
Memory-Coherence between host and devices in a
runtime

Ruben Cano, Daniel Jiménez, Vicenç Veltran
∗Barcelona Supercomputing Center, Barcelona, Spain
†Universitat Politècnica de Catalunya, Barcelona, Spain

E-mail: [ruben.canodiaz, daniel.jimenez, vicenc.beltran]@bsc.es
Special thanks to Carlos Álvarez.

Keywords—Runtime, Nanos6, Main memory, Coherence, High-
performance computing.

I. EXTENDED ABSTRACT

As the end of the Moore’s law approaches, more specific
devices such as GPUs, FPGAs or AI accelerators tend to
steal the workload that was traditionally run on the CPU,
allowing with this offload more specific solutions that improve
the execution time of specific applications. One of the main
problems that arise with this approach, is that now, the data
is not centralized in one main memory, but distributed among
the different accelerators which need a correct and coherent
data to perform its operations. This can potentially limit the
performance an accelerator can achieve, as well as delegates
the programmer the task of enforcing the coherence between
memories.

To relieve this model, in which the programmer has to take
into account the memory of devices, models like NVIDIA
Unified Memory[1] manage the hard work of maintaining
the memory-coherence, potentially hurting performance but
making the per-device memory management much easier.

In this work, the main objective is to develop an exten-
sion for a task-based runtime, which maintains the coherence
between SMP and multiple devices in the system, using the
dependency information of a task, acting as a Translation-
Allocation Layer between the multiple memory spaces defined
by the accelerators.

For our development, we use Nanos6 Runtime[2] as the
target of our implementation. Nanos6 is a Runtime that imple-
ments the OmpSs-2 programming model, it is an SMP task-
based runtime, with cluster support and is able to run CUDA
tasks using unified memory. With this implementation, our
objective is to extend Nanos6 capabilities to allow running
CUDA with distributed memory, as well as other kind of
accelerators such as FPGAs.

A. Memory abstraction for devices

To manage the different memories, each memory should
provide a interface that allows to: copy from and into it,
allocate memory and free memory, in our system, we will
manage the memories using this abstraction, which will allow
to map any kind of esoteric memory into the same system that
will be shared by all the devices.

B. Task dependencies and symbols

A task dependency from a memory perspective, is a region
of host memory that a task needs to coherently access, to write
or read, in order to be executed, however, a symbol can be a
superset of various dependency regions, and has the particu-
larity that each symbol needs to be continuous in memory, this
is due to the different already-compiled algorithms take into
account the different offsets while accessing the data so we
don’t only has to have the data valid on the device, but has
to be in the way the already-existing software expects them to
be. This means that the dependency can be multiple parts of
a symbol, but the whole symbol has to be in memory.

Fig. 1. In this figure we can see how, for a Symbol, we have only two
dependencies that are not contiguous, however, we have to maintain the offset
address value between the two dependencies because the algorithm could
expect the data to be in a certain offset.

C. Non-blocking Software Memory Management Directory

The Directory is a range-based multipurpose software
system that given multiples address spaces, manages the allo-
cation, copies and translation from host memory to any other
address space. So, for the runtime, it’s only a translation layer
where you give an address and a range, and it returns a list
of copy operations that are needed to satisfy the access, and
an address to the data in the given address space. When a
task finishes using that region, that information is passed to
the directory, and the access is released. However, due to the
possibility of an already-existing region on an address-space
being part of a symbol that needs more contiguous allocation,
we can ensure that when the directory returns an address, that
address will remain valid and accessible until the task finishes
using it, but consequent tasks that may access that region,
may have different addresses. So, the coherence of a returned
address is not enforced, and a returned address shouldn’t be
used outside its task scope, and all accesses have to be checked
by the Directory.

For explaining the functionality without going into too
much detail, we will divide the Directory duties in three main
steps:

1) Allocation Step: The directory checks if for a symbol
region, there is an already-valid allocation on the address-
space. If there is no allocations, it will try to allocate a paged-
size chunk in the address-space. If there is a partial allocation,
it will allocate a new paged-size sufficient to allocate all the
symbol again, and generate the copies of the data to the new
address, and, lastly, if there is no space for a new allocation,
will return an error and the runtime will need to try again later
when some data has been released.

2) Data Copies Generation Step: When an access has an
already-valid allocation, we need to maintain the coherency
between all the address-spaces. This means, for a range, we
can have multiple entries on our directory, each one with it’s
own state. We use a MESI-Like protocol in each entry, which
allows us to have read-valid data in more than one device, and
invalidate if necessary the data in any address space.

This means that if the data is invalid in the given address-
space, we will check where the last version of the data is, and
copy from there to the address space, updating the state or
invalidating if necessary. However, this is not that simple, since
we are not synchronously getting the data, but generating the
copy that will be performed asynchronously. For this, we create
a ”promise” of validity, put the entry status in a transitory state,
and only changing the status to valid when the data has finished
copying. This has implications on following accesses to this
region, that will, instead of creating a new copy information,
create a directory lookup, to check if the data is already copied
or not.

3) Data free step: When a taskwait arrives, the directory
must ensure that all the data the tasks have modified, it’s valid
again on the host memory, invalidating and freeing allocations
on the devices memories.

II. CUDA COMPARISONS BETWEEN UNIFIED MEMORY -
PREFETCH - DIRECTORY

To compare the performance achieved, we compared
the performance in GFLOPS using a Blocked Matmul
kernel with three memory models, our Directory model
implementation, the Prefetch method and Unified mem-
ory model with Nanos6 Runtime. The algorithm has al-
ready a Tiled matrix, and will call our CUDA MATMUL
BLOCK function, which is a Nanos6 task that performs the
block multiplication on GPU, having as an in dependence
[BS*BS]tileA[i][k] and [BS*BS]tileB[k][j] and as an out de-
pendence [BS*BS]tileC[i][j].

f o r (i n t i = 0 ; i < BS ; i ++)
f o r (i n t j = 0 ; j < BS ; j ++)

f o r (i n t k = 0 ; k < BS ; k ++)
CU MAT BLOCK(t i l e C [i] [j] ,

t i l e A [i] [k] ,
t i l e B [k] [j] , BS) ;

}
Listing 1. Mamtul code which shows how the different tasks are created for
performing a tiled-matmul.

The Directory model, is the one that is mentioned in this
document, the Prefetch model is using unified memory, but
telling the CUDA Driver which regions of memory we are
going to use (Basically, prefetching the symbols using the

CUDA API), and the Unified memory is calling CUDA without
any modification nor notification, as is.

The experiment setup is using one node of Marenostrum
4 Power9 Cluster which contains 2 x IBM Power9 8335-GTH
at max frecuency of 3.8GHz, 512GB RAM and we used one
of the four NVIDIA V100 (Volta).

The Nanos6 and mercurium versions are the master branch
from 8 april 2020, and an experimental Nanos6 branch with
support for prefetching CUDA memory.

Fig. 2. Graphic representation of the performance results, in BLUE, Directory
approach, in RED, prefetcher approach and in YELLOW, unified memory
approach, as we can see, the horizontal axis contains the block size, and the
vertical axis the performance in GFLOPS, higher is better, where we can see
the benefits of our method.

As we can see on the figure 2, for almost all the cases,
our directory outperforms the unified memory with, or without
prefetcher, with the prefetcher, unified memory seems to
be more close to our approach, and with unified memory,
without any kind of prefetching, is the clear loser in terms
of performance

A. Conclusion

There is a lot of work to be done in this subject, but seeing
the preliminary performance results, we can see that it has a
huge potential as a transparent way to the user to improve the
performance of its applications and allowing multiple devices
to communicate independently of it’s nature, in fact, this
software solution is meant to work in heterogeneous systems,
with any kind of device that can compute data.

Implementing this inside Nanos6 will allow to improve
performance for already-existing applications built for the
OmpSs-2[3] Programming model.

REFERENCES

[1] “NVIDIA training webpage.” [Online]. Available:
https://devblogs.nvidia.com/unified-memory-cuda-beginners/

[2] “Nanos6 runtime github.” [Online]. Available: https://github.com/bsc-
pm/nanos6

[3] “OmpSs-2 webpage.” [Online]. Available: https://pm.bsc.es/ompss-2

Ruben Cano Dı́az received his BSc degree in
Computer Engineering from Universitat Politècnica
de Catalunya (UPC), Barcelona, Spain in 2018. He
currently is coursing a Master in High Performance
Computing at UPC, while working in programming
models at the Barcelona Supercomputing Center,
Spain.

