problem is sparse. This is

arg min||2, st & =y. (2.25)
fASH 4l

The BP or OMP can be used to recover exactly @ if two conditions are fulfilled. The
first one is that the graph signal « is sufficiently sparse, and the second one is that the
known matrix ® obeys the condition known as the Restricted Isometry Property (RIP).
The general expression of this property is

(1= 0) ll; < |2 < (1+06) ;. (2.26)

The RIP is a sufficient condition to guarantee that @ can be recovered [20]. The most
important implication for us is that it is a sufficient condition to use the ¢;-minimization,
which is the canonical convex optimization used, to recover the graph signal [21].

Let us formulate the RIP with our problem. The object that we want to recover is
the graph signal sp.. The known matrix is the matrix formed as

@:[%f}, (2.27)

€1

where €I’ = el ® 15_;. In our case, if the RIP condition is not obeyed, it is not possible
to guarantee that the solution obtained with |[-||, is equivalent to the solution obtained
with the convex relaxation ||-||,. It can be demonstrated that, sometimes, the RIP is not
fulfilled. Thus, the solution obtained with the ||-||, is not equivalent to the one obtained
by the [|-||;. Therefore, the OMP is not always able to estimate the spectral template
without errors (see ref.[22] 23]). The RIP condition using our notation is

M7T
~T | SDe
1

(1—6) [lspe -

, < <(1+96)|spe

2

. (2.28)
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Developing the expression ([2.28)),

MT 0
[ eT ] Spe = [G{SDJ : (2.29)
Then, by computing the ¢y-norm of the term in (2.29), it is obtained that this term
is equivalent to sh.ejelsp.. It can be expressed as: trace[sp.sh.E]| = trace[Pp-E].
Finally, the RIP, applied to our problem, is formulated as

N2

N2 N-1
(1=08)Y [Ppelia < D [Ppelin < (1468) > [Ppelir. (2.30)
i=1 i=1

=1

As can be seen in , the only possible value of § to ensure that the lower bound is
fulfilled is 6 = 1. Otherwise, it is not possible to guarantee that the central term is greater
than the lower bound. Thus, the RIP is not fulfilled.

Furthermore, the OMP needs to decide a target residual. This value is directly related
with the sparsity degree of the graph and the SNR. In order to obtain this value, a sparsity
estimator is needed. These estimators are really complex. Moreover, the OMP is really
dependent to this value, little changes produce high deviations in the OMP output [24].

2.3.2 Noisy Spectral Templates

In order to use the previous methods, some a priori information is needed to subdivide
the space in the known and the unknown subspaces. Alternatively, the algorithms are
not reliable enough because the RIP conditioned is not obeyed [2.3.1] Furthermore, in the
previous sections, it was assumed that the signal is * = Hw, being w the driving noise.
Nonetheless, in some cases the signal may contain a noise component

z=Hw+n, (2.31)

where m is, in general, a colored noise. Now, let us apply this new consideration to the
equations. In this case, the covariance matrix of the signal is modified including the
covariance matrix of the noise

C.=HH" +C,. (2.32)

Assuming AWGN, equation (2.32) can be rewritten as HHT + ¢*I. Now, the Eigende-
composition (EVD) is performed to obtain the eigenvectors of the covariance matrix. In
this case, due to noise, it is obtained

EVD(C,) = VAV. (2.33)

Note that matrix V contains the eigenvectors plus noise. Then all the expressions can be
rewritten taking into account the noise. The problem to solve is

Si = min S|, st Is - VAVHF <e. (2.34)

Now, let us redefine the matrices by considering the noise term

R=[M,e @1y, € RV -VxN+1 (2.35)
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where M = I — WW and W=V oV. Finally, the problem considering the noise

term and a certain fixed error is

min [[8pe||, st ||R"8p. — b <e. (2.36)
Spe

At this point, the need to find a robust solution able to work with noisy signals brings
us to test the behavior of a well known algorithm to solve these problems, the Least
Absolute Shrinkage and Selection Operator (LASSO) algorithm [25]. The main a priori
advantages of this algorithm are: it does not need previous knowledge about the signal
nor the noise subspaces, it does not require to fix a threshold to divide both subspaces as
some other methods, and it does not need to know the graph’s sparsity to work (i.e the
OMP).

The general LASSO formulation in the alleged Lagrangian form is

1 2
arg min {18 — gl + A8, }. (237

where N is the number of cases, y is the outcome, B8 the parameter to be optimized, and
X the covariance matrix. Note that the regularization parameter A promotes sparsity.
Higher this parameter is the more sparse the solution will be. Let us adapt it to the graph
notation where the parameter that we want to optimize is the graph signal §pc, and the
matrix that gives us information is R”.

arg min {]1[ HRT.§DC — sz + A||8pe

Spc

1} . (2.38)

The regularization parameter, A, is chosen taking into account the quality of the signal

obtained, the SNR.

2.3.3 Simulations

In order to be able to compare the different algorithms, the following metric was defined

RMSE = ﬁ ) ivj (2.39)

i=1j=1

where S is the graph’s shift, and S is the estimated shift matrix. RMSE value is computed
for every simulation and then the mean value of all the simulations is computed to obtain
the final value for a given regularization parameter A. In order to generate random graphs
Erdos-Rényi’s graphs were used. These graphs consist of NV nodes and each pair of nodes
might be connected according to a connection probability. This probability is defined as
p/N with 0 < p < N. As the connections are equiprobable, these graphs have no spatial
structure. More detailed information about Erdés-Rényi’s graphs can be found in [26], 27].
These graphs are commonly used in different fields [28] 29| 30, [31].

“being 1 the pseudoinverse operator applied to the matrix.
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Comparison of BP and LASSO

In order to see the improvement achieved when using LASSO in front of using BP al-
gorithm, some simulations have been done. In figure it can be seen that LASSO is
able to estimate, in average, the graph topology with a lower RMSE than the BP. As
explained, BP algorithm has some limitations and these produce an algorithm that does
not provide reliable enough results.

BMSE: BEP VS LASSO
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Figure 2.7: RMSE comparison BP vs. LASSO algorithms

In this subsection some simulations are carried out to test how LASSO behaves for dif-
ferent regularization parameters A, for different number of nodes, and for different graph’s
percentage of connectivity, as well as to see the dependencies between these magnitudes.
Let us start with figure In this figure it can be seen the behavior of the RMSFE
function of the number of nodes in the graph and different values of . Firstly, note
that as the number of nodes increase the RMSFE value tends to 0. The second thing that
can be observed is that for higher values of A the better RMSFE is obtained. In order to
understand this result, it is important to remember that when using the BP algorithm
the value of the regularization parameter A\ tends to infinite, A — oo. In the other hand,
when using LASSO, the degree of freedom introduced allows the algorithm to take into
account the f5-norm factor to improve the estimation. The importance of each of both
factors is determined by the value of A. The higher this value is the more similar the
LASSO algorithm is to the BP. Nonetheless, it is important to note that by allowing a
little error (the norm 2 factor) it is possible to dramatically improve the results of the
BP algorithm as seen in figure 2.7
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RMSE VS Number of Nodes
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Figure 2.8: RMSE vs. Number of nodes for different s

Percentage of graph connectivity

In this subsection, it will be seen whether exists any relation to improve the RMSE (this is
to obtain the best graph’s topology estimation possible), between the percentage of graph
connectivity and regularization parameter A. Looking at figure [2.9]it can be seen that, as
in the previous case (figure for higher values of A the RMSE decreases. Nevertheless,
it is interesting to note that the percentage of connectivity does not modify the RMSE
obtained, this is the percentage of connectivity does not vary depending on the value of
A. To better see this behavior, let us focus in figure In this figure the value of A
is fixed, and it is plotted the value of the RMSE for different number of nodes. After
seeing this figure it can be stated that the percentage of connectivity does not depend
on A. This result is very interesting because this means that it is possible to use LASSO
without knowing the sparsity degree. Thus, there is not need to use sparsity estimators.
It is interesting to emphasize that as the number of nodes increases the RMSE tends to
0.

Robust method VS LASSO

In this subsection, it is compared the robust method and the LASSO (section .
With simulations, it can be checked that LASSO has a better performance, under the
RMSE criteria defined in this paper, than the robust method. In figure and figure
2.12]it is appreciated the improvement achieved by LASSO. In this figure, the percentage
of connectivity is fixed to 40% which means that the graph is quite sparse. It also can be
seen that for the highest A the LASSO algorithm works better. The higher A is the more
importance is given to the ¢1-norm term. In order to justify the improvement, the next
step would be to perform the formal mathematical validation of the obtained results.
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RMSE VS Percentage of Connectivity
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Figure 2.9: RMSE vs. Percentage of graph’s connectivity for different values of A
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Figure 2.10: RMSFE vs. Percentage of graph’s connectivity for a given regularization
parameter A and different number of nodes
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RMSE VS Number of Nodes
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Figure 2.11: Comparison of both methods RMSE vs. Number of nodes for a fixed regu-
larization parameter in LASSO algorithm of A = 1074
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Figure 2.12: Comparison of both methods RMSE vs. Number of nodes for a fixed regu-
larization parameter in LASSO algorithm of A = 107
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RMSE VS Percentage of Connectivity A = 1e-4
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Figure 2.13: Comparison of both methods RMSE vs. Percentage of graph’s connectivity
for a given A = 10~* and different number of nodes
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Figure 2.14: Comparison of both methods RMSE vs. Percentage of graph’s connectivity
for a given A = 107 and different number of nodes
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In figure and figure it is checked the behavior of both algorithms for different
sparsity degrees. As it is observed, LASSO works better than the robust method for
both values of X\. For higher values of percentage connectivity and lower regularization
parameters A the LASSO algorithm gets worst. This makes sense because higher is the
percentage of connectivity the lower is the graph’s sparsity.

2.4 Conclusions

In this chapter there were some assumptions about the graph signal which are needed.
The first one is that the graph signal is produced as the output of a filter when a driving
noise is applied. Although there are multiple cases where the graph signal can be modeled
following this criteria, it would be useful to find a technique that allows us to work when
the graph signal is not generated by this procedure or when its generation is unknown.
Also, as seen, when there are not enough snapshots, this is available data, the algorithms
studied are not reliable. Furthermore, in order to use the robust method it is necessary
to decide between those eigenvectors that are useful from those which are not. In case of
applying the OMP algorithm, it is necessary to have prior information about the graph’s
sparsity or to develop a complex sparsity estimator. Furthermore, by having one or the
other the solution obtained is not perfect.

In this last section, it was proposed a robust method to work with noisy spectral
templates based on LASSO. As showed, the reliability of this algorithm is higher than the
obtained with BP or OMP algorithms. Moreover, with the proposed algorithm, there is
no need to know the graph’s sparsity degree. This means that no sparsity estimators are
needed, which as exposed are complex and do not always work [24]. It was also studied
the dependency of the results of LASSO function of the regularization parameter. For
values around 10~* the algorithm works better than for smaller values. It is interesting
to note that when the number of nodes tends to infinite the RMSE obtained by LASSO
tends to 0. On the other hand, it was observed that the regularization parameter does
not modify the RMSFE for different percentages of connectivity. To conclude the robust
method and LASSO algorithm were compared. As stated, the LASSO algorithm obtained
better results.

In the next chapter another family of techniques is presented where it is possible to
work for graphs which are not generated from a filter. Moreover, it is not be necessary to
have prior information about the graph’s sparsity nor to design an estimator for it.






Chapter 3

Statistical Methods

3.1 Introduction

It is common to have networks that present similarities between signal elements. So,
in order to construct a graph representation of the data it seems a good approach to
associate edge weights with nontrivial correlations [32] or with different measurements
which are directly related with the signal profiles at incident nodes. Some examples of
these measurements and correlations and some applications are the Pearson product-
moment correlation used in the quantification of some gene-regulatory interactions, the
Jaccard coefficient used for scientific citation networks, the Gaussian radial basis function
used to link different measures from a sensor network, or mutual information that allows to
detect nonlinear interactions. The goal, when applying these techniques, is to estimate the
best undirected graph based on the data available. In these graphs, a connection between
two nodes implies that the variables at these nodes are correlated but they might not
be physically connected. In figure it can be better understood the difference between
these two different layers. There are two main possible approaches that can be applied
in order to obtain the graph when working with these techniques. On one hand, the
use of thresholds that are often manually set in order to obtain the graph that, under
a certain criteria, is considered best fits the relational structure of the analyzed data.
On the other hand, to define a number % of the top relations and then to retain it for
each node. When using these approaches it becomes virtually impossible to measure the
accuracy of the obtained graph or somehow to validate the results. In this section, we
adopt a methodology in order to study the possible issues and the robustness of these
techniques.

This branch of figure is the most generic one. It works with no priors nor more
information than some snapshots taken from the graph. In this chapter we will use
the same graphs to fairly compare the different methods with controlled data. Multiple
realizations are performed in order to compute the mean value of the results.

3.2 Signal Model

In this section, it is explained the signal model that is used along this chapter. Let us
consider x the graph signal. A is not the adjacency matrix but the matrix that indicates

25



26 CHAPTER 3. STATISTICAL METHODS

Communications network

Dependency graph

Figure 3.1: Communications network VS dependency graph. Picture based on [2]

the linear combination of graph signals, and € a random vector
x=Ax +e. (3.1)

In this thesis, the graph signal will be considered to be real, x € ®. Let us note that
matrix A can have values |a;;| < 1 with the diagonal equal zero. In general it is not
symmetric, i.e
T 0 0 Y T €1
272:0(00 To| + |€2] . (32)
T3 ,8 (5 0 T3 €3
As explained, matrix A represent the relation between the signal in node i due to the
other nodes. Thus, it is logical to have diag(A) = 0. Having this structure , the graph
signal can be written
(I—-—A)x=c¢
x=(I—-A)"'e
By defining the graph signal like in (3.3), the definition of the covariance matrix for the
case of having a real graph signal as described, is trivial

(3.3)

S=T-A)'UI-A)", (3.4)
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and so it is its inverse also known as Precision matrix
0= (I-A)7"1I-A). (3.5)

By assuming this signal model, the identity matrix I is indicating us that all nodes are
sources of information and not only receivers.

3.3 Correlation Networks

The main goal of this chapter is to study the relations between graph’s nodes. As it
was exposed, it is interesting to study techniques to infer the relations for different net-
work approaches while measuring the robustness and reliability of the technique. The
first approach that is studied is the Correlation Networks. Graphs that represent cor-
relation networks are undirected and reflect the coordinated behavior of two or more
connected nodes. Some applications of graphs applied to these networks are, in medicine,
the dimensional reduction of functional magnetic resonance imaging like in [33] or the
study of genotype-dependent metabolomic clusters related to the biochemical pathway
[32]. Nowadays, for constructing functional connectivity networks most software use cor-
relation methods [34]. Another important field of application is biology [35]. As can be
seen with more detail in [7], this tool is being used in the study of cancer cell metabolism.

3.3.1 Problem Formulation and Solution

Firstly, let us define our graph as G(V,&€, W) with vertices V := [1,..., N] and edge
set £ :=(i,7) € VxV:p;; #0. There are different options to measure the correlation
between two random nodes x;, and z; being i.i.d. Nonetheless, the most adopted linear
measure of similarity is the Pearson Correlation coefficient which is defined as

cov(z;z;)
Pij = J . (36)
var(x;)var(z;)
It can be computed using the entries o;; := cov(z;,x;) in the covariance matrix ¥ :=

E[(x — p)(x — p)?] of the random graph signal defined as = [z1, ..., zy]7, whose mean
vector is p := E[z]. In order to assign weights to the connections between z; and z; there
are three possible options. The correlation strength can directly be set as W;; = |p;;| or,
the second option would be to assign the unnormalized variant W;; = |cov(z;z;)|. Finally,
it exists a third option that consists on assigning weights as W;; = 1{p;; # O}E]. This
matrix can be seen as the binarized solution matrix where entries are 0 when two nodes
are not correlated or 7 when nodes are related. When working in GSP applications,
the correlation network is considered to have a graph-shift operator S := 3. From this
explanation, it can be derived that the problem of identifying the graph’s topology can
be seen as one of inferring the subset of nonzero correlations between pairs of nodes.
Then, the way to proceed would be to compute all the correlations g;; by replacing

in (3.6 the cov(z;,z;) by the entries dj; of the estimated covariance matrix 3%, Then, it

1 (Classic indicator function.
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is necessary to define a threshold in order to start assigning nodes to the corresponding
largest values of |p;;|. This threshold is usually set manually. Another interesting approach
to decide if exists a relation between a pair of nodes is by testing the hypotheses

Hy : pij =0 versus Hy : p;; # 0, (3.7)

2
statistic is the Fischer score [36] z;; := tanh™'(gi;). The reason behind is that Hy, approx-
imately, has z;; ~ Normal(0,1/(P — 3)) see [[37], p. 210]. To have a simple form of the
null distribution improves the computation of p—values or the threshold selection in order
to guarantee a certain significance level per test. This procedure of individual testing may
not be effective for medium to large sets due to its computational complexity. This prob-
lem scales as O(N?). Note that for an empty graph, £ = 0, a constant probability of false
alarm Pp, will produce O(N?Pr4) spurious edges. This number can be considerable for
large N. In order to reduce the computational complexity and the probability of having
spurious edges. A common solution to reduce the complexity is by trying to control the
false discovery rate (FDR)

for each of the (];/ ): NIN=1) .andidate edges in G. The most convenient choice as test

FDR = E {};f R> 0} PrR >0, (3.8)

where R is the number of rejections among all O(N?) edgewise tests and R is the number
of false rejections. This method has a problem when the correlation between a pair of
nodes 7, j is produced by a third node k that is regulating the expression of both ¢ and
j and not produced by a direct relation between 7 and j. It is possible to avoid these
relations by considering the conditional correlation

COV(xh Lj | V\Z])
\/var(a:i | V\ij)var(z; | V\z’j)’
where V\ij represents the collection of all nodes excluding those indexed by nodes 7 and 3.
Thus, the set size is N — 2. With this procedure it is possible to compute the correlation

between x; and z; after adjusting the effects of Xy, ,--- Xy, which are common to both.
Thus, to study the relation between pairs of nodes when the others are known.

pis | Wij == (3.9)

3.4 Conditional Correlation

As stated, the previous method is not able to distinguish when a relation between nodes is
due to a common origin or not. To better understand it, let us see figure Note that in
this figure the connection between nodes are not physical, as stated in but correlation
connections as in figure 3.1} In figure nodes 2 and 3 are not directly correlated but it
exists a relation between them due to both depends on node 1. Thus, there is information
from 1 that is shared with 2 and 3. These relations due to a common origin, can be
avoided by considering the partial correlations between nodes also known as conditional
correlation (13.9)).

Let us formulate and derive the problem to study the conditional covariance matrix,
and why the conditional correlation is useful to estimate the precision matrix @ [38]. Let
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ho

Figure 3.2: Relation between nodes 2 and 3 due to 1

us start by considering a pair of jointly Gaussian vectors x, and y being i.i.d. Vector
y is considered to be known. Let us construct, as composition of both, vector z =

A

T
{wT : yT] , which is also Gaussian with mean m = Lﬂ and covariance matrix defined

Exx Ea:y
Dye By
Pyy(x|y) follows a Gaussian distribution. The conditional correlation, in probability
terms is written as

as X = Under these assumptions, x is conditionally Gaussian, this is

P:c x,
Puy(aly) = =52, (3.10)
y(y)
Where the numerator is
1 -1
P (x,y) = ——F———ex { PINBED Yt I ] 3.11
y( Y) (2W>%|2‘% p B ( y) y ( )

where ¢ = dim(x) + dim(y). Equivalently, the denominator is
1

P,(y) = ——ex
w(y) (27)% |2y,

P [;(Eyy)sz;zyy} (3.12)

where k& = dim(y). To analyze the expression, let us put together these equations while
rewriting the covariance matrices. Thus,

[/ % exp [; (@ —2)(y - 9)"] = lw _mH

Pry(ay) y—19
Py (zly) = —22Y = - - (3.13)
Py (2m) 3 [Z[2 exp [y — 9)7S, (v — §)]

where N =1 — k = dim(x). In order to compute it, let us start by computing the deter-
minant of the covariance matrix by using the following relation with direct demonstration

I -x,%0 I 0] [Spo— 0B 08, 0
[o A e IS N { 0 s, G
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Finally, the determinant is easily computed. The terms of the matrix are square matrices
with the same size. Thus, the determinant of the product is the product of determinants

det(X) = det(Bpe — Tey X, By )det(y,). (3.15)

The second step is to compute the exponential
AT T 1 | T — &
rT—T —y-— DY A =
R Ll A
(@~ 2)" (Baw — By By o) @ = 2) + (y — 9)' 2y, (y — ),

(3.16)

where & = §3+Exy§];?} (y—19). Finally, using this notation, we can rewrite the conditional
probability as

€xp {_71(1" - E)T(Emm - Emyzgézy:B)_l(w - a_::)]

Py (xly) = n 3.17
u(ly) T s (317

Thus, we have that the conditional covariance matrix is
Y =3 — EmyE;;Eym (3.18)

In it is seen why this concept is so important. The dependency that others nodes
can produce is counteracted. Note that the conditional covariance is independent of y [p.25
[38]]. Applied to our problem, the observation of the pair of nodes we want to calculate
the correlation conform vector . Thus, the other nodes of the set conform vector y. This
result is really interesting because it means that we can calculate the correlation between
pairs of nodes independently to the rest. Note, that element (i,7)" of the inverse of the
covariance matrix, ©;; is equal to the value of the conditional correlation between nodes
1 and J.

The canonical correlation analysis (CCA) is another correlation measurement com-
monly used. The C'CA is similar to the Pearson correlation [39, 40]. Its objective
is, given two vectors & = [x1, -+ ,x,], and y = [y1,- - ,yn], to find the space of linear
combinations that maximize the correlation. It is based on the design of projectors to
modify the base in which each of the vectors is represented into a canonical base. When
comparing two data sets, it is important that both are expressed in the same basis. Oth-
erwise, some correlations may go unnoticed and others may be detected although they do
not exist. The difference with the Pearson correlation is in the matrix projection, because
the CCA is based on the direction vectors. Given the two defined vectors,  and y let us
define the linear combinations as z = x”u;, and y = y”v;. Thus,

corr(z,y); = con@y)

var(z)var(y)

3.19
ulcov(z, y)v; (3.19)

corr(x,y); = :
\/u'fvar(m)uivaar(y)vi

As can be observed, this equation is really similar to (3.6). The maximum canonical

correlation is the corr(x,y)|, .. with respect to the direction vectors w; and v, [41, 42].
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Nonetheless, it was seen that this correlation is no able to detect those relations produced
due to a dependency with a third vector. The analysis can be modified to include the
conditional covariance, in order to consider the possible effect produced by a third vector.
Let us consider the conditional covariance applied in expression [43]. Hence,

u;cov(x,y | 2)v;
T

i

(3.20)

corr(x,y) = :
\/uiTvar(:c | 2)uvl var(y | z)v;
where z contains the set of vertices V\ij. As it can be seen, this last expression is
equivalent to , but the projection is based on the linear transformation u;, and v;.
Thus, there is a near relation between the C'CA and the conditional correlation method.

Let us continue the study, assuming that the graph signal & = [x; - - xy]T is a
Gaussian real random vector [44]. Under this assumption, it is possible to reformulate
to consider that the graph signals are Gaussian. Let us define W; = (z;,2;)7
containing the graph signal of the pair of nodes ¢ and j under study. Also, let us define
W, = xy\;; containing the information of the rest of nodes that compose the vertices set.
Then the covariance matrix can be expressed as

Wil _|Zn X
cov lWQ] = [221 222] : (3.21)

Considering that (z;,z;,xy,, ..., 2y, )" follows a multivariate Gaussian distribution, then
pijivvi; = 0, if and only if, x; and x; are independent given all the other variables in V\ij.
Note that for the particular case of m = 0, the partial correlation reduces to the Pearson
correlation. From this, it can be seen that the conditional correlation specifies conditional
independence relations between the entries as studied in [3.4] This is known as Undirected
Gaussian Graphical Models or Gaussian Markov Random Field (GMRF) [45), [46], [47]. The
partial correlation coefficients from can be expressed as

0;
PijlW\ij = — —, (3.22)
0ii0;
where the element 6;; is the (,7)" entry of the precision matrix ® := X~'. Thus,

cach element 6;; from the precision matrix that equals 0 indicates that the pair of nodes
(x;, z;) are independent given all the other graph’s nodes. This means that those nodes
(21, ) that are related due to a third node, x,, are represented in the precision matrix,
also, as 0, = 0, as seen in [3.4 This is a really powerful idea that will allow us to
decide whether two nodes have a relation or not only looking to the precision matrix.
This problem of identifying the conditional independence relations when having identical
distributed realizations from a multivariate Gaussian distribution is really known and a
lot of literature can be found, [48, 149, 50, 51, 52]. Tt is called Covariance Selection [48].

3.4.1 Beyond Equations

In order to validate the algorithms and the software, some controlled simulations are
performed. These examples are done by generating a fix A. Multiple simulations are
performed in order to compute the mean value between all of them to better see how the
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algorithms behave. In each iteration a random value between [—0.25,0.25] is added to
the relations in matrix A. This means that better and worse scenarios are considered and
the maximum possible value for a relation, as said in is a;; < 1.

The relations between nodes, in the first simulation case, is the following

Figure 3.3: Information flow, first graph example

where the relations have the following central values

0 0 0 00
1 0 0 00

A=|0 075 0 00 (3.23)
1 0 0500
075 0 0 0 0

This first simulation is performed by using 10N snapshots. This is a stable case where
enough snapshots are available to correctly estimate the covariance matrix. Our goal is
to obtain a matrix where pairs of nodes which are related are clearly distinguishable from
those which are not. The expected relations, in this first scenario, are

e = (3.24)

el
[ R e QY S G
ORr R R R
O~ =) O
o O O

where the 1s represent an existing relation between nodes and (s are non-related pairs
of nodes. In this expected ©, values which are different from 0 in the A matrix are Is.
Also, diag((:)) = 1 because each node has a relation with itself and it is represented in the
precision matrix as a 1. In this particular case, we also expect that the position (1,3) and,
knowing that the precision matrix is the inverse of the covariance matrix, its symmetric
to be 1. As explained in section [3.3] although it does not exist a direct relation between
nodes 1 and 3, they actually have a relation due to the fact that node 4 is not able to know
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from which of those two nodes its information comes from. This produces that nodes 1
and 3 are related.

After applying this technique, results can be seen in figure The values are repre-
sented in dB to have a better contrast between the values which represent a relation and
those which are zero. By doing the simulation it can be seen that the expected result was
correct. All values which are different from 0 in matrix A are represented as a relation.
Also, the relation between nodes 1 and 3 can be seen in figure 3.4 In this case we can see

Caonditional eorrelation: &
T T T T T — o

-10

MNodes

Figure 3.4: Estimated © by using the conditional correlation method for 10N snapshots

that the technique worked well. All values are correctly estimated, those which represent
a relation and those which are no-relations. This is not a critical scenario because enough
snapshots were available to correctly estimate the covariance matrix. Next algorithms are
also tested for the non-stable case of having N — 1 snapshots. It makes no sense to test
this method under these conditions because the covariance matrix is not well conditioned,
thus is a singular matrix.

Let us know study another interesting example. In this second simulation the graph’s
relations are represented in figure [3.5l The relations have the following central values

0 1 05 -1
-1 0 07 0
A=1|-1 075 0 0
0 0 025 O
0 0 0 1

(3.25)

o O O OO

This simulation is performed, as in the first example, by using 10N snapshots. This is
a stable case because enough information is available to estimate the covariance matrix.
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Figure 3.5: Information flow, second graph

As in the previous case, let us analyze which are the expected relations

e = (3.26)

O = ==
O = == =
O = ==
e e e
-0 O O

With this simulation we want to see if in case of having a relation between 1 and 2, so
node 1 knows the information from node 2, 1 is able to distinguish between nodes 2 and
4. The expected result, as can be seen in is that although 1 has this knowledge
it exists a relation between 2 and 4 because 1 will not be able to distinguish from whom
the information comes from. The results can be seen in figure As can be seen, the
zero values are clearly represented in figure [3.6 By doing this simulation, our objective
was to better understand the nodes’ relations, as well as, to verify that the algorithm is
properly implemented. This simulation has produced the expected result where the pairs
(5,1),(5,2),(5,3) are not dependent between them. A strong dependency between nodes
4 and 5 can be observed. For sure, this relation is due to the fact that node number 5 is
only influenced by node 4. Thus, 5 has a total dependency on 4 because all its information
comes from this node.

3.5 Maximum Likelihood Estimator with Sparse
Regularization

When talking about graph signals, it is common that they follow a Gaussian distribution.
In this section, we study the case of having a graph signal which is a Gaussian random
vector. This type of signals can be found in different fields such as model predictive control
and analysis systems [53], image analysis and synthesis [54] or in speech processing [55].
Gaussian processes are also commonly found in communications systems [56]. With this
type of signals found in so many fields, it is interesting to study this particular case The
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Conditional correlation: @
T T T T

Nodes
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Modes

Figure 3.6: Estimated © by using the conditional correlation method for 10N snapshots

study of the conditional correlation when working with these signals was explained in
section.

3.5.1 Problem Formulation and Solution

The covariance selection term was firstly used by Demptser in the early 1970s [48] and he
proposed an approach to solve this problem. He presented the possibility of estimating
the entries of ® via a recursive, likelihood-based threshold procedure. It worked well
for the type of networks that existed in this period. Nonetheless, this algorithm does
not scale well when applied to nowadays large-scale networks. The reason behind is that
when working with high-dimensional regimes the estimation of the 3 is rank deficient. A
good way to solve the problem related with the $ rank is by means of a regularization.
It is really common to consider that the network has a high degree of sparsity. In [57]
it is explained why the sparsest solution to a problem is useful in different fields. In
order to take into account the sparsity, the {o-norm must be used. Nonetheless, due to
its computational complexity as the search space is exponentially large, [58], it is used
the ¢1-norm which is the convex function closest to the ¢y-norm [I3]. A most extensive
explanation about this topic can be found in [59]. In our particular case, the regularization
is the ¢1-norm. In order to simplify the equations and without loss of generality, we assume
zero-mean & ~ Normal(0, ) since the objective is estimating graph’s structure encoded
in the entries of the precision matrix ® = X!, Under these assumptions the maximum-
likelihood (ML) estimator of the precision matrix is given by

Oy, = arg rg;ia({log det © — trace(X0)}, (3.27)
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where 8 > 0 is a requirement to ensure that the matrix is positive semi-definite and
Y= % 25:1 :L'p:vg is the empirical covariance matrix. It can be seen, that when N >> P

matrix 3 is singular, expression is not the ML estimator and, in fact, it does not
exist. As explained, the regularization called Graphical Lasso [60] is applied. Nonetheless,
we are interested in a sparse solution. Thus, in order to promote sparsity the ¢1-norm is
used [61], obtaining

O = r(r)l%c{log det © — trace(X0©) — A\ || © ||} (3.28)

The computational complexity of these methods, called Interior-Point Methods (also
known as barrier methods or IBM , is O(N®). Furthermore, interior-point methods
require computing and storing, in each of the iterations, a Hessian matrix of size O(N?).
These methods are algorithms that are used to solve linear and nonlinear convex optimiza-
tion problems and there are multiple different algorithms. A further and more detailed
explanation can be found in [62, 63]. Some examples where these methods are applied
are in power generation [64, [65] and in designing recursive maximum likelihood methods
to estimate some parameters for hypersonic vehicles [66].

This means that for large networks the computational complexity becomes an issue
in terms of time and storage. Nonetheless, this method works much better than the
conditional correlation because it is able to work with much less snapshots. By using the
appropriate value of the sparsity promoting parameter A it is possible to improve a lot
the matrix estimation.

3.5.2 Beyond Equations

The relations between nodes in the first simulation case are the same as in figurd3.3] with
the values represented in equation and the expected result, as in the other cases is
0. 241

This first simulation, where enough snapshots are available, is used as test to ensure
that the algorithm works as expected. Once the algorithm is validated, another simulation
is performed. In this second case, only N — 1 snapshots are available. This is a more
critical and extreme scenario that allows us to see the potential of this technique. As
can be seen in figure [3.8] although the difference between the related and the non-related
pairs of nodes is less significant than in figure [3.7] it is still possible to distinguish those
nodes which are not related. This means that with this algorithm it is possible to recover
the graph’s relations although the scenario is not totally well conditioned, or in other
words not enough snapshots are available. Nonetheless, it is important to note that this
technique is much more computationally complex than the next algorithm studied the
Sparse Linear Regression. Then, the next case is also studied with this second algorithm,
figure As can be seen all values can be perfectly recovered with this second technique.
By improving the value of the normalization parameter A it is possible to improve the
estimated result. With this simulation, it can be seen that the algorithm works for different
scenarios without problems. By performing this simulation it is possible to validate that
the algorithm is correctly implemented. Note that those pairs of nodes which are directly
related in have a stronger relation than those which are related because a third node
is not able to distinguish from whom its information comes from. An example of a direct
relation is pair (5,4) and an example of those lower relations is (4,1).
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Craussian Craphical Models: &

T o]

Figure 3.7: Estimated O by using the ML estimator promoting sparsity for 10NV snapshots

Canssian CGraphical Models: =]

Figure 3.8: Estimated © by using the ML estimator promoting sparsity for N — 1



38 CHAPTER 3. STATISTICAL METHODS

Ciaussian CGraphical Models: =]

Figure 3.9: Estimated €) by using the ML estimator promoting sparsity for 10N snapshots
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3.6 Sparse Linear Regression

As seen in previous section the ¢1-norm regularization is really useful but it would
be interesting to reduce the computational complexity. It is also necessary to find an
algorithm that works for lower number of snapshots, this is when the covariance matrix
is rank deficient as explained in the last section [3.5.1] In those scenarios it is common to
follow the approach of finding the minimum mean-square error.

3.6.1 Problem Formulation and Solution

Another way to set weights to the edges, is to find the minimum mean-square error
predictor of the snapshot in node i. Firstly, let us start defining the observations of the
signal graph as «,. Using this information, let us found the minimum mean-square error
predictor for every node i. The predictor for node i is defined as ;. The error at node i
is defined as ¢; = vl x. The objective is to minimize

P
7¥: = argmin Slel? st vle; =1, (3.29)
i =1

where the restriction is forcing the element ¢, of the predictor of node i, to be 1. Vector
e; has all its entries set to 0 but entry 7 set to 1. At this point, it is important to
remember that, during all the thesis we are interested in searching the sparsest solution
to the problem. Thus, it is necessary to include the regularization parameter based on
the £1-norm. Let us define the final predictor with the sparsity promotion

P
7Y = argmin Yoz il sty e =1, (3.30)
i p—1

where x, is the graph signal in all nodes at snapshot p. The design factor \; is really
critical, higher it is the more sparse the solution will be because the algorithm gives more
importance to the ¢;-norm. Note that for each predictor, this is for each node, \; is not
necessarily the same. It is important to note that the predictor is computing the values in
each node, this is, predicting column ¢ of the conditional covariance matrix. An important

remark is that if the sparsity promotion parameter \;, is set to 0, the optimal 'yi|0pt would

be
2_16,5

’yl'|opt = erzflei' (331)

Note that the predictor will estimate the inverse of column ¢ of the covariance matrix
multiplied by a scaling factor. This result is the same that the conditional correlation
provides. Thus, if the design factor A; = 0 the solution obtained with this method and the
conditional correlation are equivalent. In chapter [4] there is an example that illustrates
this concept.

As exposed, each of these «; has its own scaling factor. Once all the matrix is con-
formed by each of the columns, it is necessary to decide for each entry (%,j) whether it
is a zero or not. In other words, if it exists a relation between nodes ¢ and j. In order
to fairly compare values, it is necessary to take into account the scaling factor that each
column has. Columns need to be multiplied by the scaling factor that is the square error.
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Noting that, the error vector is defined as ¢; = v @. Let us define the covariance matrix

as X =L [:v(n)a:(n)T} and 7|, as (3.31). Thus, the minimum square error is defined
as

&2 = E[lei(n)]?]

(3.32)

A/i:’)’i‘opt ’

Let us develop the expression

Eoin = B [¥/ 2(n)2(n) ]

. 3.33
Yi="Yilopt ( )
The predictor is deterministic. Thus, it is extracted from the mathematical expectation
operator. Then, it is possible to write the minimum square error in terms of the covariance
matrix and the optimal ;|

opt
20 T T] o _ T ‘
G = WE [z | %] _ =) (3.34)
Finally, substituting the value of «;|,,, by (3.31) the value obtained is
Ty —lyiy—1
o(4) e; XYY e 1 1
= = =0, . 3.35
émm (6?2_161‘)2 (eg“z_lei) 1 ( )

Then, in order to normalize the predictor by multiplying the corresponding scaling factor
it is necessary to multiply by the solution obtained in (3.35]). Thus,

/Bi = 7i|opt glin? (336)
where &2, = m = ©;;'. To finish, once the normalization is done for all predictors,

the estimated precision matrix © is build with column 7 equal to predictor G;.

3.6.2 Beyond Equations

The relations between nodes in the first simulation case are the same as in figure |3.3| with
the values represented in equation and the expected result, as in the other cases
will be .

By selecting an appropriate value for ), in this case A = 1073, and by applying the
columns normalization explained in this section, it is possible to recover perfectly the
nodes’ relations. It is important to note that the selection of the regularization parameter
A is critical to obtain a reliable result. In order to find the optimal value in this thesis, the
mean square error produced was monitored. For a given sparsity, 30% of non-zero values,
the optimum value for A has been found for different number of snapshots. Then a linear
regression has been performed in order to find the expressions that best allows us to find
the optimal parameter A, see figure |3.10 This method is not based on a close expression
to find the optimal value for any case, but this is beyond the scope of this project. In
figure [3.12] it can be seen that this method is quite reliable even in the worst scenarios.
By doing the second simulation figure [3.13] we can ensure that the algorithm is correctly
implemented. The result in this case is really similar to the obtained with the other
algorithms because this example is performed in all cases with a well conditioned case
were the covariance matrix is perfectly estimated. Thus, the ¢;-norm is not significantly
important.
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Figure 3.10: A, for a 30% of non-zero values and different number of snapshots
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Figure 3.11: Estimated © by using the linear regression method for 10N snapshots
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Linear Regrossion: @

Figure 3.12: Estimated © by using the linear regression method for N — 1 snapshots

Linear Regrossion: @

Figure 3.13: Estimated © by using the linear regression method for 10N snapshots



Chapter 4

Comparison of Methods

4.1 Introduction

In the previous chapter, three different methods to infer the graphs’ topology were studied.
These techniques were based on searching the precision matrix ©. In this chapter, the
objective is to compare these three approaches by generating random graphs. As it was
explained during the thesis, the differences between them are more significant when they
try to estimate a sparse matrix, and when the number of nodes increases. The conditional
correlation method does not take into account the sparsity of the solution while the other
two methods consider it. In order to easily analyze the results while increasing the number
of nodes, in this chapter algorithms work with N = 10. This number is selected because
it allows us to easily compare the solutions obtained while increasing the number of
nodes. The same figures as in the previous chapter are used to compare the methods
performance. In order to be in control of the matrix’s sparsity, the precision matrix, ©,
is synthetically generated. In these simulations, it is not possible to represent the graph
because different graph structures can produce the same precision matrix, see figure [£.1]
This is a simple example, but when the number of graph’s nodes increases, the number of
possible topology combinations that can be represented with the same precision matrix
increments. Thus, considering that these techniques try to estimate the precision matrix,
in order to compare them, the generated precision matrix is represented.

Figure 4.1: Different graph structures that generates the same precision matrix ©

43
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4.2 Simulation Results

Firstly, we start by analyzing the well conditioned case. For 10V snapshots and a precision
matrix © with a percentage of values different to 0 of the 30%. The precision matrix
generated can be seen in figure In this precision matrix, there are three different

Figure 4.2: © generated with a percentage of values different to 0 of 30%

values. The matrix is generated where diag(®) = 1. Outside the diagonal values are 0
or a fixed high value (i.e 0.8), represented as a green color in figure or a fixed low
value (i.e 0.2) which is represented in blue color. Matrix in figure is the one that the
algorithm should estimate. Now, let us focus in the performance of the three different
methods starting by the conditional correlation in figure On one hand, as can be
seen the high values are correctly estimated. On the other hand, the lower values are
also correctly estimated. Nonetheless, the difference between some of these values and
the non-relations, with weight 0, is not clear enough. This is the case for the pair (5,7),
which is a not relation and is really close to the value of the pair (5,6), which is a relation.
By using the ML estimator or the Linear Regression methods which take into account the
optimization of the ¢i;-norm it is expected to obtain a more sparse result.

As can be seen in figure 4.4 and figure |4.5, respectively, a more sparse matrix is
obtained. When using the ML estimator method the high values are perfectly estimate.
Low values are mostly represented but some are missing. If the normalization parameter
A is reduced, some false relations might appear. If more data is available, it can be used to
improve the estimation. Thus, low values can be correctly estimated but more snapshots
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Conditional Correlation: ©
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Figure 4.3: Estimated © by using the conditional correlation method
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Figure 4.4: Estimated €] by using the ML estimator
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are needed. Using the Linear Regression approach, the result obtained in this case is
really similar to figure [£.4l Nonetheless, it is interesting to note that it worked slightly
better than the ML estimator approach and the computational time is around 10x faster
in the case of the Linear Regression method.

Linear Regression: &

Nodes

1 2 | 4 5 5] 7 B a 10
Nodes

Figure 4.5: Estimated © by using the Linear Regression method

To conclude this first simulation, let us analyze figure [£.6] It can be seen the result
of applying the Linear Regression method with a normalization parameter equal to 0. As
expected, the result obtained by the Linear Regression method when no normalization
parameter is taken into account is identical to the conditional correlation solution, as
explained in [3.6] By comparing figure [4.6] with figure [4.5]it is possible to see the benefits
of using the optimization of the ¢1-norm. It represents more clearly the non-relations. To
conclude, we can say that by providing this extra information, the algorithm is able to
better differentiate those values which are zero from those which are relations between
pairs of nodes.
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Figure 4.6: Estimated © by using the Linear Regression method with no normalization
parameter
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In this next example figure|4.71a new precision matrix is generated. Nonetheless, in this
case algorithms only have N — 1 snapshots to estimate it. In this scenario, as explained
in [3.3] it makes no sense to try to use the conditional correlation method because the
covariance matrix is rank deficient. Thus, it is not possible to compute the precision
matrix as the inverse of the covariance matrix.

The precision matrix, © that is used in this simulation can be seen in figure As
can be seen, nodes 9 and 10 are isolated, this is they do not depend on any other node.
Let us now focus in the results obtained by the two algorithms that incorporates the ¢;-
norm optimization, the sparsity promotion parameter A\. By looking into figure it can
be seen that some of the most important relations are estimated but any of the lightest
relations is represented. A similar result can be seen in the estimation obtained by the
linear regression method in figure [4.9

This result means that for bad scenarios where the snapshots available are not enough
to correctly estimate the covariance matrix, it is still possible to recover the most impor-
tant relations between pairs of nodes. By increasing the number of snapshots taken it is
possible to estimate the lowest weighted relations.

After doing all these simulations it is interesting to note that the time needed for the
three different algorithms is significantly different. To compute the conditional correla-
tion is approximately 10x faster than to solve the optimization problem by using the
Linear Regression method. The slowest solution is the ML estimator because it required
approximately 100x more time than the Linear Regression method.
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Figure 4.7: © generated with a percentage of values different to 0 of 30%

Cranssian Graphical Models: @

Nodes

1 2 a 4 5 5] 7 8 a 10
Nodes

Figure 4.8: © estimated by using the Gaussian Graphical Models, ML estimator
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Figure 4.9: © estimated by using the Linear Regression method






Chapter 5

Conclusions and Future Work

5.1 Conclusions

As we observed, this Master’s Thesis is divided in three different parts. The first one
is focused in network topology inference when the signal graph can be modeled as the
output of a graph filter when a driving noise is applied. The second part is centered in a
more general branch, the study of statistical methods. Finally, the third part is devoted
to simulations and comparisons between the statistical methods.

In chapter 2, we reviewed the concepts already studied in the Degree’s Thesis that
were needed to understand section [2.3] This part corresponds to the green branch in
figure 5.1} In the previous work section [2.2] it was seen how to infer the topology when
working with imperfect spectral templates. At this point, a natural question arises: how
do we infer the topology when working with noisy spectral templates? This question is
studied in this Master’s Thesis in section 2.3] It was examined why the OMP algorithm
was not working due to the RIP condition, which could not be guaranteed. Then, the
study is centered in noisy spectral templates, a new robust method based on LASSO is
proposed. In section [2.3.3] we compared the results obtained using the BP, OMP, and
Robust Method, with the results obtained using LASSO. As it was previously showed,
the reliability of this new technique is higher than the obtained with the BP or OMP
algorithms. It is important to clear up that, LASSO does not require to have knowledge
about the graph’s sparsity degree. It was studied the algorithm’s dependency of the
regularization parameter. Which was showed that the regularization parameter did not
modify the RMSFE for different sparsity degrees. The most important conclusion is that for
a number of nodes N tending to infinite, the RMSE obtained with the LASSO approach
tends to 0.

In chapter 3, we studied statistical methods. This part corresponds to the blue branch
in figure 5.1l As exposed, these techniques were more generic than those explained in
chapter 2. These approaches did not require any other information but some snapshots
taken from the graph. To begin with, we presented the signal model used along this
chapter. Then, in then next section the correlation networks were presented. Three ap-
proaches to estimate the graph’s topology were introduced in this chapter: the conditional
correlation, the maximum likelihood estimator with sparse regularization, and the linear
regression. The simplest one was the conditional correlation method but, it was not pos-
sible to use when having a low number of snapshots. Some simulations were performed to

o1
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explain some concepts regarding the precision matrix @, as well as, to see the method’s
performance. It was then exposed, that it is typical to assume a Gaussian distribution.
Gaussian graphical models were presented and the ML estimator was derived based on
Gaussian assumption. The sparsity was also considered in the ML estimator, to finally
obtain the ML estimator with sparse regularization in [3.5.1] Some simulations were per-
formed to validate the method. At the end of this chapter, the linear regression technique
was explained. It was formulated and the sparse regularization was taken into account.
The predictor was estimating for each node ¢ the mean square error predictor. Then, a
normalization was needed because each of these predictors had its own scaling factor. In
order to conclude this section, the precision matrix was build where each of its columns 4
was the normalized predictor B;. Some simulations were carried out to show the potential
of this technique when working with low information.

In chapter 4, more simulations were performed to better compare the three approaches
studied in chapter 3. As explained, the differences between these techniques and their
potential can be better seen, when the number of nodes, and the sparsity degree increase.
This is the reason why, in this chapter, we increased the number of nodes up to N = 10.
It was explained that the number of nodes was not higher because it was already possible
to see the differences between the techniques, and to easily analyze the results. With
a higher number of nodes, the analysis would be much more difficult. Two different
precision matrices were generated to test the methods. In the first case, it was seen
that the methods which were considering the sparsity promotion obtained better results.
Also, it was showed that if the linear regression method does not consider the sparsity
promotion term, its result is equal to the one obtained with the conditional correlation. In
the second example, we tried to estimate the precision matrix with only N — 1 snapshots.
As it was explained, it made no sense to test the conditional correlation method due to
the lack of information to correctly estimate it, the covariance matrix is singular. It was
seen that, although the techniques had some difficulties estimating the precision matrix’s
lowest values, they were able to correctly estimate most of the highest values. Also, it was
noted that the linear regression method obtained a better result than the ML estimator.
Furthermore, the linear regression algorithm was much faster than the ML method.

5.2 Future Work

To better complete the study of topology inference in graph signal processing it remains
to study of Smooth Signals. This part corresponds to the yellow branch in figure [5.1]
There are multiple applications were it is interesting to construct a graph where data
may have a certain regularity. As an example, it exists the possibility to learn the graph’s
topology by observing smooth signals [I1) [67, 68, 69]. A signal graph is said to be
smooth when the graph’s weights tend to be similar. An objective measure of the signal
smoothness can be quantified by the total variation (TV) [I1], 67, [70] with respect to the
Laplacian. These signals are interesting because they admit low-pass and band-limited
representations using the Graph Fourier Transform basis. An example of this band-limited
representations are sparse signals. Furthermore, smoothness is a very important property
used in multiple graph-based statistical learning tasks such as nearest-neighbor prediction,
denoising or spectral clustering. There are multiple examples of smooth signals in real
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world. Those examples include natural images [67], types of practice in a network of
lawyer collaborations and product ratings supported over similarity graphs of items or
consumers [4], the environmental measures taken over a large area to the find relations
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between them [9] or the attack detection over the electrical grid [71].
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