
Design and OptimizationCONTRIBUTED SESSIONSAn IMU and USBL-aided buoy for underwater localization

VII International Conference on Computational Methods in Marine Engineering
MARINE 2017

M. Visonneau, P. Queutey and D. Le Touzé (Eds)
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Abstract. Autonomous underwater navigation remains, as of today, a challenging task. The
marine environment limits the number of sensors available for precise localization, hence Au-
tonomous Underwater Vehicles (AUVs) usually rely on inertial and velocity sensors to obtain
an estimate of their position either through dead reckoning or by means of more sophisticated
navigation filters (such as Kalman filters and its extensions [1]). On the other hand, acoustic
localization makes possible the determination of a reliable vehicles pose estimate exploiting suit-
able acoustic modems [3]; such estimate can even be integrated within the navigation filter of
the vehicle in order to increase its accuracy. In this paper, the authors discuss the development
and the performance of an Ultra-Short BaseLine (USBL)-aided buoy to improve the localization
of underwater vehicles. At first, the components and the physical realization of the buoy will
be discussed; then, the procedure to compute the position of the target will be analyzed. The
following part of the paper will be focused on the development of a recursive state estimation
algorithm to process the measurements computed by the buoy; specifically, Extended Kalman
Filter [4] has been adopted to deal with the nonlinearities of the sensors housed on the buoy. A
validation of the measurement filtering through experimental tests is also proposed.

1 INTRODUCTION

Undersea operations are an example of how robotics can replace humans: working underwater
is, indeed, both dangerous and difficult. The birth of the underwater robotics is due to military
purposes (e.g. seabed mines clearing), but with years the field of application has widened to
a vast category of scientific and commercial tasks. An example is the digital reconstruction of
the seabed, exploiting a proper set of sensors mounted on board an underwater vehicle, like
waterproof cameras and multibeam echosounders. Due to the heterogeneity of tasks that can be
performed, many types of underwater vehicles exist: among them it is possible to find Remotely
Operated Vehicles (ROVs), i.e. tethered underwater mobile devices operated by a crew aboard a
vessel and Autonomous Underwater Vehicles (AUVs), capable of travelling underwater without
requiring input from an operator. By using such vehicles the need of a proper localization system
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arises [5]. In fact, radio waves, exploited by Global Positioning System (GPS) are quickly
absorbed by the water, hence the need to rely on different instruments for the positioning.
Such instruments are usually based on acoustic waves because of their property to propagate
in the water even for long distances; in this sense, the localization techniques mainly used in
the underwater environment are Long BaseLine (LBL) and Ultra Short BaseLine (USBL). In
Long BaseLine localization, different transmitter modems are placed underwater in well known
positions. Periodically, pings are generated by these modems, as response to acoustic signals
coming from the target to locate (i.e. the underwater vehicle), and are received back by the
modem mounted on the vehicle. Once responses from all the transmitters are available, they are
used to retrieve the position of the vehicle, by triangulation or position search algorithms. LBL
can reach an accuracy of a few centimetres, a precision that does not depend on the distance
between the vehicle and the fixed transmitters. On the other hand, LBL systems require a not
negligible amount of work for the installation of the baseline stations; this procedure, indeed,
often requires vessels and proper equipments.

The Ultra Short BaseLine localization, instead, is based on a single device integrating both
the acoustic transceiver (needed for communicating with the compatible acoustic modems) and
a series of transducers (typically 5), placed in known relative positions (normally in the order of
few tens of centimetres). Transducers are capable of acquiring the signal transmitted by a modem
and, once the signal reaches them, it is acquired and processed by a dedicated unit. A typical
installation for the USBL device is on the bottom of a surface vessel [5], with a considerable
saving on the costs of the infrastructures that have to be installed in the operational area
compared to the LBL solution. However, the positioning accuracy guaranteed by such a system
degrades with the relative distance and additional sensors (e.g. GPS, gyroscopes or electronic
compass) are required, in order to compensate for the changing position and orientation of the
surface vessel the device is mounted on. Despite these drawbacks, USBL solutions are widely
employed for tasks where flexibility and time saving in the installation are mandatory.

In this paper underwater target localization is discussed, exploiting a self-moving buoy, built
by the Mechatronics and Dynamic Modelling Laboratory (MDM Lab) of the University of Flo-
rence, housing an USBL device. Section 2 provides the hardware features of the buoy and a
description of the procedure used for locating the target. In Section 3 the development of an Ex-
tended Kalman Filter (EKF) to improve the measurements computed by the buoy is discussed.
The solution proposed has been validated through data obtained from experimental tests on
stationary and moving targets; the results are presented in Section 4.

2 DESCRIPTION OF THE BUOY

2.1 Hardware features

The buoy used for underwater localization is shown in Figure 1: it consists of a wooden
board fixed on a life buoy and a case located on top. The case is certified with the IP67
(International Protection) rating, meaning that the inside is impermeable on condition that
the immersion into the water is temporary, not deeper than 1 meter and not longer than 30
minutes. Cases with higher IP ratings can be found in commerce, but the IP67 rating is suitable
for this purpose, being the case located over the water level. Almost all of the water-sensitive
(electronic) components of the buoy are placed inside the IP67-rated case and connected to the
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(a) (b)

Figure 1: The buoy used to locate the underwater target (Figure 1a) and the IMU-USBL
subsystem (Figure 1b).

outside by using impermeable cables and cable glands suitable for aquatic environment. Two
thrusters can also be installed in order for the buoy to reach or maintain a desired position.
Regarding the electronic and electrical features, the following components are installed on the
buoy:

• Six cells, 8000 mAh (Ampere-hour) Lithium-ion Polimer (Li-Po) battery;

• 24V-5V DC-DC converter;

• Odroid-XU onboard computer;

• Xsens MTi-100 Inertial Measurement Unit (IMU);

• EvoLogics S2CR 18/34 USBL transceiver;

• SwiftNav Piksi Differential GPS (DGPS) receiver;

• PicoStation Ubiquiti wireless module;

• Polulu Micro Maestro 6-channel USB servo controller.

To guarantee the impermeability of the unit, the Xsens IMU is located inside a watertight
aluminum cylinder which is rigidly fixed on the USBL transceiver; the USBL transceiver is
mounted on a stainless steel pole rigidly connected to the wooden board of the buoy. Both IMU
and USBL transceiver are positioned underwater. Thanks to the rigid connection between the
IMU-USBL system and the buoy, every variation in the orientation of this latter is reflected in
a same variation in the one of the IMU-USBL system and it will be detected by the IMU; this
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Figure 2: A scheme of the connections of the buoy components.

information is then used to properly process the measurement provided by the USBL sensor.
The Piksi DGPS receiver communicates with a base station, located in a known position on the
mainland and provides the position of the buoy with an accuracy of few centimetres.

Regarding the electronic components, the 8000 mAh Li-Po battery provides 24V voltage to
supply the onboard computer and, consequently, some of the components that are plugged to it.
A 24V-5V DC-DC converter has been inserted in order to avoid overvoltages for the Odroid-XU
computer. Both the wireless module and the DGPS receiver are fixed on a tinier wooden board
on top of the main one and connected to it by means of two 50 cm threaded rods. This solution
has been adopted in order to limit interferences in the radio signals sent and received by the
buoy. The Polulu Micro Maestro 6-channel USB servo controller provides an USB interface for
the two thrusters.

In order to power on the onboard computer of the buoy, a magnetic activation switch is used;
this solution guarantees easy emergency shutdowns when buoy components safety may be at
risk.

2.2 Localization procedure

The procedure to compute the position of an underwater vehicle involves an Earth-fixed
frame, located in a given position in the sea and whose axes are aligned according to the NED
(North East Down) convention; in this context, the Earth-fixed frame origin is coincident with
the first position of the buoy measured by the DGPS.

In order to detect variations in the pose (i.e. position and orientation) of the buoy with
respect to the Earth-fixed frame, the IMU and the DGPS are used. Let us consider a buoy-fixed
reference frame; of course, at first such frame will be coincident with the Earth-fixed frame,
but it will change its pose according to the movements of the buoy. The DGPS measures the
position of the buoy-fixed frame origin (OB) with respect to another reference frame, fixed on
the base station located on the mainland; let us indicate such measurement with OS

B. By calling
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OS
W the position of the origin of the Earth-fixed frame (measured by the DGPS and referred to

the base station) it is trivial to compute the relative positioning of the buoy with respect to the
Earth-fixed frame (PW

B ) as:

PW
B = OS

B − OS
W . (1)

Regarding the orientation, the IMU measures the relative orientation between the buoy-fixed
and the Earth-fixed frame, expressed with the RPY (Roll Pitch Yaw) Euler angles ϕ, ϑ, ψ.
Therefore, given the position of the target measured by the USBL PU

T and known the relative
orientation of the USBL sensor with respect to the IMU, expressed by the mounting angles ϕm,
ϑm, ψm, it is possible to compute the position of the target with respect to the current position
of the buoy (PB

T) as:

PB
T = RB

I RI
U PU

T , (2)

where RB
I and RI

U are, respectively, the rotation matrices describing the relative orientation
between the IMU and the buoy and between the IMU and the USBL device. The expression
of RB

I can be computed starting from the RPY angles ϕ, ϑ, ψ by using the rotation matrices
composition rule; the same holds for RI

U and the mounting angles ϕm, ϑm, ψm.
The position of the target referred to the Earth-fixed frame can then be calculated as:

PW
T = PB

T + PW
B , (3)

Known PW
T and the absolute position (latitude, longitude and altitude) of the Earth-fixed

frame origin LLAOW, the absolute position of the target can be computed using standard conver-
sion functions as follows:

LLAPT = fc(
LLAOW,PW

T ) . (4)

where fc(·, ·) is the function performing the conversion from relative to absolute coordinates.
To compute the position of the vehicle, measurements obtained from the sensors mounted on
the buoy (i.e. IMU, USBL and DGPS) are processed using Robot Operating System (ROS) [7].

Specifically, for each sensor a ROS node implements the interface by publishing data on a
proper ROS topic: the content of such topics is then read by another node that computes the
position of the underwater target as discussed.

3 MEASUREMENTS FILTERING

To improve the underwater localization, a recursive state estimation algorithm can be used;
such an algorithm relies on a model of the target to locate and of the sensors exploited to
compute its position. Given the nonlinearities of the sensors involved, the Extended Kalman
Filter (EKF) [4] has been used.

3.1 Underwater target motion model

Two different motion models need to be considered: one describing a stationary target and
another referred to a target moving at constant speed. These are, indeed, the two main situations
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occurring in the practice: usually an AUV navigates at the cruise speed along its minimal
resistance direction or is required to maintain a fixed position (i.e. hovering).

The mathematical description exploits the relative coordinates of the target referred to the
Earth-fixed frame, but considering only the North and East components; the depth (Down axis
component) is not relevant for this topic as it is usually known or can be measured properly by
the depth sensor housed on board the vehicle.

For these reasons, the considered state vector is x = [xW
T , y

W
T ]

T for the stationary target and
x = [xW

T , ẋ
W
T , y

W
T , ẏ

W
T ]

T for the target travelling at constant speed.

3.1.1 Stationary target state space representation

The state space representation describing the behaviour of a stationary target can be obtained
directly at discrete time. Ideally, the equation modelling the evolution of a quantity x that does
not change over time is:

xt+1 = xt . (5)

However, in order the model to be more realistic, a white noise wt, having minimal standard
deviation σ, is added:

xt+1 = xt +wt , wt ∼ wn(0, σ2I) . (6)

3.1.2 Moving target state space representation

To model the behaviour of a target moving at constant speed polynomial kinematic models
described in [6] are adopted. Specifically, a White Noise Acceleration (WNA) model is used.
Such a model is derived starting from a continuous time motion model and then discretized
using the ZOH (Zero Order Hold) technique for the discretization.

Let us consider the components of the target motion x = [xW
T , ẋ

W
T , y

W
T , ẏ

W
T ]

T = [x1, x2, x3, x4]T ;
assuming different acceleration fluctuations (σcx and σcy) along the two directions (x1 and x3),
it is possible to model a target moving at constant speed with the following equations:




x1k+1

x2k+1

x3k+1

x4k+1



=

�
Ak 02×2

02×2 Ak

�

� �� �
Ak




x1k

x2k

x3k

x4k



+wk ,

wk ∼ wn(0,Qk), Qk =

�
σ2
cxQk 02×2

02×2 σ2
cyQk

�

(7)

where:

6

454



B. Allotta, M. Bianchi, F. Fanelli, J. Gelli, N. Monni, M. Pagliai, N. Palma and A. Ridolfi

Ak =

�
1 Tk

0 1

�
, Qk =




T 3

k

3
T 2

k

2

T 2

k

2 Tk


 (8)

with Tk = tk+1−tk being the offset between the k-th and k+1-th time samples. It is important
to note that Tk varies over time, because the working frequency of the USBL sensor is not fixed.
This is caused by the time required from the acoustic signal to travel from the USBL transceiver
to the acoustic modem and back to the USBL transceiver, which varies depending on the water
conditions and the distance between the two devices.

3.2 Measurement equations

As it has been discussed earlier, the underwater localization procedure is based on data
provided by IMU, USBL and DGPS. However, the angles measured by the IMU are already
compensated by its inner estimation algorithm. The DGPS, instead, measures the position
of the buoy; if the absolute position of the base station is reliable, the DGPS measurements
are accurate. On the other hand, the USBL transceiver provides a position of the underwater
target that can be inaccurate for many reasons (e.g. buoy position perturbations or bad water
conditions): the filtering is then aimed to the compensation of the USBL measurements errors.

Let us consider the case of the stationary target (for the moving one the procedure is similar);
let us indicate with xW

B , y
W
B the North and the East coordinate of the buoy at time t with respect

to the Earth-fixed frame. Considering that the USBL transceiver exploits a spherical positioning
system, the characteristic of the sensor set used to locate the target can be modelled as:

yt = ht(xt) + vt =



�

(x1t − xW
B )

2 + (x2t − yW
B )

2

atan2(x1t − xW
B , x

2
t − yW

B )


+ vt (9)

where vt is a zero-mean Gaussian noise depending on the USBL transceiver technical features.
The atan2(·, ·) function in Equation (9) provides an information about the azimuth angle

of the target and is piecewise continuous and differentiable; when differentiable, its partial
derivatives are:

∂ atan2(x,y)
∂x

= − y
x2+y2

,
∂ atan2(x,y)

∂y
=

x
x2+y2

. (10)

The points where atan2(x, y) is discontinuous (x = 0 ∧ y �= 0) or undefined (x = 0 ∧ y = 0)
never occur in practice, hence it is always possible to compute its partial derivatives; the range
measurement characteristic h1t (xt), instead, is always differentiable. It is then possible to use
the Extended Kalman Filter to process the measurements provided by the buoy.

Let us note that the choice to adopt the Earth-fixed frame as reference frame leads to a
time-variant measurement equation: the coordinates of the buoy xW

B and yW
B , indeed, vary over

time. However, this is not an issue, because the expression of the partial derivatives of ht(xt)
remains the same, therefore it can be computed only once, offline, and applied online, reducing
the computational load required from the EKF.

The expression of the Jacobian matrix Ct to be used within the filter is then:
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Figure 3: Satellite image of the piers of Roffia Lake (from Google Maps): the piers are labelled
as ‘P1’, ‘P2’, ‘P3’, ‘P4’, and ‘P5’. In the performed tests the buoy has been located at the end
of P1 and two acoustic modems are moored at different piers (P2 and P5).

Ct =




ex√
(e2x + e2y)

ey√
(e2x + e2y)

− ey
e2x + e2y

ex
e2x + e2y


 (11)

where:

ex = (x̂1t|t−1 − xW
B ) , ey = (x̂2

t|t−1 − yW
B ) (12)

being x̂t|t−1 = [x̂1
t|t−1, x̂

2
t|t−1]

T the predicted state estimate at time t.

4 EXPERIMENTAL RESULTS

To evaluate the effects of the measurements filtering on the underwater target localization
several experimental tests were carried out at Roffia Lake (San Miniato, PI). Stationary and
moving target localization have been performed exploiting, respectively, two EvoLogics 18/34
acoustic modems moored in known positions and MARTA AUV (MArine Robotic Tool for
Archaeology [2], Figure 5a). The measurements have been collected online, while the filtering
has been applied offline, using MATLAB, in order to find a proper tuning of the EKF parameters.

4.1 Stationary target localization

In the stationary target localization (see Figure 3), two EvoLogics 18/34 acoustic modems
have been moored at the piers P2 and P5 of Roffia Lake at a given depth, while the self-moving
buoy has been placed near pier P1.

In the experiments in exam various angular perturbations have been induced on the buoy, so
that it has been possible to verify the robustness of both the raw measurements and the filtered
ones. Figures 4a and 4b show the result of the localization of the targets moored at P2 and P5,
respectively. The measurements computed by the buoy have been compared with the position
of the target measured on surface with a GPS. It is possible to note how the localization of the
target results in a wide circular sector; this is due to the high yaw angular rates caused by the
perturbations voluntarily induced on the buoy. By applying the filtering of the USBL measures,
the localization performance is improved. In fact, as visible in Figure 4d, the azimuth angle
errors obtained after the filtering are considerably concentrated with respect to those of the raw
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measurements. It is important to note that the errors mean is not zero: however, this is given
by the inaccuracy of the target GPS measure (usually around 3 meters) used as benchmark.

4.2 Moving target localization

The localization of a moving target exploiting the buoy has been tested using MARTA AUV.
Specifically, different paths have been performed by the vehicle, in order to fully evaluate the
performance of the localization filter: in the following the results obtained executing a lawn-
mower path (Figure 5b) are discussed.

For every line composing the path, a steady speed is reached after an initial transient: the
lawn-mower path is then, ideally, composed of subsequent uniform linear motions along different
lines. On the other hand, the moving target model is referred to an uniform linear motion along
a single line, hence a major importance has been given to the EKF update step rather than
the prediction one through a suitable tuning of the EKF parameters, in order to trust more the
measurements with respect to the target model.

The target positions and velocities estimated by the filter have then been evaluated. Specifi-
cally, the estimated speeds have been compared with the measurements of the Doppler Velocity
Log (DVL) sensor housed on board the vehicle. As for the estimated positions, in this context
it has not been possible to use the position of the target provided by the GPS as benchmark,
being such sensor unavailable underwater. The estimated positions, then, have been evaluated
in terms of smoothness, because the path described by the vehicle is usually regular; indeed, the
water strongly dampens the vehicle motion.

In Figure 6a it is possible to note that the filtered positions are more regular than the raw
ones, hence more consistent with the trajectory followed by the target. As for the velocities,
the comparison with data obtained from DVL is shown in Figure 6b. It can be noted that the
velocities estimated by the EKF present a slight time delay with respect to those measured on
board the vehicle. The authors believe that this behaviour is caused by the time needed by
the acoustic waves to propagate underwater, which produces a time offset between the position
computed by the buoy at a given time and the actual position of the vehicle. Also, an initial
transient for the speed estimate is present, depending on the initial state estimate the filter is
initialized with. Despite these drawbacks, the results obtained through the use of the moving
target model within the EKF are satisfying.

5 CONCLUSIONS

This paper focuses on underwater target localization exploiting an USBL transmitter housed
on a self-moving buoy, aided with an IMU and a DGPS. Firstly, the hardware features of the
buoy have been introduced; then, the procedure used by the buoy to compute the position of the
underwater target has been presented. To improve the quality of the measurements computed
by the buoy, a recursive state estimation algorithm has been applied: in particular, Extended
Kalman Filter has been used to deal with the nonlinearity of the USBL characteristic. Regarding
the state transition equation of the filter, two different models have been used. The first one
results sufficiently accurate to describe the behaviour of a stationary target, while the second
one models a moving target and has been obtained by using a White Noise Acceleration model,
suitable for the case of an uniform linear motion. Such a strategy has been validated through
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Figure 4: Localization of a stationary target. Figure 4a refers to the modem located at P2,
Figure 4b to the one located at P5. It can be noted that the localization results in a wide
circular sector, due to the perturbations applied to the buoy. Figure 4c highlights how the use
of a state estimation filter improves the localization of the target located at P2 with respect to
the raw measurements; such a result is remarked in Figure 4d, reporting the distribution of the
errors on the azimuth angle.
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Figure 5: MARTA AUV (Figure 5a) and the onboard estimate of the lawn-mower path followed
(Figure 5b).
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Figure 6: Figure 6a shows a detail of the estimate of the North coordinate in the lawn-mower
path: as it is possible to notice, the measurements filtering improves the smoothness of the
positions computed. Figure 6b reports a comparison between the estimated velocities and those
measured on board the vehicle by the DVL.
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experimental tests, conducted exploiting two EvoLogics 18/34 acoustic modems and MARTA
AUV. It has been seen that, by filtering the measurements, the localization performance is
improved, both in terms of stationary targets (reduction of the azimuth error angle dispersion)
and moving targets (improved smoothness of the estimated positions). In the latter case, the
velocities estimated by the EKF have been compared with the measures provided by the DVL
sensor on board MARTA AUV. Such a comparison highlighted that the estimates of the AUV
speeds are consistent with the DVL measurements, but affected by a slight time offset, given by
the time required from the acoustic waves to propagate underwater. The results are, however,
promising.

Possible future developments may concern the implementation of a multiple model filtering,
based on both the moving and the stationary target models, in order to allow the outcome of
the localization filter to be more robust, especially when complex paths are performed by an
underwater vehicle.
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