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Abstract 
 

BACKGROUND: The Anthropocene has seen extinction rates orders of magnitude higher than the 

background rate; a trend that has been seen in all ecosystems. As a result of human activities, 

freshwater resources, and many of the species dependent on them have become imperilled. 

Freshwater crayfish are a dominant aquatic invertebrate due to their significant biomass, and they are 

globally distributed, highly speciose, and ecologically important. They have been referred to, inter alia, 

as bioindicators, keystone species, ecosystem engineers, and umbrella species and are also a valuable 

human food source. However, currently one-third of freshwater crayfish species worldwide are 

classified as threatened under IUCN criteria, with many species facing possible extinction.  

 

Cherax tenuimanus (hairy marron) is a critically endangered freshwater crayfish found only in a single 

river in the biodiversity hotspot of south-west Australia. Conservation efforts for this species have 

included a captive breeding program, which has been largely unsuccessful despite the successful 

breeding of sister taxon Cherax cainii (smooth marron) for aquaculture. Currently captive breeding, 

including aquaculture of crayfish, relies primarily upon traditional methods of investigating the 

impacts of environmental factors through gross trial and error, with little understanding of the 

physiological state of animals. This study tested the hypothesis that metabolomics could highlight 

potential biomarkers related to reproduction and stress in two congeneric freshwater crayfish, Cherax 

tenuimanus and Cherax cainii, for the purpose of providing information to assist with captive breeding. 

 

HYPOTHESIS TESTING: In order to test this hypothesis, four sub-hypotheses were tested in this study.  

Sub-hypothesis I: C. tenuimanus can be induced to breed in aquaria. This hypothesis was supported, 

as mating occurred in both species of marron. Timing of reproductive behaviours was later in  

C. tenuimanus and fecundity was lower than C. cainii. Breeding behaviours were documented in detail. 

Sub-hypothesis II: The reproductive hormone methyl farnesoate (MF) can be measured in marron 

haemolymph as a non-lethal, low stress tool to monitor reproduction (i.e. as a targeted metabolomic 

approach). This hypothesis could not be confirmed or rejected, because MF was not detected using 

two extraction methods.  

Sub-hypothesis III: Untargeted metabolomics using liquid chromatography–mass spectrometry  

(LC-MS) detects differences in the metabolome between species and sexes of marron. The profiles of 

C. tenuimanus and C. cainii were significantly different, as were the profiles between the sexes of each 

species. 
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Sub-hypothesis IV: Untargeted metabolomics using LC-MS detects differential responses in  

C. tenuimanus females and males in breeding pairs. The metabolite profiles supported this sub-

hypothesis, where three patterns were identified by the behaviour of the metabolites. Metabolites 

either indicated a response to disturbance (change) where the response was transient or non-

transient; differences between sexes where the differences remained unchanged whether the animals 

were housed on their own or with a potential mate; or a male response to female presence.  

Metabolites such as inosine, glutathione and arginine were recognised as potentially useful 

biomarkers.  

 

CONCLUSIONS: This study demonstrates that metabolomics are useful in providing an informative 

profile and identifying biomarkers that have the potential to assist with the captive breeding of 

freshwater crayfish. Whilst a single metabolite (MF) could not be directly targeted in this study, an 

untargeted approach was successful, and by extension the overall hypothesis of this study was 

successful.  Overall, 107 metabolites were detected in marron haemolymph: amino acids, lipids, 

nucleotides, and other compounds were successfully linked to biologically important processes in the 

marron life cycle. The metabolites identified by this approach showed differences between two 

congeneric species, between sexes and over time in response to an environmental stressor. The study 

highlighted potential biomarkers for targeted metabolomic studies that can be used to test a wide 

variety of hypotheses, especially when animals are kept in controlled conditions such as in this study. 

The investigations from this study also contribute to our understanding of the life history of  

C. tenuimanus, our knowledge of its reproductive biology and the differences with its sister species  

C. cainii, providing another piece to the conservation puzzle. These methods will be beneficial to 

species conservationists and aquaculturists alike. 
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1 INTRODUCTION 
 

Elevated extinction rates are occurring on a global scale (Comizzoli & Holt, 2019), creating a 

biodiversity crisis that is arguably the most critical conservation issue of our time (IPBES, 2018; WWF, 

2018). Conservation biologists must tackle many challenges that are drivers for the decline in 

biodiversity, including habitat loss and degradation, human disturbance, overexploitation, pollution, 

disease, human-induced climate change (Butchart et al., 2010; Kearney et al., 2019), recurrent fires 

and predation (Lindenmayer, 2015). In Australia, the most dominant threats are ecosystem 

modification, invasive species and agriculture (Kearney et al., 2019), and where approximately  

87% of terrestrial mammals (Woinarski et al., 2015), 45% birds, 93% reptiles, 94% frogs, 24% fish,  

92% plants (Chapman, 2009; DOEE, 2016), and 90% of invertebrates (Williams et al., 2001) are 

endemic, the threat of species loss is great. Recent events, such as record breaking temperatures and 

severe drought in Australia followed by catastrophic levels of bushfires have affected the habitats of 

many threatened species (Morton, 2020). In order for threatened species to recover when their 

natural environment is also under threat and no longer a viable location for their survival, 

conservationists (including any relevant government departments, regulations, wildlife managers, 

etc.) need to look outside the box to find the best tools for conservation (Corlett, 2017; Greenwood 

et al., 2016). Conservation of biodiversity means that the conservation of all species should be a 

priority, and most biologists recognise that a single approach is not adequate to save a species (Roth 

& Swanson, 2018); this is reflected in species recovery plans worldwide. For species recovery it is not 

‘one size fits all’ as each have unique requirements so in order to save a species it is likely that more 

than one approach is necessary (Roth & Swanson, 2018). Reserve systems and recovery plans created 

for threatened species need to carefully consider the threats to ecosystems and the natural habitat, 

populations of species, and whether they focus on a single umbrella species or just those most at risk 

and then determine which conservation approaches are most suitable (Braby, 2018; Trayler et al., 

1996). 

  

Standard practice for conservation of a threatened species is to protect habitat first, creating a safe 

haven in situ for the species that are most at risk, remove the threatening process(es), then improve 

the habitat as required (DOEE, 2015; Greenwood et al., 2016). On a large scale these are government 

managed and funded biosphere reserves and national parks and range to smaller scale government, 

corporate and privately managed and funded wildlife sanctuaries, refuges, and community reserves. 

Habitat management and protection are the most important factors for conservation but where 
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protected areas are lacking, threatened species will need to be managed by removing other stressors 

where possible (Hannah, 2011). Other forms of in situ management options include assisted migration 

or translocation of species to a habitat that can support the population and assist with recovery  

(e.g. use of Ark sites) (Bowkett, 2009; Braby, 2018; Hannah, 2011). When in situ management is not 

enough, managers need to take a more hands-on approach to species conservation and intervene to 

avert extinctions, which may include ex situ options (Braverman, 2014; DOEE, 2015; IUCN, 2014).  

It is important that ex situ conservation programs are integrated with and support in situ management 

so the two approaches complement each other (Bowkett, 2009; Braby, 2018; IUCN, 2014). 

 

Ex situ conservation practices are used to protect an endangered plant or animal species outside its 

natural habitat, often with human involvement or control of some aspect(s) of the organism’s 

environment (Braby, 2018; IUCN, 2014; Kasso & Balakrishnan, 2013). These practices have the 

potential to address the causes of primary threats, offset the effect of threats and buy some time for 

a species, with the ultimate aim to restore wild populations (IUCN, 2014). The role of ex situ 

conservation may be a temporary rescue or long-term change for a population. For animals,  

 ex situ management may include, but is not limited to, the use of zoos, captive breeding programs, 

artificial insemination, embryo transfer and in vitro fertilisation, reintroduction, cryopreservation, and 

gene banks: all of which could play a critical role in preventing the extinction of a species (Braby, 2018; 

Kasso & Balakrishnan, 2013; Pukazhenthi & Wildt, 2004). Although species rescue through ex situ 

conservation practices, such as captive breeding programs, require intensive management and can be 

costly, they can also be the difference between survival and extinction (Hannah, 2011; Mawson, 2004; 

Snyder et al., 1996) 

 

Conservation activities including zoo-based breeding programs are often considered the last chance 

for a species on the brink of extinction (Hogg, 2013). Success stories such as giant panda Ailuropoda 

melanoleuca (Swaisgood et al., 2010), California condor Gymnogyps californianus (Snyder et al., 1996) 

and locally, numbat Myrmecobius fasciatus, chuditch Dasyurus geoffroi and the Western swamp 

tortoise Pseudemydura umbrina (Hogg, 2013; Mawson, 2004), to name a few, have highlighted the 

importance of captive breeding and its contribution to conservation of threatened species. However, 

some species have not shared the same successes and it is often the cute and cuddly species that 

attract funding and attention (Braby, 2018; Colléony et al., 2017), as indicated by the numbers of 

managed programs with 57% mammal, 32% bird, 5% reptile, 2% amphibian, 2% fish, and 2% 

invertebrate, contributing to these programs (Hogg, 2013). Challenges for these programs besides 
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funding include maintaining genetic diversity and avoiding inbreeding, behavioural changes that can 

affect breeding and/or cause reintroduction issues and the controversy as to whether animals should 

be left to breed in the wild; however with high extinction rates, loss of biodiversity mixed with 

disturbance and loss of habitat, many species face near impossible odds of recovery (Bowkett, 2009; 

Snyder et al., 1996). Therefore, these programs are an insurance to prevent extinction in the wild and 

provide some hope (Hannah, 2011), especially where the program can be used with reintroduction of 

an organism within its previous native range (Corlett, 2016). For these reasons, captive breeding 

programs as a part of a species recovery plan are used globally to increase numbers of wild stock and 

assist with the long-term preservation of fauna (Coughran & Furse, 2012; DOEE, 2015; Hogg, 2013). 

An example of a recovery plan utilising ex situ approaches to conservation is the freshwater crayfish, 

Cherax tenuimanus (hairy marron) (Duffy & Day, 2015). 

 

1.1 Marron: a case study of success and failure of captive breeding 

 

Freshwater crayfish are globally distributed and highly speciose, with over 640 species worldwide 

including 148 species in Australasia (Coughran & Furse, 2012; Crandall & Buhay, 2008), and are a 

dominant aquatic invertebrate due to their significant biomass (Westhoff & Rosenberger, 2016). They 

are ecologically significant and have been referred to, inter alia, as bioindicators, keystone species, 

ecosystem engineers, and umbrella species (Brown & Lawson, 2010; Coughran & Furse, 2012; Horwitz, 

2010; Richman et al., 2015) and are also a valuable human food source (FAO, 2018; Piper, 2000). 

Despite their significance, freshwater crayfish face a range of threats to their existence. Conservation 

concerns for freshwater crayfish worldwide include: climate change, habitat loss or modification, 

overfishing, pollution and environmental toxins, biological invasion, displacement by introduced 

species, hybridisation, and the spread of pathogens (Horwitz, 2010; Richman et al., 2015; Westhoff & 

Rosenberger, 2016). Latest figures estimate that one-third of the crayfish species worldwide are 

classified as threatened under IUCN criteria with some species potentially facing extinction (Richman 

et al., 2015).  

 

In south-western Australia (SWA) there are six species of freshwater crayfish in the genus Cherax; two 

of which are commonly referred to as ‘marron’. Marron are the third and fourth largest freshwater 

crayfish in the world and arguably the largest endemic organism in their environment (Austin & Ryan, 

2002; Beach & Talbot, 1987; Beatty et al., 2003). Cherax tenuimanus Smith, 1912 is endemic to the 

Margaret River and the species sometimes referred to as “Margaret River hairy marron” to 
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differentiate them from Cherax cainii Austin, 2002 that has a wide range throughout SWA, and is 

known as “smooth marron” (Bunn et al., 2008). 

 

Breeding trials conducted on C. cainii showed that they can breed successfully in captivity, and as such 

an industry has been created for farming them over the past 30-40 years (Lawrence, 2007; Luckens, 

2015; Morrissy, 1970, 1992; Morrissy & Cassells, 1990). Currently Western Australia produces the 

most marron in the world at 60 tonnes per annum (Stanley, 2016), and the industry hopes to increase 

production and expand further into world markets. C. cainii have been introduced to many bodies of 

water throughout SWA and also into other areas in Australia for the purpose of farming commercially 

and recreational fishing (Beatty et al., 2016; Morrissy, 1992). One of the water bodies where C. cainii 

has been introduced is the Margaret River, where they are displacing C. tenuimanus, likely through 

competition and hybridisation (Bunn, 2004). It has been suggested that there is a difference in 

fecundity between these two species and that there is also a difference in the timing of reproduction 

between them in the wild; these two factors have been proposed as potential mechanisms for the 

displacement of one by the other (Austin & Ryan, 2002; Bunn et al., 2008; Duffy, Ledger, Dias, & Snow, 

2014). This has led to the listing of C. tenuimanus as Critically Endangered under the Western 

Australian Wildlife Conservation Act 1950 (Wildlife Conservation (Specially Protected Fauna) Notice 

2015), nationally under the Environment Protection and Biodiversity Conservation Act 1999,  

List of Threatened Fauna of Australia, as well as Critically Endangered under the IUCN red list of 

threatened species criteria since 2010 (Austin & Bunn, 2010). With an estimated population of only 

400 individuals remaining in the wild (R. Duffy, pers. comm.) C. tenuimanus are now found in just three 

sites in the upper reaches of the Margaret River (Austin & Bunn, 2010; Duffy et al., 2014) in an area 

estimated to be less than 10km2 (Figure 1.1) (Duffy et al., 2014). 
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Figure 1.1. The former range of Cherax tenuimanus in the Margaret River, Western Australia, is outlined above; the current 
range is marked with a red star. The Margaret River system is separated by land use into lower, middle and upper reaches 
(Duffy & Day, 2015). A reservoir of Cherax cainii located in the lower reaches at Ten Mile Brook dam is marked with a blue 
circle.  

 

Due to the threats facing C. tenuimanus, recovery actions began in 2009, and a draft recovery plan for 

the species came into effect in 2015 (Duffy & Day, 2015). The plan to protect C. tenuimanus initially 

involved regular removal of C. cainii from the critical habitats of C. tenuimanus in the upper reaches 

of the Margaret River by Department of Primary Industries and Regional Development (DPIRD) staff 

and volunteers, as well as community awareness activities to assist with the conservation and survival 

of the wild C. tenuimanus populations (Duffy & Day, 2015; South West Catchments Council, 2015). 

These practices are standard for species conservation as described earlier but despite these efforts, 

numbers continued to decline (DPIRD, unpub. data). Captive breeding of C. tenuimanus began in 2007; 

this ex situ conservation activity was incorporated into the recovery program with the intention to 

increase numbers for reintroduction and to reduce the risk of extinction (Duffy et al., 2014; Duffy & 

Day, 2015).  

 

A captive population of approximately 500 C. tenuimanus is currently held by the DPIRD Pemberton 

Freshwater Research Centre (PFRC) for the purpose of retaining a genetically verified pure brood stock 

for population enhancement (Duffy & Day, 2015). One of the criteria for success of the Hairy Marron 

Recovery Plan is to establish a self-sustaining captive breeding population with at least 1000 breeding 

animals of which 50% are female (Duffy & Day, 2015); however, this has proven difficult to achieve as 

the number of offspring being produced in this population is generally low and declining annually 
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(Duffy, unpub. data). This is despite the fact that PFRC facility has a long history of successfully 

breeding C. cainii and the breeding methods for C. cainii are widely used in commercial-scale 

aquaculture ( Duffy & Day, 2015; Fotedar et al., 2015; Lawrence, 2007; Morrissy, 1970). 

 

Triggers for spawning in many crayfish are environmental cues such as changes in seasonal 

photoperiod and water temperature (Aiken, 1969; Beatty et al., 2003; Daniels et al., 1994; Huner, 

1994; Karplus et al., 2003; Morrissy, 1970; Morrissy & Cassells, 1990; Westin & Gydemo, 1986) and it 

may be that a difference in water temperature and/or the rate at which the water temperature 

changes between the Margaret River and the PFRC ponds are factors in their reproductive 

performance. However, the current knowledge of the reproductive biology of C. tenuimanus, such as 

spawning times and ideal breeding conditions, is largely based on C. cainii, and often assumptions are 

made based on other Cherax species such as C. destructor (yabby) and C. quadricarinatus (redclaw) 

(for example Morrissy & Cassells, 1990). It is known that C. cainii are spring spawners and that mating 

can be induced earlier in warmer waters (Beatty et al., 2003) and, if housed in climate controlled tanks, 

they can be induced when water temperatures and photoperiods are increased from winter to spring 

conditions (Morrissy, 1992). The current conservation paradigm for C. tenuimanus therefore relies on 

ex situ breeding, which in turn is reliant upon a version of captive breeding that is entirely dependent 

on what is known about C. cainii and other Cherax species. 

 

1.2 New approaches to improve captive breeding 
 

 
Currently aquaculture and captive breeding of crayfish (and captive breeding generally) rely largely 

upon traditional methods of investigating the impacts of gross manipulation of environmental 

variables (e.g. temperature, light, food, stocking densities, water quality etc.) on overall biomass 

(Huner, 1994; Lawrence, 2007; Lawrence & Morrissy, 2000; Luckens, 2015; Morrissy, 1970, 1992). 

With this approach there is little understanding of the actual physiological state of animals and the 

relationship between stress and reproductive success. What is needed for improved captive breeding 

are methods that can provide the missing data and allow for alternative hypotheses to be tested  

(i.e. to develop the field as a rigorous scientific endeavour). New methods of investigating physiology 

that can provide valuable insights for ex situ conservation include non-lethal monitoring of 

reproductive hormones (Pukazhenthi & Wildt, 2004) and biotechnologies targeting proteomic, 

transcriptomic, genomic, and most recently metabolomic data (Corlett, 2017). 
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Whilst still new to the aquaculture industry and captive breeding of aquatic organisms (Alfaro & 

Young, 2016), the use of metabolomics has provided valuable insight to some areas of developmental 

and reproductive biology for mammals by identifying biomarkers to evaluate the viability and quality 

of sperm (Menezes et al., 2019), oocytes (Bertoldo et al., 2013), embryos (Cortezzi et al., 2013) and 

reproductive disorders (Courant et al., 2013). Studies have assessed the health of stock with 

metabolomics by identifying biomarkers for stressors to environmental conditions for aquatic 

organisms, including decapod crustaceans, such as oxidative stress in Callinectes sapidus (Schock et 

al., 2010), Procambarus clarkii (Izral et al., 2018); oxidative and thermal stress in Crassula aequilatera 

(Alfaro et al., 2019); nutritional stress in Procambarus clarkii (Izral et al., 2018), Astacus leptodactylus 

(Costantini et al., 2018); anthropogenic stressors such as metals and contaminants in Orconectes virilis 

(Izral, 2016); and overall health in high density stocking of Litopenaeus vannamei (Schock et al., 2013).  

 

Metabolomics is the field of science that identifies and interprets metabolites; the small, low 

molecular weight compounds (<1500 Da) such as amino acids, nucleic acids, fatty acids, sugars, 

vitamins, co-factors, pigments, etc. in biological samples such as cells, tissues, biofluids, or the entire 

organism (Lankadurai et al., 2013; Miller, 2007). Metabolites have functions as substrates, 

intermediates and products in metabolic pathways (Lin et al., 2006; Miller, 2007; Viant, 2007).  

As cells function they leave behind metabolites as a biological signature; therefore, the metabolome 

of an organism is in essence a metabolic snapshot or profile of the condition of an organism (Bundy et 

al., 2009; Kosmides et al., 2013; Lankadurai et al., 2013; Peng et al., 2015). The metabolome can be 

affected or altered by changes in an organism’s environment as the metabolites have impacts 

associated with cellular functions and biological pathways (Bundy et al., 2009; Lin et al., 2006; Peng et 

al., 2015; Roessner & Bowne, 2009).  

 

Crustacean haemolymph constituents have been shown to change during the life cycle (moulting and 

reproduction) and can be affected by environmental conditions, nutritional changes and health status 

(Mai & Fotedar, 2018). Haemolymph is affected by the molecules that it transports throughout the 

body of a crayfish in an open circuit system shifting metabolites from cells to elimination sites, 

hormones to target cells, as well as distributing oxygen and nutrients (Martin & Hose, 1995). 

Haemolymph levels of metabolites may not be as concentrated as in surrounding tissues  

(e.g. hepatopancreas, muscle) but they are detectable (Izral et al., 2018) and therefore suitable for 

monitoring the biochemical changes in response to a stressor. These responses can provide a clearer 

picture and provide valuable information about the physiology and the reproductive biology of an 
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organism (Bundy et al., 2009; Dunn, Broadhurst, Atherton, et al., 2011). It is for these reasons that 

using a metabolomic approach for captive breeding, particularly with conservation programs for 

threatened species can assist in assessing the overall health of a captive bred animals to ensure the 

delicate balance of nutrition, water quality (for aquatics) and other environmental conditions 

necessary to survive and thrive.  

 

Metabolomic approaches can be targeted; for example, identifying a specific suite of metabolites, or 

even a single metabolite. If the metabolite is chosen for a specific purpose (i.e. a hormone directly 

linked to reproduction) it may be useful to help identify issues with captive breeding programs. 

Metabolomic approaches can also be exploratory (otherwise referred to as profiling); where vast 

numbers of metabolites are identified to create baseline profiles initially and then to identify changes 

to these profiles as various factors are manipulated. Furthermore, an exploratory approach can be 

used to inform a subsequent targeted approach where a single metabolite or subset of metabolites 

are focused upon. Whilst the circumstances regarding C. tenuimanus are unfortunate and their future 

is under threat, an opportunity for research presents itself as we are able to compare the isolated and 

critically endangered C. tenuimanus to the relatively wide-spread and successfully aquaculture-farmed 

C. cainii, which is a closely related congeneric species. 

 

1.3 Hypotheses and significance 
 

The overall hypothesis of this work was that metabolomics would identify potential biomarkers 

related to reproduction and stress in two congeneric freshwater crayfish species. Changes detected in 

the metabolome of the crayfish during this study represent real-time biochemical changes within the 

animals and this study will facilitate further development of metabolomic approaches to conservation 

and captive breeding. 

This thesis has four sub-hypotheses: 

 

Sub-hypothesis 1 – Marron housed as male/female pairs in glass aquaria with controlled lighting and 

temperature will undertake mating (Chapter 2). 

Conditions that marron were held in during this laboratory study are described, including housing and 

maintenance requirements as well as observations relating to reproduction and mating. Marron were 

housed in glass aquaria in a climate-controlled laboratory where the physical conditions were 
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manipulated to imitate the day length and water temperatures which occur during the natural 

breeding season. Two different temperature treatments were used, and the marron were kept at two 

stocking densities, as individuals and with a potential mate. 

 

Sub-hypothesis 2 – The reproductive hormone (methyl farnesoate) can be detected in marron 

haemolymph and used as a non-lethal, low stress tool to predict reproductive success (i.e. as a 

targeted metabolomic approach) (Chapter 3). 

An assay to detect the reproductive hormone methyl farnesoate was adapted and employed as a 

targeted approach to better understand their reproductive physiology using gas chromatography-

mass spectrometry (GC-MS). 

 

Sub-hypothesis 3 – Untargeted metabolomics can detect differences in the metabolome between 

sexes and species of marron (Chapter 4). 

An untargeted approach to metabolomics was trialled using liquid chromatography-mass 

spectrometry (LC-MS) to see if the sexes and species C. cainii and C. tenuimanus will be differentiated 

from their haemolymph metabolome. 

 

Sub-hypothesis 4 – Untargeted metabolomics can detect changes between sexes of marron when they 

are placed in breeding pairs (chapter 5). 

Using the same method as chapter 4, the metabolome of pairs of C. tenuimanus were analysed over 

a 5-week period during breeding season to identify and compare differences in metabolites between 

the sexes, over time, and due to sex and time interactions with the purpose of identifying useful 

biomarkers. 

 

Once these four hypotheses have been tested the overall hypothesis (i.e. that the metabolome of  

C. cainii and C. tenuimanus provides potential bioindicators related to reproduction and stress) will 

have been tested. 
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2 Breeding a large, critically endangered freshwater crayfish in 
aquaria: methods, observations, and challenges. 

 

 

2.1 INTRODUCTION 
 

For some endangered species in situ conservation is not sufficient and/or feasible, which usually 

prompts attempts at ex situ methods such as captive breeding, often as a last chance for species facing 

extinction (Hannah, 2011); for this reason the Margaret River hairy marron Recovery Plan (2015-2020) 

stipulates the need for successful captive breeding of the species (Duffy et al., 2014). However, captive 

breeding faces challenges due to factors such as an organism’s body size, required habitat size, 

generation time, habitat specificity, and environmental and/or behavioural mating cues, to name but 

a few (Snyder et al., 1996). Conservation is costly and often the aforementioned issues are 

exacerbated by a lack of financial support to keep endangered animals in captivity. Any issues that 

lead to delays in successfully breeding increase a species’ likelihood of extinction. Therefore,  

it is important for the success of any captive breeding program to efficiently identify the needs of the 

organism at risk and to ensure they are met to encourage mating and reproduction. Imitating the 

natural environment can be difficult to achieve as it has many variables and replicating it in a different 

(artificial) habitat type, such as ponds, tanks, or aquaria in a laboratory may not be possible;  

as such, considerable thought must go in to the design of housing and the environment the animals 

will experience. 

 

This chapter describes the aquarium conditions in which marron were held during the experimental 

period of this study, and tests sub-hypothesis 1: Marron housed as male/female pairs in glass aquaria 

with controlled lighting and temperature will undertake mating. To test this statement observations 

of behaviours relating to reproduction and mating were recorded for C. cainii and C. tenuimanus. 
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2.2 METHOD 
 

2.2.1 Transfer and processing of marron 
 

On two occasions, sexually mature crayfish (i.e. 2+ years of age) were randomly selected from captive 

bred stock at the DPIRD Freshwater Research Centre in Pemberton, Western Australia (PFRC), 

 335km south of Perth (34.443o S 116.034oE), and transferred to Edith Cowan University (ECU) 

Joondalup Campus in Perth, Western Australia (31.751oS 115.772oE) . Initially 22 C. cainii were 

transferred for the purpose of a pilot study (during June – August [winter] 2017) to test the set-up of 

the aquaria and to establish maintenance regimes, practice handing the animals, and see if changing 

temperature could induce breeding. The transfer occurred on the 14th of June, which is earlier in the 

year than C. cainii would spawn in a natural system (Lawrence, 2007). Then, on the 5th of September 

2017, 44 C. cainii and 44 C. tenuimanus were transferred for the main study (September – December 

[Spring] 2017). The C. tenuimanus were from stock originally sourced from the Margaret River two 

generations prior (DPIRD unpub.). A subset of C. tenuimanus males and females were genetically 

screened (16S), to authenticate species identification of the animals to ensure they were not hybrids, 

all identified as C. tenuimanus (K. Dawkins, pers.comm.).  

 

On arrival at ECU marron were bathed in salt water (30g/L NaCl) for 2 minutes (as per Langdon, 1991) 

to ensure the animals were healthy by removing external parasites as is standard practice for handling 

and transporting crayfish (Jones, 1998). Marron were weighed (Mettler Toledo PB3002-S) and 

occipital carapace length (OCL) was measured using Vernier callipers to the nearest 0.01mm. They 

were allocated to a numbered aquarium using a random-number generator, and aquaria either held 

one individual or a mixed-sex pair; experimental design and specific protocols for each part of the 

project are described in Chapters 3–5. Each marron was given a unique marking with coloured nail 

polish on the dorsal surface of the second abdominal segment to distinguish sex, aquaria, and 

pilot/main study.  

 

All marron were tail clipped upon arrival at ECU to assess moult stage according to Burton & Mitchell 

(1987). A small v-shaped fragment was clipped from a uropod of each marron and placed into an 

Eppendorf tube with water from the aquarium and stored at 4°C. Moult status was assessed by 

viewing the tail fragment via a compound microscope within 7 days of sampling. Marron in a pre-

moult phase would have been excluded from the study, but all animals were in intermoult (Figure 2.1). 
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a)  

  
b) c) 

Figure 2.1. a) tail clip from Cherax cainii for the purpose of assessing moult stage. b) marron tail clip identified as in intermoult 
- Stage C1 according to Burton & Mitchell (1987). c) tail clip of C. cainii, taken later in the study after haemolymph collection, 
identified as pre-moult Stage D1 – D2 according to Burton & Mitchell (1987), with new setae buds marked by blue arrows. 
Observed at low power. Images: E. Lette. 

 

2.2.2 Housing  
 

Marron were housed in a climate-controlled aquarium room at ECU, with water temperature at 15°C 

and a photoperiod of 10 hours light: 14 hours darkness (corresponding to the late winter daylight 

hours to which they were acclimatised in Pemberton). Two sizes of glass aquaria were used for the 

duration of the experiments: small for single marron (dimensions 350mm (L) x 200mm (W) x 230mm 
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(H), total volume ~16L); and large for pairs of marron (dimensions 600mm (L) x 300mm (W) x 300mm 

(H), total volume ~ 50L). Initially aquaria were scrubbed with water, sprayed with ethanol, and allowed 

to dry by exposure to sunlight, then rinsed with a vinegar and water solution before drying in sunlight 

again. Each aquarium included a glass lid to prevent marron from escaping, with a bead of silicone 

around the edge of the lids to prevent them from being slid out of place by the marron. Aquaria were 

kept only on the middle wire shelf of three-tiered units to ensure even light to all aquaria, where they 

were placed on plastic-wrapped wooden boards on top of 10mm thick sheets of polystyrene to relieve 

any pressure points on the bottom panes of the glass aquaria and minimise vibration. Shelves were 

arranged with either five large or ten small aquaria. All electrical equipment such as power bars for 

water pumps were kept on the upper shelf and enclosed in outdoor safety boxes. The lower shelf was 

kept clear for plumbing and access. 

 

Aquaria substrate was small gravel and shell grit spread evenly across the bottom at an average depth 

of 20mm (Viau & Rodríguez, 2010). The gravel consisted of sub-angular to well-rounded pebbles  

3-10mm in diameter of silica rich material such as granite and assorted quartz, which would not impact 

water quality. Prior to use, the substrate was washed and steamed, using a Simons SB Series Electric 

Steam Boiler for pasteurising soils to remove potential pathogens. Artificial habitat in each aquarium 

consisted of 200mm sections of 90mm Australian standard stormwater grade polyvinyl chloride (PVC) 

tubes; aquaria with individual marron contained one such hide and aquaria with two marron had two 

hides. Opaque laminated sheets covered three sides of each aquarium, visually isolating marron in 

different aquaria from each other but still allowing for observations to be made. Photoperiod was 

controlled using overhead fluorescent lights, with cool daylight 36W triphosphor tubes set on a timer. 

 

Water used during the study was from the Perth Integrated Water Supply Scheme (conductivity  

108-590 µS/cm) that was de-chlorinated with API® Tap Water Conditioner (dosage 1mL/20L) and 

aerated for at least 24 hours prior to use. Aeration and filtration of water in the aquaria was provided 

by airlift bio-filters using air delivered to each by a 4mm clear flexible silicone aquarium tube. Bio-

filters were enclosed in hard mesh to prevent marron from accessing the spongy filter medium. As the 

filters were new, a bacterial starter was added to the water; the pilot study used API Stresszyme+ ® at 

start-up and weekly for two weeks, and the main study used Seachem Stability ® at start-up and then 

daily for 7 days. Once set-up, the aquaria were cycled for four weeks prior to introducing the marron. 
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To regulate water temperature, the water in each aquarium was circulated in a closed system through 

a coiled segment of poly tubing in a chilled sump, which was temperature controlled by a TECO2000 

water chilling unit, and then returned to the same aquarium. This was driven by small pumps (Aquapro 

MK3) in each aquarium that moved the water at a maximum rate of 550L/hr through 13mm black poly 

irrigation tubes. This system ensured temperature control was achieved without mixing water 

between aquaria, preventing the transmission of possible chemical signals (i.e. hormones) or 

parasites/diseases. With the use of multiple sumps different temperatures could be achieved in 

various aquaria in a single climate-controlled room. Water temperatures were monitored daily with 

thermometers and eight Thermochron TCS temperature loggers were placed in aquaria throughout 

the room to record water temperatures, while two more were used to record air temperature. Both 

water and air temperatures were recorded at hourly intervals throughout the experimental period. 

The electric cable of the water pump was covered with a section of 20mm PVC tubing to prevent 

marron from chewing through the insulation. 

 

2.2.3 Maintenance 
 

Daily observations noted animal condition and behaviour, as well as water temperature. General 

cleaning of aquaria, including siphoning waste from the gravel and changing 10-25% water, was 

undertaken weekly. A solution of white vinegar and hot water was used to clean all equipment 

involved (aquarium dip nets, gravel siphons, etc.) as it is non-toxic and would not be absorbed into 

silicon or plastics in any of the materials used. Equipment was washed between use in different 

aquaria to prevent both the transmission of parasites and the transfer of water that may have carried 

pheromones. Weekly water quality monitoring was undertaken to measure pH and nitrogenous 

wastes (NO2, NO3, and NH3/NH4). The pH was measured using either a pH meter (WTW pH330) or API® 

pH test kit and remained within recommended guidelines. For this study NO2, NO3, and NH3/NH4 were 

measured using test kits (API® Freshwater Master test kit); in freshwater aquaria any reading above 

0ppm (ammonia and nitrite) or 40ppm (nitrate) was considered to represent high levels necessitating 

a larger portion of the water being changed (25%) (Johnston & Jungalwalla, 2005; Langdon, 1991). 

Measurements were also taken periodically for hardness of water (including general hardness (GH), 

carbonate hardness (KH)) and calcium (Ca+) with API® aquarium test kits.  
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To ensure optimal nutrition, all marron were fed a combination of food including Skrettings Nova ME 

3mm marine Fish Pellet, New Life Optimum Freshwater Flakes + garlic and Tropical® Spirulina Super 

Forte Granulat. Marron were fed at a rate of 3% of their body weight per week (Lawrence, 2007), split 

evenly across three feeds per week (i.e. Monday, Wednesday, Friday) to minimise aquarium fouling. 

They were fed late in the day, approximately 0.5-2 hours before the artificial lights would turn off. 

Unconsumed food was siphoned up as part of daily maintenance to ensure good water quality 

standards. Marron were regularly weighed to ensure that they were maintaining condition (initially 

weekly and then later monthly). 

 

2.3 RESULTS 
 

2.3.1 Pilot Study 
 

In late July, an attempt was made to induce mating by replicating seasonal cues; specifically raising 

water temperature from 15°C to 18-20°C in conjunction with increasing the hours of lighting from 

10:14hr light-dark photoperiod to a 12:12 light-dark photoperiod (Beatty et al., 2003; Huner, 1994; 

Lawrence, 2007; Morrissy, 1992). After these changes were made, one pair (out of five) mated.  

A spermatophore was found on the ventral surface of the female and she had extruded eggs attached 

to the pleopods on the ventral side of the abdomen. Successful maintenance of the aquatic 

environment conditions within desired levels and animal health, along with the instigation of 

reproductive activity, suggested that the conditions in the aquarium were suitable for housing and 

breeding marron, thus the project advanced to the main study. 

 

2.3.2 Main Study 
 

Staff at the DPIRD Pemberton Freshwater Research Centre reported finding several female C. cainii 

with eggs or spermatophores attached to the underside of their thorax on the 5th of September 2017 

as they were being collected from their ponds for this experiment. These females were not selected 

for this study. Upon inspection after arrival at ECU, some C. cainii males displayed a bluish tint to the 

membranous extensions from the male gonopores (penes) (Figure 2.2) which indicates reproductive 

readiness. This state did not develop in C. tenuimanus males until several weeks later. 
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Figure 2.2. Ventral view of male Cherax cainii illustrating the blueish tint to the extension of the male gonopores (penes) 
which are not modified for sperm transfer but instead to place a sperm packet on the female sternal area which is typical of 
Parastacidae males (McLay & van den Brink, 2016). 

 

After the marron arrived for the main study, there was an acclimation period to the aquarium room 

of 21 days, after which water temperatures were decreased to induce the maturation of ovaries in the 

females outside of their normal breeding season. This artificial induction consisted of dropping the 

water temperature from 16°C to 10°C for a 24 hour period (following McRae & Mitchell, 1996) before 

warming it to either 16oC (temperature 1 – slow change and cooler) or 20oC (temperature 2 – fast 

change and warmer) (described in detail in Chapter 3). These two temperatures were chosen to 

replicate the natural springtime water temperatures of the Margaret River (the natural habitat of  

C. tenuimanus) and the approximate temperature of water in the Pemberton region where DPIRD are 

attempting to breed the marron in ponds, respectively. 
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During the acclimation period three pairs of C. cainii mated (water temperature at 15oC) and during 

the induction period (as the water temperature was in the process of being lowered to 10oC over a 

24-hour period) a fourth pair mated (Table 2.1); this likely occurred at 12oC when artificial day length 

was at 10 hours light: 14 hours dark. Following cooling of the water to 10oC, no more C. cainii mated. 

The first C. tenuimanus mating event occurred 21 days after the change in temperature (i.e. the 

induction). The C. tenuimanus pairs mated over a six-week period, between the 11th of October and 

18th of November (75 days after arrival at ECU) (Table 2.1). There was more success with C. tenuimanus 

mating than C. cainii, as the cold water disruption during breeding may have prevented further 

spawning in C. cainii, and there were separate breeding times for each species with no overlap 

between species (Table 2.1). 

Table 2.1. Mating events of C. cainii and C. tenuimanus in aquaria at ECU from September to December 2017. The induction 
(cooling water temperature to 10oC for 24 hours) occurred on day 15-16 marked by * (19-20th of September).  

Days at ECU Date Species  Water (oC) Air (oC) 
6 10-Sep-17 C. cainii 15 16 
8 12-Sep-17 C. cainii 15 16 

13 17-Sep-17 C. cainii 15 16 
 15* 19-Sep-17 C. cainii 12 16 
37 11-Oct-17 C. tenuimanus 18 16 
37 11-Oct-17 C. tenuimanus 18 16 
43 17-Oct-17 C. tenuimanus 20 16 
43 17-Oct-17 C. tenuimanus 15 16 
60 03-Nov-17 C. tenuimanus 16 18 
72 15-Nov-17 C. tenuimanus 20 18 
75 18-Nov-17 C. tenuimanus 19 18 

 
 
2.3.3 Physical observations 
 

Mating was confirmed by the presence of a spermatophore and eggs on the ventral side of females. 

Once mating was confirmed, disturbance of the incubating female was minimized by removing the 

male and covering all surfaces of the aquaria, and whilst berried females would eat very little, careful 

feeding and cleaning continued to ensure consistency and maintain water quality. The number of eggs 

held by the berried females of either species was not recorded to avoid disturbance, 

however C. tenuimanus appeared to be carrying a greatly reduced number of eggs compared to 

records and observations of C. cainii. (i.e. in the region of 50 eggs compared to 150+ eggs).  

Similar observations of eggs from both species were made by J. Bunn (unpub. data) from the wild 

populations in the Margaret River. 
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Marron were removed from aquaria on day 2 or 3 after a spermatophore was observed during an 

examination to confirm that eggs were present. The eggs from both species were dark grey in colour, 

approximately 2.5mm and oval in shape, as shown in the photo of the berried female C. cainii  

(Figure 2.3). This is consistent with other descriptions of marron eggs (Lawrence & Jones, 2002). 

Although a high proportion of females extruded eggs during the trials (70% of paired C. tenuimanus), 

no female of either species carried eggs for longer than 3 weeks. Often by the end of the first week 

no eggs or only a few eggs (i.e. <20) remained. One C. tenuimanus female kept eggs for 3 weeks and, 

though the number of eggs declined over this period, she was observed fanning and grooming until 

there were no eggs left.  

 

 

Figure 2.3. Berried female Cherax cainii, three days after spermatophore was first found on the ventral surface of the thoracic 
segment, with approximately 150 eggs dark-grey in colour.  
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2.3.4 Behavioural observations 
 

The mating behaviours observed in the aquaria during the trials were very similar for both species. On 

multiple occasions, 24-48 hours prior to a mating event, female marron were observed in a ‘preening 

posture’ with legs extended to raise the body above the substrate. The carapace and part of the 

abdominal segment were flat, and the posterior part of the body and tail were at a sharp angle to 

allow for preening of the ventral side of the abdominal surface and pleopods, using the 4th and 5th 

walking legs (Figure 2.4a). This action would occur continuously for a few hours. Observations of the 

ventral side of the abdomen during this time showed a very clean surface, similar to what would be 

expected of the carapace after moulting. 

 

A female C. tenuimanus was observed in a ‘post-mating posture’ where she was positioned on her 

dorsal surface with both chelipeds anterior to the head and against the substrate, forming a ‘Y’ shape 

(Figure 2.4b). This posture has also been described in C. destructor (R. Duffy, pers. comm.), 

Austropotamobius pallipes (McLay & van den Brink, 2016) and Homarus americanus (Talbot & Helluy, 

1995). The uropods were extended up to the thoracic segment covering the genital pore (at the base 

of the 3rd walking leg) and were in this position for at least 30 minutes; it is likely that the female was 

depositing eggs at this time. The female then rolled onto her ventral surface with the telson tucked 

up into the joint between the thoracic and abdominal segments and the uropods wrapped closely to 

create an incubating pouch. From this angle it was confirmed that a spermatophore was attached to 

the sternal area. 
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a)   

b)   

Figure 2.4 a) Female Cherax tenuimanus preening ventral side of abdomen using the 4th and 5th walking legs, 24-48 hours 
prior to mating. This position was referred to as a ‘preening posture’. b) C. tenuimanus female in post-copulation position. 
Although difficult to see in the image, at the time the photo was taken the position of the uropod was anterior the join of 
the thoracic and abdominal segments, and it appeared that she was depositing eggs. 
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After a spermatophore was present (Figure 2.5) and eggs had been deposited on the ventral side of 

the abdomen the females would curl the uropod and take on an ‘incubation position’ (Figure 2.6) 

which is different to the normal resting position (Figure 2.7). During regular observations in the first 

few days of the incubation phase, females were occasionally observed resting laterally (on their side) 

in one of the hides with the uropod forming an incubation pouch. After a few days the females would 

change body position so that they were upright but still with the uropod tucked in a ball shape.  

After the first week, the females remained in this protective pose and then opened the tail away from 

the thoracic segment and fan the pleopods to which the eggs were attached. 

 

Figure 2.5. Spermatophore present on the ventral surface of a female Cherax tenuimanus (indicated by the blue arrow); 
note also the ball-shape of the tail as it forms an incubating pouch. 
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Figure 2.6. A female Cherax cainii in incubation position, with the posterior edge of uropod tucked up into the join between 
abdominal and thoracic segments forming an incubating pouch. 

 

 
Figure 2.7 Cherax tenuimaus in resting position where the uropod is relaxed under the marron, sometimes the abdominal 
segment is flat rather than curled as above.  
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2.4 DISCUSSION 
 

Both C. cainii and C. tenuimanus mated in aquaria in this study and all crayfish that mated spawned, 

showing that they will produce eggs if provided with appropriate conditions. It was unknown if all the 

eggs were fertilised as most eggs were not held long enough to show any larval development. 

Although C. cainii have a long history of captive breeding (as evidenced by a commercial aquaculture 

industry), it is important to note that the critically endangered C. tenuimanus can successfully mate 

and spawn in captivity, and can successfully attach their eggs to pleopods and tend to the eggs. 

However, for currently unknown reasons incubation in this study did not progress to the hatching 

stage. 

 

2.4.1 Mating and fertilization of eggs 
 

Ovarian maturation is influenced by seasonal changes in day length and water temperature in many 

species of crayfish (McLay & van den Brink, 2016) including C. cainii (Beatty et al., 2003), however, 

preening behaviours that appear to be a precursor to mating were only observed for female marron 

in mixed sex aquaria during the study. Therefore, the presence of a male may be important for females 

to fully prepare for reproduction. In a captive breeding program one strategy to improve success could 

be to collect eggs for artificial incubation so it would be beneficial to know when a female is preparing 

to mate. McLay & van den Brink (2016) state that females of the congeneric C. quadricarinatus do not 

undergo any external changes to indicate reproductive receptivity, however observations of both  

C. cainii and C. tenuimanus females preening 24-48 hours prior to the mating event suggest this is a 

visual cue for readiness that could be utilised. 

 

In addition to behavioural observations this study has highlighted, in a later experiment, another 

indicator of reproduction that warrants further investigation. Freshly drawn haemolymph was clear 

and colourless with a blueish hue in all marron, however, a slight orange hue was also noted for some 

females. After proteins were precipitated out of the haemolymph by the addition of acetonitrile and 

centrifugation, samples from some female marron had a very distinct orange colour (Figure 2.8) 

(methods discussed further in Chapters 3 and 4). Wainwright, Prescott, Rees, & Webster (1996) 

describe an orange colouration of haemolymph and their interpretation was that it was most likely 

due to the presence of vitellogenin. Vitellogenin is a glycolipoprotein found in female crustaceans that 

increases in concentration as the ovaries become more reproductively mature (the stage is known as 
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vitellogenesis), and is a precursor to egg yolk production (D’agaro et al., 2003; Girish & Swetha, 2015; 

Sukumaran et al., 2017). Further work is required to demonstrate a correlation between intensity of 

colour (as a proxy for vitellogenin levels) and different reproductive stages, as this would be a simple 

and cheap tool to assess reproductive readiness in female marron (and probably all crayfish at least, 

if not crustaceans). 

 

 

Figure 2.8. Marron haemolymph sample preparation for LC-MS analysis. This step is after the addition of acetonitrile and 
centrifugation where the proteins precipitated out of the haemolymph solution and formed a pellet at the bottom of the  
2 mL Eppendorf tube. Haemolymph collected from female marron is orange and male marron haemolymph is colourless. 

 

For both marron species, eggs were deposited shortly after the male had placed the spermatophore 

on the female and it is suggested that the sperm was released within hours, not days as suggested by 

López Greco & Lo Nostro (2008), as the spermatophores in this study had broken down within 3-4 

days. The timing of depositing eggs suggests that in both species of marron the sperm is not stored 

for fertilisation later as for some decapod crustaceans (e.g. Orconectes limosus, Austropotamobius 

pallipes), where multiple mating may occur and egg-laying may be delayed for several days or weeks 

(McLay & van den Brink, 2016). 

  



Chapter 2 
 

25 

2.4.2 Incubation of eggs 
 

The reproductive activity throughout the trial demonstrates that the conditions and techniques were 

suitable for housing and breeding marron in captivity, however some challenges regarding incubation 

may need to be addressed for future studies. Aquaria conditions were suitable for adult marron,  

as they maintained or gained weight and appeared healthy throughout the trial but due to the lack of 

success with females keeping their egg clutches, it is possible that the aquaria were unsuitable for egg 

development and incubation purposes. Any or all of nutrition, light, water quality, temperature, 

aquarium size or disturbance may have played a role in eggs not being carried to hatching, whether 

by directly affecting the eggs or the adult female, or indirectly through stress-related effects, or it may 

have been the result of an infection or disease (although there were no obvious signs). 

 

Nutrition before and during the trial may have played a factor in the success of reproduction in both 

species of marron as it is important that female broodstock in particular have adequate nutrient intake 

during ovarian development and maturation for egg quality and larval survival and growth (Duffy, 

Godwin, Nolan, & Purvis, 2011; Ghanawi & Saoud, 2012). The marron wintered in earthen ponds 

where they were fed pellets and supplemented their diets from naturally occurring pond organic 

material (DPIRD staff, pers. comm.) and during the trial were fed a recommended combination of 

pellets and flakes providing protein and plant material to meet nutritional requirements (R. Duffy and 

B. Roennfeldt, pers. comm.).  

 

The bright lighting in the room may have played a role in the loss of eggs prior to hatching, as marron 

would normally breed in the murkiness of a pond or the dark tannin coloured water of the WA rivers 

(Morrissy, 1970, 1992). However, as hides were supplied and used by the females with all sides of the 

aquaria covered when females were berried, it is not clear how light would impact their ability to carry 

eggs to hatching but not affect mating and spawning. 

 

Water quality remained within recommended guidelines but there may be parameters that were not 

ideal for crustacean reproduction and incubation which may need to be investigated. As the water 

was from the Perth Integrated Water Supply Scheme, which treats and conditions the water, some 

essential ions may have been removed in the process. As stated earlier the water temperatures used 

in this trial were based on the temperature in the pond in Pemberton and the pools of the Margaret 
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River, the natural environment for marron, and remained within the recommended guidelines of 

12.5oC to 24oC for optimal marron growth (Lawrence, 2007; Morrissy, 1992). Henryon & Purvis (2003) 

suggest that temperatures of 20oC to 24oC are best for the artificial incubation of eggs but the water 

temperature of our aquaria did not rise above 20oC. This may be important for future work if artificial 

incubation of eggs as part of captive breeding for species recovery is to be considered. 

 

Stress from aquaria confinement may contribute to difficulties with reproduction and the incubation 

of eggs and juveniles (Luckens, 2015). The size of the aquarium in relation to the body size of the 

animal may have stressed females if they felt vulnerable whilst berried and unable to flee potential 

danger. On the other hand, it is known that crayfish shelter when in berry for protection, in small 

spaces such as burrows (Huner, 1994; Morrissy, 1992). It is also likely that despite our best intentions 

to keep a quiet laboratory and precautions taken to reduce disruptions, the females were disturbed 

by movement or noise in the lab. All of these factors may have stressed the female and led to her 

dropping the eggs. In this scenario stress is difficult to measure, which is why techniques such as the 

metabolomics approach being used in this study (to be discussed later) are so powerful. 

 

An alternative explanation to a deficiency or stress cause is that there may have been a bacterial or 

fungal infection of the eggs. It was noted that some eggs within a clutch changed colour to bright 

orange and were surrounded by a white substance that was cotton-like in appearance (Figure 2.9). 

The orange colour of the egg suggests that the egg was unviable, and it may be due to a fungus such 

as Saprolegnia that occurs in water and affects fish eggs and juvenile fish in hatcheries worldwide 

(Lone & Manohar, 2018). Normally, a female would pick abnormal eggs off and clean the rest; perhaps 

this behavior was impacted in some way. A salt bath was used when introducing the marron to the 

aquarium but perhaps it should have been repeated once females were berried. Excess handling of 

berried females was avoided to reduce disturbance but a preventative salt bath or other treatment 

once they were berried may have produced a better outcome. It is unknown whether stress or 

handling were the issues but either way there is a fine balance between handling for precautionary 

measures and causing unnecessary distress to the animal making it difficult to determine which 

disturbance was worse. 
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Figure 2.9. Berried female marron (Cherax cainii), eggs at day 16. Most eggs colour change to dark greenish but some changed 
completely to a bright orange and became fuzzy (cotton-like) in appearance, possibly due to Saprolegnia sp. 

 

2.4.3 Conservation implications 
 

The results of this study demonstrate that C. cainii are likely to be reproductively active earlier in the 

year than C. tenuimanus, which aligns with anecdotal reports of timing in the wild and at Pemberton 

(i.e. August to October for C. cainii; October to December for C. tenuimanus (Bunn, unpub)). The 

change of colour and external appearance of male marron gonopores indicated that C. cainii may be 

reproductively ready as early as June (as indicated by the marron collected for the June pilot study) 

and still active in September (when marron were collected for the main study), whereas C. tenuimanus 

males did not show these characteristics until early October. The difference was evident in females 

too as when C. cainii were collected from ponds for the main trial some were found with a 

spermatophore present on their ventral surface (DPIRD, pers. comm.). This information agrees with 

observations of marron in the Margaret River by DPIRD researchers and volunteers (pers. comm.) as 

well as research conducted by J Bunn (unpub. data 2006-2008) and is important to acknowledge for 

future work. 
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Spawning of C. cainii in the pilot study confirms that they can be induced into mating in captivity earlier 

than in the wild, as has been suggested previously (Huner, 1994; Morrissy, 1970). The increase in 

temperature between Pemberton and the aquaria at ECU in the main study may have cued 

reproduction in this species as four pairs of C. cainii mated within the first week at ECU. These actions 

indicate that late August/early September when water temperatures are rising with longer day lengths 

falls within the natural timing and occurrence for such breeding behaviours (Beatty et al., 2003).  

In the days and weeks following the cooling of the water to 10oC in the lab no more C. cainii mated, 

thus the unnatural cool water temperature change appeared to be a considerable disruption to their 

breeding activity. 

 

Another interesting finding was that mate selection does not appear to have a significant effect on 

reproduction in C. tenuimanus as seven out of ten pairs of C. tenuimanus mated successfully to 

produce eggs. Although the marron were all approximately size matched upon collection from the 

Pemberton Freshwater Research Centre they were selected randomly from the containers after 

transport and placed into aquaria using a random number generator. Only one randomly selected pair 

was changed as one of the smallest female C. tenuimanus (105g, 54mm OCL) was matched with a large 

male (238g, 72mm OCL). This pair were left for a week together in the aquarium but as the female 

was observed to avoid the male, she was removed from the aquarium and replaced with another 

female C. tenuimanus (142g, 59mm OCL). The new pairing of size matched individuals resulted in 

successful mating, which may indicate that whilst mate selection is not strong, approximate size 

matching is important. 

 

The apparent lack of mate selection suggests that marron that are reproductively ready at the same 

time are likely to mate which, when combined with the difference in timing of reproductive readiness 

in the males of the two species, may shed some light on the displacement and hybridization occurring 

in the Margaret River (Guildea et al., 2015; Kennington et al., 2014). It seems reasonable to suggest  

C. cainii pairs will mate earlier than C. tenuminaus pairs and that C. cainii males that are reproductively 

active earlier in the season than C. tenuimanus males may encounter female C. tenuimanus that are 

reproductively receptive and produce hybrids. The offspring of C. cainii pairs and hybrid mating will 

have earlier access to resources and potentially outcompete C. tenuimanus juveniles that are younger 

and less developed. 
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2.5 CONCLUSION 
 

The sub-hypothesis being tested in this chapter was that marron can be housed in aquaria under 

conditions that facilitate reproduction; this has been supported at least in part. It was demonstrated 

that it is possible to breed large freshwater crayfish in glass aquaria but highlighted a potential issue 

with them carrying their eggs to hatching. The laboratory observations of mating and associated 

behaviours contribute to the knowledge for the target species, and the outcome of C. tenuimanus 

mating in aquaria provides a glimmer of hope for a species on the brink of extinction. This has provided 

evidence that despite the two species being so closely related there are significant differences in 

fecundity and timing of reproduction, and this mechanism should therefore be considered in other 

cases of species displacement/hybridisation. The remainder of this thesis will be testing whether these 

differences can be detected by metabolomic approaches and if these data can be used to inform 

conservation efforts. 
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3 Targeted metabolomics: (non)detection of the crustacean 
reproductive hormone methyl farnesoate in haemolymph. 

 

 

3.1 INTRODUCTION 
 

One of the ways metabolomics may be able to contribute to conservation is via a targeted approach. 

It was hypothesised in this study (sub-hypothesis 2) that the reproductive hormone (methyl 

farnesoate) can be detected in marron haemolymph and used as a non-lethal, low stress tool to 

predict reproductive success (i.e. as a targeted metabolomic approach). Methyl farnesoate (MF) was 

chosen as it plays a role in crustacean reproduction for both sexes (Borst et al., 1987; Laufer et al., 

1993; Nagaraju, 2007). MF is known to increase in concentration during ovarian development in 

females and is present in higher levels in the more reproductively aggressive males (Borst et al., 1987; 

Nagaraju, 2011). It is a sesquiterpenoid compound that is produced by the mandibular organ in 

crustaceans (Homola & Chang, 1997; Laufer et al., 1987, 1993) and has been identified in more than 

30 species of crustacean, including the congeneric C. quadricarinatus (Abdu et al., 2001; Jo et al., 1999; 

Laufer & Biggers, 2001; Rotllant et al., 2001; Xie et al., 2015). In some crustaceans, higher levels of MF 

may be correlated with more aggressive mating attempts and behaviour, with the greatest levels 

found in larger, sexually mature males (Laufer & Ahl, 1995). Very low levels of MF are found in 

immature males and females that have not reached reproductive maturity (Laufer et al., 1993). MF is 

detected in females during ovarian development, with the highest rates observed close to the end of 

the ovarian cycle when vitellogenesis and oocyte growth are greatest (Laufer et al., 1987), before 

declining once she is ready to deposit eggs (Laufer & Biggers, 2001). 

 

It has been suggested that the cues for reproductive readiness in these crayfish are initially 

environmental (an increase in day length and water temperature), with the final reproductive cue 

being the presence of the opposite sex (Huner, 1994; Morrissy, 1996). One hypothesis to explain the 

limited success of captive breeding of Cherax tenuimanus at the PFRC is that the water temperature 

differences between the PFRC (where the marron captive breeding program is housed) and the 

Margaret River (where C. tenuimanus naturally occur), is stunting their reproductive development. 

There are differences in both the peak water temperatures and the rate at which the temperature 

increases in spring between the two locations. Water temperature in the pools of the Margaret River 

in late winter/early spring ~8oC and it warms slowly, reaching ~15oC in October and then plateauing 
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for several weeks at ~15-16oC before increasing to peak surface temperatures in December at ~21oC 

(DPIRD unpub.). Water temperature at the PFRC increases steadily from ~10oC in winter to reach ~15oC 

in late august, peaking in December at ~27.5oC (in December) (Lawrence, 2007). 

 

This chapter tests sub-hypothesis 2; that a reproductive hormone (MF) can be detected in marron 

haemolymph and used as a non-lethal, low stress tool to predict reproductive success (i.e. as a 

targeted metabolomic approach). To test this statement, an assay to detect MF in the haemolymph 

was adapted and employed using gas-chromatography-mass spectrometry (GC-MS). Marron (both  

C. tenuimanus and C. cainii) from which haemolymph was collected were kept as singles and in pairs 

and were exposed to one of two temperature treatments to determine whether temperature would 

produce a detectable impact on the production of MF in these crayfish. 

 

3.2 METHODS 
 
3.2.1 Experimental design 
 

Eighty marron (20 of each sex for both C. cainii and C. tenuimanus (Table 3.1)) were housed in forty 

small aquaria (individual marron) and 20 large aquaria (a male/female pair) (as per the housing details 

described in Chapter 2). Two water temperature treatment regimes were used (Table 3.2). To begin 

with, the water temperature for both treatments was maintained at 16oC for a three week acclimation 

period, then cooled to 10oC for 24 hours (as an environmental cue to induce reproduction) 

(McRae & Mitchell, 1996). The temperature was then raised across the two treatments as follows: 

• The ‘cool’ temperature treatment had a slower increase in temperature and lower maximum 

temperature. It was raised from 10oC to 14oC over 21 days, then held at 14-15oC for three 

weeks before finally increased at an average rate of 0.5oC/day until 20oC was reached. 

• The ‘warm’ temperature treatment was increased at a faster rate and to a higher 

temperature. The temperature was increased from 10oC to 16oC at an average rate of 

0.5oC/day for the first seven days, then increased by 1oC every three to five days until 20oC 

was reached where it remained for the duration of the experiment.  

 

Day length was controlled for both treatments: it was gradually increased from winter hours  

(10hr light: 14hr dark) to spring hours (12hr light: 12hr dark) in conjunction with the water 

temperature treatments being manipulated (to mimic changing seasons).  
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Table 3.1 Sizes of marron in the trial testing methyl farnesoate. Mean wet weight in grams and mean occipital carapace 
length (OCL) in millimetres (+/- the standard deviation (SD)). 

Species Sex OCL (mm) +/- SD (mm) Weight (g) +/- SD (g) 
C. tenuimanus Female 59.39 4.65 142.68 30.20 
C. tenuimanus Male 66.81 6.62 196.76 48.02 
C. cainii Female 62.81 5.58 172.93 46.28 
C. cainii Male 61.82 6.51 165.82 50.53 

 

Table 3.2 Experimental design for testing methyl farnesoate levels in marron with two water temperature treatments and 
five replicates for each species of marron. The total number of marron = 80 animals. C. cainii = 40 (20 ♂ + 20 ♀); C. tenuimanus 
= 40 (20 ♂ + 20 ♀). 

Temperature 
treatment 

C. cainii 
replicates 

C. tenuimanus 
replicates ♂ : ♀ 

Cool 5 5 1:0 
Cool 5 5 0:1 
Cool 5 5 1:1 

Warm 5 5 1:0 
Warm 5 5 0:1 
Warm 5 5 1:1 

 
 
 
3.2.2 Chemicals and standard solutions 
 
The standards of 10mg (E,E) methyl farnesoate and 500mg nonadecanoic acid methyl ester (NDAME), 

a non-biological isomer, were purchased from Sapphire Bioscience Pty. Ltd. (Redfern, NSW).  

A 1mg/mL stock solution was made for each standard with serial dilutions to 1µg/mL using n-hexane 

96% (HPLC Basic hexane). These standards were run on the GC-MS and standard peaks were identified. 

A stock solution (1 mg/mL) of the internal standard (NDAME) was prepared in 50:50 acetonitrile:crab 

saline buffer from which the working internal standard solution was prepared by serial dilution with 

acetonitrile to 1µg/mL. 

 
3.2.3  Haemolymph collection and storage  
 
Haemolymph was collected from both C. cainii and C. tenuimanus. Marron haemolymph samples were 

collected in a 1mL syringe from the ventral sinus with a 21G needle inserted into the soft tissue at the 

base of the 5th pereopod (according to Leland and Furse, 2012). Haemolymph (1mL) was drawn and 

added to 10mL Eppendorf tubes (chilled on ice) containing either 2.5mL acetonitrile (CH3CN) plus 1mL 

crab saline buffer (Duan & Cooke, 1999) at a ratio of 5:2:2 ACN:saline buffer:haemolymph  

(Abdu et al., 2001), or 1:1:1 acetonitrile:saline buffer:haemolymph (Xie et al., 2015). These two 

extraction solvents were trialled to identify the optimal solvent. Tubes were shaken and placed on ice 

to prevent clotting. 
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Internal standard (NDAME 100ng) was added to each haemolymph sample and the mixture was 

vortexed for 2 minutes prior to adding 500µL hexane and centrifuging for 10 minutes at 1500 x g 

(4000rpm). The upper hexane layer was collected using glass Pasteur pipettes and transferred to 

labelled amber GC vials. Another 500µL of hexane was added to the tube and the hexane extraction 

was repeated with the hexane fractions combined and dried overnight in a fume hood or under a 

stream of nitrogen (Xie et al., 2015). Samples were then stored at -20°C until GC-MS analysis. 

 

3.2.4 Gas chromatography-mass spectrometry analysis 
 
Dried hexane extractions were removed from -20°C storage and reconstituted in 100µL of GC-MS 

grade hexane and mixed well by vortexing for 1 minute. Samples were then processed either 

individually or, in order to boost the MF signal, as pooled samples (where the contents of ten vials 

were combined after reconstitution). All samples were dried under a stream of nitrogen, reconstituted 

in 50µL of hexane, vortexed to mix well then transferred into low volume inserts and analysed using 

a Thermo Scientific Trace 1310 gas chromatograph paired with a Thermo Scientific ISQ LT single 

quadrupole mass spectrometer (Australia). Separation was achieved on a Thermo Scientific DB-5 

capillary column (SGE BP5MS-UI, 30m x 0.25mm internal diameter x 0.25µm film thickness) with the 

MS operated in electron impact ionisation mode. The mass spectrometry transfer line temperature 

was 300oC, ion source temperature 320oC, with solvent delay of 5 minutes and mass range 50-550amu 

(in scan mode) and dwell or scan time of 0.2 seconds. Temperature of the GC column was held at 

100oC for 2 minutes, then increased to 280oC at a rate of 10oC/min, held 5 minutes then increased 

further to 300oC at a rate of 100oC/min, and held for 2 minutes. The sample injection volume was 1µL 

and the injector port, operated in split-less mode, was maintained at 250oC. In selected ion monitoring 

(SIM) mode, mass-to-charge ratios (m/z) of 69, 81, 114, 121, 207 and 250 were chosen to detect MF 

and 55, 74, 87, 143, 269 and 312 were selected to detect the internal standard NDAME (Rotllant et 

al., 2001; Xie et al., 2015). 
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3.3 RESULTS 
 
The MF and NDAME standards were well separated by GC and resulted in well-defined sharp peaks 

with retention times of 12.480 min (MF) and 16.864 min (NDAME). The MS detector was operated in 

both scan and selected ion monitoring (SIM) modes, with SIM being more sensitive. In SIM mode MF 

had a limit of detection of 13ng/mL and NDAME a limit of detection 31ng/mL.  

 

Haemolymph samples for C. cainii and C. tenuimanus were analysed by GC, but neither MF nor the 

internal standard NDAME was identified in any sample. The experiment was repeated, and the internal 

standard spike increased 10-fold, and while the standard was now detected, the recovery was not 

acceptable at less than 20 %. Pooled marron haemolymph (10 samples combined) was also analysed, 

as it could potentially increase the MF concentration 10 times, but MF was still not detected. These 

results were obtained regardless of species, sex or temperature.  

 

3.4 DISCUSSION 
 
The targeted metabolomic approach of this study was not able to provide the expected results (i.e. 

the detection of MF in the haemolymph of C. tenuimanus and/or C. cainii). This is in spite of the GC-

MS method successfully separating and detecting standard solutions of MF and NDAME and the limits 

of detection reported for this method being suitable for the detection of MF in haemolymph. For 

example, Xie et al. (2015) detected MF in the haemolymph of Portunus trituberculatus, a swimming 

crab, in the range of 5.5-32ng/mL, which are within the detection limits of the instrument in the 

present study. Some published studies have pooled samples to improve detection of MF (Rotllant et 

al., 2001; Xie et al., 2015), however, even though the methods of these studies were followed, MF was 

not detected in our pooled haemolymph samples. Possible explanations for non-detection fall into 

one of three categories: biological, experimental, or analytical. 

 

Methyl farnesoate has been detected in over 30 crustacean species including other Cherax, hence the 

absence of this compound is considered an unlikely biological explanation for non-detection. A more 

plausible explanation could be that the timing of collection of haemolymph samples was unsuitable, 

as other studies of crustaceans (e.g. Laufer et al., 1987; Laufer & Ahl, 1995; Rotllant et al., 2001; Sagi 

et al., 1994) including the congeneric Cherax quadricarinatus (Abdu et al., 2001) have indicated that 

levels of haemolymph MF can vary depending on stage in life cycle, size and sex (Nagajaru, 2007). 
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However, levels of haemolymph MF are highest at later stages of ovarian development in females (Xie 

et al., 2015) and males (Laufer & Ahl, 1995) and marron sampled in this study were at a reproductively 

active stage in their life cycles (i.e. marron were successfully mating during this period), so it is 

expected that the hormone should have been present in the haemolymph. It is possible that an aspect 

of the experimental design, rather than a biological phenomenon could explain the non-result. This 

experiment was designed to test the hypothesis that the different temperature regimes at Margaret 

River and Pemberton may be affecting reproductive success of the marron. However, as previously 

mentioned, crayfish in the aquaria did mate under both temperature regimes (see Chapter 2), so this 

is not considered as the cause of non-detection. Stress due to sampling via needles could have resulted 

in altered biochemistry, but the same methods of haemolymph collection have been successfully used 

in other studies (D’agaro et al., 2003; Leland & Furse, 2012). 

 

As biological and experimental explanations seem unlikely, the most likely is an analytical issue as the 

poor extraction efficiency for the internal standard indicates an issue with the extraction method. 

Extraction method modifications were attempted (including using two different extraction solvents), 

and even the addition of a 10-fold internal standard spike to the haemolymph samples still resulted in 

an unacceptable recovery level. While other issues (i.e. potentially of a biological or experimental 

nature as previously discussed) cannot be completely discounted, it seems clear that despite a series 

of troubleshooting attempts the method failed, making it impossible to know. The result (or more 

specifically non-result) of this method highlights the potential issues with using this type of targeted 

approach for investigating issues such as reproduction for conservation purposes. It is debatable if the 

amount of work required to optimise the extraction method for this metabolite would be a good use 

of research resources for this project. One conclusion that we cannot state is whether the work to 

optimise extraction would have been successful, perhaps MF would have been a perfect biomarker 

for reproductive success, but further work is required. Although there are substantial benefits to 

having a single (or few) biomarkers to follow, it also highlights why, rather than focusing on a single 

targeted analyte, using untargeted metabolomics to create a complete metabolomic profile for 

marron haemolymph could be more effective and informative for conservation. In the next chapter, 

sub-hypothesis 3 (untargeted metabolomics can detect differences in the metabolome between sexes 

and species of marron) will be tested to see if the data it produces supports this supposition. 
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4 Metabolomic profiling of crayfish haemolymph: an investigation of 
differences between marron species and sexes.  

 

 

This chapter is a manuscript that has been anonymously peer-reviewed and published in the journal 
Freshwater Crayfish (April 2020) with the citation as follows:   

Lette ED, Lawler NG, Burnham QF, Boyce MC, Duffy R, Koenders A and Broadhurst DI. (2020). 
Metabolomic profiling of crayfish haemolymph distinguishes sister species and sex: implications for 
conservation, aquaculture and physiological studies. Freshwater Crayfish 25(1):89-101.   
doi: 10.5869/fc.2020.v25-1.089 

 

 

4.1 ABSTRACT 
 

Hairy marron (Cherax tenuimanus Smith) are critically endangered freshwater crayfish found only in a 

single river in south-west Australia. Conservation efforts have included a captive breeding program, 

which has been largely unsuccessful, despite the closely related smooth marron (Cherax cainii Austin) 

being successfully bred for aquaculture. Using an untargeted liquid chromatography-mass 

spectrometry (LC-MS) metabolomic approach we created a profile of the metabolites in the 

haemolymph for males and females of the two species of marron. A non-lethal method was used to 

collect haemolymph and 84 reproducible annotated metabolites were identified. Variation in the 

levels of some metabolites were detected between species and between sexes within species. 

Multivariate analyses clearly differentiated the congeneric species and univariate analyses identified 

differences between species, sex and for some metabolite interactions between species and sex. This 

study created a baseline metabolome dataset for the two species and began to investigate the 

biological significance of metabolites that varied between species. We have shown metabolomic 

profiling could be used for targeted studies to potentially assist reproductive success. This approach 

will be beneficial for conservation and aquaculture practices with potential applications for other 

aquatic taxa worldwide. 

 

Keywords: Cherax cainii, Cherax tenuimanus, LC-MS, marron, metabolome, metabolomics, species 

conservation.  

https://www.astacology.org/article.asp?uid=guest&t=&type=1&a=1021


Page 37 -55 are not included in this version of the thesis. 
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5  A case study: Metabolomics and hairy marron.  
 

5.1 INTRODUCTION 
 

In the previous chapter, untargeted liquid chromatography-mass spectrometry (LC-MS) was used to 

create a metabolomic profile (i.e. the metabolome at a single time point) for Cherax cainii and  

Cherax tenuimanus, held in isolation. Many of the metabolites identified in the metabolome of the 

two sister species were amino acids or their derivatives, lipids, nucleosides and nucleotides, and 

neurotransmitters. Differences in metabolites between species and between sexes were attributed to 

stages in the crustacean life cycle, as some were considered to influence, or be influenced by,  

high-energy processes such as reproduction and moulting. At the time of haemolymph collection as 

C. cainii had finished breeding and moulting was about to commence, whereas C. tenuimanus were 

still mating. The study showed that untargeted metabolomics can detect differences in the 

metabolome between sexes and species of marron (thus supporting sub-hypothesis 3) with the 

subsequent step in the hypothesis testing approach was to determine whether untargeted 

metabolomics can detect changes between sexes of marron when they are placed in breeding pairs 

(sub-hypothesis 4). 

 

It is believed that temperature and day length are environmental cues required to prepare for mating, 

with the final cue being the presence of the opposite sex (Huner, 1994; Morrissy, 1970). Therefore, 

the metabolome of male and female C. tenuimanus were analysed over five weeks after the 

introduction of an individual of the opposite sex during their reproductive period to determine 

whether this produced different physiological changes from animals held individually. Detecting 

changes in their metabolomic profiles whether between the sexes, over time, or due to sex and time 

interactions and linking these to processes occurring in the animals will allow us to identify biomarkers 

that are potentially useful for ex situ conservation (Pukazhenthi & Wildt, 2004). These can later be 

tested by manipulating the environment of the animals (i.e. altering factors that may affect 

reproductive success). For example, if increased levels of a stress biomarker such as inosine were seen 

in C. tenuimanus females this would shed light on how they are affected by the presence of males 

around the breeding season, which could then be tested experimentally to identify optimal stocking 

densities. Once an attempt to identify potential biomarkers through untargeted metabolomics has 

been completed, sub-hypothesis 4 will have been tested, and the overall hypothesis (i.e. that the 
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metabolome of C. cainii and C. tenuimanus provides potential bioindicators related to reproduction 

and stress) can be addressed.  

5.2 MATERIALS and METHODS 
 

Methods for haemolymph collection and storage, sample preparation for metabolomic analysis, liquid 

chromatography-mass spectrometry (LC-MS), data pre-processing, metabolite identification, data 

modelling, and statistical analysis for this current chapter generally followed the same methods as 

Chapter 4, with any changes and/or additional methods noted below.  

 
5.2.1 Study Organisms 
 

The data for this chapter is derived from the same ten C. tenuimanus (five male and five females) 

utilised in Chapter 4. There was no control group for this experiment (no animals that were maintained 

without a partner for the entire experiment) due to the number of animals that were available 

 

5.2.2 Experimental design 
 

Five aquaria (approx. 50L) with one male and female crayfish in each were used for this experiment, 

with conditions described in the methods of Chapter 2. Water temperature was maintained at  

19-20oC before and during the trial and haemolymph was collected from the marron four times over 

the five-week experimental period. The haemolymph collected was used for methyl farnesoate (MF) 

analysis (Chapter 3) and an untargeted metabolomics analysis (this chapter). 

Day 0 marked the first day of the experiment and the first date haemolymph was collected. Until this 

time point the marron had been held as individuals in separate aquaria before placing them into pairs. 

Over the next few days the males and females were progressively paired with a similar sized individual 

of the opposite sex so that each aquarium contained a mixed-sex pair. Haemolymph was collected for 

the second time from all marron on day 12 of the experiment. The third collection was at day 18 and 

the last date of haemolymph collection was on day 34 where the marron had been housed as pairs for 

an average of 30 days.  
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5.2.3 Haemolymph Sample Collection and Storage 
 

Haemolymph was collected over a 5-week period from 27th of October to the 30th of November 2017. 

On each occasion 1200µL of haemolymph was collected per animal (200µL for metabolomics, 1000µL 

for MF). All haemolymph collections for all animals occurred at the same time of day and the animals 

were handled in the same order on each of the four collection dates. Haemolymph samples for 

metabolomic analysis were prepared following the methods in Chapter 4 and stored at -80oC until 

required for analysis. All dried extractions (40) were later reconstituted on the same date for 

metabolomic analysis.  

5.2.4 Data pre-processing and metabolite identification 
 

Data pre-processing and metabolite identification proceeded as described in Chapter 4 using the 

standard untargeted metabolomics workflow by Compound Discoverer 3.0 software (Thermo 

Scientific). Compounds that were detected in the blank samples were removed from the final data 

matrices. Metabolite data from both ionization modes (positive and negative) were combined into a 

single data matrix. Several metabolites appear twice in Table 5.1 (indole-3-lactic-acid, kynurenic acid, 

and inosine) as they were identified using both the positive and negative C18 columns: this provides 

additional support for their presence. 

 

Prior to statistical analyses, as with the previous chapter, metabolites were annotated by matching 

the exact molecular mass data, retention time and peak grouping using databases such as the in-house 

MS/MS Thermo Scientific mzVault and mzCloud online (https://www.mzcloud.org/) spectral libraries 

and recorded following the Metabolomics Standards Initiative (MSI) reporting protocol (Sumner et al., 

2007). In order to maximise rigour a conservative approach was adopted where the majority of 

metabolites identified in this chapter were matched at MSI level 1. Further pathway enrichment 

analysis was done using the reference metabolome from Metaboanalyst 4.0 (Chong et al., 2019). 

 

5.2.5 Quality Assurance 
 

Principal component analysis (PCA) (Figure 5.1) showed significant clustering of multivariate 

covariance in the first two principal components explaining 48.35% of the total observed variance. 

The tight grouping of blue circles in the scores plot shows the comparative variance of the pooled  

QC samples, which gives a measure of precision for each of the samples, indicating very high-quality 

reproducibility data.  
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Figure 5.1. Principal component analysis (PCA) plot presenting PC1 (sex) against PC2 (time) for the metabolites detected 
in the haemolymph of Cherax tenuimanus. Each point represents a single sample: orange squares are marron haemolymph 
samples including both male and females; blue circles, quality control (QC). The mean (x) and 95% confidence interval (CI)  
of the population (dotted line) is shown. 

 
5.2.6 Data Modelling and Statistical analysis 
 

For each identified metabolite a two-way repeated measures ANOVA was conducted to examine the 

effects of sex and time on metabolite concentration (p-values, Table 5.1). If there was a significant 

interaction between sex and time, then an analysis of simple main effects was performed. Correction 

for multiple comparisons was performed using the method described by Benjamini & Hochberg (1995) 

and corrected p-values (q-values) are also reported (Table 5.1). All identified metabolites were then 

combined into a single data matrix and the multivariate covariance analysed using PCA (Jolliffe, 2002). 

Hierarchical cluster analysis (HCA) (Hastie et al., 2009; Kaufman & Rousseeuw, 1990) was then 

performed to assess the similarities between individual metabolite concentrations, both PCA and HCA 

as described in Chapter 4. For this study, a Principal Component-Canonical Variate Analysis (PC-CVA) 

was conducted using a five principal components projection to illustrate multivariate discrimination 

between the clusters. Data was log-transformed prior to univariate and multivariate analyses. All 

statistical analyses were performed using IBM SPSS® Statistics 25 software package and Matlab 

scripting language version R2018a (Mathworks, Natick, MA). 
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5.2.7 Oxidative Stress  
 

Oxidative stress was calculated using the Nernst equation for half-cell reduction potential (Ehc) mV of 

the ratio for reduced glutathione to oxidised glutathione metabolite peak areas measured from the 

C18 positive column (Schafer & Buettner, 2001). 

 

5.3 RESULTS 
 

In this study, the LC-MS analysis of 40 haemolymph samples collected from ten C. tenuimanus  

(five males, five females) at four time points yielded 54 reproducible annotated metabolites  

(Table 5.1), including amino acids, fatty acids, biogenic amines, purine and pyrimidine metabolites, 

and excretion metabolites. 

  

5.3.1 Univariate analysis 
 

A two-way repeated measures ANOVA corrected for multiple comparisons revealed significant 

differences between the effects of sex, time, and time × sex interactions in a number of metabolites 

over the four time points (Table 5.1). Univariate analysis showed significant differences between sexes 

for 19 metabolites (q-values <0.05, FDR-adjusted p-values); 25 metabolites showed significant 

differences over time; and 11 metabolites showed a significant interaction effect between sex and 

time. The trajectories (plots) from the two-way repeated measures ANOVA for each metabolite are 

found in Appendix B. 
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Table 5.1. Metabolites identified in Cherax tenuimanus haemolymph. Statistically significant differences between factors, based on p value <0.05 and q value <0.05 (FDR-adjusted p values) from 
a two-way repeated measures ANOVA examining the effects of sex, time, and time × sex interactions on metabolite concentration, highlighted in bold. Metabolites that are repeated twice 
(indole-3-lactic-acid, kynurenic acid, inosine, glutathione, oxidised glutathione, and tryptophan are marked with a superscript number) were identified using both the positive and negative  
C18 columns. Molecular weight (MW); Retention time in minutes (Rt_min); C18 column either negative or positive (Mode); metabolomics standards initiative level (MSI Level); relative standard 
deviations calculated for the pooled quality control injections (%RSD); false discovery rate (%D-Ratio). Clusters indicated are based on hierarchical cluster analysis (see Figure 5.2). 

Metabolite name Formula MW 
(g/mol) 

RT  
(min) 

Mode 
(C18) 

MSI 
level 

% 
RSD 

% D-
Ratio 

Sex Time Time × Sex 
Cluster 

p-value q-value p-value q-value p-value q-value 

urocanic acid C6 H6 N2 O2 138.0 1.28 Pos ms1 3.17 2.65 0.01 0.05 0.01 0.02 0.10 0.27 A 

hypoxanthine C5 H4 N4 O 136.0 1.28 Pos ms1 3.51 2.46 0.01 0.05 0.01 0.02 0.09 0.25 A 

acetyl-L-methionine C7 H13 NO3 S 191.1 3.27 Pos ms1 2.71 2.20 0.04 0.09 0.18 0.24 0.06 0.18 A 

indole-3-acetic acid C10 H9 NO2 175.1 3.84 Pos ms1 2.45 2.51 0.03 0.08 0.07 0.10 0.16 0.39 A 

2-piperidinone C5 H9 NO 99.1 3.04 Pos ms1 4.47 2.31 0.12 0.21 0.97 0.97 0.57 0.76 A 

indole-3-lactic acid1 C11 H11 NO3 205.1 3.67  Pos ms1 1.11 1.17 0.47 0.61 <0.01 <0.01 0.02 0.09 A 

indole-3-lactic acid1 C11 H11 NO3 205.1 3.67 Neg ms1 4.13 7.44 0.46 0.60 <0.01 <0.01 <0.01 0.01 A 

arginine C6 H14 N4 O2 174.1 0.83 Pos ms1 4.23 5.80 0.68 0.75 <0.01 <0.01 0.17 0.40 A 

p-hydroxyphenyllactic acid C9 H10 O4 182.1 3.19 Neg ms1 1.49 2.78 0.13 0.23 <0.01 <0.01 0.51 0.74 A 

glutathione reduced2 C10 H17 N3 O6 S 307.1 1.27 Pos ms1 8.24 7.40 0.83 0.86 <0.01 <0.01 0.18 0.40 A 

glutathione2 C10 H17 N3 O6 S 307.1 1.29 Neg ms1 7.28 5.34 0.61 0.70 0.20 0.24 0.86 0.87 A 

thymine C5 H6 N2 O2 126.0 2.97 Pos ms1 6.16 9.90 0.49 0.62 0.01 0.03 0.06 0.18 B 

pantothenic acid C9 H17 NO5 219.1 3.05 Neg ms1 3.93 4.75 0.11 0.20 0.05 0.09 0.55 0.76 B 

5-aminosalicylic acid C7 H7 NO3 153.0 3.13 Pos ms1 3.30 2.63 0.28 0.43 0.07 0.11 0.12 0.31 B 

uridine-5'-phosphoric acid  C9 H13 N2 O9 P 324.0 0.95 Neg ms1 4.12 3.73 0.05 0.11 0.01 0.03 0.01 0.06 B 

oxidized glutathione3 C20 H32 N6 O12 S2 612.2 1.62 Neg ms1 2.97 2.00 0.76 0.80 0.05 0.09 0.86 0.87 B 

citric acid C6 H8 O7 192.0 1.29 Neg ms1 8.52 6.40 0.51 0.62 0.01 0.03 0.67 0.81 B 

betaine C5 H11 NO2 117.1 0.87 Pos ms1 6.46 15.25 0.25 0.40 0.02 0.04 0.87 0.87 C 

adenosine C10 H13 N5 O4 267.1 2.19 Pos ms1 1.08 1.03 0.08 0.16 <0.01 <0.01 0.52 0.74 C 

tyrosol C8 H10 O2 138.1 3.30 Pos ms1 8.46 18.29 0.06 0.12 0.21 0.25 0.32 0.58 C 

sucrose C12 H22 O11 342.1 0.95 Neg ms1 0.94 1.03 0.38 0.51 0.01 0.02 0.75 0.84 C 

azelaic acid C9 H16 O4 188.1 3.74 Neg ms1 2.32 2.31 0.69 0.75 <0.01 <0.01 0.70 0.81 C 
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Metabolite name Formula MW 
(g/mol) 

RT  
(min) 

Mode 
(C18) 

MSI 
level 

% 
RSD 

% D-
Ratio 

Sex Time Time × Sex 
Cluster 

p-value q-value p-value q-value p-value q-value 

uridine C9 H12 N2 O6 244.1 1.54 Neg ms1 2.71 13.37 0.94 0.94 0.01 0.03 0.03 0.12 C 

nicotinic acid C6 H5 NO2 123.0 1.28 Pos ms1 10.27 18.76 0.29 0.44 0.25 0.29 0.29 0.56 C 

phthalic acid C8 H6 O4 148.0 3.76 Pos ms3 5.13 6.99 0.05 0.11 0.04 0.09 0.68 0.81 C 

7-methylguanosine C11 H15 N5 O5 297.1 2.08 Pos ms1 2.02 2.20 0.02 0.06 <0.01 0.01 <0.01 0.02 C 

nicotinamide C6 H6 N2 O 122.0 1.36 Pos ms1 8.24 10.50 0.76 0.80 0.04 0.09 0.27 0.56 C 

glutathione disulfide3 C20 H32 N6 O12 S2 612.2 1.77 Pos ms1 16.87 12.18 0.34 0.48 0.09 0.13 0.01 0.05 C 

proline C5 H9 NO2 115.1 0.91 Pos ms1 2.12 2.26 0.92 0.94 0.21 0.25 0.05 0.17 C 

spermidine C7 H19 N3 145.2 0.71 Pos ms1 9.78 9.85 0.15 0.26 0.20 0.24 0.79 0.86 C 

pantothenic acid, salt C9 H17 NO5 219.1 3.05 Pos ms1 5.21 7.37 0.14 0.24 <0.01 0.02 0.65 0.81 C 

N-acetyl-L-aspartic acid C6 H9 NO5 175.0 1.27 Pos ms1 13.91 13.86 0.35 0.48 0.19 0.24 0.85 0.87 C 

norspermidine C6 H17 N3 131.1 0.71 Pos ms1 15.58 16.53 0.50 0.62 0.09 0.13 0.52 0.74 C 

uric acid C5 H4 N4 O3 168.0 1.27 Pos ms1 1.50 1.40 0.24 0.38 0.60 0.67 0.50 0.74 C 

phenylalanine C9 H11 NO2 165.1 2.99 Pos ms1 1.83 2.40 0.61 0.70 0.05 0.09 0.63 0.79 C 

histidine C6 H9 N3 O2 155.1 0.83 Pos ms1 5.01 8.97 0.01 0.05 0.70 0.75 0.62 0.79 C 

carnitine C7 H15 NO3 161.1 0.89 Pos ms1 3.13 4.65 <0.01 0.01 0.35 0.40 0.41 0.66 D 

acetylcholine C7 H15 NO2 145.1 0.95 Pos ms3 2.22 2.32 0.02 0.05 0.16 0.22 0.40 0.66 D 

propionylcarnitine C10 H19 NO4 217.1 2.53 Pos ms1 1.16 0.97 <0.01 0.01 0.11 0.15 0.33 0.58 D 

decanoylcarnitine C17 H33 NO4 315.2 5.03 Pos ms1 2.80 4.01 <0.01 <0.01 0.01 0.03 0.44 0.69 D 

kynurenic acid4 C10 H7 NO3 189.0 3.23 Pos ms1 3.57 1.76 <0.01 <0.01 0.90 0.94 0.75 0.84 D 

kynurenic acid4 C10 H7 NO3 189.0 3.22 Neg ms1 1.97 0.98 <0.01 <0.01 0.73 0.77 0.58 0.76 D 

kynurenine C10 H12 N2 O3 208.1 2.96 Pos ms1 3.24 2.20 <0.01 <0.01 0.97 0.97 0.85 0.87 D 

guanosine C10 H13 N5 O5 283.1 2.25 Pos ms1 2.97 2.85 <0.01 <0.01 0.04 0.09 0.35 0.59 D 

guanine C5 H5 N5 O 151.0 2.25 Pos  ms1 3.27 3.48 <0.01 <0.01 0.08 0.11 0.24 0.51 D 

inosine5 C10 H12 N4 O5 268.1 2.23 Pos ms1 0.96 1.02 0.01 0.03 0.06 0.09 0.32 0.58 D 

inosine5 C10 H12 N4 O5 268.1 2.25 Neg ms1 2.27 3.74 <0.01 <0.01 0.62 0.68 0.29 0.56 D 

glutamine C5 H10 N2 O3 146.1 0.86 Pos ms1 1.70 3.02 0.09 0.17 0.05 0.09 <0.01 0.01 E 

O-acetyl-L-carnitine C9 H17 NO4 203.1 1.29 Pos ms1 4.30 5.18 0.01 0.05 <0.01 <0.01 0.06 0.18 E 
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Metabolite name Formula MW 
(g/mol) 

RT  
(min) 

Mode 
(C18) 

MSI 
level 

% 
RSD 

% D-
Ratio 

Sex Time Time × Sex 
Cluster 

p-value q-value p-value q-value p-value q-value 

hydroxyproline C5 H9 NO3 131.1 0.87 Pos ms1 1.70 3.49 0.31 0.45 0.01 0.03 <0.01 0.02 E 

pyroglutamic acid C5 H7 NO3 129.0 0.88 Pos ms1 2.25 4.12 0.65 0.74 0.04 0.08 <0.01 0.02 E 

cytosine C4 H5 N3 O 111.0 1.21 Pos ms1 10.52 10.17 <0.01 0.01 <0.01 0.01 <0.01 0.01 E 

cytidine C9 H13 N3 O5 243.1 1.21 Pos ms1 5.50 5.04 <0.01 0.02 0.03 0.07 0.04 0.15 E 

tyrosine C9 H11 NO3 181.1 1.67 Pos ms1 0.75 0.39 <0.01 0.05 <0.01 <0.01 <0.01 <0.01 E 

2-hydroxycinnamic acid C9 H8 O3 164.0 1.67 Pos ms1 0.76 0.42 0.01 0.05 <0.01 <0.01 <0.01 <0.01 E 

deoxyinosine C10 H12 N4 O4 252.1 2.76 Neg ms1 2.29 2.06 0.02 0.05 <0.01 <0.01 <0.01 <0.01 E 

tryptophan6 C11 H12 N2 O2 204.1 3.20 Pos ms1 2.51 3.31 0.08 0.17 0.05 0.09 0.03 0.13 E 

tryptophan6 C11 H12 N2 O2 204.1 3.19 Neg ms1 3.93 11.30 0.03 0.08 0.01 0.03 <0.01 0.01 E 
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Univariate analysis (Table 5.1) indicated 19 metabolites contributed to the differences between sexes 

(q-values <0.05), including amino acids, their intermediates and derivatives (histidine, tyrosine, 

urocanic acid, kynurenic acid, kynurenine), nucleotides and nucleosides and their derivatives 

(guanosine, cytosine, cytidine, guanine, hypoxanthine, inosine), fatty acids (carnitine, 

propionylcarnitine, decanoylcarnitine, O-acetyl-L-carnitine), and other organic compounds 

(acetylcholine (a neurotransmitter) and 2-hydroxycinnamic acid).  

 

Metabolites showing significant changes over time (n=24) were: amino acids and their derivatives 

(arginine, tyrosine, tryptophan, urocanic acid, indole-3-lactic acid, betaine, hydroxyproline, 

hydroxyphenyllactic acid, and glutathione reduced), nucleotides and nucleosides and their derivatives 

(cytosine, adenosine, hypoxanthine, thymine, deoxyinosine, uridine, uridine-5'-phosphoric acid 

disodium salt, and 7-methylguanosine), fatty acids (azelaic acid, decanoylcarnitine, O-acetyl-L-

carnitine; vitamin: pantothenic acid), and other organic compounds (2-hydroxycinnamic acid,  

citric acid, and sucrose). 

 

Eleven metabolites showed significantly different interactions between time × sex (q-values <0.05), 

namely amino acid derivatives (tyrosine, tryptophan, glutamine, hydroxyproline, pyroglutamic acid, 

indole-3-lactic acid, and glutathione disulphide) and nucleotides and nucleosides and their derivatives 

(deoxyinosine, 7-methylguanosine, cytosine, and 2-hydroxycinnamic acid).  

 

Some metabolites indicated significant differences for more than one factor: urocanic acid (sex, time), 

hypoxanthine (sex, time), indole-3-lactic acid (time, time × sex interaction), 7-methylguanosine  

(time, time × sex interaction), decanoylcarnitine (sex, time), O-acetyl-L-carnitine (sex, time), 

hydroxyproline (time, time × sex interaction), cytosine (sex, time, time × sex interaction), tyrosine  

(sex, time, time × sex interaction), 2-hydroxycinnamic acid (sex, time, time × sex interaction), 

deoxyinosine (time, time × sex interaction), and tryptophan (time, time × sex interaction). 
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5.3.2 Heirarchical Cluster Analysis (HCA) 
 

Based on phenotypic similarity, five metabolite clusters (labelled A-E) were identified in the 

metabolite profile of male and female C. tenuimanus haemolymph in this study using a circular 

hierarchical cluster analysis (HCA) dendrogram (Figure 5.2). The statistical significance from univariate 

analyses is illustrated on the HCA dendrogram with factors for time, sex, time & sex, and  

time × sex interaction. ANOVA plots for each cluster are in appendix B.  

 

Figure 5.2. Circular hierarchical cluster analysis (HCA) dendrogram grouping individual metabolites identified in the 
haemolymph of Cherax tenuimanus into five clusters (A-E) based on phenotypic similarity. Colours of the metabolite name 
are based on the univariate analysis (q-value <0.05), metabolites that are significant over time (blue), between sexes (green), 
time and sex (purple), time × sex interaction (red), and not significant for any factor (black). Duplicate metabolites identified 
in positive and negative modes including L- and D-Trp.  
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Cluster A 
 
Cluster A consisted of ten metabolites, which were amino acids and their derivatives or products of 

energy metabolism. Tryptophan metabolism was the dominant pathway for this cluster; however, the 

metabolites were also involved in pathways for histidine metabolism, methionine metabolism, 

arginine and proline metabolism, tyrosine metabolism, and glutathione metabolism. Cluster A was a 

varied group in terms of the patterns of metabolite responses and significant factors but the general 

trend shown in eight of the ten metabolites was that levels had increased from day 0 (when marron 

were held as individuals) through to the end of the trial (after animals were put together). Changes in 

metabolite levels occurred in both sexes but at different rates (Figure 5.3). Three metabolites had 

significant changes over time, two metabolites had significant changes between sexes, two 

metabolites were significant for both time and sex, one metabolite had a time x sex interaction, and 

two were not significant for any factor (Table 5.2).   
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a) Time (n = 3) 
p-hydroxyphenyllactic acid (p <0.01) 

b) Sex (n = 2), 
acetyl-L-methionine (p = 0.04) 

 

  
c) Time and Sex (n = 2), 

urocanic acid (time p = 0.01, sex p = 0.01) 
 

d) Time × Sex interaction (n = 1),  
indole-3-lactic acid (time p <0.01, time × sex p <0.01) 

Figure 5.3 Examples of metabolite phenotypic behaviour for cluster A. The plots are the result of a two-way repeated 
measures ANOVA with four time points on the x axis (days) and the mean peak area of each metabolite on y axis; point values 
are log 10 mean metabolite peak area ± standard error bars of five females (red) and five males (blue). Significant factors  
(q values <0.05) are: a) Time, b) Sex, c) Time and Sex, d) Time × Sex interaction; n = the number of metabolites with this 
significant factor in this cluster. 

 

Table 5.2 Cluster A metabolites from HCA which display significance over time, between sexes, time and sex, time x sex 
interaction or not significant for any factors based on q-values <0.05. 

Time Sex Time & Sex Time × Sex Interaction Not significant 
arginine indole-3-acetic acid urocanic acid indole-3-lactic acid  2-piperidinone 
p-hydroxyphenyllactic acid acetyl-L-methionine hypoxanthine 

 
glutathione 

glutathione reduced 
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Cluster B 
 
Cluster B was composed of six metabolites, mainly pyrimidine nucleotide and nucleosides which are 

part of the pathways for pyrimidine metabolism, beta-alanine metabolism, pantothenate, and CoA 

biosynthesis. There was some variation in metabolite levels over time where levels were higher at day 

0, as individuals, then after potential pairs were put together the metabolite levels dropped to their 

lowest point at day 18 in both sexes before increasing by day 34 to levels similar to initial levels  

(Figure 5.4). Cluster B concentrations of metabolites were elevated in females for most compounds. 

Three metabolites had significant differences over time (thymine, pantothenic acid, citric acid) and 

one metabolite had a significant time × sex interaction (uridine 5’-phosphate). There were no 

metabolites with a significant factor for sex, or time and sex. Two metabolites were statistically not 

significant for any factor but followed the same trends with similar initial and finals levels and the 

lowest point at day 18 as observed for the other metabolites in the cluster (Table 5.3).  

  

a) Time (n=3), 
pantothenic acid (p=0.049) 

 

b) Time × Sex Interaction (n=1), 
uridine-5’-phosphoric acid (p=0.01) 

Figure 5.4. Examples of cluster B metabolite patterns with significant factors for a) time and b) time × sex interaction. The 
plots are the result of a two-way repeated measures ANOVA with four time points on the x axis (days) and the mean peak 
area of each metabolite on y axis; point values are log10 mean metabolite peak area ± standard error bars of five females 
(red) and five males (blue).  (n= number of metabolites from this cluster for each significant factor). The patterns displayed 
in this cluster were similar with a change after day 0, lowest levels at day 18 and then recovered back to initial levels (in 
females) by day 34. 

 

Table 5.3 Cluster B metabolites from HCA which display significance over time, between sexes, time and sex, time × sex 
interaction or not significant for any factors based on q-values <0.05. 

Time Sex Time & Sex Time × Sex Interaction Not significant 
Thymine None None uridine-5’-phosphoric acid 5-aminosalicylic acid 
pantothenic acid    oxidised glutathione 
citric acid   
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Cluster C 
 

Cluster C was the largest cluster (19 metabolites) and included alpha amino acids, purine and 

pyrimidine nucleosides, a sugar, vitamin, and a fatty acid. These compounds were involved in 

nicotinate and nicotinamide metabolism, glutamate metabolism, glutathione metabolism, arginine 

and proline metabolism, methionine metabolism, aspartate metabolism, phenylalanine metabolism, 

histidine metabolism, and tyrosine and derivatives. The overall trend for this cluster shows males and 

females responding in a similar manner, with a decrease in metabolite levels over time. In general, the 

levels of most metabolites were higher at day 0 (as individuals) and then decreased after paired with 

a potential mate over the next two time points with the final levels at day 34 much lower than on the 

first date of collection. Of the 19 metabolites in this cluster, seven metabolites displayed a significant 

difference over time (betaine, adenosine, sucrose, azelaic acid, nicotinamide, pantothenic acid, and 

phenylalanine (Figure 5.5a). L-histidine was significantly different between sexes with higher levels 

present in females. Phthalic acid (presumably a plasticizer and not an endogenous metabolite), was 

significantly different in both time and sex, with higher levels in males but still followed the trend with 

highest levels at day 0 and decreased so that the lowest was at day 34. Three metabolites had a 

significant time × sex interaction (uridine, 7-methylguanosine, and glutathione disulphide (Figure 5.5b) 

where the males had higher levels as individuals but then it decreased when they were paired with a 

potential mate so that males and females displayed a similar level. 

 

  
a) Time (n=7), 
azelaic acid (p <0.01) 

b) Time × Sex interaction (n=3), 
7-methylguanosine (time p = 0.02,  

sex p <0.01, time × sex p<0.01) 
 

Figure 5.5. Cluster C examples of metabolites with significant factor of time, time × sex interaction; n = the number of 
metabolites with this significant factor in this cluster. 
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Table 5.4 Cluster C metabolites from HCA which display significance over time, between sexes, time and sex, time × sex 
interaction or not significant for any factors based on q-values <0.05. 

Time Sex Time & Sex Time × Sex Interaction Not significant 
betaine L-histidine phthalic acid uridine tyrosol 
adenosine   7-methylguanosine nicotinic acid 
sucrose   glutathione disulphide L-proline 
azelaic acid    spermidine 
nicotinamide    N-acetyl-L-aspartic acid 
pantothenic acid    norspermidine 
L-phenylalanine    uric acid 

 
 
Cluster D 
 
 
Cluster D consisted of 11 metabolites, including several carnitines (fatty acids), a neurotransmitter 

(acetylcholine), amino acid derivatives, kynurenic acid and kynurenine (both play a role in tryptophan 

and purine metabolism), guanine, guanosine, and inosine. Two metabolites (inosine and kynurenic 

acid) were detected on both the positive and negative column. All of the metabolites in cluster D had 

higher levels in females than in males and the metabolite levels for each sex fluctuated little across all 

time points (Figure 5.6). Of the eleven metabolites in this cluster, nine showed a statistically significant 

difference between sexes and two metabolites between time and sex (decanoylcarnitine and 

guanosine) (Table 5.5).  

 

 
Sex (n=9),  

kynurenic acid (p<0.01) 
 

Figure 5.6 Examples of metabolites in cluster D where sex was the significant factor. n = the number of metabolites with 
this significant factor in this cluster 
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Table 5.5 Cluster D metabolites from HCA which display significance over time, between sexes, time and sex, time × sex 
interaction or not significant for any factors based on q-values <0.05. 

Time Sex Time & Sex Time x Sex Interaction Not significant 
none L-carnitine decanoylcarnitine none none 
 acetylcholine guanosine   
 propionlycarnitine    
 kynurenic acid    
 L-kynurenine    
 guanine    
 inosine    

 
 
 
Cluster E 
 

Cluster E was composed of ten metabolites, where nine metabolites had a significant difference with 

a time × sex interaction (Table 5.6). The metabolites that make up this cluster were part of the 

pathways for purine and pyrimidine metabolism, glutathione metabolism, and tryptophan 

metabolism. In Cluster E the metabolites all had higher levels in females than males, and the female 

levels remained relatively unchanged throughout all time points. The levels in males began lower while 

kept as individuals and increased after they were paired with a potential mate, between days 0 and 

day 12, then synchronised with females for the remaining time points (Figure 5.7).  

 

 
Time × Sex interaction (n=9), 2-hydroxycinnamic acid  

(time p = 0.01), sex (p <0.01), time × sex (p <0.01) 
 

Figure 5.7 Example of Cluster E metabolites where the significant factor was a time × sex interaction. n = the 
number of metabolites with this significant factor in this cluster. 
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Table 5.6 Cluster E metabolites from HCA which display significance over time, between sexes, time and sex, time × sex 
interaction or not significant for any factors based on q-values <0.05. 

Time Sex Time & Sex Time × Sex Interaction Not significant 
none none O-acetyl-L-carnitine L-hydroxyproline none 
   L-glutamine  
   L-pyroglutamic acid  
   cytosine  
   cytidine  
   L-tyrosine  
   2-hydroxycinnamic acid  
   deoxyinosine  
   L-tryptophan  

 
 
 
5.3.3 Principal component-canonical variate analysis (PC-CVA) 
 

Principal component-canonical variate analysis (PC-CVA) illustrated the strong relationship between 

metabolic profile, sex, and time (Figure 5.8). The first canonical variate (CV1) clearly separated male 

and female haemolymph profiles of C. tenuimanus at all four time points. Four of the five male marron 

expressed a difference on CV1 at day 0. These four males also showed a significant shift in metabolite 

profile after being placed with a female. No females had a similar response to being placed with a 

male on this axis. The second canonical variate (CV2) indicated some change between time points in 

each of the sexes, with changes for both sexes occurring in the same direction and at a similar 

magnitude and with the sexes converging (marginally) over time.  

 

5.3.4 Oxidative stress 
 

Oxidative stress was measured and there was little difference between individuals, sexes and time. 

The mean of means ± SE for females and males indicating oxidative stress was low and did not change 

much with the treatment for either sex (Table 5.7, calculations in Appendix B). 

Table 5.7 Mean of means values ± standard error in mV for oxidative stress (GSSG/ GSH) estimated using Nernst equation 
for half-cell reduction potential (Ehc) in mV of female and male Cherax tenuimanus. 

Sex Mean (mV) ±SE (mV) 
Female -353.9 6.02 
Male -353.6 8.16 
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Figure 5.8 Principal component-canonical variate analysis (PC-CVA) of the relationship between metabolomic profile, sex and time from Cherax tenuimanus haemolymph samples. CV1 sex; CV2 
time. Males in cool colours and females in warm colours. Lightest colour is lowest number of days to darkest colours, greatest numbers of days, from day 0 (as individuals) to (after pairing)  
day 12, day 18, day 34. X: mean of each group; dashed lines: 95% confidence intervals of the mean of each group. The PC-CVA model was constructed using five principal components.
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5.4 DISCUSSION 
 

In the previous chapter, the targeted analysis based on the metabolomic profiles of the haemolymph 

showed that it was possible to distinguish between the two congeneric Cherax species and between 

sexes of the two species. It is likely that at least some of the differences detected were related to the 

timing of reproduction and moulting in each sex/species. In this chapter, we report the identification 

of 54 metabolites in the haemolymph of C. tenuimanus, using the same untargeted LC-MS approach 

and show that changes in the metabolome can be measured in response to environmental conditions 

such as the presence of a potential mate. The metabolites identified are comprised of the same 

chemical groups as described in the previous chapter but in this longitudinal study we can see changes 

occurring in the metabolome highlighting the potential of some metabolites as biomarkers.  

 

A high proportion of the compounds identified in this study have previously been recognised in studies 

of other decapod crustaceans, many of which used nuclear magnetic resonance (NMR) (a different 

method of detecting metabolites), as well as biological tissues other than haemolymph (Callinectes 

sapidus, NMR, haemolymph (Schock et al., 2010); Litopenaeus vannamei, NMR, whole animal, 

hepatopancreas, muscle, intestines (Schock et al., 2013); Astacus leptodactylus, NMR, haemolymph, 

muscle, hepatopancreas (Costantini et al., 2018); Procambarus clarkii, NMR, hepatopancreas, gill, 

muscle (Izral et al., 2018); Paralithodes camtschaticus, LC-MS, haemolymph, muscle, hepatopancreas, 

and Lithodes aequispinus, LC-MS, haemolymph (Zacher et al., 2018)). However, our ability to detect 

and identify all metabolites is hampered by the lack of a single global database for crustaceans, which 

necessitates comparisons to databases created for humans (mammals) to identify metabolites. 

Although some metabolites have the same function across species, each organism does have its own 

unique set of metabolites (Kuhlisch & Pohnert, 2015), therefore this needs to be addressed to expand 

future studies. 

 

A clustering analysis of the data identified five clusters of metabolites based on phenotypic similarity 

between sexes, time, both time and sex, and time × sex interaction as identified by a two-way 

repeated measures ANOVA. Differences in the metabolome between sexes (CV1) and over time (CV2) 

were also supported by principal component-canonical variate analysis (PC-CVA) (Figure 5.5). The 

metabolites detected across the clusters belong to several biologically important pathways with 

varying functions (Alfaro & Young, 2016) in energy metabolism, osmoregulation (Rahi et al., 2018), 

signalling pathways (Hay, 2009), immune functions (Roager & Licht, 2018) and oxidative stress 
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(Schafer & Buettner, 2001), and some compounds having roles in multiple pathways. The pathways 

that will be discussed in this chapter have the most metabolites identified in marron haemolymph 

including, but not limited to, precursors, intermediates and derivatives. Overall, the pathways and 

metabolites that have been identified involve the metabolism or catabolism of amino acids and 

nucleotides/nucleosides which was expected with LC-MS and the C18 columns used for analysis. This 

discussion will report on some aspects of amino acid metabolism, such as tryptophan and kynurenine, 

phenylalanine, tyrosine and glutathione metabolism as well as purine metabolism and carnitine (lipid) 

metabolism. We will attempt to describe the biological influence of these metabolites and to which 

clusters they relate. Metabolites in bold italics were detected in this study (Chapter 5) as other 

metabolites from the previous chapter (Chapter 4) may also be discussed. There were some pathways 

and metabolites detected in this study that may be equally important, but they will not be discussed 

as relatively little is known about them in relation to crustaceans at present.  

 
The main patterns recognised by the behaviour of the metabolites within the clusters in the HCA 

(Figure 5.2) were: 

• Response to disturbance (change). Both males and females showed a disturbance in 

metabolite levels after being placed together. Some metabolites returned to initial levels 

(transient, Cluster B), others remained changed throughout the experiment (non-transient, 

Clusters A and C). 

• Differences between sexes. Some metabolites were significantly different between sexes and 

remained unchanged whether animals were housed on their own or with a potential mate 

(Cluster D). 

• Male response to female presence. Four out of five males had a larger metabolomic response 

to being placed with a female, whereas females did not show a similar response (Cluster E). 

 

 

5.4.1 Response to disturbance (change) 
 
Transient response 

A transient response to disturbance was identified when a metabolite changed dramatically from its 

initial level (displaying either a peak or drop) and then recovered back to initial levels by the end of 

the study (Figure 5.4b). In cluster B some metabolites for both sexes displayed this response to 

disturbance as the initial levels as individuals and final levels with a mate were similar, but there was 

a distinct change after the marron were put together in the same aquaria (occurring around day 18). 

As the metabolite levels returned to initial levels over the remainder of the study, this may indicate a 
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transient requirement for elevated levels of certain metabolites. For example, organic acids such as 

pantothenic acid (vitamin B5) and citric acid, which are important intermediates in energy 

metabolism due to their roles in the biosynthesis of coenzyme-A and the metabolism and synthesis of 

carbohydrates, proteins and lipids through the tricarboxylic acid cycle (Da Poian et al., 2010; Provasoli 

et al., 1970), were identified within the haemolymph and were transient. 

 

Non-transient response 

Some metabolites displayed a non-transient response to disturbance where their levels changed 

(either increased or decreased) once the animals were housed with a mate and remained at that level 

for the duration of the experiment. These were seen in both sexes of crayfish in clusters A and C, and 

to a lesser degree in males in cluster E. The metabolites in clusters A and C all have immune boosting 

or antioxidant functions and allow an organism to respond to stresses. In cluster A, metabolites were 

identified that indicated immune responses in an organism such as indoles and glutathione. Indoles 

are gut metabolites that influence immune functions from the tryptophan pathway (Roager & Licht, 

2018), and glutathione is referred to as a master antioxidant in living organisms and important for 

protection against oxidative stress (Alfaro et al., 2019; Bone et al., 2015; Lavradas et al., 2014; Schafer 

& Buettner, 2001). In cluster C, betaine and adenosine assist with osmoregulation and fast responses 

to environmental stress (Polat & Beklevik, 1999; Stegen & Grieshaber, 2001). Cluster E metabolites 

will be discussed in more detail later.  

 

Indole gut metabolites (cluster A) are intercellular signalling compounds as well as antimicrobial 

agents inhibiting fungal and bacterial activity in the human gut (Roager & Licht, 2018). Indole-3-acetic 

acid and indole-3-lactic acid (significant for time, q<0.01) are derived from the catabolism of 

tryptophan often by gut bacteria leading to an antioxidant function by stimulation of gut immune cells 

(Roager & Licht, 2018). As a response to environmental stress, a decrease in indoleacetic acid was 

found in mice (urine) 15 – 25 days after exposure to the stressor but it then increased after 30 days 

(Lankadurai et al., 2013). This response is similar to the semi-permanent response to disturbance 

detected in the marron over the 34-day trial period of this study. DL-p-hydroxyphenyllactic acid, 

(cluster A) a tyrosine metabolite, was significant over time (q<0.01) and is produced by bacteria such 

as bifidobacteria and lactobacilli and can play a role in production of antioxidants (Wishart et al., 

2018). 
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Glutathione (cluster A) is a strong antioxidant composed of cysteine, glycine and glutamine which is 

present in reduced (GSH) or oxidised form (GSSG, also known as glutathione disulphide) (Halprin & 

Ohkawara, 1967; Lu, 2013). GSH is a redox buffer occurring in low amounts in extracellular fluid such 

as haemolymph and has a role in detoxification (< -100x to -1000x than inside the cell) (Schafer & 

Buettner, 2001) and protection against oxidative stress (Lavradas et al., 2014; Lu, 2013). The ratio of 

GSH to GSSG can be used as an indicator or biomarker for cellular oxidative stress (Alfaro et al., 2019) 

and can be measured in the haemolymph (Bone et al., 2015) where oxidative stress is indicated if 

GSSG is present at higher levels than GSH. Changes to the half-cell reduction potential (Ehc) of the 

GSSG/2GSH couple correlate with the biological status of the cell (proliferation Ehc ~-240mV; 

differentiation Ehc~ -200mV; apoptosis Ehc ~-170 mV) with oxidative stress indicated by more positive 

Ehc. The results of the Nernst equation indicate an absence of oxidative stress (Table 5.7 and Schafer 

and Buettner, 2001), suggesting laboratory conditions were appropriate and highlighting how these 

metabolites could be useful biomarkers for oxidative stress. Other studies have used ratios of GSH to 

GSSG as a measure of oxidative stress caused by thermal changes in the haemolymph of Crassula 

aequilatera with GC-MS metabolomics (Alfaro et al., 2019) and Cherax quadricarinatus by using a total 

glutathione (tGSH) assay kit (Bone et al., 2015, 2017). It was determined that elevated levels in tGSH 

indicated an increase in protection by antioxidants as the tGSH levels rose with temperatures outside 

the optimal thermal range (Bone et al., 2015, 2017). 

 

Arginine (cluster A) is an essential amino acid for crustaceans and is known to be involved with salt 

and ion regulation in decapods (Rahi et al., 2018). Arginine is likely to increase when there is a 

perceived threat and potential need for an escape response by tail flipping and using arginine 

phosphate for energy bursts (England & Baldwin, 1983; Morris & Adamczewska, 2002). An alternative 

explanation for increased and sustained arginine levels could be in response to repeated haemolymph 

extraction where more handling of the animal was required. Also important are arginine kinase and 

arginine phosphate (though they were not detected in this study) due to their importance in arginine 

metabolism in crustaceans. Arginine phosphate is used for the regulation of energy levels in 

crustaceans whereas other organisms (vertebrates and some invertebrates) rely on creatine 

phosphate/creatine kinase to buffer ATP levels (Ellington, 2001; England & Baldwin, 1983). Arginine 

levels increased when the males and females were put together and stayed elevated throughout the 

study. Changing levels of arginine and arginine phosphate could be indicators of preparation for 

moulting. Crustacean growth is incremental and therefore different to growth in vertebrates and 

other invertebrates. Their moult cycles require large swings in their energy metabolism and how they 

utilise and store fuel (Jimenez & Kinsey, 2015). In the previous study, arginine was detected in 
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significantly higher levels in C. cainii and low levels in C. tenuimanus which concurs with the life stage 

of C. cainii at the time, where several males were moulting or preparing to moult. 

 

Purines such as adenosine (cluster C) can increase ventilation rate, heart rate and haemolymph 

velocity (Stegen & Grieshaber, 2001) in crustaceans such as Homarus americanus where it 

accumulates in haemolymph during hypoxia and ischaemia. Adenosine is likely to facilitate fast 

systemic responses to environmental stress (Stegen & Grieshaber, 2001). In crustaceans, adenosine 

also works with the hormone serotonin as in times of stress serotonin is released from the X-organ 

sinus gland complex (a neurohaemal organ) (Reddy, 2019) and adenosine from muscle tissue (Stegen 

& Grieshaber, 2001). Changes in adenosine are difficult to assess as it has a short duration in the 

haemolymph and was barely detected after two minutes of infusion with adenosine (Stegen & 

Grieshaber, 2001). However after adenosine has been metabolised by adenosine deaminase, inosine 

accumulates in the haemolymph (Stegen & Grieshaber, 2001) which can be detected as a bio-indicator 

for the fight or flight response that was influenced by adenosine (inosine is also discussed later in 

regards to differences between sexes). Adenosine was higher in females across all time points in this 

study. Although adenosine was identified in the haemolymph it should not be used as a biomarker 

due to the short duration in tissues creating unreliability for detection. Instead inosine is a better 

marker for stress, as the product of adenosine metabolism and its longer life of the metabolite in 

tissues which has also been supported by other studies (Schock et al., 2013; Stegen & Grieshaber, 

2001). In the previous study, it was the C. tenuimanus females that had the highest levels of adenosine 

which is appropriate as they also had the highest levels of inosine. 

 

Betaine (cluster C) is a modified amino acid that is important for osmoregulation as it has the ability 

to protect cells against dramatic changes in osmotic pressure in fish and marine invertebrates (Polat 

& Beklevik, 1999). In tissues it plays a function in protein and energy metabolism as a methyl donor 

which assists with the synthesis of methionine and carnitine. Betaine was statistically significant for 

time in this study and showed significantly higher levels in female C. tenuimanus.  

 

Tyrosol (cluster C) is synthesised from tyrosine and had no statistically significant difference for any 

factor in this study. However tyrosol is a phenolic compound (Costantini et al., 2018) and this 

metabolite is known to stimulate a defensive response or signal in crustaceans where the compound 

is produced by symbiotic bacteria to protect crustacean embryos in Homarus americanus and 
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Palaemon macrodactylus from pathogenic marine fungi (Hay, 2009). Aside from protection, these 

types of signals are also a form of chemical communication found in conspecific urine, where some 

signals can stimulate or deter copulation (Hay, 2009). Chemical communication in decapods is 

important when there is a limited season for mating to occur or it is regulated by another life event, 

such as for only a short time when females are near moult or recently moulted Parastacoides 

tasmanicus (McLay & van den Brink, 2016). This metabolite was not identified in the previous chapter.  

 

5.4.2 Differences between sexes 
 

There were 19 metabolites (q values ≤0.05) that indicated a significant difference between sexes with 

females having higher levels in 17 metabolites. This included all the metabolites in cluster D (11), one 

metabolite in cluster C and five metabolites in cluster E. Cluster E metabolites also had a significant 

difference over time. The other two metabolites that were significantly different between sexes were 

found in cluster A where the levels were higher in males. These differences between sexes for all 

metabolites remained unchanged throughout the entire study whether the marron were on their own 

or with a potential mate and were the driver for the distinction between sexes illustrated in the  

PC-CVA (Figure 5.8). 

 

The females had raised levels of carnitines (includes L-carnitine, decanoylcarnitine, 

propionylcarnitine (cluster D) and O-acetyl-carnitine (cluster E)). The synthesis of lipids in crustaceans 

are similar to pathways in vertebrates where the lipids accumulate in tissues as an energy source to 

be used during high energy events such as reproduction and moulting (Jimenez & Kinsey, 2015). Lipids 

are stored in the hepatopancreas in both sexes and are at their lowest levels during the moult period 

(Hasek & Felder, 2006). Not only are lipids important as an energy source but they are also stored by 

females as lipid droplets in ovaries and tissues in preparation for reproduction (Jimenez and Kinsey, 

2015) as sufficient stores of lipids are necessary for reproductive success (Li et al., 2010).  

In crustaceans, ovarian development influences the total lipids in the ovary (Hasek & Felder, 2006). 

Energy reserves in the hepatopancreas are continually shifted to the ovaries via haemolymph in order 

to stimulate maturation of the ovaries in C. quadricarinatus but lipids from diet are also required to 

maintain the needs of the ovaries (Hasek & Felder, 2006; Li et al., 2010). As well as indicating greater 

energy requirements in preparation for reproduction, higher levels of carnitines can also be due to 

stress as when lipids are used as a source of energy this is a response to manage stress in crustaceans 

(Schock et al., 2013). Both processes can explain the high levels of carnitines detected in females.  
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The results from the previous study showed the carnitines listed were all significantly higher in female 

C. tenuimanus where they were likely preparing for reproduction and when C. cainii were preparing 

to moult. Other metabolites detected that are important to carnitine synthesis and metabolism were 

lysine (detected in Chapter 4) in significantly higher levels in C. cainii; methionine, detected in Chapter 

4 and significantly higher in C. cainii males; and then in the present study, acetyl–L–methionine was 

significantly higher in C. tenuimanus males; and trimethyl-L-lysine, a carnitine precursor was detected 

in Chapter 4 with significantly higher levels in both sexes of C. tenuimanus over C. cainii. In mammals 

L-carnitine (cluster D) can be synthesised from lysine and methionine but is also important be included 

in dietary intake so it is often added to feed as it has a positive effect on growth performance 

(Costantini et al., 2018). 

 

Higher levels of kynurenine and kynurenic acid (cluster D), which are both part of the tryptophan 

pathway, are indicative of reduced metabolic rate, which could be a result of the demand for high 

energy metabolites for reproduction. In mammals, the kynurenine pathway is the main route for 

tryptophan degradation (Wishart et al., 2018) and it is a metabolic pathway leading to the production 

of nicotinamide adenine dinucleotide (NAD+) from tryptophan (Wishart et al., 2018). Kynurenine is a 

neuroprotectant producing vitamins or cofactors such as niacin (as nicotinic acid), nicotinamide and 

derivatives nicotinamide adenine dinucleotide (NAD+, detected in Chapter 4), and nicotinamide 

adenine dinucleotide phosphate (NADP), all of which participate in several energy metabolism 

pathways (Parthasarathy et al., 2018). Kynurenic acid is formed enzymatically from kynurenine and 

can be found in the intestine of mammals (Turski et al., 2013); it is an endogenous antagonist for the 

receptors of some stimulating amino acids such as glutamate in the central nervous system of 

vertebrates and invertebrates (Janecki & Rakusa-Suszczewski, 2004). The effect of this is a reduction 

in metabolism. Both kynurenine and kynurenic acid were significantly different between sexes, higher 

in female marron with metabolite levels fairly constant across all time points (as individuals and 

paired) (p<0.01; q<0.01). In the previous experiment, kynurenine was higher in both sexes of  

C. tenuimanus than C. cainii and kynurenic acid was significantly higher in C. tenuimanus females than 

males, as well as smooth females. Higher levels of kynurenic acid were found in female marron in both 

this chapter and the previous chapter. 
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Higher levels of metabolites such as inosine (cluster D), provide evidence that female C. tenuimanus 

displayed higher stress levels. Inosine is a purine nucleoside identified as a stress biomarker stress in 

the shrimp Litopenaeus vannamei (Schock et al., 2013) and it relates to adenosine levels which have 

been shown to increase cardiac activity in Homarus americanus (Stegen & Grieshaber, 2001). 

Increased stress was likely caused by the close presence of males as well as preparing for reproduction. 

Inosine is metabolised from adenosine in the haemolymph of Homarus americanus (Stegen & 

Grieshaber, 2001), and is further broken down into uric acid which is then excreted. Inosine is a better 

stress biomarker than adenosine or uric acid as inosine remains in the haemolymph longer than 

adenosine and uric acid is the end product of several pathways.  

 

Collectively the differences between the sexes suggest that the females were experiencing general 

stress (as evidenced by higher inosine levels), which can be caused by the presence of another animal 

in the environment (males) as well as the demands of reproduction. Not only is the reproductive 

process exhausting but can also be dangerous for females if males are overly aggressive during mating 

(Huxley, 1906). This is also supported by higher levels of carnitines in the haemolymph, which suggests 

they are utilising stored lipids; this will happen both in response to stress and for reproductive 

processes. Furthermore, elevated kynurenine and kynurenic acid indicate females were slowing their 

metabolism. All of these responses (reduced metabolism, use of lipid stores, elevated stress) could 

indicate females were (a) spending less time foraging due to the presence of the male, (b) developing 

eggs, (c) preparing to hide while they care for the eggs after mating, and the compounds identified 

provide useful biomarkers of these processes. 

 

5.4.3 Response to presence of a mate 
 

A response to presence of a mate was indicated where changes to specific metabolites were not 

related to stress/immune function and the metabolites were likely to influence reproduction. 

Metabolite levels between sexes were different when they were kept as individuals but then changed 

when put together with a potential mate and remained unchanged for the remaining time points.  

This response describes the metabolites in cluster E, and in particular the four males that were 

identified in the PC-CVA that were different as individuals. As well as indicating a response to presence 

of a mate in cluster E, these metabolites also indicate a semi-permanent response to disturbance as 

mentioned earlier. 
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Some of the metabolites identified indicate a response by the male marron to female presence, 

suggesting a response to presence of a mate, as the metabolites have the potential for activation of 

pathways to release gonad stimulating hormone (tryptophan, serotonin, dopamine) or melatonin 

(tryptophan stimulation of reproductive cycle). Also, the increased activity in nervous system from 

tyrosine and glutamine (and increase in neurotransmitters) indicates perhaps an increase in 

communication between the sexes when they are housed together. 

 

Tryptophan (Cluster E) showed a dramatic increase in males after being placed with a female. As an 

essential amino acid, tryptophan must be obtained through diet and it is one of the least abundant 

amino acids (Roager & Licht, 2018). Tryptophan is a precursor to the hormone melatonin (detected 

and discussed in Chapter 4) and the neurotransmitter serotonin (also known as 5-hydroxytryptamine 

or 5-HT, not detected) (Parthasarathy et al., 2018). Tryptophan was detected in the previous study 

(Chapter 4) but there were no significant differences in tryptophan levels between species or sex. In 

the previous study all animals were kept isolated, indicating that the presence of a potential mate 

does not necessarily cause a differentiation in tryptophan concentrations. However, the current 

experiment took place a little later in the reproductive season which could explain why we found 

significantly lower levels in males at day 0, and they converged to similar levels as females after being 

introduced to the females. 

 

Serotonin and dopamine are biogenic amines derived from tryptophan that can act as 

neurotransmitters in crustaceans. Serotonin can play a role in determining mating behaviour in 

Homarus americanus (Kulkarni & Fingerman, 1992; Nagaraju, 2011), promotes ovarian maturation in 

crustaceans (Reddy, 2019), stimulates the release of gonad-stimulating hormone in females 

Procambarus clarkii (Sarojini et al., 1995), and in males indirectly releases gonad-stimulating-factor, 

which results in the initiation of testicular development (Sarojini et al. 1993; Nagaruju, 2011). 

Serotonin was not detected in this study but as a neurotransmitter it may not normally be present in 

the haemolymph in crayfish. The presence of tryptophan could therefore indicate serotonin 

production for the release of gonad-stimulating hormone which in males may be in response to the 

presence of a female, whereas females appear to produce this independently of the presence of 

males. Dopamine was not detected in the haemolymph this time, but some dopamine metabolites 

were found in the haemolymph previously (Chapter 4) and were significantly different between 

species (3-O-methyldopa and phenylalanine), had an interaction between sex and species 

(homovanillic acid), or were not significantly different (L-dopa – Chapter 4). 
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Another tryptophan metabolite that is an intermediate of the kynurenine pathway,  

3-hydroxykynurenine, has a role in inhibiting moulting in Callinectus sapidus (blue crab) and 

Procambarus clarkii (Naya et al., 1989). It is an ecdysone biosynthesis inhibitor that is secreted into 

the haemolymph from the X-organ sinus gland (Naya et al., 1989). Unlike some crustaceans that will 

mate while moulting, marron, and other parastacids in general do not mate when moulting, as they 

are in an inter-moult phase (Burton and Mitchell, 1987). However, male marron do moult soon after 

mating as observed in our laboratory study and described in Chapter 2. 3-Hydroxykynurenine was not 

identified in this study as there were no matches with our data and the databases, mzCloud online or 

the in-house library. 

 

Glutamine (cluster E), an essential amino acid, is a precursor for the neurotransmitters glutamate and 

gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter (Wishart et al., 2018). Both 

glutamine and GABA were present in higher levels in female C. tenuimanus in Chapter 4. Glutamate 

(glutamic acid), an excitatory neurotransmitter, is the primary neurotransmitter in arthropods 

(Smarandache-Wellmann, 2016) (detected in Chapter 4), and it is also known to increase the metabolic 

rate of some invertebrates (Abyssorchomene plebs, an Antarctic amphipod) where glutamic acid 

becomes a source of energy (Janecki & Rakusa-Suszczewski, 2004). Another metabolite tyrosine 

(cluster E), which is part of the signal transduction process, is naturally produced in the body of an 

organism from the amino acid phenylalanine (Parthasarathy et al., 2018). Some of the secondary 

metabolites derived from L-tyrosine are neurotransmitters and related compounds (L-dopa identified 

in Chapter 4; adrenaline and noradrenaline) and animal pigments (Parthasarathy et al., 2018), all of 

which are important for communication and as a response to the presence of a potential mate. 

  

5.4.4  General overview 
 

Conducted over a five-week experimental period, this study validated and added to the baseline 

metabolome for C. tenuimanus described in the previous chapter. Using untargeted LC-MS 

metabolomics analysis a variety of compounds and, from these, biochemical pathways were detected 

in marron haemolymph. Furthermore, we detected differences between sexes and changes in the 

marron metabolome in response to changing environmental conditions. We verified that the shifts 

detected in the marron haemolymph could indicate responses to disturbance, whether transient or 

semi-permanent, or a reproductive response. The method used could be adapted to test a range of 
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different conditions potentially affecting an organism and highlight stressors from within its 

environment. 

 

The clustering analysis identified patterns where significant metabolites within each cluster may have 

been performing different biological functions but were responding in a similar fashion. Cluster A 

metabolites were responsible for immune functions and the synthesis of antioxidants (indoles, 

glutathione), cluster B contained organic acids essential for energy metabolism (citric acid, 

pantothenic acid, and uridine 5’-monophosphate), cluster C had metabolites necessary for 

osmoregulation, excretion and some communication (betaine, adenosine, uric acid, and tyrosol), 

cluster D included lipids for energy storage and maintenance in times of stress, and cluster E was 

comprised of neurotransmitters and other communication metabolites. 

 

The experiment took place during the marron breeding season, and other C. tenuimanus mated in the 

aquarium room at this time. Reproduction is a high energy process, particularly for the females with 

ongoing care of eggs and larvae after the mating event; however, the females had fewer changes in 

metabolite levels than the males, perhaps because they had already prepared for reproduction in 

anticipation of mating (as described in Chapter 2). Male marron on the other hand underwent a 

sudden shift in their metabolome (specifically the metabolites in cluster E) after being placed with a 

potential mate, as shown by the PC-CVA. It seems likely that mating would have occurred between 

these pairs if the marron were not frequently disturbed for collection of haemolymph because marron 

in other aquaria not part of this experiment did mate. 

 

Whilst collecting haemolymph creates a stress and thus potentially skews the data, haemolymph 

comprises approximately 25-30% of the biomass of large crustaceans such as crayfish (Leland & Furse, 

2012) and the total volume of haemolymph collected (1200uL weekly) should have been rapidly 

replaced or adjusted through biological processes (Greco et al., 1986; Leland & Furse, 2012). The 

animals in the trial appeared to fare well as they fed and maintained weight during the 5-week 

experimental period. According to the Nernst equation of the half-cell reduction potential (Ehc) of 

GSSG/2GSH which was calculated from the metabolite peak areas, the extremely low values indicate 

that the marron in the experiment were not under any oxidative stress, which is important for 

maintaining animals in captivity. This metabolite is something that could be further monitored as a 

biomarker. As well as using glutathione to indicate oxidative stress (Bone et al., 2015), alanine, 
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glutamate, acetoacetate, succinate and trehalose were found to indicate oxygen stress in laboratory 

studies (Izral et al., 2018). Of the listed compounds, only glutamate was detected in our study, but the 

other metabolites may be detectable with other LC-MS columns for future studies. 

 

It was suggested that the amino acids glutamine, isoleucine, leucine, lysine, valine and betaine in tail 

muscle of the North American freshwater crayfish Procambarus clarkii could diagnose stress when 

food was limited (Izral et al., 2018). In chapter 5, glutamine, betaine and some forms of lysine were 

identified and changed over time. If this change was due to food stress it may relate to differences in 

feeding behaviour when males and females are together, or it may represent responses to stress more 

generally. Therefore, these too warrant consideration as useful biomarkers. 

 
 
Conclusion 
 
Metabolomic profiling provides a broad sweep of the metabolic state of an organism and how it reacts 

to its environment. There are thousands of metabolites in any organism with varying degrees of 

importance and influence over metabolism, defence (in an antibiotic sense), inter- and extracellular 

signalling. Using LC-MS to create an untargeted metabolomics profile for marron is novel as 

comparable studies in freshwater crayfish have focused on specific metabolites and whilst some of 

the metabolites detected in this study have been found in other similar taxa, many have not. 

 

By analysing the metabolome of pairs of C. tenuimanus over a 5-week period and detecting differences 

in metabolites between the sexes, over time, and due to sex and time interactions, potential 

biomarkers have been identified. This represents a successful attempt at employing untargeted 

metabolomics to detect changes between sexes of marron when they are placed in breeding pairs and 

therefore supports sub-hypothesis 4. As the metabolome provides biomarkers that indicate 

physiological states, we can now generate hypotheses about how environmental conditions may 

affect the metabolome and investigate this via targeted metabolites. For example, if a researcher 

wanted to investigate the effect of stocking density or temperature on marron or another Cherax 

species, we now know which metabolites they would expect to find, and which metabolites would be 

likely to change.  
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It is achievable to establish cause and effect in a controlled laboratory setting for metabolomic 

experiments as a laboratory lacks the ecological complexity of in situ field experiments in the natural 

environment. This laboratory study indicated and agrees with other recent and similar studies that 

the crayfish metabolome is detectable and measurable, and it is capable of potentially diagnosing 

specific environmental stressors as it is fast responding and sensitive to subtle changes in the organism 

and its aquatic environment. Understanding the physiology of an animal and having the ability to 

measure metabolic stress and changes related to reproduction that are otherwise not detectable has 

the potential to greatly improve ex situ conservation practices.  
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6 Study synthesis 
 

Despite the efforts and knowledge of experienced scientists and aquaculturists, the critically 

endangered Cherax tenuimanus has failed to breed well in captivity. Understanding why is complex, 

as low fecundity and low breeding success can be linked to a wide variety of environmental or 

physiological causes (Snyder et al., 1996). These reasons can include poor or inadequate diet, 

inappropriate housing conditions (e.g. light, temperature, space), various sources of disturbance, 

pathogens, behavioural incompatibility or changes in natural behaviours, and/or genetic issues such 

as inbreeding depression, genetic drift and genetic adaptations (Schulte-Hostedde et al., 2015; Snyder 

et al., 1996). Isolating causes and distinguishing between the impact of these various factors on the 

regulation of reproduction requires a detailed understanding of the internal and external factors 

involved (Reddy, 2019), creating a significant challenge for captive breeding programs. For many 

threatened species successful captive breeding is still elusive even after years of investigations, which 

means that some of these species may never reach the numbers necessary to be considered   

self-sustaining captive populations or allow for their reintroduction to the wild (Snyder et al., 1996). 

 

Improving the outcomes of captive breeding programs is difficult, as studying endangered species 

creates a challenge for researchers; the limited availability of specimens results in working with low 

sample numbers or few replicates, which affects the reliability of data. Furthermore, ex situ 

conservation is expensive, and it is important to consider the net benefit to conservation and society 

of money spent. For these reasons, any tools that can quickly and reliably contribute to the knowledge 

of the complex processes involved in reproduction and captive breeding could be incredibly valuable, 

which is why modern technologies provide opportunities for time and cost-effective conservation 

science. Accordingly, in this study we sought to test the hypothesis that the metabolome of  

C. tenuimanus provides bioindicators related to reproduction and stress that will ultimately enhance 

conservation through captive breeding. 
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6.1 Reproductive success factors - hairy marron 
 

Only recently recognised as separate species, the highly restricted C. tenuimanus and its widespread 

sister-species C. cainii have experienced introgressive hybridisation, with hybrids producing fertile 

offspring (Austin & Ryan, 2002; Duffy et al., 2014; Guildea et al., 2015); hence, it was assumed that 

they require similar conditions for successful breeding. Cherax cainii has been a popular aquaculture 

species with a history of almost 50 years of captive breeding in Western Australia (Huner, 1994; 

Lawrence, 2007; Morrissy et al., 1990), and requirements for captive breeding (such as food, water 

quality, environmental parameters, stocking densities, etc.) are well-known. However, in captive 

breeding situations (i.e. in ponds) the reproductive success of C. tenuimanus has been much lower 

compared to C. cainii. Cherax tenuimanus mate and produce offspring at the PFRC, but numbers of 

eggs, females with eggs, females with larvae and juveniles are often very low (compared to C. cainii), 

and it is not known whether C. tenuimanus are relatively poor spawners with lower fecundity naturally 

or if there are issues with the captive breeding system. It is clear from this comparison that 

assumptions about the transferability of methods from one species to another may not be 

appropriate, despite the phylogenetic and morphological similarity of the species.  

 

What is known about C. tenuimanus poses one significant question for their in situ conservation, and 

one for their ex situ, specifically:  

1) If C. tenuimanus numbers are low in the wild primarily due to displacement by C. cainii as has been 

proposed, what are the mechanisms allowing this to occur, and  

2) Why has there been so little recruitment success for C. tenuimanus in captive breeding programs 

when the same methods work for C. cainii? 

 

This study sought to directly address the second question, however, in doing so it has indirectly 

contributed to the first. This investigation confirmed in the lab what was suspected but poorly 

documented; C. cainii and C. tenuimanus have different breeding periods, with perhaps some overlap. 

For instance, data collected from the Margaret River populations suggest that C. tenuimanus breed 

later in the spring than C. cainii and that C. tenuimanus are still mating in November (J. Bunn unpub. 

data). In our study, C. cainii were recorded mating earlier than C. tenuimanus with spawning occurring 

at the onset of increasing water temperature and day length in August and into September, and  

C. tenuimanus breeding in October and into November. These observations were supported by the 
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metabolomic data as we were able to differentiate between the metabolomic profiles for the two 

species, which appears to be (at least in part) linked to different timing of life events such as 

reproduction and moulting. The earlier release of juvenile C. cainii would provide them with earlier 

access to resources such as food and habitat and therefore a competitive size advantage, giving them 

the ability to outcompete their congeneric and thus affecting annual recruitment of C. tenuimanus 

and possibly explaining the species displacement (Guildea et al., 2015).  

 

Hybridisation between these congeneric species has been confirmed (Austin & Ryan, 2002; Bunn et 

al., 2008; Guildea et al., 2015; Kennington et al., 2014), but it has been suggested that there are partial 

reproductive barriers present as levels of introgression were lower than would be predicted under 

random mating (Guildea et al., 2015). The partial reproductive barriers could be explained by the 

difference in timing of breeding seasons as indicated in this study. Where hybridisation does occur, it 

has also been suggested that C. cainii males may be larger, due to earlier breeding times and access 

to resources, than C. tenuimanus, therefore preventing the latter access to potential mates and 

furthering the decline of the wild C. tenuimanus population (Guildea et al., 2015). However, this study 

suggests another mechanism may be operating that requires testing. It is suggested that when female 

C. cainii are physically ready to mate they chemically trigger a reproductive response in the males of 

both species. The larger, more aggressive, and more abundant C. cainii males will generally 

outcompete C. tenuimanus males for access to the available C. cainii females; this issue would be 

exacerbated if the C. tenuimanus had not yet completed their own intrinsic preparation when the cue 

came from the females. For the period where the reproductive receptiveness of both species’ females 

overlap, C. cainii will continue to interfere with attempts by the male C. tenuimanus to mate and some 

hybrids would be produced. Particularly if C. tenuimanus densities (in the wild) are so low that finding 

females is problematic, this pseudo-competition may also be taking place indirectly, resulting in fewer 

conspecific encounters and matings between C. tenuimanus individuals (Guildea et al., 2015). By the 

time the C. cainii females are finished their reproductive cycle, and C. tenuimanus females have 

exclusive access to the males, the males may have reached the end of their reproductive cycle. 

 

Evidence for the scenario proposed above can be found in the results of Chapter 5, where a difference 

was found in the metabolome of C. tenuimanus males held individually compared to those with a 

mate. More specifically, female C. tenuimanus maintained constant levels for many metabolites 

regardless of having a partner where male C. tenuimanus profiles changed in response to exposure to 

a female, hence the suggestion that the presence of a reproductively active female may be required 
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for the male to become ready to mate. It is hypothesised that C. cainii females are cued for final 

reproductive preparations by environmental conditions as previously described (for females of both 

species), and once reproductively ready the females provide a chemical signal or chemical-plus-visual 

signals (Acquistapace et al., 2002) that trigger males to undergo their last stages in preparing to mate. 

This would also explain why marron can mate at different points in the breeding season as even 

though some C. tenuimanus did mate in aquaria (Chapter 2), those males kept as individuals  

(Chapter 5) did not seem ready until placed with a female, suggesting some plasticity in their 

preparation (i.e. the males require a signal).  

 

Another factor limiting the reproductive success of C. tenuimanus is that female crayfish in the family 

Parastacidae appear to mate only once per season (i.e. accept a single spermatophore) (McLay & van 

den Brink, 2016) as they extrude eggs within hours of mating (as observed in Chapter 2). In contrast, 

species in other families of freshwater crayfish use a strategy referred to as multiple mating, such as 

Astacidae (Austropotamobius italicus (Galeotti et al., 2007, 2012)) and Cambaridae (Orconectes 

placidus, Procambarus clarkii (McLay & van den Brink, 2016)), where females will receive 

spermatophores from multiple males and extrude eggs days or weeks after mating. This polyandrous 

strategy does pose a risk of injury to females during mating (Galeotti et al., 2007; Huxley, 1906), but 

also the benefits in terms of egg fertilisation success with the amount and quality of sperm released 

(Galeotti et al., 2007). It is assumed, but unconfirmed, that male Cherax can have multiple ejaculations 

(potentially of varying quantity/quality) over a season with potential mates, as seen in 

Austropotamobius italicus (Galeotti et al., 2012; McLay & van den Brink, 2016; Rubolini et al., 2006) 

and shown in simulation experiments with Cherax destructor (Jerry, 2001). This highlights two 

problems for C. tenuimanus; firstly, if there is only one chance for a C. tenuimanus female to mate and 

if C. cainii males have an advantage and can mate repeatedly they are likely to get to the her first. The 

other depends on the quantity and quality (viability) of sperm released while mating, as if a  

C. tenuimanus male has low quality or volume of sperm (which may be connected to being triggered 

too early by a C. cainii female) this could also impact the reproductive success of C. tenuimanus. 

 

Due to the problems with in situ conservation it was hoped that this study could assist ex situ 

conservation. Specifically, by testing the overall hypothesis (that metabolomics would identify 

potential biomarkers related to reproduction and stress in two congeneric freshwater crayfish species, 

which could lead to improved captive breeding success), it was hoped that this study would elucidate 

potential reasons as to why there has been so little recruitment success for C. tenuimanus with captive 
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breeding when the same methods are employed for C. cainii. Captive breeding is often conducted in 

ponds or large tanks but using glass aquaria in this study provided the opportunity to clearly observe 

marron and their behaviours in a controlled environment. To further reduce variables, marron were 

housed both individually and in pairs with a potential mate, whereas most other studies (which focus 

on C. cainii) use higher stocking densities and different ratios of male to females (Lawrence, 2007; 

Luckens, 2015).  

 

During this project it was confirmed that C. tenuimanus will mate while in captivity, even in small 

aquaria in a laboratory environment, which was a highlight for the initial part of the study.  

Sub-hypothesis 1, that marron housed as male/female pairs in glass aquaria with controlled lighting 

and temperature will undertake mating, is therefore accepted. This artificial environment mirrored 

important features of the natural environment (e.g. water temperature, photoperiod), however many 

parameters such as turbidity, substrate, groundwater/surface water interactions and other biological 

and physical factors could not be replicated accurately. It appears that the most important 

environmental cues were met as the marron mated, a spermatophore was placed on the ventral 

surface of the female, and eggs were produced, extruded and attached to the pleopods. In this study, 

seven out of ten pairs of C. tenuimanus in one of the trials mated (Chapter 2), and although they were 

roughly size matched, this suggests that mate selection is not strong in these crayfish which is a 

difficult concept to investigate in tanks of many individuals.  

 

Through the entire study, two different temperature regimes could be maintained at the same time 

in the laboratory, which allowed for seasonal environmental conditions required for breeding  

(i.e. increasing day length and water temperature) to be artificially altered. As described in Chapter 2,  

C. cainii were breeding in the ponds at PFRC in early September and four of the pairs brought to ECU 

spawned immediately (while the water was at 15oC). Cherax tenuimanus mated in both temperature 

treatments at approximately 15-20oC with the optimal temperature for mating occurring between  

18-20oC, and all mating events occurring in October and November. This observation also supports 

the differences in timing of breeding seasons for the two congeneric species as they may be waiting 

for different environmental conditions. Observations (both in ponds at PFRC and in the lab at ECU) 

show that C. cainii were mating prior to the natural September equinox (12hr light:12hr dark) whereas 

C. tenuimanus mated afterwards.  
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In this study, females incubated the eggs for periods from only a few days up to three weeks, which is 

still well-short of the usual time for eggs to hatch into larvae (around four weeks) and the total 

incubation period of 12-16 weeks from eggs to juvenile release (Morrissy, 1970). Having berried 

females during this project is a success; however, further study is needed to determine why the eggs 

did not develop during this period and no viable young were produced by either species in this 

environment. This is an example of the type of question that could be investigated through 

metabolomics. For example, it may be hypothesised that there was an issue with the diet of females; 

specifically, that there is a relationship between quantity of lipids provided at specific times of year 

and egg quality. Overwintering female marron require a better diet to improve lipid stores for egg 

production and good quality eggs (yolk), energy reserves, and to maintain health throughout the 

breeding season, as the opportunity for food is less available once they have mated and are incubating 

eggs or young (Gutiérrez-Yurrita & Montes, 1999). However, preparation for reproduction occurs 

much earlier in the year, with the reproductive cycle for female marron (C. cainii) beginning in January 

(summer) cued by decreasing daylength (Beatty et al., 2016; Huner, 1994) with maturation of oocytes 

complete by July (winter) (Beatty et al., 2003; Huner, 1994). Nutrition is important throughout this 

entire preparation for development period as well as directly prior to mating, and Huner (1994) states 

that a female will reabsorb her eggs in the absence of adequate nutrition and therefore not mate.  

It is possible that in captivity (ponds or tanks) C. tenuimanus were not getting the right nutrition in the 

pre-breeding phase to sustain them through reproduction. Comparisons between lipid-related 

biomarkers in the metabolome of crayfish in the Margaret River (where there may be seasonal 

invertebrate blooms for instance over winter and early spring when the marron are in final preparation 

for mating) and those in the captive breeding program could test this hypothesis. 

 

6.2 Marron metabolomics  
 

The identification of metabolites often occurs through lethal sampling; however, in this study, profiling 

was conducted using haemolymph from the crayfish extracted in a non-lethal manner and the same 

individuals could be sampled repeatedly over time. Equipment required for extraction of haemolymph 

is standardised, inexpensive and can be sourced easily, and samples can be collected (and preserved) 

in the field or laboratory. Preparation tubes need to be kept cool both before and after collection of 

haemolymph which must be a consideration if collection occurs away from the laboratory, and the 

fast clotting of haemolymph can be an issue; however, this can be overcome by methods such as using 

heparinised syringes or preloading collection tubes with a solvent to prevent clotting. 
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The methods for extracting haemolymph are easily replicated, and in some cases may provide 

quantifiable data almost immediately. As marron shifted into their breeding season the proportion of 

females displaying orange-tinted haemolymph increased, which is believed to be due to increasing 

levels of vitellogenin (Chapter 2). Vitellogenin as a glycolipoprotein has a molecular structure of up to 

200 000 Da which is too large to be detected using metabolomics (molecules <1500 Da) but could be 

identified with other methods such as enzyme-linked immunosorbent assays (ELISA)(Sukumaran et 

al., 2017). This change in haemolymph colour correlated with observations that the ovipores were 

darker and females were “cleaner” underneath their tail (i.e. their swimmerets) due to their preening 

behaviour, suggesting they were preparing for egg attachment. Identifying preening and preparation 

for a mating event was a visual cue that a female is likely ready for the next step in the reproductive 

process. It was expected at this point that we would be able to identify MF in the marron as is it was 

hypothesized that females with mature ovaries would have the highest levels of MF as well as the 

more sexually aggressive males; however, this targeted approach failed. 

 

The (non)result in this study for MF highlighted a potential issue with targeted metabolomics. 

Although it may have advantages (direct, inexpensive, easy to interpret), its scope is limited and if 

there are conditions that are not favourable to producing consistent results then the time, effort and 

money is wasted. Knowledge of which target compounds are found in the organism, when they are 

likely to be present, at what level, and whether these vary by tissue or biofluid type are all needed 

prior to sampling. Therefore, a targeted approach to metabolomics will usually require an exploratory 

search first to see if the compound or metabolite can in fact be detected and measured, or it may fail. 

For example, it was stated in the literature that MF has been detected in haemolymph of many 

crustacean species including a congeneric; however, the amounts detected in these studies varied 

considerably, and the difficulty of detecting MF in the haemolymph of both species of marron despite 

considerable time spent troubleshooting was an unexpected challenge for this project. Sub-hypothesis 

2, that the reproductive hormone MF can be detected in marron haemolymph and used as a  

non-lethal, low stress tool to predict reproductive success (i.e. as a targeted metabolomic approach), 

was therefore unable to be tested. Although the methods applied in this study may not have been 

suitable, the idea is still sound (with the aforementioned caveats noted) and having a simple technique 

that could indicate reproductive readiness in crayfish would be valuable, especially to assist in species 

conservation.  
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Using LC-MS was successful for the untargeted metabolomic analyses of this study as it is sensitive 

enough to detect subtle changes in the metabolome that occurred in response to a variety of factors 

and therefore could identify biomarkers. This meant that sub-hypothesis 3 (that untargeted 

metabolomics can detect differences in the metabolome between sexes and species of marron) and 

sub-hypothesis 4 (that untargeted metabolomics can detect changes between sexes of marron when 

they are placed in breeding pairs) were both accepted. This study provides the first example of 

numerous measured metabolites changing in response to environmental conditions in a critically 

endangered species whilst captive breeding is attempted. Chapter 4 described 84 metabolites in the 

haemolymph of two Cherax species and Chapter 5 reported the identification of 54 metabolites in  

C. tenuimanus, 31 of which were previously identified in Chapter 4, totalling 107 annotated 

metabolites recognised by this study in the haemolymph of marron using LC-MS analysis. Many of the 

identified metabolites in the study (80% of the confirmed compounds) belong to one of the following 

chemical classes: amino acids or their derivatives, purine and pyrimidine nucleotides and nucleosides, 

organic acids and lipid-related (Figure 6.1). Amino acids and their derivatives contributed nearly 50% 

of the identified compounds and free amino acids found in crustacean haemolymph have roles in 

many metabolic processes and biological functions such as osmoregulation in freshwater decapods 

(Rahi et al., 2018), protein synthesis/catabolism, gluconeogenesis and oxidative pathways (Issartel et 

al., 2005).  

 

 

Figure 6.1. Chemical groups of annotated metabolites. Percentage based on the total number of annotated metabolites 
found in the haemolymph of Cherax sp. in this study for both Chapters 4 and 5 (n = 107). (Chapter 4 = 84 metabolites, Chapter 
5 = 54 metabolites, where 31 are the same between studies). 
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While this method as employed in this study may not have directly answered the issue of why there 

is poor reproductive success in C. tenuimanus, this study has shown that metabolomics can provide 

insights into the problems encountered with captive breeding. Future studies can focus on identifying 

more crustacean metabolites and linking these to physiological processes, which will allow us to 

formulate testable hypotheses and to address these using metabolomics. For example, as marron 

prepare for reproduction with the maturation of oocytes, we would expect to see a change in  

lipid-related metabolites such as carnitines and other fatty acids. This was illustrated in both  

C. tenuimanus and C. cainii females in Chapter 4, where sex was the significant factor as shown by the 

higher levels of carnitines (lipids), and again in female C. tenuimanus in chapter 5. Other important 

fatty acids are docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) which are essential 

nutrients important for reproduction and ovarian maturation, fertilisation and hatching (Li et al., 

2010). In Chapter 4, the levels of these two compounds were statistically higher in female C. cainii 

over all the other marron tested; this indicates that they were more reproductively mature (i.e. 

increased ovarian maturation) which agrees with other findings that the two species have different 

breeding times. These metabolites were not detected in Chapter 5 due to the application of a higher 

threshold for assigning compound identification, rather than not being present. Another example of 

useful biomarkers identified in this study are the neurotransmitter acetylcholine and the amino acid 

arginine, which are also linked to moulting, another highly energetic process in crustaceans (Ghanawi 

& Saoud, 2012; Raviv et al., 2008). Although in some decapod crustaceans mating is closely linked to 

moulting, in Cherax species a moulting crayfish will not mate (McLay & van den Brink, 2016), although 

the males will moult soon after the mating season. This was observed and described in Chapter 2 and 

the males were found to have significantly higher levels of these compounds in the metabolomic 

analysis.  
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6.3 Summary 
 

The situation for hairy marron in the wild is dire. This research has improved our understanding of the 

life history and reproductive physiology of C. tenuimanus and the differences between it and C. cainii. 

There is now a starting point for marron metabolomics, and the Cherax genus more generally, which 

can be built upon in future studies. A potentially puzzling finding is the profound differences between 

C. cainii and C. tenuimanus, even though the two species are so closely related, reflected by their 

different reproductive success in captivity and the rapid displacement of one by the other in the 

Margaret River. The observations and metabolomic data collected during this study confirm a 

difference in timing of life cycles, including moulting, reproductive maturity and mating season 

between the two species, and reminds conservationists that what works for one species may not work 

for the other in spite of their apparent similarity. 

 

 The current ex situ conservation strategy for hairy marron could be extended to include an artificial 

incubation program. This would see eggs being collected from female marron soon after extrusion 

and incubated in an artificial system to (hopefully) improve the success rate of eggs developing into 

juveniles. Metabolomic studies would be of significant benefit to such an approach; for example, they 

could be used to identify suitable brood stock, screen eggs for viability and be used to investigate the 

impacts of rearing conditions of juvenile development including nutrition and food preferences.  

It is hoped that these tools can be used to identify causes where the breeding techniques are failing 

and allow for implementation of techniques to improve breeding success of captive C. tenuimanus. 

Ultimately, successful captive breeding of C. tenuimanus will produce animals that could be used to 

restock the population in the permanent pools in the upper reaches of the Margaret River as well as 

populate a chosen Ark site (an alternate location within the Margaret River watershed that is free of 

C. cainii) (Duffy & Day, 2015). The metabolomic data obtained from this study will not only benefit the 

conservation of C. tenuimanus but can also be applied in conservation of other endangered species as 

well as the aquaculture industry. 

 

Untargeted metabolomic approaches provide the opportunity to find unexpected, surprising or even 

novel responses in an organism to environmental stressors (Bundy et al., 2009; Lankadurai et al., 

2013). Using a molecular or metabolomic approach can offer valuable information about a species 

rather than just using visual observation and overall measurements that do not assist with 

understanding the mechanism of stressors (Bundy et al., 2009). Metabolomics can help us investigate 
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threats to freshwater crayfish worldwide, which include climate change, habitat loss or modification, 

overfishing, pollution and environmental toxins, biological invasion, displacement by introduced 

species, hybridisation, and the spread of pathogen (Richman et al., 2015). For example, metabolomics 

has already been used to assess how crustaceans are affected by increased water temperatures and 

dissolved oxygen levels (Izral et al., 2018; Schock et al., 2013), environmental toxins such a metal 

contaminants and pharmaceuticals in water systems (Izral, 2016), and the spread of pathogens (which 

could also include bacterial infections in a captive breeding program). 

 

This study highlights the potential to modernise conservation strategies through new technologies 

and the overall hypothesis that metabolomics would identify potential biomarkers related to 

reproduction and stress in two congeneric freshwater crayfish species is accepted (while 

acknowledging that there is much work still to be done). The changes detected in the metabolome of 

the crayfish during this study represented real-time biochemical changes within the animals and this 

study will facilitate further development of metabolomic approaches to conservation and captive 

breeding. This is an exciting area of study and although an increasing amount of research is being 

published about crustacean metabolomics, metabolite identification, and the roles of various 

metabolites, we are only scratching the surface for understanding the exact nature of the mechanisms 

of action for these compounds. Metabolomic approaches can help us understand responses to a range 

of stressors whether biotic or abiotic, naturally occurring or human induced (Bundy et al., 2009).  

This study demonstrated that C. tenuimanus did mate in captivity and although the reasons for their 

low fecundity when compared to their sister species remain elusive there is hope that the power of a 

new approach such as metabolomics can contribute to resolving the puzzle. 
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Appendix A - Chapter 4 – Supplemental material  
 
 
 
A. 1. Metabolite classes for Chapter 4 
 

 

Figure A.1 Metabolite classes for Chapter 4 baseline study comparing C. cainii and C. tenuimanus. Total metabolites 88. 
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A. 2. HCA Heatmap annotated metabolites for C. cainii and C. tenuimanus 

 

Figure A.2 HCA heatmap for annotated metabolites (Cluster A-F) for C.cainii and C. tenuimanus males and females. 
Significantly high metabolite levels (red) low; significantly low levels (green); no significant difference (black).  
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A. 3. ANOVA plots for Chapter 4  
 

Identified metabolites from Cherax tenuimanus and Cherax cainii haemolymph, the two-way ANOVA 
plots below illustrate metabolite phenotypic behaviour displayed by clusters (A-F) based on 
hierarchical cluster analysis (Figure 4.3) and in the order from Table 4.2. Species on × axis with C. cainii 
(smooth marron) on the left and C. tenuimanus (hairy marron) on the right; the mean peak area of 
each metabolite on y axis; point values are log mean metabolite peak area ± standard error bars of 10 
females (blue) and 10 males (red). 
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Figure A.3. Identified metabolites from Cherax tenuimanus and Cherax cainii haemolymph Cluster A (n=8). 
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Figure A .3 Cluster B (n=18) Identified metabolites from Cherax tenuimanus and Cherax cainii haemolymph. 
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Figure A.3 Cluster C (n=8) Identified metabolites from Cherax tenuimanus and Cherax cainii haemolymph. 
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Figure A.3 Cluster D Identified metabolites from Cherax tenuimanus and Cherax cainii haemolymph. 
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Figure A.3 Cluster E. (n=23) Identified metabolites from Cherax tenuimanus and Cherax cainii haemolymph.  
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Figure A.3 Cluster F. Identified metabolites from Cherax tenuimanus and Cherax cainii haemolymph. 
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Appendix B – Chapter 5 - Supplemental Material. 
 

B.1.  Metabolite classes for Chapter 5 

 

Figure B.1 Chemical groups of annotated metabolites. Percentage based on the total number of annotated metabolites (54) 
in this study (Chapter 5).  

 

Table B.1 Cherax tenuimanus metabolomics trial from 27 October to 30 November 2017. Identification of individual 
animals (marron ID) FH – female, MH – males; wet weight (in grams) at day 0, which animals were placed together 
(aquaria), the dates that they were paired and the number of days with a potential mate at each haemolymph collection 
date.  

Marron ID Weight (g) Aquaria Date together 8-Nov 14-Nov 30-Nov 

FH 3 115.71 A12 2/11/2017 6 12 28 
MH 4 199.95 A12 2/11/2017 6 12 28 
FH 2 90.02 A19 2/11/2017 6 12 28 
FH 5 104.82 A16 1/11/2017 7 13 29 
MH 5 123.77 A16 1/11/2017 7 13 29 
FH 4 126.55 A11 1/11/2017 7 13 29 
MH 1 185.54 A11 1/11/2017 7 13 29 
MH 3 239.94 A20 28/10/2017 10 16 32 
FH 1 143.53 A18 28/10/2017 10 16 32 
MH 2 240.50 A18 28/10/2017 10 16 32 
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B.2. ANOVA plots for Chapter 5 
 

Plots of two-way repeated measures ANOVA analysis for each metabolite with clusters (A-E) organised by HCA analysis according to phenotypic similarity. The metabolites 
levels of females (red) and males (blue) over the four time points on the X axis and the mean peak area of the metabolite on the Y axis.   

Cluster A 

   

Time (n=3) 

      

 

Sex (n=2)  
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Time & Sex (n=2) Time × Sex interaction (n=1) 

  

 

Not significant (n=2)  
 

 

 
 

 



Appendix B 

130 

Cluster B (n=6) 

   
Time (n=3) 

   
Time × Sex Interaction (n=1) Not significant (n=2) 
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Cluster C 

   

   
Time (n=7) 
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Time (n=7) Sex (n=1) Time & Sex (n=1) 

   
Time × Sex Interaction (n=3) 
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Not significant (n=7) 
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Not significant (n=7)   
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Cluster D 

   

   
Sex (n=8) 
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Cluster E 

 

  

Time & Sex (n=1)   

   
Time × Sex Interaction (n=9) 
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Time × Sex Interaction (n=9) 
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B.3. Values calculated for Nernst Equation for oxidative stress 

  
Sex 

  
 ID_TP 

metabolite peak area   
Ehc (mV) 

Ehc (mV) 

GSH GSSG Mean  ±SE 

Female FH1_1 6159.99 15620.98 -340.04 

-331.1 15.7 Female FH1_2 11145.33 43121.80 -342.23 
Female FH1_3 4156.09 6852.08 -340.52 
Female FH1_4 366.49 588.93 -309.68 
Female FH2_1 1997.34 1807.76 -338.81 

-350.8 19.3 Female FH2_2 12916.20 6064.02 -371.19 
Female FH2_3 2313.77 4650.20 -330.46 
Female FH2_4 13325.05 12324.21 -362.89 
Female FH3_1 3885.31 2604.47 -351.20 

-356.9 28.4 Female FH3_2 23001.73 2627.44 -396.73 
Female FH3_3 3742.96 2685.30 -349.85 
Female FH3_4 8148.12 61424.65 -329.65 
Female FH4_1 2345.58 1607.28 -344.44 

-359.2 39.1 Female FH4_2 9834.59 50724.46 -336.93 
Female FH4_3 3037.54 4548.65 -337.73 
Female FH4_4 65356.88 4187.19 -417.56 
Female FH5_1 8061.48 13988.11 -348.36 

-369.6 52.7 Female FH5_2 11786.81 97362.06 -333.21 
Female FH5_3 4583.91 4267.03 -349.11 
Female FH5_4 276399.57 7059.47 -447.86 
Male MH1_1 3624.44 998002.91 -273.08 

-327.1 36.5 Male MH1_2 11904.93 61611.08 -339.34 
Male MH1_3 3677.25 4307.15 -343.33 
Male MH1_4 9198.54 13005.39 -352.68 
Male MH2_1 4147.82 123040.49 -303.40 

-376.3 56.5 Male MH2_2 6847.35 801.84 -380.86 
Male MH2_3 5978.19 669.20 -379.70 
Male MH2_4 112732.31 1947.63 -441.37 
Male MH3_1 6565.67 1183504.98 -286.14 

-352.7 46.5 Male MH3_2 9411.63 10729.69 -355.74 
Male MH3_3 8866.07 1401.89 -380.33 
Male MH3_4 15340.78 2212.93 -388.54 
Male MH4_1 14798.76 3502.84 -381.72 

-363.1 13.6 Male MH4_2 7741.96 11413.04 -349.93 
Male MH4_3 13886.58 12570.93 -363.69 
Male MH4_4 6532.57 4687.53 -357.00 
Male MH5_1 2599.74 80005.20 -296.94 

-348.9 38.6 
Male MH5_2 26811.71 9154.34 -384.65 
Male MH5_3 12029.47 5493.51 -370.63 
Male MH5_4 11410.62 40727.08 -343.56 
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Appendix C - Permits for conducting research with C. teniumanus and C. cainii at ECU. 
 

C.1. Regulation 16: Licence to keep fauna for educational or public purpose.  
 
Permit No. WW001595 - Department of Biodiversity, Conservation and Attractions (DBCA) (formerly 
Department of Parks and Wildlife - DPaW) valid 07-07-2017 to 06-07-2018. 
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C.2. Department of Fisheries Exemption No. 2958 
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