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Abstract

In recent years, Information-Centric Networking (ICN) has emerged as a promising candidate
for a future Internet architecture. While originally designed with the traditional Internet in
mind, it has also been identified as a potential replacement for current Internet of Things
(IoT) networking solutions. However, applications in the IoT face a number of unique chal-
lenges due to the constrained nature of the hardware. One of these challenges is that available

memory is often extremely limited.

This thesis aims to evaluate the feasibility of using ICN in-network caching on IoT devices
in order to achieve efficient content delivery. It evaluates the performance of existing ap-
proaches on constrained hardware and explores how the technology can be improved and
tailored towards that environment. Existing strategies are found to be lacking in key as-
pects, particularly the fact that the effects of network topology are often not considered
when making caching decisions. It is shown that approaches based on network centrality
are promising, but existing implementations are not suited for constrained hardware. There-
fore, a lightweight in-network caching strategy called Approximate Betweenness Centrality
(ABC) is proposed that takes the specific requirements of IoT into consideration and allows
for efficient cache placement regardless of network topology. Then, a modular solution for
load balancing through off-path caching is presented to address potential shortcomings of
the centrality-based caching approach. It allows the network to make more efficient use of
available caching resources without introducing additional overhead. Furthermore, solutions
for ensuring Quality of Service (QoS) are discussed. The expanded role of caching strategies

under such QoS constraints is explored and their performance is evaluated.

This thesis shows that it is possible to design and deploy lightweight, low-overhead solutions
on constrained hardware. Using a realistic deployment of physical IoT devices, it is demon-

strated that these approaches can reach satisfactory levels of performance.
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CHAPTER 1

Introduction

The Internet of Things (IoT) and its associated technologies are an active research field with
many unanswered questions. By its nature, the IoT connects many heterogeneous “things”
together, all of which have vastly different purposes and requirements as well as different
processing capabilities, energy sources, and memory capacities. A major concern in IoT re-
search is to find the most effective way to utilise the heterogeneous hardware in order to

achieve the goals of a deployment.

IoT deployments can have a wide range of possible goals. They may be gathering data for the
purpose of environmental, industrial, or structural monitoring; they may also have a tangible
effect on their environment by acting as actuators controlling systems such as Heating, Ven-
tilation, and Air Conditioning (HVAC) or security infrastructure. Furthermore, in any given
IoT deployment, the devices themselves may differ significantly in terms of resources and
capabilities. Devices that fall under the IoT banner include mobile phones, tablets, and other
“smart” personal devices, components of building automation and smart-home systems, as
well as a wide range of sensors and actuators. As of 2019, it is estimated [93] that the number
of connected IoT devices will exceed 40 billion by 2025, with almost 80 zettabytes of data

generated.
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Table 1.1.: Classes of constrained devices [29]

Class ROM RAM
0 << 100kB << 10kB
1 ~ 100 kB ~ 10kB
2 ~ 250 kB ~ 50kB

The unifying features of the IoT devices discussed in the context of this thesis are the ability
to communicate wirelessly (typically using IEEE 802.15.4 [1]) and a small form factor. In
order to be able to scale networks up to include hundreds or even thousands of individual
nodes, the devices themselves are necessarily severely constrained so as to be economically
and physically viable. Constraints typically take the form of limited processing power and
memory as well as running on batteries that can be difficult to replace, especially in outdoor
environments. These physical constraints in turn lead to constraints on the software running
on the device. Limited Read-Only Memory (ROM) implies limited code complexity, limited
Random-Access Memory (RAM) implies limited program state/memory, limited processing
power implies a limit on computational complexity, and limited battery life implies a need

for energy-efficient solutions.

To quantify these constraints, some classification is needed. Bormann et al. [29] divide con-
strained devices into three classes according to their ROM and RAM sizes, which are repro-
duced in Table 1.1. This thesis is primarily concerned with class 2 devices, which are most
common in typical environmental, agricultural, and industrial monitoring applications. Their
comparatively large memory means that they are generally capable of supporting the same
protocol stacks (e.g. TCP/IP) found on larger devices, albeit sometimes as compressed vari-
ants (e.g. 6LOWPAN [82]). Any constraints considered in the remainder of this thesis become

even more significant if applied to lower class devices.



The unique limitations of IoT devices have inspired dedicated research communities to work
on solutions. The limited processing power of single devices is nowadays mitigated by using
distributed solutions to complex problems and having neighbouring nodes cooperate with
one another. Short battery lifetimes are counteracted by placing a focus on energy efficiency
as well as more advanced solutions such as energy harvesting [128], whereby devices are
enabled to capture and store energy from various external sources. Finally, the problem of
limited memory is addressed by optimising cache placement within the network to grant all
network participants efficient ways to store and retrieve relevant data, as well as introducing

filtering mechanisms to reduce the total amount of data being transferred from node to node.

Another challenge in the field of IoT is that of reliable and efficient content delivery. Since
most IoT communication uses wireless communication channels, delivery is not always guar-
anteed. Especially in time-critical applications where unlimited retransmissions are not an
option, this can pose serious problems. Compounding this issue is the fact that there is not
much that can be done on the software side to improve the reliability of individual transmis-
sions — wireless communication is inherently unreliable, and any application that relies on it
needs to be able to work around this fact. However, even if individual transmissions cannot
be made more reliable, the robustness of the overall data delivery can still be increased by
decreasing the impact of failed transmissions and dropped packets. One prominent approach
to this is the use of in-network caching. As content traverses a wireless multi-hop path from
sender to receiver, intermediate nodes store a copy of the data, so that in the case of a dropped
transmission, it can be retransmitted from the last node that successfully received it rather
than re-initiating the entire transfer from the original sender. This also increases the effi-
ciency of content delivery, as access times are reduced for content that is cached closer to

the nodes who request it.

Although promising, in-network caching does come with an important caveat. As described
above, the context of IoT generally implies devices with severely constrained memory, which
limits the amount of data that can be cached by individual devices. Therefore, any solu-
tion that implements in-network caching for constrained devices needs to prioritise being

lightweight.
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In-network caching is an essential part of Information-Centric Networking (ICN), a com-
pletely new networking paradigm that has been gaining traction in the networking commu-
nity [157]. Although not developed specifically for the IoT, its data-centric nature makes it
a promising candidate for IoT applications [120]. However, as introduced above, the ques-
tion remains whether the benefits offered by ICN caching strategies can be achieved in the

constrained context of IoT.

Ensuring efficient content delivery in IoT devices in a lightweight fashion is clearly a major
challenge. While performance is affected by all of the factors — unstable links, limited pro-
cessing power, finite battery life — described above, this thesis will specifically concentrate
on the impact of constrained memory. This leads to an exploration of the new networking
paradigms of ICN, specifically the benefits derived from their caching, for their applicability

in constrained-memory environments.

1.1 Motivation

In the future envisioned by the IoT paradigm, billions of objects will be interconnected in
very large networks and seamlessly embedded in the surrounding environment, creating a
completely new family of applications and services. The fundamental building blocks of this
vision are smart objects with the ability to sense physical phenomena and trigger actions

that have tangible effects in the physical world.

IoT communications are increasingly focused around the retrieval of large amounts of ac-
tuation, measurement, or monitoring information from large numbers of sources, while the
actual, physical location of these data sources is less important. In other words, traffic pat-
terns in a typical IoT application will take the form of consumers requesting a certain piece
of data (such as the current occupancy of a room or the average humidity in a forest prone
to wildfires) without knowing or caring which specific device will provide this information.
Furthermore, in complex monitoring scenarios, the same data may be requested by multiple

consumers at the same time.
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In traditional IoT networking, this would mean that large amounts of redundant data would
clog up the network and cause congestion problems. However, the shift in traffic patterns
from connection-centric to content-centric communications has led to novel ways of think-
ing about networking, most prominent among them the family of networking paradigms
known collectively as Information-Centric Networking (ICN). A notable advantage of these
new approaches, apart from improved support for dynamic network topologies, is the ability

to provide ubiquitous and transparent in-network caching of data.

In-network caching is attractive for IoT, since it not only reduces latency in accessing content,
but can also reduce network traffic, balance load, improve resource utilisation, and increase
the stability of the network as a whole. Because of these benefits, caching in IoT has become
an active area of research, especially as part of ICN approaches [14, 66, 68, 69, 88, 94, , ,

, 166]. In addition to its built-in caching, ICN also has the potential to improve network

flexibility and adaptability thanks to its native support for mobility and multicast.

However, as opposed to the traditional Internet, IoT data are typically small in size, transient,
and frequently superseded by newer versions. This means that caching decisions must be
based on dynamic factors such as application requirements and the time ranges for which
the content is projected to remain relevant. At the same time, unlike routers in the traditional
Internet, IoT devices are often resource-constrained, with limitations in terms of processing
capabilities, memory, and energy. For these reasons, caching algorithms designed for intran-

sient Internet traffic are generally regarded as ill-suited for IoT applications [68, 69, 121, 141].

Interestingly, existing research [21] suggests that even when caching is completely disabled,
IoT applications can benefit from ICN, simply because the network stack provided by popular
implementations such as CCN-Lite is significantly slimmer than that of e.g. 6LoOWPAN / IPv6
/ RPL, which is currently the de-facto standard in most IoT applications [175-177]. Neverthe-
less, it would be desirable to have the ability to utilise a full-fledged ICN implementation in

the IoT, including caching, in order to use the technology to its fullest potential.
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1.2 Problem Statement

Distributed IoT applications often produce large amounts of content, a lot of it redundant. If
there is so much traffic that the network as a whole begins to suffer, e.g. from congestion,
memory constraints, or exhaustion of processing power, it is necessary to find a solution that
effectively reduces the amount of traffic generated by the application without reducing the

quality of the results.

Traditionally, this problem has been approached using techniques such as duplicate data
detection and filtering, often through explicit detection approaches such as classifiers. How-
ever, these solutions often come with their own computation and communication overheads
and it can be difficult to balance the benefits and drawbacks of complex filtering approaches.
An ideal solution would be one that performs data aggregation inherently as one of its core
communication primitives. This leads us naturally to the new paradigm of ICN, which solves
the filtering problem by making each piece of data idempotent, meaning that data objects
have value beyond point-to-point connections and can be easily reused without any need for

duplication (the theory behind this is discussed in more detail in Section 2.1).

IfICN paradigms are to be brought to the IoT, however, there are unique challenges that need
to be addressed:

« As noted in Section 1.1, IoT contents are on the whole rather different from “normal”
Internet contents. While modern Internet traffic is more and more being dominated
by large media files, IoT content is generally small and transient. This means that in
addition to considering the differences in hardware, caching strategies for information-

centric IoT should ideally also take into account differences in the content they handle.

+ IoT deployments have a wide range of possible topologies. Topology and caching are
closely intertwined; the topology has a direct influence on which nodes in the network
are the best candidates for caching content, as it determines where in the network con-
tent flows are most likely to intersect. Some caching strategies tend to keep content
close to the network’s core, while others prefer to push it out towards the edge. A

caching strategy that does one or the other may be extremely efficient in one topology
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type and utterly useless in another. Furthermore, if the network topology is dynamic,
the ideal caching location may change over time. Therefore, an optimal caching strat-
egy should aspire to work equally well in all topology types and have the ability to

adapt to dynamic topologies.

« Selecting specific nodes to cache on, particularly if dictated by topology, can result
in a load balancing problem, where certain nodes end up caching a much larger pro-
portion of the network’s content, making them more important, which means that
more requests will be routed towards them, which in turn may overtax their resources,
leading to a decrease in overall performance. To counter this, it would be desirable
to make caching more intelligent and flexible, specifically by enabling caching nodes
to offload some of their cached content to their neighbours in order to more evenly

balance caching load in the network.

In short, the idiosyncrasies of IoT and their interaction with ICN approaches need to be fully
explored and understood before viable approaches can be found. Any proposed solution will
have to take into account the unique traffic shapes and topology effects found in the IoT

while being lightweight and able to be deployed on severely limited hardware.

1.3 Research Questions

The primary aim of this thesis is to find ways to ensure lightweight and efficient content
delivery in IoT environments. This overarching goal will be approached by addressing the

following research questions:

1. How to bring the full benefits of Information-Centric Networking (ICN), including its

caching mechanism, to the resource-constrained environment of IoT?

To satisfyingly answer this question, the following ancillary questions need to be answered:

a. What are the characteristics of ICN caching when applied to the IoT?
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What metrics can be used to characterise caching efficiency in IoT? What is the rela-
tionship between caching decision strategy and cache replacement policy? How can
we get the most out of the limited caching resources of a typical IoT device? All of these
questions need to be answered before attempting to design an ICN caching solution
for the IoT.

b. How does network topology affect caching effectiveness and how can sufficient

caching performance be achieved regardless of topology type?

The relationship between topology and caching is intricate and worth exploring. Identi-
fying which caching strategies work best with which topology type can provide useful
information if the topology type of a given network is known and unchanging, while
developing a caching strategy that is effective regardless of topology would be of great

benefit to deployments with unknown and/or dynamic network topologies.

2. How to achieve efficient caching in distributed IoT applications while minimising mem-

ory requirements?

Using what was learnt from the previous research questions, how do we go about designing
a caching strategy for information-centric IoT that acknowledges the specific characteristics
of that domain and takes optimal advantage of the idiosyncrasies of IoT? How do we lever-
age topology effects to determine optimal caching locations in the network? Furthermore,
how could Quality of Service (QoS) considerations for differently prioritised traffic flows be

integrated into such a system?

3. How to balance caching duties in the network so that available resources are evenly

utilised without sacrificing performance?

Devices that happen to occupy optimal caching locations are likely to experience stronger
load than their neighbours. How can we pass some of that load on to underutilised de-
vices without drastically increasing content delivery latency? The challenge is to find a non-
intrusive way for neighbours to communicate their respective caching loads and to transfer

cached data between each other.
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1.4 Research Goals

The goal of this thesis is to explore ways to ensure reliable and efficient data delivery in IoT

applications using ICN.

The specific research objectives of this thesis are as follows:

+ Objective 1: Characterise the behaviour of ICN caching in the IoT.

The aim of this objective is to produce a comprehensive overview of the factors affect-
ing caching performance in information-centric IoT. This includes analysing existing
caching strategies and how they could be deployed to IoT devices, defining suitable
metrics for quantifying caching performance as well as designing an experiment setup
suitable to compare and contrast different approaches to caching using the aforemen-
tioned metrics. Furthermore, effects unique to the IoT environment, such as the wire-
less network topology, need to be discussed and characterised and their impact on

caching performance quantified.

« Objective 2: Design a lightweight topology-independent caching strategy for infor-

mation-centric IoT.

Using the knowledge gained from Objective 1, the aim of this objective is to provide
a general in-network caching solution for IoT that can offer certain performance guar-

antees even in deployments where the topology is unknown or dynamic.

+ Objective 3: Design a lightweight and efficient off-path caching strategy for infor-

mation-centric IoT.

The aim of this objective is to reduce the risk of overtaxing individual devices identified
as ideal caching candidates, as well as to better utilise all caching resources available

in the network while keeping the communications overhead to a minimum.
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1.6 Organisation of Thesis

The rest of this thesis is organised as follows: Chapter 2 provides an overview of relevant
research in Information-Centric Networking and the opportunities and challenges it brings
to IoT. It also provides a comprehensive overview of the most prominent caching decision
strategies and cache replacement policies and their applicability to the IoT context. Chap-
ter 3 presents experimental evaluations and performance comparisons of several different
caching approaches, with a particular focus on content delivery latency and how it is af-

fected by network topology. In Chapter 4, these findings are applied to the design of a novel,



1.6. Organisation of Thesis 11

topology-independent caching strategy that is specifically designed for deployment in IoT
and accounts for the constraints of the domain. In Chapter 5, the caching strategy proposed
in the previous chapter is further refined to include an off-path caching component that en-
ables it to make better use of available caching resources in the network while reducing load
imbalances and keeping overheads to a minimum. Chapter 6 presents a further extension
to existing caching strategies that allows traffic of different Quality of Service (QoS) levels
to be treated appropriately without sacrificing performance or increasing complexity. This
contribution was developed in cooperation with researchers from other institutions and as
such is slightly removed from the rest of the research presented in this thesis; nevertheless,
it provides novel insights into the role of caching under QoS constraints. Finally, Chapter 7

presents conclusions and an outlook of open questions and potential future work.






CHAPTER 2

Literature Review

This chapter will give an overview of the existing body of research relevant to this thesis. It
will discuss the family of Information-Centric Networking (ICN) approaches and their associ-
ated challenges, with a particular focus on Named Data Networking (NDN) and its potential
for the IoT. Existing research on the question of caching in the Information-Centric IoT is
discussed in detail, as the opportunities and challenges it brings are foundational motivations

for this thesis.

2.1 Information-Centric Networking

Content-Centric Networking (CCN), was first proposed by Jacobson et al. in 2009 [73]. CCN
and its successors are often grouped together with similar approaches under the umbrella
term Information-Centric Networking (ICN). Their main contribution constitutes a complete
overhaul of the existing approach to networking, replacing the host-based addressing sys-
tem of IP with a new system that treats named content objects as first class network enti-
ties. CCN decouples location from identity by basing its routing logic entirely on the unique
names of the routed content objects instead of unique addresses of hosts. This allows network
participants to be agnostic about where their requested content actually resides in the net-

work, as well as enabling transparent systems for in-network caching and replication of data,
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Figure 2.1.: Comparison of TCP/IP and ICN protocol stacks

thus increasing availability and performance. It also leads to a simplification of the network
stack: DNS becomes obsolete, routing becomes optional, and the network functionality of
TCP/IP and application-layer functionality such as Content Delivery Networks (CDNs) are
compressed into the ICN layer (see Figure 2.1).

The original design of the Internet’s architecture was based on point-to-point connections
between individual hosts. The development of CCN and its ICN relatives was driven by the
observation that this does not reflect the way the Internet of today is primarily used: as a
network for the distribution of information. ICN allows consumers to focus on the actual
data they need without having to define specific, physical locations from which to retrieve

this content.

Furthermore, decoupling content from its physical location also makes it possible for iden-
tical copies of this content to be stored at multiple locations in the network, thus making it
more easily accessible for consumers that have high latency to the original producer. This is
similar to the concept of Content Delivery Networks (CDNs), but here it is integrated directly

into the network layer instead of being a closed ecosystem on the application layer.
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2.1.1 ICN Architectures

While CCN and its successor NDN (see below) are the best-known representatives of the
ICN family and will be the focus of this thesis, there are several other architectures that
fall under the same umbrella. The most noteworthy ones are briefly described here. PSIRP /
PURSUIT [56, 136] is a blank-slate approach that replaces the IP protocol stack with a publish-
subscribe architecture in which the topology (i.e., the routes between nodes) is actively man-
aged based on the subscriptions that exist. Unlike CCN, data delivery does not necessarily
take the same path as the corresponding request, making on-path caching less viable. Net-
Inf [46], the architecture of the SAIL project, is based on a hierarchy of caches of different
sizes and capabilities, with content placement determined by popularity. This is a heavy-
weight approach and likely unsuitable for IoT deployment. COMET [5&] provides an ICN-like
architecture that nevertheless explicitly allows for location-aware services, such as retriev-
ing information from a specific subset of nodes. The CONVERGENCE project’s CONET [47]
architecture is a transitional approach that reuses parts of the existing IP architecture to
provision a content-aware architecture that can run either natively or as an overlay. It is
otherwise fairly close to CCN in design, but routing information for data packets is stored in
the interest packet instead of at the content routers, and routing as a whole is more tightly
integrated into the architecture. Finally, the MobilityFirst [129] project is an ICN architecture
specifically designed to treat mobile devices as first-class citizens. As such, names are even
more strongly decoupled from network entities than they are in CCN, with entities having

globally routable IDs to ensure reachability.

The ICN family also includes some technologies that are older than CCN, such as DONA [77],
which already incorporated some of the concepts that would later come to define CCN. How-

ever, CCN was the first approach to fully define most of the concepts now considered integral
to ICN.

Xylomenos et al. [157] provide a comprehensive survey on the past, present, and future of
ICN.
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2.1.2 Named Data Networking

Named Data Networking (NDN) [163], which has emerged as one of the most popular ICN
solutions in recent years, is a comprehensive implementation and extension of the ideas
brought forward by CCN. While it is not the only ICN implementation under active develop-
ment, research suggests that it is the most suited for IoT applications thanks to its scalable
naming technique and flexible approach to caching [14]. Therefore, it will be discussed here
as a representative of ICN as a whole, since most of its aspects are generalisable to that larger
field.

Like CCN, NDN represents a shift from the host-centric architecture of IP towards a content-
centric architecture, where the primary function of the network is not delivering packets to
specific addresses, but fetching data identified by unique names. Current NDN research is
funded by the United States National Science Foundation (NSF) as part of its Future Internet

Architecture Program.

NDN defines two fundamental types of packets used for communication: Interest and Data.
When a consumer wants to request content, it puts the unique name of that content into an
Interest packet and sends it to the network. Routers in the network then forward the Interest
towards the named data’s producer. Once the Interest reaches a network node that has the

named data, a Data packet carrying the data is returned to the consumer.

This mechanism is made possible by the router architecture specified by NDN. An NDN
router defines three NDN-specific structures: A Content Store (CS), a Pending Interest Table
(PIT), and a Forwarding Information Base (FIB), as illustrated in Figure 2.2. When an NDN
router receives an Interest packet, it first checks whether it has data in its CS that matches
the Interest. If it does, it can immediately satisfy the Interest by replying with a Data packet
containing the named data. If the router does not find the named data in its CS and does
not have a PIT entry corresponding to the named data, it consults its FIB to decide on which
interface to forward the Interest. The FIB is a routing table that maps names to interfaces. The
router uses its FIB to forward Interests it cannot satisfy on one or more interfaces. Routers
may use an arbitrarily complex forwarding strategy to choose the best interface for each

name. Once the router has forwarded the Interest, it creates an entry in its PIT that names
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the requested data along with the interface on which the Interest was received. Each received
Interest is first checked against the PIT before it is forwarded. If a corresponding PIT entry
is found, this means that the router has already forwarded an Interest for the same data, and
instead of forwarding the Interest, it simply adds the new interface to the PIT entry. When
the router receives a Data packet, it checks the name of the contained data against its PIT,
forwards the Data to all interfaces listed in the corresponding entry, and, if possible, saves
the Data in its own CS. The forwarding logic described above is illustrated in Figure 2.3 and

broken down into the components of a single NDN router in Figure 2.4.

The mechanisms described above result in a hop-by-hop forwarding paradigm that ensures
that multiple requests for the same piece of data are consolidated at each hop and that con-
tent is duplicated and cached at various points in the network. Due to the way Interests are
recorded at the routers, a Data packet always travels the reverse of the path taken by the
Interest(s) that requested it. Thanks to the built-in caching mechanism, popular data objects
are automatically replicated across the network, making them more accessible and reducing
congestion. NDN also supports native multicast by allowing routers to forward Interests on
more than one interface. This also leads to greater stability of the network, as information

retrieval is not dependent on links to individual hosts.

Extensive work has gone into extending and refining all aspects of ICN. One of the major
changes introduced by NDN concerns the role of the forwarding plane. In traditional IP rout-
ing, the forwarding plane is stateless and simply follows the rules set by the routing plane.
In NDN, on the other hand, since the routers keep track of incoming Interests, the forward-
ing plane is stateful. Furthermore, since NDN has the built-in capability to forward Interests
on multiple interfaces, its forwarding mechanism is described as adaptive forwarding. The re-
search conducted by Yi et al. [159, 160] represents an in-depth examination of the capabilities
and limitations of NDN’s forwarding plane. Yi also proposes several new forwarding plane

mechanisms for fast failure detection and congestion control [160].

A major question of CCN and NDN that was left unanswered by the original proposals was
how producers can announce the names of their data to the rest of the network and how
these names are propagated through the network — in other words, how routers construct

their routing tables. Early implementations of CCN relied entirely on statically constructed
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FIBs. However, this approach is not scalable; dynamic solutions are required. Because name
announcement in NDN has very similar requirements to prefix announcements in traditional
IP routing, it is possible to develop appropriate solutions based on existing, well-understood
routing protocols. A first step towards solving the problem was OSPFN [149], based on Open
Shortest Path First (OSPF), which still used IP addresses to identify routers and could only
compute a single best hop for any given name. The next iteration of NDN routing protocols
was NLSR [70], which adapts the Link State Routing (LSR) approach of OSPFN to use only
NDN infrastructure. NLSR uses NDN’s Interest and Data packets to disseminate routing in-
formation and is able to rank the available forwarding options for each data name to enable

adaptive forwarding.

Since NDN has neither end-to-end virtual channels nor ports, IP’s socket API obviously can-
not be used for communication. Moiseenko and Zhang [99] propose a producer-consumer
API for NDN that is designed to replace the socket APL. It introduces producer and consumer
contexts, which associate NDN names with various functions related to their production and
processing, respectively. The API includes functions for content verification, packet framing,

caching, content-based security, and namespace registration.
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Afanasyev et al. [5] discuss the question of fragmentation in NDN. End-host or end-to-end
fragmentation, as common in IP, is not feasible for NDN due to its hop-by-hop nature. Interest
packets need to be complete at each hop for the NDN router to be able to decide how to
answer them, and Data packets need to be complete in order to be matched against the PIT.
In addition, IP’s pre-fragmentation of data based on path Maximum Transmission Unit (MTU)
is not possible in traditional NDN because of the reusability of Data packets. Therefore, NDN
uses a hop-by-hop fragmentation and reassembly strategy (HBH F/R), in which packets are
fragmented at each hop according to the next hop’s MTU and then reassembled there. The
reference implementation of the HBH F/R protocol is NDNLP [133]. The impossibility of
pre-fragmentation in NDN has since been called into question by newer strategies such as
STNDN [119], which allows for independent routing of fragmented content chunks, with

aggregation only occurring at selected nodes along the transmission path.

2.1.3 Security and Stability

Security and stability play an important role in any networking technology. Since content in
ICN is allowed and even encouraged to be replicated at multiple points in the network, steps
need to be taken to ensure integrity and provenance of data objects. NDN solves this problem
by requiring data producers to cryptographically sign every Data packet they produce [73].
The question of whether to actually trust a given producer is left to the consumer. Requiring
content to be signed can also help mitigate prefix hijacking [159]. Since public keys can be

distributed via NDN, it is also possible to encrypt data objects.

Burke et al. [33] propose a full-fledged security paradigm for NDN, demonstrated using a
lighting control system. Their approach makes use of well-known public-key cryptography
methods to sign not only Data, but Interest packets bearing commands in order to provide
trust in actuation commands. The public-key infrastructure requires some out-of-band boot-
strapping in order to provide network participants with the root public key of an Authori-
sation Manager (AM), but once trust in the AM is established, the AM can delegate trust
management of arbitrary namespaces to selected network participants. Commands issued to

actuators then take the form of an Interest with the name containing the intended receiver,
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the issuing application, the command itself, and an authentication nonce computed using the
application’s private key. The receiver can then verify the command using the application’s
public key (and optional Access Control Lists (ACLs) to ensure access rights in addition to

provenance).

In terms of stability, NDN has the benefit of being immune to traditional DDoS attacks, since
direct addressing of individual hosts is not supported. However, there is a similar attack vec-
tor called Interest Flooding, in which attackers oversaturate the network with bogus requests
for (non-existent) data, leading to congestion and choking out legitimate Interest packets.
Afanasyev et al. [4] propose an effective approach, taking advantage of NDN’s stateful for-
warding plane, to combat this type of attack by introducing a satisfaction-based pushback
mechanism that limits data rates to consumers based on the rate at which their Interests can
be satisfied.

Wihlisch et al. [143] provide a comprehensive overview of the different attack vectors that

are theoretically feasible in NDN.

2.1.4 Quality of Service

Because it comprises more diverse resources (forwarding queue, PIT, and CS) than IP, ICN
lends itself more naturally to Quality of Service (QoS) considerations than traditional net-
working. Several approaches have been proposed within the Internet Research Task Force
(IRTF)’s ICN research group [64, 74, 98, , ]. Potential solutions include encoding ser-
vice classes into content names [74, 98] or extending ICN message types with reliable versions
of Interest and Data packets [139]. However, most existing solutions may lead to inflation
of names or PIT entries as they allow for content with the same name to have different ser-
vice classes. This runs counter to the idea of aggregating Interests and Data at the PIT and
CS based on their names. This could prove infeasible for solutions intended for constrained

devices.
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2.1.5 Applications

Several purely NDN-based applications have been developed during the development of NDN

itself, such as Chronos [174], a serverless multi-user chat service.

NDN seems to be particularly promising for the building automation domain, which presents
unique challenges in terms of sensing and actuation. Prominent examples of building man-
agement systems using NDN are the lighting control system proposed by Burke et al. [33]
(which can be generalised to describe any sensing-actuation system), NDN-BMS [130], a build-
ing management system deployed at UCLA, and a disaster management system for smart
campuses proposed by Ali et al. [7]. The latter also has significant overlap with ICN-related

research in the IoT (see Section 2.1.8).

NDN support is also being brought to browsers and the client side of the web thanks to
projects such as NDN.js [131], which for example allows easy browser-side interaction with
NDN content using the ndn:// URI scheme.

2.1.6 Publish-Subscribe Patterns and the Push Primitive

One key area in which the NDN approach has been found to be lacking is publish-subscribe
based architectures and applications that rely on push operations. At its core, NDN is de-
signed with consumer-initiated content distribution in mind, i.e. individual pieces of content
are only transmitted from producer to consumer if explicitly requested by the consumer.
In publish-subscribe architectures, on the other hand, consumers express a general, open-
ended interest in any (future) content a specific producer offers, which will then be delivered
to them continually without explicit prompts. This type of content delivery is not explicitly
provided for in NDN.
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While some of the other ICN technologies described in Section 2.1.1 offer native support for
publish-subscribe, such as COMET [58] and PSIRP [136], these architectures typically come
with much more significant overheads than NDN does. Consider for example PSIRP’s reliance
on explicit topology managers and use of Dynamic Hash Tables (DHTs) and Bloom filters.
These represent a layer of complexity that is, in all likelihood, not a worthwhile tradeoff in ex-
change for publish-subscribe functionality, particularly in the IoT space. Instead, the research

trend within NDN is oriented towards supporting the paradigm using existing primitives.

A naive approach to implementing publish-subscribe functionality using NDN could be to
have consumers periodically send Interests for content they want as a way of simulating
subscriptions. However, this content may or may not actually exist, which could result in
high messaging overheads. Moreover, consumers would not be able to control the update
frequency if consumers decide how frequently requests are sent. An alternative approach
would be to introduce special long-lived Interests that are not discarded upon being satisfied,
instead remaining at intermediate nodes’ PITs until they expire or are cancelled by the con-
sumer. However, this would introduce further complexity to Interest handling, particularly

if combined with regular (not long-lived) Interests.

Carzaniga et al. [40] suggest exploiting the fact that there exists a symmetry between how
producers in NDN register prefixes and how consumers in publish-subscribe architectures
register interests. Both work by registering prefixes in forwarding tables, which are then
used to aggregate and forward Interests to producers (in NDN) and update notifications to
consumers (in publish-subscribe). They argue that when viewed this way, the only difference
between NDN and publish-subscribe in terms of forwarding is the source of the forwarding
information: in NDN, the producer, and in publish-subscribe, the consumer. However, this
symmetry is broken on the opposing side. An Interest packet is expected to result in a Data
response, while a push message satisfying a subscription is one-way. In addition, NDN Inter-
ests are not necessarily forwarded all the way to the producer who announced the prefix if
they can be satisfied along the way, whereas a push message must always reach its intended
recipient. In order to combine the two paradigms, a network must thus be able to differenti-
ate between three types of messages: one-way messages, messages that expect a reply, and

replies.
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In the IoT space, Giindogan et al. have developed HoPP [61], a publish-subscribe scheme for
information-centric IoT networks that utilises link-local unicast advertisements to inform
subscribers of the availability of new content. Subscribers can then request this new content
using the standard NDN paradigms of sending an Interest and receiving the Data in return.
The authors find that HoPP is robust and resilient and that its performance in the IoT is even

better than comparable non-ICN approaches such as MQTT [60].

2.1.7 Remote Procedure Calls

Remote Procedure Call (RPC) [104], also known as Remote Method Invocation (RMI), Re-
mote Function Invocation (RFI), or Distributed Object Communication, is a set of principles
governing the communication between distributed objects in a network. It allows network
participants to call functions implemented by other network participants without having to
explicitly account for the fact that the callee is a different machine. While ICN was not explic-
itly designed with RPC in mind, its communication primitives lend themselves naturally to
its implementation. An Interest could easily represent the function call, while the correspond-
ing Data represents the return value. This fact was exploited early on in the development of
NDN and has resulted in the proposal of Named Function Networking (NFN) [138] as well as

more recent iterations such as Named Function as a Service (NFaaS) [50].

These solutions extend the named data model of ICN to include remote functions in the set of
requestable objects. While NFN is a purely functional approach, the later NFaaS generalises
the concept to create a more dynamic solution that allows nodes in the network to download
(i.e. cache) functions and use them locally. This way, other ICN primitives, such as caching
and forwarding strategies, can be applied to optimise the distribution of functions in the

network.

A contribution to this field that recently garnered a lot of positive attention is RICE [78],
which addresses previously unsolved challenges such as authentication and authorisation,
parameter passing, and support for non-trivial operations. This idea has since been further

developed into an approach called Compute First Networking [79].
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2.1.8 ICN and the IoT

Research on how to apply ICN paradigms to Wireless Sensor Networks (WSNs) and the IoT is
still a comparatively young field. However, researchers are laying the foundations of what is
sometimes called the Named Data Network of Things (NDNoT)— in particular, current research
is focused on how to adapt and optimise existing ICN strategies to the unique environment of
IoT, with its unreliable links and devices that are constrained in both memory and processing

power.

Amadeo et al. [10] discuss the relative merits of NDN for the IoT as opposed to other data-
centric approaches such as Directed Diffusion (DD) [72] — which is also centred around a
hop-by-hop forwarding paradigm — and propose a modified NDN scheme called dd-NDN
that integrates aspects of DD into NDN, such as a Next Hop Table (NHT) that can be used to

express path preferences for Interest and Data packets.

Baccelli et al. [21] discuss the potential benefits ICN can bring to IoT environments. They
ported the NDN implementation CCN-lite' to RIOT-OS [19, 20], an operating system for the
IoT, and conducted real-world experiments using an existing testbed consisting of 60 nodes
distributed across three university buildings. They tested two different approaches to routing.
The first is a simple Interest flooding mechanism that does not require any FIB entries, fitting
the memory constraints of IoT devices but placing excessive load on the network. The sec-
ond is a reactive scheme that, after initially flooding Interests, constructs adaptive FIB entries
based on received Data packets. The authors also evaluated the impact of in-network caching
on network congestion and compared NDN’s performance and memory footprint (using the
reactive routing scheme) to that of the 6LoWPAN/IPv6/RPL network stack. They found that
NDN’s RAM and ROM usage is less than a quarter of RPL+6LoWPAN’s, and the load it places
on the network (in terms of sent packets), even with in-network caching disabled, is less than
half. However, they note that NDN packet processing, especially related to name prefixes, is
a CPU bottleneck, which is especially problematic for constrained devices with limited pro-
cessing power. Long names in particular are an issue, as the small MTU typically found in

IoT environments can lead to a single Interest packet being split into several transmissions.

1h‘ctps ://github.com/cn-uofbasel/ccn-lite


https://github.com/cn-uofbasel/ccn-lite

2.1. Information-Centric Networking 27

The authors suggest losing the soft requirement of NDN names being human-readable, as
a majority of communications in typical IoT applications is machine-to-machine and using
binary representations for names would greatly reduce the amount of packet space taken up
by the name. It must however be noted that this would preclude the ability to use crypto-
graphically generated names. The authors also propose several IoT-specific enhancements to
the ICN paradigm, such as forwarding content requested by multiple neighbours with a sin-
gle multicast message and optimistically caching unsolicited content chunks received from

broadcast messages.

Melvix et al. [97] propose a context-aware forwarding strategy for the NDNoT that takes
into account the relevant application’s tolerance for inaccuracy when making forwarding
decisions, such as whether to respond to Interests by reusing cached data or data from sim-
ilar queries. Interests from different domains (i.e. different applications) may be mapped to
the same producer, but the applications might have different requirements regarding accu-
racy and freshness, which may necessitate different forwarding decisions. This is solved by
inserting an additional context classification step — the Domain Resolution Engine — between
the normal name resolution and forwarding decision steps taken when an Interest is received.
This way, Interests from an application that requires accurate and fresh data can be forwarded
directly to the producer without wasting time checking the CS, while less critical Interests

may be satisfied by using cached data.

A comprehensive and up to date overview of the state of the art of information-centric IoT
research is presented by Djama et al. [49]. Their contribution is a survey and meta-survey that
introduces a taxonomy of existing research and discusses and compares current research
and identifies open research questions in the areas of caching, QoS, security, in-network

processing, publish-subscribe patterns, and more.
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2.1.9 Summary of Information-Centric Networking

ICN is a highly active research area with significant potential in IoT, but also many unan-
swered questions. It remains to be seen how faithfully its fundamental concepts can be trans-
lated to the context of IoT and what new issues may arise from this transition. As the field is
still young and growing rapidly, any snapshot of existing research will not reflect the state

of the art for very long.

2.2 Caching Strategies in Information-Centric loT

ICN has been shown to have a lot of promise for IoT applications, thanks to its content-
centric nature and slim network stack [2, 13, 16, 71, 91, , , , ]. However, one of
the core tenets of traditional ICN is the automatic and indiscriminate caching of any and all
received content. This does not translate well to the IoT, where resources such as memory are
often severely limited. In traditional networks, it is conceivable to have dedicated caches with
virtually unlimited storage space, or even to have each participating node cache all content
it receives. In IoT, however, this is neither possible nor productive. Instead, consideration
needs to be given to the question of what content and how much of it should be cached, how
long it should be cached, and what content should be replaced once the cache inevitably fills
up. While traditional ICN has attempted to answer these questions, most of the proposed
solutions still rely heavily on large caches. If this resource is unavailable, their performance

suffers.

Although transferring ICN caching to the IoT comes with these limitations, it is still a promis-
ing avenue of research. Especially in multihop scenarios, where packets have to traverse mul-
tiple lossy wireless links, on-path caching capabilities can help reduce network load caused
by retransmissions. If a data transmission fails due to a lossy link but the content was cached
on an intermediate node, subsequent retransmissions will only need to fetch the data from

the caching node instead of the original producer, thus reducing the total volume of traffic
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caused by retransmissions while increasing the likelihood of successful transmission. Giin-
dogan et al. [60] show that in a multi-hop scenario, ICN with on-path caching can outper-
form IP-based protocols in terms of flow balance and goodput thanks to this feature. Thus, it

is worthwhile to pursue the feasibility of caching strategies in information-centric IoT.

In recent years, considerable amounts of research have been conducted into adapting tradi-
tional ICN caching strategies to the specific needs of IoT. Several different approaches were
developed to counteract the limited resources as well as take advantage of the wireless, ad-
hoc nature of IoT networks. Broadly speaking, a caching strategy can be applied on two
different aspects: it can affect the caching decision, i.e. whether or not an incoming content
chunk is to be stored in the cache, or it can affect the cache replacement decision, i.e. which
piece of cached content to replace if a new content chunk is to be placed in a cache that has
reached its capacity. Most proposed caching strategies only affect either the caching deci-
sion or the cache replacement decision, with a few holistic approaches that take both into

consideration.

Ever since Jacobson et al. proposed CCN [73], the Cache Everything Everywhere (CEE)/Least
Recently Used (LRU) approach introduced there has been questioned in regard to its suitability
for CCN, NDN [163], and related ICN implementations [34, 123]. The research community
has since reached the consensus that CEE/LRU is not the most optimal caching strategy [35,

, 117]. This resulted in a wealth of new caching approaches being developed.

2.2.1 Existing Studies of ICN Caching in IoT

The usefulness of ICN paradigms in the domain of WSNs and IoT has been widely agreed
upon [8-10, 21, 57, 90, , , ]. However, the idiosyncrasies of IoT — wireless commu-
nication, limited resources, transient contents — call into question whether the approaches
that have been shown to be successful in traditional ICN can simply be transferred over to
this new domain or whether new solutions are necessary. While caching is not the only as-
pect of ICN affected by this, it is one of the most prominent since limited memory is one of the
most obvious hurdles for any IoT application. Other IoT-specific challenges include mobility,

dynamic topologies, unreliable communications, and energy efficiency [8, 11, 67, , ].
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Zhang et al. [162], Fang et al. [54], and Zhang et al. [165] provide comprehensive surveys and
taxonomies for the major classes of caching strategies in traditional ICN, as well as present-
ing challenges and potential future research directions. Tarnoi et al. [137], Zhang et al. [165],
Din et al. [48], Priscilla and Charulatha [115], and Naeem et al. [101] present comparative
evaluations of several different caching approaches for traditional ICN. While these contri-
butions are extremely valuable, it is not a given that the results can be applied directly to
IoT environments. Likewise, Carofiglio et al. have produced a body of work [36-39] focusing
on latency effects in traditional ICN caching, but their solutions also do not address the id-
iosyncrasies of IoT environments. The most comprehensive surveys of caching schemes for
information-centric IoT were presented by Arshad et al. [14, 15] and Gupta et al. [65]. These
papers, however, are pure surveys, with no experimental evaluation or comparison of the

presented strategies.

So far the only comparative studies on ICN caching strategies specifically in the IoT were car-
ried out by Hail et al. [69] and Meddeb et al. [94], both of whom use simulated environments
for their evaluations. Hail et al. compared all four permutations of the CEE and probabilistic
(with p = 0.5) cache decision strategies and the Random Replacement (RR) and LRU cache re-
placement policies (all of the strategies listed here will be described in detail in Sections 2.2.2
and 2.2.3). The performance metrics measured in their experiments were cache hit ratio, data
retrieval delay, and Interest retransmissions. Meddeb et al. compared CEE, LCD, ProbCache,
Betw [41], Edge Caching [55], and their own Consumer-Cache strategy in combination with
the RR, LRU, Least Frequently Used (LFU), and First In First Out (FIFO) cache replacement
strategies and evaluated them in regard to cache hit ratio, number of evictions, hop reduc-
tion ratio, and data retrieval delay. At the time of writing, evaluations performed on physical
IoT hardware operating in realistic conditions were sorely missing from the existing body of

literature.
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Table 2.1.: Families of caching strategies with selected representatives (non-exhaustive)

Layer Family Representative Strategies
Caching Traditional CEE/LCE [73, 163]
decision LCD [84, 162]
Static probability Prob(p) [68, 165]

Dynamic probability pCASTING [68]

Topology-based ProbCache [116]

Centrality-based Betw/EgoBetw [41]

Implicit coordination Li & Simon [89]

Zeng & Hong [161]

Explicit coordination Liu et al. [92]

PCS [100]

EM3C [76]

Edge-only Edge Caching [55]

Consumer-Cache [95]

ELC [17]

Freshness-based Quevedo et al. [121]

LCC [170]

FDC [12]

Popularity-based Vural et al. [142]

TCCN [134]

Off-path Draxler & Karl [51]

Saha et al. [126]

NCP [107]

Cache Traditional Random Replacement (RR)
replacement Least Recently Used (LRU)
LFU [137]

Hybrid Modified-LRU [81]

LRFU [118]

Content-based MDMR [66]

Centrality-based NICE [75]
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Figure 2.5.: Taxonomy of modern caching decision strategies
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The caching strategy can affect two distinct aspects of the caching process: the caching deci-
sion and the cache replacement decision’. Since most existing approaches focus on only one
of these aspects, each aspect will be discussed individually in the following sections, along
with some strategies that change the behaviour of the respective aspect. Table 2.1 shows an
overview of the different families of strategies for caching decision and cache replacement,

with representatives for each.

2.2.2 Caching Decision

The caching decision needs to be made whenever an ICN node receives a content chunk it
does not yet have in its Content Store (CS). It determines whether the new content chunk
will be stored in the CS or discarded.

This section introduces different approaches to caching strategy with varying complexity.
For the most relevant strategies, a pseudocode definition is provided. Every strategy features
two functions, HANDLE_INTEREST() and HANDLE_DATA(), which define what the strategy does
upon reception of an Interest or Data packet, respectively. There are also functions that are
not further defined in the pseudocode, such as canSatisfy(), which returns true if the incom-
ing Interest can be satisfied locally and false otherwise; getData(), which retrieves a content
chunk from the local CS; and the NDN primitives reply() (for replying to an Interest with
a Data packet), forward() (for forwarding Interest and Data packets to the next hop), and

cache() (which stores content in the CS if it is not already stored there).

Caching strategies can be broadly categorised into a few different families, depending on
what information they use to reach their caching decision. These families, along with repre-
sentative caching strategies, are shown in Figure 2.5. Note that some strategies may fall into

two or more categories; this is reflected in the taxonomy.

2A third aspect, called cache coherency, is also sometimes identified [15]. It describes the process of check-
ing the validity of cached contents. However, few existing studies focus on this aspect and its impact on

performance and content delivery is mostly negligible.
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Algorithm 1 Cache Everything Everywhere (CEE)

1: function HANDLE_INTEREST(Interest)

if canSatisfy(Interest) then
Data < getData(Interest)
reply(Data)

else
forward(Interest)

end if

end function

R A A S G

10: function HANDLE_DATA(Data)
11: cache(Data)
12: forward(Data)

13: end function

Cache Everything Everywhere (CEE)

The most straightforward caching decision strategy, CEE (also known as Leave Copy Every-
where (LCE)) is the strategy that is used in traditional ICN [73, 163]. Nodes will attempt to
cache every incoming content chunk that is not already in their CS (see Algorithm 1). In tra-
ditional ICN, caches can generally be assumed to be relatively large. Therefore, this strategy
is viable and causes little overhead. Its main advantage is that it offers the fastest possible
propagation of content through the network — any node that receives content will imme-
diately store it’, ensuring rapid replication of all available content. However, especially in a
strongly connected network, it also leads to high redundancy: every node caching every piece
of content means that every CS in the network will look roughly the same. This is where the crux

of the problem lies when considering a network with severely limited caching capabilities.

It has become consensus [35, 116, 117] that this redundancy leads to suboptimal performance.
This can be shown as follows: The totality of the many small caches in the network can be
interpreted as one single, stratified cache. However, if every individual cache stores the same

content, that means the network’s total caching capabilities are not being used to their fullest

3Some IoT-specific implementations go so far as to have nodes cache all content they overhear, regardless of

whether the transmission was intended for them or not.
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extent. Instead, caches tend to hold only the most recent content. This can be particularly
problematic with certain traffic patterns, especially if content requests are cyclical, as it can
lead to thrashing — i.e., content keeps cycling out of the cache before it is requested again,
leading to continuous cache misses. It would therefore be desirable to reduce overall redun-
dancy by ensuring that different caches carry different contents, thus increasing the chance
that content from any given producer will be replicated in at least one cache in the network.
This is how diversity will be defined in the remainder of this work (see Section 3.1.5): The ra-
tio of unique content objects in all caches to unique content producers. The more advanced

caching strategies discussed below attempt to maximise this metric.

It should be noted that diversity is not necessarily desirable in every IoT scenario. In applica-
tions where the content request pattern is very skewed (e.g., using a Zipfian distribution [32]
with @ > 1) maximising diversity will actually hurt performance as cache resources are
wasted on less popular content. However, the closer content requests are to the uniform
distribution, the more beneficial cache diversity becomes, as a larger percentage of content
objects are duplicated in the network. Since uniform request distributions are more common

in IoT contexts [94, 122], cache diversity will be emphasised in this thesis.

Leave Copy Down (LCD)

If caching everything at every node is not an option, but the caching process is to remain
simple, LCD [84] (Algorithm 2) is a viable option. In LCD, content is always cached only at
the next hop from the node where the cache hit occurred, i.e. initially one hop downstream
from the producer, and one hop further downstream with each subsequent request. This is
achieved by extending the Data packet with a Time Since Birth (TSB) field, which counts the
number of hops since the “birth” (i.e. creation or retrieval from CS) of the Data packet. TSB
is initially 1 and is incremented every time the Data packet is forwarded. Nodes only cache
Data with a TSB of exactly 1.

LCD is a somewhat “conservative” caching strategy that tends to keep content close to the
producer, but still alleviates load on the core. Since every cache hit results in the content
being cached one hop closer to the requesting consumer, popular content that is requested

with high frequency will gradually move closer to consumers with each step.
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Algorithm 2 Leave Copy Down (LCD)

1: function HANDLE_INTEREST(Interest)

2 if canSatisfy(Interest) then
3 Data < getData(Interest)
4 DataTSB < 1

5: reply(Data)

6 else

7 forward(Interest)

8 end if

9: end function
10:
11: function HANDLE_DATA(Data)
12: if Data.TSB = 1 then
13: cache(Data)
14: end if

15: Data.TSB <+ Data.TSB +1
16: forward(Data)

17: end function

There is also a variant of LCD called Move Copy Down (MCD) in which instead of simply
copying a content chunk to the next node whenever a cache hit occurs, that content chunk
is explicitly moved to the next node — it is deleted from the current cache and only stored in

the next cache. This frees up cache space for new content near the core.

Probabilistic Caching, Static Probability

To increase cache diversity and decrease redundancy, the easiest solution is to simply intro-
duce a certain probability that any given content chunk will not be cached. The most straight-
forward version of this approach, referred to in this thesis as Prob(p) (see Algorithm 3), simply
sets an a priori probability p that a given node will store a given content chunk. Upon receipt
of a new content chunk, the node generates a random number between 0 and 1. If the gener-
ated number is smaller than p, the content is stored in the cache; otherwise, it is forwarded

without being cached. This has the obvious effect that not every content chunk is cached at
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Algorithm 3 Prob(p), where p is constant

1: function HANDLE_INTEREST(Interest)

2: if canSatisfy(Interest) then
3: Data ¢ getData(Interest)
4: reply(Data)

5: else

6: forward(Interest)

7: end if

8: end function

9:

10: function HANDLE_DATA(Data)
11: if rand() < p then

12: cache(Data)

13: end if

14: forward(Data)

15: end function

every node, thus effectively increasing cache diversity across the network. An important im-
plication is that more popular content has a higher chance of being stored at more points in
the network since it is encountered more often. More generally, if a node receives the same

content chunk n times, that chunk’s caching probability at that node is 1 — (1 — p)" [165].

It is easy to see that probabilistic caching increases diversity and reduces redundancy across
the network’s caches. This means that on average, the number of unique content objects that
have copies stored in the network is increased. It also inherently favours popular content,
thus increasing the cache hit ratio (see Section 3.1.1). However, the complexity in getting the
most out of probabilistic caching lies in choosing the best value for the caching probability p.
It is intuitively clear that a lower p will result in lower cache redundancy. However, too low

a value for p may result in underutilisation of available resources.
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In approaches where p is set to a fixed value, the most commonly chosen value is p = 0.5 [68];
however, other probabilities, such as 0.7, 0.3, 0.1, and even 0.01 have also been consid-
ered [137]. It should be noted that CEE can be treated as a special case of probabilistic caching
with p = 1. In previous studies, a lower p has been found to correlate with better perfor-
mance [14, 68, 69, , , ]. A definitive lower bound for p (i.e. a value for p at which
the caching probability is too low to result in effective caching) has yet to be conclusively

determined.

Probabilistic Caching, Dynamic Probability

Instead of defining an a priori caching probability that is the same for every caching decision
at every node, a technique can be designed that dynamically computes a caching probability
for each individual node or even for each content chunk, based on available information,
in order to adapt the caching behaviour to the state of the network. The strategies can be
based purely on node-local information, such as the current contents of the cache or the
node’s battery levels; they can be based on properties of the incoming content chunk, such
as its age, type, or producer; or they can be based on information from the wider network,
such as the position of the caching node in the network topology or the cache contents of

neighbouring nodes.

Hail et al. propose pCASTING [68], which uses local information for its probability calculation.
It considers the freshness (age) of the content chunk as well as the node’s battery level and
its cache occupancy when calculating p. The calculated probability is directly proportional
to the battery level, inversely proportional to the cache occupancy, and directly proportional

to the content object’s residual freshness.

The residual freshness F'R of a received content item is defined as:

currentTime — t

FR=1-— :
/

(2.1)
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Algorithm 4 pCASTING

1: function HANDLE_INTEREST(Interest)

if canSatisfy(Interest) then
Data ¢ getData(Interest)
reply(Data)

else
forward(Interest)

end if

end function

W 0 N DR Wy

10: function HANDLE_DATA(Data)

11 CachingUtility < w; - myEnergy +ws - (1— myCacheOccupancy ) + w5 Data.ResidualFreshness

12: if rand() < CachingUtility then
13: cache(Data)
14: end if

15: forward(Data)

16: end function

where currentTime is the time at which the item was received at the caching node, ¢, is the
time at which the item was created, and f is the “freshness class” to which the item belongs.
For example, f = 10s means that the producer creates a new version of the item every ten

seconds unprompted.

This means that F'R is affected by both the absolute difference between production and re-
ception of the data item (currentlime = t, — FR = 1) as well as the freshness class
(items that are produced in larger intervals and are thus expected to remain fresh for longer
result in a higher F'R).

The final caching probability is then calculated using the caching utility function F,, which

is defined as:

u

where E'N is the energy of the caching node, OC' is the cache occupancy of the caching node,

and F'R is the residual freshness of the received item as defined in Equation (2.1).
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The weights w; (0 < w; < 1 and Zfil w; = 1) can be adjusted according to application
preference. The value produced by F), is the probability of a node caching the data item in
question (see Algorithm 4).

The authors compare their caching strategy with CEE using RR (see Section 2.2.3) and find
improvements in both energy efficiency and retrieval times. The utility function F), also has
the advantage that it can be modified to include other content or node parameters, making
this approach highly flexible. The authors do not discuss alternative parameters in their eval-
uation, but it is easy to see that the strategy could be extended using any number of other

relevant metrics.

pCASTING is just one representative of a broader family of caching strategies that make use of
dynamically calculated caching probabilities. These can take a multitude of weighted factors
into account when determining their probabilities. Such approaches may, for instance, use
some combination of node battery level and cache occupancy in their calculations, along with
some information about the incoming content, e.g. its freshness [50] or its popularity [42],
whether the content is already cached in a neighbouring node [164], and/or topological in-

formation such as hop count [50, 164] or the caching node’s centrality [42, 103].

Topology-based Caching

If the caching decision is to be based on more than just local information, there are many
other factors that can be considered. One of the most promising approaches is represented

by the family of strategies that considers the network topology.

Psaras et al. propose ProbCache [116], which computes the caching probability of a given
content chunk based on the distance between producer and consumer as well as the loca-
tion of the caching node on the path. For a given content chunk travelling a path between
producer and consumer, ProbCache determines the cache weight at each node, which is de-
termined by the Data packet’s Time Since Birth (TSB) (see LCD above) as well as its Time
Since Inception (TSI), which is the number of hops between the creation (“inception”) of the
corresponding Interest packet and the cache hit, i.e. the total length of the path between con-

sumer and producer. This means that content chunks are cached with a higher probability
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Algorithm 5 ProbCache

1: function HANDLE_INTEREST(Interest)

2 if canSatisfy(Interest) then
3 Data ¢ getData(Interest)
4 Data.TSI < Interest.TSI
5 Data.TSB < 1
6: reply(Data)
7 else

8 Interest.TSI <— Interest.TSI +1
9 forward(Interest)

10: end if

11: end function

13: function HANDLE_DATA(Data)
14: DataTSB < Data.TSB +1
15: CacheWeight = Data.TSB / Data.TSI

16: if rand() < CacheWeight then
17: cache(Data)
18: end if

19: forward(Data)

20: end function

towards the edges of the network (i.e., closer to the consumer), adjusted by the length of the
Interest packet’s path. The authors find that in traditional ICN, ProbCache increases the cache
hit ratio, reduces the average number of hops required to hit requested content, and reduces

the number of cache evictions.

As will be discussed in more detail in Sections 2.2.4 and 3.3 as well as Chapter 4, depend-
ing on the network’s logical topology, caching closer to the consumer may not necessarily
be the most efficient caching strategy. In some topologies, caching closer to the producer
is more beneficial. ProbCache is easily modified to take this consideration into account by
simply inverting the caching probability such that content is more likely to be cached near
the producer. This modified strategy, called ProbCache-Inv here, is identical to ProbCache in
every way except that the final caching probability is inverted (i.e. line 16 in Algorithm 5
reads if rand() < (1 - CacheWeight)).



42 2. Literature Review

Other topology-based approaches make use of the concept of topology potential [135, 172] in
their caching decision. Topology potential is modelled on the physical concept of the gravita-
tional field, where nodes exert effects of different strengths on their neighbours depending on
the distance between them. In a similar approach, Shekhawat et al. [132] propose a caching
strategy that centrally allocates caching roles to nodes based on their topological importance,
which is based on their reference localities. However, these strategies suffer from the fact that
they require global knowledge (and often some form of centralised control) and are inflexible

in the face of dynamic topologies.

Centrality-based Caching

Centrality-based caching strategies are a sub-family of the topology-based approaches. They
are given their own section here because they make up the foundation for the contributions

in Chapters 4 and 5.

Betweenness centrality [28, 154] is a metric originally devised to describe network effects
in social networks. It describes the number of times a given node lies on one of the paths
between all pairs of nodes in the network and has been found to be a useful indicator of
node importance in a network [146]. This makes it a useful measure to characterise topology
effects in any type of network, including in the domain of ICN. Its usefulness for caching-
related decisions extends beyond the domain of ICN and it has also been used as the basis

for caching strategies in a variety of other networking scenarios [59, 171].

In ICN caching, centrality has been utilised in several ways. Bernardini et al. [23] use it to pri-
oritise the caching of content produced by more central (i.e. popular) nodes, while Rossi and
Rossini [124] use several centrality measures, such as betweenness, closeness, degree, and
others, to determine how much caching space should be available at a given node. They find
that the simplest metric — degree centrality — is generally sufficient to achieve satisfactory

results.
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Algorithm 6 Betw/EgoBetw

1: function HANDLE_INTEREST(Interest)

2: if canSatisfy(Interest) then

3: Data ¢ getData(Interest)

4: Data.Centrality <— Interest.Centrality
5: reply(Data)

6: else

7: if myCentrality > Interest.Centrality then
8: Interest.Centrality <— myCentrality
9: end if

10: forward(Interest)

11: end if

12: end function

13:

14: function HANDLE_DATA(Data)

15: if myCentrality > Data.Centrality then
16: cache(Data)

17: end if

18: forward(Data)

19: end function

For an actual caching decision strategy, Chai et al. [41] propose Betw / EgoBetw, which use
betweenness centrality to cache content at the most central nodes in the network. The idea
is that caching at more “important” (i.e.: central) nodes will be beneficial for caching perfor-
mance as it increases reachability of content and thus should increase cache hits and reduce

content delivery latency.

In this scheme, the centrality of each node is pre-computed offline (the details of this com-
putation are described in Section 4.1). Each Interest that is sent through the network then
records the highest centrality value among nodes it encounters, and the corresponding con-
tent chunk is then cached at the node with the highest centrality on the way back (see Al-
gorithm 6). That way, content is automatically stored at the most central locations in the

network, where Interests are most likely to result in cache hits.
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Topology- and centrality-based approaches have the advantage of offering a holistic approach
to caching and — at least in theory — could allow us to cache data in the optimal location.
However, when transferred to the IoT, there are some important questions and caveats that

need to be addressed.

Caching based on centrality presupposes that some nodes in the network are more important
than others. The question, then, is whether this holds true in IoT networks. What “important”
means in this context mostly depends on the problem that is to be solved by applying central-
ity — in the case of in-network caching, it would be the usefulness of that node as a caching
location. Connecting this back to the second research objective of this thesis as stated in Sec-
tion 1.4, caching usefulness clearly makes a node more important for achieving the stated
goal of increasing content availability. Since a node’s centrality is directly correlated to the
number of Interests it can satisfy, it can be assumed that this claim holds and that more

central nodes are in fact more important.

However, in terms of implementation, centrality-based approaches require a costly setup
phase before they can begin operation, and if the topology is dynamic — i.e. in a network with
mobile participants — these network-wide calculations may have to be repeated periodically,
leading to significant overhead. Furthermore, caching only at the most central nodes will
lead to an uneven utilisation of resources and a shorter battery life for those nodes that are
already likely to be more taxed than the nodes at the edges purely due to being more likely
to receive a majority of Interests. Thus, it remains to be seen whether these topology-based

approaches are a good fit for information-centric IoT.

Cooperative Caching

Cooperative caching is an umbrella term for caching strategies that take more than local
information into account — i.e., strategies in which nodes either implicitly or explicitly coor-
dinate with their neighbours to ensure optimal caching. In explicit coordination, nodes may
exchange information about their cache contents and/or the contents they have received on a
periodic or ad hoc basis in order to make caching decisions, or even forward content chunks

to one another for caching.
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Algorithm 7 Labels(k)

1: function HANDLE_INTEREST(Interest)

2: if canSatisfy(Interest) then
3: Data ¢ getData(Interest)
4: reply(Data)

5: else

6: forward(Interest)

7: end if

8: end function

9:
10: function HANDLE_DATA(Data)
11: if Data.ID mod k = myLabel then
12: cache(Data)
13: end if

14: forward(Data)

15: end function

In implicit coordination, nodes follow a priori rules that govern what content they can cache,
thus avoiding the need for explicit coordination. One example of this was proposed by Li
and Simon [89] (Algorithm 7), where each node is assigned a fixed label | < k (at setup
time) and only caches content chunks whose IDs modulo £ are equal to /. This ensures that
cached content is automatically stratified into equal subsets and evenly distributed across
the network without the overhead of explicit coordination between nodes. By adjusting k, it
is possible to control the level of stratification. This caching strategy is referred to as Labels

in the remainder of this thesis.

Zeng and Hong [161] propose an implicitly coordinated caching strategy that uses hop dis-
tance to determine the caching decision (Algorithm 8). Data packets are extended by a pre-
determined data interval value 7. Each node along the path decrements this value by 1 when
forwarding the packet. If a node decrements its value to 0, the packet is cached at that node
and the data interval is reset to 7. This ensures that data are implicitly cached at regular dis-
tances from producers without requiring any topological information or coordination. This

caching strategy is referred to as Intervals in the remainder of this thesis.
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Algorithm 8 Intervals(z)

1: function HANDLE_INTEREST(Interest)

2 if canSatisfy(Interest) then
3 Data < getData(Interest)
4 Data.Interval < 1

5: reply(Data)

6 else

7 forward(Interest)

8 end if

9: end function
10:
11: function HANDLE_DATA(Data)
12: if Data.Interval = O then
13: cache(Data)

14: Data.Interval <— ¢

15: else

16: Data.Interval <— Data.Interval —1
17: end if

18: forward(Data)

19: end function

Explicit cache coordination strategies tend to be more complex than their implicit counter-
parts, requiring more communication among the nodes and more calculations to maintain a
consistent state. Liu et al. [92] propose a strategy that coordinates nodes by constructing a
virtual backbone network using graph-theoretical concepts to create a node hierarchy with
core nodes responsible for caching. Similarly, Naeem et al. propose Periodic Caching Strategy
(PCS) [100], a hybrid approach in which the most popular content is cached at the edges,

while content evicted from edge nodes is stored at the nodes with the highest centrality.

As an explicit coordination strategy that takes inspiration from the domain of Software De-
fined Networking (SDN), Khodaparas et al. [76] propose Extended Multi-Criteria Cooperative
Caching (EM3C), which uses a centralised cache controller as well as a clustering mechanism
for groups of IoT nodes to control the flow of content requests and direct them to the relevant
caches in the network. The caching decision is also managed in a semi-hierarchical fashion,

with cluster heads making localised decisions on where in their own cluster to cache content.
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While the authors report improvements in cache hit rate and content delivery latency in a
simulated environment, it is questionable how transferable this approach is given that cen-
tralised entities with global knowledge are not necessarily easy to realise in any given [oT

scenario.

Edge-only Caching

Fayazbakhsh et al. discuss a strategy they call Edge Caching [55]. In this approach, only edge
(i.e. leaf) nodes can cache contents. This approach has since between expanded upon by oth-
ers [156]. However, the applicability of these strategies in the IoT domain is questionable,
since in IoT, whether a node is an edge node or not is relative. Routing trees are rooted at
the producer, but since every node can be a producer, a node may be an edge node relative

to one producer but not to another.

Meddeb et al. developed Consumer-Cache [95], which is a slightly more flexible variant of
Edge Caching. Instead of caching exclusively at edge nodes, Consumer-Cache caches at any
node that is directly connected to a consumer, regardless of that consumer’s location. In a
similar vein, Asmat et al. [17] propose Edge Linked Caching (ELC), which essentially extends

the Consumer-Cache approach using content freshness as an additional decision metric.

Freshness-based Caching

Quevedo et al. [121] propose a caching method that is based on content freshness. This
method is consumer-driven, meaning that requesting nodes may specify the desired fresh-
ness of the content, which is an extension of the producer-driven freshness mechanics of
CCN. Consumers are able to specify their minimum freshness requirements (i.e., the maxi-
mum age of the content chunk) when requesting content. All Content Stores on the route
then check the freshness requirement against the freshness of their stored data and decide ac-
cordingly whether to supply their cached data or forward the request towards the producer.
This method allows for flexibility in that applications that do not require the freshest data
will not cause unnecessary network traffic, but all applications benefit from updated caches

whenever an application causes stale content to be renewed.
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Similarly, Zhang et al. developed Lifetime-Based Cooperative Caching (LCC) [170], which
takes applications’ data freshness requirements into consideration and adjusts nodes’ caching
thresholds based on their position relative to the network core. This allows for flexibility in
the caching decision, but requires a priori knowledge about nodes’ positions in the network

and would be infeasible for deployments with dynamic topologies or mobile participants.

Freshness is used in a different manner by Amadeo et al. [12]. They propose Freshness-Driven
Caching (FDC), which prioritises longer-lived contents in its caching decisions on the basis
that caching short-lived contents is not an effective use of caching space. While the approach
is primarily aimed at Vehicular Ad-Hoc Networks (VANETSs), which tend to have even shorter

content lifetimes than other IoT types, it may be of use to the larger IoT space as well.

Popularity-based Caching

Vural et al. [142] propose a strategy that uses the popularity of content classes to calculate
the cost function for the caching of incoming content. Nodes cache content until it reaches
a certain age, and for each incoming content chunk, the caching node calculates how many
Interests the chunk can be expected to satisfy during its lifetime. Content that is expected to
serve more Interests — because its content is more popular and/or because it is more fresh —

is cached with a higher probability.

Popularity is also used in TCCN [134], where content is enhanced with tags and nodes keep
track of the popularity of each tag as well as how often it is cached in nearby nodes, and
CPDI [83], which presents a hybrid approach that also takes distance between nodes into

account.

These popularity-based approaches are quite demanding of node resources, especially mem-
ory, since all nodes need to keep track of the global popularity of all content. In addition,
approaches that rely on neighbours sharing information to estimate probability would in-
cur an additional communication overhead. This combination of factors makes this class of

strategies largely infeasible for the IoT.
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Other Strategies

Many more caching decision strategies have been proposed, which can vary strongly in the
type of information they consider and the way they arrive at a caching decision. For example,
Nour et al. have proposed the Near-ICN Cache Placement (NCP) [107] strategy, which aims
to minimise both caching and retrieval costs by explicitly moving content to a few highly
connected nodes that are not adjacent to one another, while also allowing for content priori-
tisation by traffic class. However, much like the popularity-based approaches, this strategy
requires full knowledge of the network as well as additional operations to move the content

to the selected caching node, which implies a significant communications overhead.

2.2.3 Cache Replacement Decision

The cache replacement decision needs to be made whenever a content chunk is to be stored
in a CS that has reached its capacity. The cache replacement policy determines which cached
content chunk is to be evicted in favour of the new content chunk. Regardless of whether the
node uses the default CEE caching approach or one of the more sophisticated ones introduced
above, it has to have some method of deciding which content objects to replace. It should also
be noted that in general, the cache replacement policy cannot undo the decision to cache
the new content chunk. In other words, once the caching decision has been made, the new
content chunk is guaranteed to be stored and the evicted content chunk has to be one of the

previously cached chunks.

It should be noted that considerably less research has gone into cache replacement policies
as opposed to the caching decision. Some authors argue [162] that cache replacement in ICN
should be performed as fast as possible and that it is thus more desirable to have a simple
and fast cache replacement algorithm rather than an efficient but complex one. However,
it remains to be seen whether this also holds true in IoT, where caches are more valuable

resources and should be used as efficiently as possible.
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Least Recently Used (LRU)

The most widely used cache replacement policy and common in several other domains, LRU
likely needs no further introduction. Each node keeps track of the Interests it serves and
when it served them, and, when required to evict a content chunk, chooses the one that was
least recently requested. The rationale behind this is that unpopular or outdated content will
naturally be more likely to be removed, thus ensuring that only the freshest and most popular
content is cached. In practice, this approach has been shown to be effective, although its
performance can degrade if Interest patterns are cyclical and the number of popular content

objects is greater than the size of the caches — an effect commonly referred to as thrashing.

As a variation on LRU, Least Frequently Used (LFU) keeps track of how often the objects in
the cache are requested and evicts the least popular ones. In other words, where LRU records
when content is requested, LFU records how often it is requested. While LFU mostly avoids
thrashing and has been shown to result in good cache diversity [35], it performs poorly with
variable access patterns, as it tends to overly favour items that experience spikes in Interest
frequencies. This will eventually result in higher server load, as caches accumulate stale items
instead of storing fresher content, forcing more Interests to be routed to the original produc-
ers [137]. Modified-LRU [81] and LRFU [118] are novel hybrid approaches that consider both

recency and frequency and as such should be less susceptible to frequency spikes.

Meddeb et al. [96] propose a freshness-oriented variation of LRU called Least Fresh First (LFF).
It is aimed at scenarios in which Data can be updated with newer versions while using the
same prefix. The strategy uses a time series model to predict how long a version of a Data item
is expected to remain fresh. This prediction, called 7%, is calculated by the producer upon
creation of the Data and attached to it as metadata. Whenever a cache eviction is triggered,
the cache replacement strategy checks the T, and the timestamp of the last time a Data
with the same prefix was received (called cache_time) for each content in the cache and evicts

the content with the lowest 1%, + cache_time.
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Random Replacement (RR)

The least complex of the basic cache replacement policies, RR simply evicts a random content
objects every time it needs to replace a chunk. It tends to be used more as a benchmark for

evaluating other replacement policies rather than as an actual policy.

Max Diversity Most Recent (MDMR)

MDMR, developed by Hahm et al. [66] specifically for information-centric IoT, is a cache
replacement policy that, as the name implies, aims to maximise the content diversity of indi-
vidual caches while also keeping them up to date. It uses the original producers of content
chunks to achieve this (it is assumed that chunk names include their original producers).
When a new content chunk is to replace an old one, MDMR first attempts to remove an older
cached chunk from the same producer. If the new chunk is from a previously unknown pro-
ducer, MDMR attempts to remove the oldest chunk from a producer with more than one
chunk in the cache. If the cache contains exactly one chunk per producer, it simply replaces
the oldest chunk. Hahm et al. show that MDMR achieves better cache diversity on average
than RR.

NICE

Khan et al. [75] propose their Network-oriented Information-Centric Centrality for Efficiency in
Cache Management (NICE), which is based on the well-known measure of centrality [28, 154].
However, unlike with the previously discussed Betw/EgoBetw caching decision algorithm
(see Section 2.2.2), here centrality is used to manage cache contents at the replacement step.
The authors introduce the new measures NICE betweenness and NICE closeness (based on
betweenness centrality and closeness centrality [22, 125] respectively). Rather than making
decisions based purely on network centrality (i.e. the number of paths a given node is on),
NICE betweenness also takes content popularity into account. Replacement decisions are

only made when they increase the NICE value of the cache in question. The authors find that
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Figure 2.6.: Core topology Figure 2.7.: Edge topology

NICE outperforms LRU in terms of cache hit rate, hop count, and content delivery latency.
However, much like Betw/EgoBetw, while the actual replacement decision is made locally, the
calculation of the centrality values relies on an a priori, centralised calculation, which makes

it infeasible for deployment in IoT (this is expanded upon in more detail in Chapter 4).

2.2.4 Topology Effects on Caching

In the real world of IoT deployments, there are as many different network topologies® as there
are networks. However, to get a sense of the effects of topology on caching performance, two
generalised cases are introduced here — the core topology and the edge topology — that are
on opposite ends of a spectrum of logical topology types. IoT topologies can fall anywhere
on this spectrum, although most will tend to resemble one type more strongly than the other.
These two extremes are showcased here in order to show the benefits of designing topology-
agnostic approaches to caching, which will be explored in more detail in Section 3.3 as well

as Chapter 4.

*Note that in this thesis, the term “topology” is generally used to refer to the logical topology from the per-
spective of ICN — i.e. the routes taken by Interest and Data packets as dictated by FIB entries, rather than

the physical links between nodes.



2.2. Caching Strategies in Information-Centric IoT 53

Figure 2.6 shows an idealised core topology. A core topology is defined by the paths between
the producer and the consumers intersecting nearer to the producer (the “core”); each path
has only one consumer attached to it at the edge. In such a topology, the ideal caching location
would be close to the producer (what Wang et al. call a Type IIl caching strategy [148]), as
this would allow us to alleviate strain on the producer while serving the maximum number of
consumers with cached copies of the data. Conversely, caching closer to the consumer would
decrease the content delivery latency for that consumer, but no other consumer would gain

any benefit from the cached copy.

Figure 2.7 shows an idealised edge topology. An edge topology is defined as having multiple
individual paths from the producer out towards the consumers (the “edge”), which intersect
further from the core. In this topology, it would be more beneficial to cache closer to the edge
nodes where paths intersect (a Type II caching strategy [148]), as this would reduce the need
for requests to be routed all the way to the core. Conversely, caching closer to the core would

alleviate the strain on the producer, but the latency improvements would be minimal.

Looking at these two cases, it is easy to see that the network’s logical topology has a signifi-
cant effect on where content should be cached if latency is to be minimised. For this reason,
as shown previously [113], caching strategies that emphasise network topology have the po-
tential to be more effective than strategies that ignore the caching nodes’ relative positions

in the network.

2.2.5 Cache Fairness

Traditionally, most approaches to ICN caching assume a baseline of fairness and collabora-
tion, with nodes cooperating to achieve the best performance on the global level. However,
this is not necessarily the case. Furthermore, even if nodes ostensibly cooperate, the nature of
the caching strategy may result in some nodes being treated “unfairly”, that is, being starved
of content or receiving much higher load than other nodes. This problem and how it relates
to caching has been studied outside of the ICN domain, particularly in how Internet Service
Providers (ISPs) and/or Content Delivery Networks (CDNs) may be encouraged to collabo-

rate using protocol design [44, 45, 85, ]. Naturally, this discussion has since found its way
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to ICN [111, 147]. The first attempt to study in detail how fairness could be implemented in
ICN was FairCache [151, 152], which interprets the caching problem as a Nash bargaining
game [102] and derives heuristics that ensure individual fairness without sacrificing global
performance. FairCache presents a distributed solution, which makes it ostensibly feasible
for use in IoT. However, the performance price of implementing such complex heuristics on
constrained hardware is unclear. Furthermore, IoT networks, which often come in the form
of siloed deployments with all nodes controlled by the same entity, may not have a need for
extensive fairness safeguards. Nevertheless, the issue of load balancing, which can be inter-
preted as a fairness problem, is present in IoT and may need to be addressed. A potential
solution is found in Off-Path Caching (OPC), which is discussed in the next section and in
Chapter 5.

2.2.6 On-Path versus Off-Path Caching

In addition to asking the questions of which content to cache and which content to replace, it
is also worth examining the paradigms of every ICN router acting as a cache and only caching
content on the path it is propagated along. Regarding the latter, considerable research has
been done to evaluate the relative merits of on-path versus off-path caching [43, 51, 140].
In off-path caching approaches, the caching decision is not restricted to whether nodes that
receive content should cache it, but rather where received content should be cached. Nodes
gain the capability to move received content to neighbouring nodes to cache it there, so as
to achieve better cache spread and diversity as well as balance the load on individual nodes

and thus increase cache fairness.

Saha et al. [126] take a similarly implicit approach to off-path caching as Li and Simon [89]
(see “Cooperative Caching” in Section 2.2.2) did for cooperative caching. Their approach like-
wise uses the IDs of content chunks to manipulate the routes that content objects take
through the network, coupled with minimal cooperation between adjacent Autonomous Sys-

tems (ASs) to coordinate which AS is interested in what kind of data.



2.3. Summary of Literature Review 55

As an alternative to off-path caching, it is also possible to instead allow content discovery
to leave the straightforward delivery path. This can be achieved by using e.g. Bloom fil-
ters [25] to allow nodes to discover their neighbours’ cache contents [86]. However, whether
a lightweight implementation of these concepts that is suitable for IoT devices can be found

is questionable.

2.3 Summary of Literature Review

The literature review shows some of the open questions in the field of ICN, particularly how
it relates to the domain of IoT. ICN, being a very young field, has seen a flurry of research ac-
tivity over the last few years, but also still has a wealth of open questions. As a candidate for
a new loT networking architecture, the potential of ICN is clear. However, there is currently
no clear path towards fully accommodating the specific constraints of the IoT domain. Par-
ticularly the question of memory limitations poses significant hurdles and requires in-depth
analysis. The aim of this thesis is to address some of these open questions in order to move

towards a feasible solution.






CHAPTER 3

Performance and Content Delivery Latency of

Caching Strategies for Information-Centric loT

This chapter aims to investigate a range of ICN caching decision strategies and cache replace-
ment policies in an IoT context. Particular attention is given to the evaluation of content de-
livery latency. To this end, a number of metrics suitable for measurements in the IoT domain
are introduced. All potential solutions are examined through the lens of suitability for de-
ployment in a constrained environment, which means that solutions have to be lightweight

and ideally should not rely on global knowledge.

Since the stated goal of this thesis is the development of strategies for enabling reliable and ef-
ficient data delivery in the IoT, a definition of these terms is needed. In computer networking,
reliability is often defined in the context of transport protocols. A protocol is called reliable
if it notifies the sender about whether a transmission was successful or not (e.g., TCP versus
UDP). However, this definition of reliability is not necessarily very useful for the IoT domain,
where dropped packets are expected due to the wireless medium. A better way to frame reli-
ability in the IoT context would be to view it in terms of metrics such as the packet delivery

rate, which describes what percentage of packets are successfully transmitted, or the retrans-
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mission rate, which counts how often packets need to be retransmitted before they reach
their destination. In information-centric IoT, we can also examine reliability on the content
level instead of the individual packet level, using metrics such as the Interest satisfaction rate,

which measures how many Interests result in Data arriving at the consumer.

Efficiency is less straightforward to define, as its interpretation can vary strongly depending
on the requirements of the system in question. This thesis will mainly interpret efficiency to
mean low content delivery latency, which is given particular attention in the latter half of the

chapter.

In this chapter, multiple different caching strategies are evaluated in two series of experi-
ments using real IoT devices in a large physical testbed. Furthermore, the measurable effects

of logical network topology, as introduced in Section 2.2.4, are examined.

3.1 Performance Metrics

In the existing literature, there is a wide range of metrics that have been used to evaluate
the performance of caching strategies. This section will focus on a subset of these metrics
that constitutes the most widely used ones, which will be used to evaluate the presented

strategies.

3.1.1 Server Load and Cache Hit Ratio

In ICN, a cache hit occurs whenever an Interest is served by a cache in the network instead
of the requested content’s original producer. Conversely, a server hit is when the Interest
needs to travel all the way to the original producer. The dual metrics of server load and cache
hit ratio [41, 68, , , ] measure the percentage of Interests that result in server hits
or cache hits respectively. Cache hit rate can also be extended to byte hit rate [150], which

additionally weights the hit rate by the size of the cached objects.
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The server load L g is derived as:

C
Lg = —Sg"”, (3.1)
where C' is the total number of content objects retrieved and C|,,,,, is the number of content

objects retrieved directly from the producer that owns their prefix. Analogously, the cache

hit ratio Ry is derived as:

C

Rey = =%, (3.2)
where C ., is the number of content objects that are retrieved from the cache of an inter-

mediate node that is not the prefix owner.

Ignoring dropped packets and retransmissions and counting only the content objects that

arrive at their requesting consumers,

C=Cuum+C

server*

(3.3)

cache

The two metrics Lg and Ry give an indication of how well copies of popular content are
distributed among caches across the network. The higher the cache hit ratio, the lower the

server load, which in turn means less strain on content producers.

3.1.2 Content Delivery Latency

Many applications in the IoT space are time-sensitive. Therefore, finding an ICN caching
strategy that minimises the delay between content request and delivery is desirable. The
corresponding performance metric will be referred to as content delivery latency in this thesis;

it is also sometimes called data retrieval delay [68].
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It is intuitive that efficient in-network caching can reduce content delivery latencies by mak-
ing content more readily available across the network [37]. Operating under the assumption
that content, once produced, will remain useful for a certain amount of time and will be re-
quested by multiple consumers during its lifetime, an effective caching strategy will minimise

the distance between consumers and cached copies of the content they require.

Since content delivery latency is among the most important factors in efficient data delivery,
it is examined in further detail in a separate series of experiments in Section 3.3, where the

effects of network topology on latency are also studied.

3.1.3 Interest Retransmission Ratio

The Interest retransmission ratio [14] measures the percentage of Interests that are retrans-
mitted due to having timed out. This metric is related to content delivery latency in that it is
affected by congestion and density, but also the efficiency of the caching strategy. An ideal
caching strategy would result in cache diversity that is high enough for Interests to always

be satisfied upon initial transmission.

It should be noted that in ICN with on-path caching, as explained in Section 2.2, a retrans-
mission does not necessarily imply that the content needs to be re-fetched from the same
node it was originally sent from. If the content was transmitted part of the way before being
lost, it may be cached in an intermediate node, thus decreasing the time required to obtain
it. In other words, the amount of additional load and delay caused by a given retransmission
varies depending on the state of the caches on the path, and subsequent retransmissions are

likely to be less costly than the original.

By default, CCN-lite (the ICN implementation used for these experiments, see Section 3.2) al-
lows a maximum of three retransmissions per Interest. This number is local to each individual
node; i.e., each node will retransmit unsatisfied Interests up to three times before giving up.

With particularly lossy links, this means that a single Interest might theoretically be retrans-
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mitted dozens of times on its way from the consumer to the producer. In this evaluation, the
Interest retransmission ratio is obtained by counting all Interests that were sent — regardless
of whether they are retransmissions or not — and calculating how many of those Interests

were retransmissions.

An alternative metric to this is the Interest satisfaction rate [6], which simply calculates the
percentage of Interests that were satisfied without breaking down the number of retrans-
missions — an Interest is either satisfied, or it is not. These two metrics serve similar, but
not identical purposes, in that the Interest retransmission rate indicates how reliable Inter-
est transmission is in the hop-by-hop sense without necessarily indicating the proportion
of ultimately successful requests, whereas the Interest satisfaction rate indicates the overall

end-to-end success rate without considering hop-by-hop link quality.

In the experiments conducted for this thesis (see below), it was found that the Interest satisfac-
tion rate was typically very high (above 90%), which means that the Interest retransmission
rate is the more interesting metric, as hop-by-hop retransmissions may still be prevalent even
if the end-to-end success rate is high. Therefore, Interest retransmission rate is the preferred

metric in the rest of this chapter.

3.1.4 Total Cache Evictions

The number of total cache evictions [116, 126] is an indicator for how well the caching strat-
egy is able to adapt the cached contents to the popularity and propagation of content in the
network. If a caching strategy results in thrashing (see Section 2.2.3), this will be evident in
an increased number of cache evictions. Conversely, if a caching strategy is able to effec-
tively distribute contents within the network such that they can satisfy as many Interests as

possible, cache evictions will be rarer.

3.1.5 Diversity Metric

The Diversity Metric (DM) [66] is a measure that indicates the diversity of cache contents

across the network. DM is calculated as:
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‘ C’disj’

DM = ,
5|

(3.4)
where |S| is the number of content producers and ‘C’disj| is the number of disjoint name
prefixes in all caches. The prefix, in this case, is an identifier for the producer of a content
chunk. In other words, DM measures the percentage of individual content producers that are
represented in caches in the network at any given time. Ideally, if cache diversity is a desired
goal in a given application, DM should approach 1, meaning that every content producer has

at least one content object stored somewhere in the network.

While DM can be a useful metric in scenarios where diversity is a priority, it only measures
the diversity in terms of producers, not in terms of actual content. In a real network, it is
possible for some content producers to be much more prolific than others, producing signif-
icantly more unique and distinct content objects than others. In this case, DM would not be
able to capture how well this producer’s contents are distributed across the network as op-
posed to the remaining content. In other words, an additional content-level diversity metric

is required.

3.1.6 Cache Retention Ratio

The Cache Retention Ratio (CRR) [126] is a diversity metric that works on the content level. As
such, it complements DM by measuring the ratio of distinct objects that are stored in caches

at a given time to all generated objects. CRR is given by:

CRR= —1 (3.5)

where D is the number of unique objects currently stored in at least one cache and D, is the
total number of unique objects generated during the network’s lifetime. It should be noted
here that since cache size is limited, CRR will obviously decrease over time as new content

objects are constantly being created while cache capacity stays the same, meaning objects
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will eventually vanish from the network entirely. Although this is expected, when comparing
caching strategies, it is interesting to examine how fast CRR deteriorates. In other words, CRR
reduction over time describes how effective the caching strategy is at keeping content objects

available in the network for as long as possible.

3.2 Performance Evaluation

This section constitutes a comprehensive comparison and evaluation of several classes of
caching strategies for information-centric ICN. For this comparison, a series of experiments
were run on the FIT IoT-LAB [3] open testbed. The IoT hardware used is IoT-LAB’s spe-
cially developed M3 node', which has an STM32 (ARM Cortex M3) microcontroller with
512 kB ROM and 64 kB RAM and an Atmel AT86RF231 [18] 2.4 GHz transceiver operating on
IEEE 802.15.4 [1]. The firmware for the nodes is a simple RIOT-OS [19, 20] application using
CCN-lite” as the ICN implementation, modified to support the different caching strategies.
ICN cache sizes are set to hold up to 20 objects, with all content objects produced in the

experiment having uniform size.

The experiment setup consists of 60 M3 nodes distributed evenly across a single building
(specifically, the Lille site’ of the IoT-LAB testbed). The transmission range of individual nodes
is not large enough to reach all other nodes in the network, thus creating a multihop setup
with path lengths of two to three hops on average. Figure 3.1 shows the distribution of path
lengths in all IoT-LAB experiment runs in this chapter.

The experiment is managed by a control script using the IoT-LAB API, which provides full
control over all node serial interfaces. This makes it possible to manipulate their FIBs as
required and extract status information, such as cached contents, at any time. All content
a given node produces is prefixed with that node’s unique ID. In an initial setup phase, all

nodes broadcast their own prefixes. Nodes record the prefix announcements they receive

1https ://github.com/iot-lab/iot-lab/wiki/Hardware M3-node
thtps ://github.com/cn-uofbasel/ccn-1lite
3https://www.iot-lab.info/deployment/lille/
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Figure 3.1.: Path length distribution (logarithmic). Single-hop paths are not counted as they can not
benefit from caching. Paths with more than 8 hops can occur, but are too infrequent as to

warrant inclusion here.

from their neighbours along with those neighbours’ hardware addresses and the hop count
value (which is initially 0) in their FIBs. All prefixes that resulted in new FIB entries are then
rebroadcast with an increased hop count value. When forwarding Interests, nodes choose

the corresponding FIB entry with the lowest hop count, with broadcast as a fallback.

After setup is completed, all nodes begin producing random content chunks in a random
interval of 1s to 5s. The names of all produced chunks are collected by the experiment con-
troller. The controller instructs each network participant to request a random piece of existing
content every second (with up to £500 ms of random jitter). The frequencies for publishing
and requesting data were chosen as sensible maxima, as at higher frequencies, performance
tended to degrade in this experiment setup and results became inconclusive. A more in-depth
study of the effects of high-frequency content creation and consumption on the various per-

formance metrics may prove useful in future research.

The distribution of the content requests can have two modes: they are either uniformly ran-
dom or follow a Zipf-like pattern [32]. To achieve a Zipf distribution, the requestable content
chunks are first ranked randomly and then assigned a request frequency that is inversely pro-
portional to their rank. Thereby, the highest ranked content will be requested approximately

twice as frequently as the second highest ranked content, three times as frequently as the
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third highest ranked content, and so on. This results in a skewed request distribution. The
Zipf distribution is commonly used in traditional ICN research because web content gener-
ally follows this pattern [55, , , ]. However, 10T content requests are very different
from web content; they depend on the application but generally tend to approximate uniform
distribution [94, ]. For this reason, this evaluation treats these two modes as the edge cases
of request distribution, with real-world patterns likely to fall somewhere between the two.
Thus, by examining both modes, the range of possible content distributions is covered by the

presented experiments.

Each experiment runs for a total of 20 minutes, during which content is continuously pro-
duced and requested at the frequencies specified above. Each experiment is repeated 100

times.

The controller takes snapshots of cache contents every 5 seconds and logs all cache and server
hits, cache evictions, and Interest packet retransmissions. This data is used to evaluate the

caching strategies according to the performance metrics introduced in Section 3.1.

IoT is a large space, and the number of potential deployment scenarios is much too high to
be reflected in a single experiment. Therefore, instead of focusing on a specific application,
the experiment setup is intentionally generic and includes common elements that are likely
to be found in many IoT deployments — class 2 constrained devices [29], a low-power and
lossy network, and multihop machine-to-machine communication. This does not necessarily
mean that the obtained results will be universally applicable to any IoT use case. Rather, the
evaluation presented here is intended to serve as a baseline performance comparison using
a variety of metrics that are useful in estimating the viability of a given caching strategy in

a given scenario.

The following sections will evaluate the two aspects of caching strategies — the caching deci-
sion and the cache replacement decision — independently. In Section 3.2.1, caching decision
strategies are compared by fixing the cache replacement policy to LRU, while Section 3.2.2

compares cache replacement policies by fixing the caching decision strategy to CEE.
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3.2.1 Caching Decision Strategies

The three caching decision strategies CEE, Prob(p), and pCASTING were evaluated using the

most common cache replacement policy, LRU.

Recall that Section 2.2.2 explained that pCASTING can take into account three factors — the
freshness of the incoming content, the node’s cache occupancy, and the node’s battery level
— when calculating the caching probability. However, since the nodes in the IoT-LAB testbed
have access to a constant power source, this implementation of pPCASTING ignores the battery

level and considers only cache occupancy and content freshness.

Server Load

The top plot of Figure 3.2 shows the average server load Lg, as defined in Section 3.1.1, for

the different caching decision strategies, separated by request distribution.

It is intuitive that a probabilistic caching strategy would result in a higher server load, be-
cause the probability that a given content chunk can be found in a content cache is lower
if content is not guaranteed to be cached. pCASTING causes less server load than the static
probability approach, implying that on average, the dynamic caching probability calculated
by its heuristic is greater than p = 0.5.

The differences between the Zipfian and the uniformly random request distributions are mi-
nor. When using the uniform distribution, server load is slightly higher for CEE and slightly
lower for the other strategies. The reason CEE performs better for the Zipfian distribution is
due to the skew in requests. Since every satisfied request results in the corresponding data
being stored along the request path, a distribution in which some content is much more likely
to be requested than other content makes it more likely for that content to be found in a cache.
Due to cache sizes being limited, a uniform request distribution reduces this likelihood. On
the other hand, probabilistic caching, while decreasing the overall likelihood of a given con-
tent chunk being stored, evens out the caching probabilities between less and more popular

content by increasing cache diversity, which has an adverse effect on server load given a
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Zipfian distribution. Wherever there are outliers, these tend to be spread in the direction
of higher load, implying a lower bound for server load. This is intuitive as some amount of
server load is inevitable no matter how efficient the caching strategy, as at the very least the

first copy of each new content chunk will have to be retrieved from the original producer.

Interest Retransmission Ratio

The results shown in the middle plot of Figure 3.2 make it fairly clear that different caching
decision strategies have no significant effect on the percentage of Interests that have to be
retransmitted. It is likely that the Interest retransmission ratio is influenced more strongly
by factors in the network itself, such as topology and congestion. Interestingly, this would
mean that another possible conclusion to be drawn from this is that caching strategies have
no measurable effect on network congestion. One explanation for this observation is that the
request frequency in this experiment is not high enough to observe significant congestion;
however, even in experiment runs with increased request rates, this tendency did not change

significantly.

It should be noted that these results conflict with the results reported by Hail et al. [69],
who found more significant differences in average Interest retransmissions between differ-
ent caching strategies. However, these differences may also be attributed to differences in
experiment setup — their experiment features a less dense network with fewer nodes, where
not all nodes act as consumers or producers, some nodes being pure relay nodes instead. It
is possible that with increased reliance on multi-hop communications, differences in Inter-
est retransmission rates become more noticeable. Hail et al.’s experiments were also carried
out in a network simulator instead of a physical testbed, which might indicate that the in-
fluence of physical effects such as signals interference were not adequately modelled in the

simulation.
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Cache Evictions

The number of cache evictions is correlated with the rate at which content objects fill the
cache. This can be observed when considering the results shown in the bottom plot of Fig-
ure 3.2, although the differences between strategies are minor and very consistent across
experiment runs. The CEE strategy, which on average caches more packets than the proba-

bilistic approaches, also exhibits a higher number of cache evictions.

Unsurprisingly, this metric shows a clear distinction between the two request patterns. Due
to the skew in the Zipfian distribution, caches will accumulate the most popular content,
reducing the likelihood of thrashing when compared to the uniform distribution. However,
using a probabilistic caching strategy with a constant probability does increase the variance
when the Zipfian distribution is used, as a content chunk’s popularity has no bearing on
its likelihood to be evicted. Conversely, pPCASTING has minimal variance, showing that its
probability distribution is better adapted to the Zipfian request pattern.

The number of cache evictions should also be examined in the context of total traffic produced
in the network. In an average experiment run, the number of packets, including retransmis-
sions, that are produced by all nodes varies between 40 000 and 75 000, while cache evictions
peak at around 1250 or 4500 depending on request pattern. In other words, for the uniform
distribution, between 5% and 12% of packets result in cache evictions, while for the Zipfian
distribution, this number is between 1% and 4%. It should also be noted that the number of
evictions is heavily dependent on cache size. The caches used in these experiments hold up
to 20 content objects. If memory is more constrained and/or content objects are larger, the

rate of cache evictions will increase.

Content Delivery Latency

Figure 3.3 shows the average content delivery latency — i.e. the average round trip time
between the original transmission of an Interest and its satisfaction by the corresponding
content, including any retransmissions — as a time series and averaged over the first quarter

of the experiment duration respectively.
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Figure 3.3.: Content delivery latency

At the beginning of the experiment, the latency is obviously orders of magnitude larger than
after the caches have filled up, simply because any new content object can only ever be found

at its original source until it has been requested at least once.

Unsurprisingly, the probabilistic approaches have much higher peaks than the CEE strategy,
since they make it less likely, especially at the beginning of an experiment, for a content
chunk to be found at a given cache in the network, thus necessitating more direct requests to
sources. For the same reason, the average latency in the probabilistic approaches also declines

at a slower rate, since caches take longer to fill.

Note that the left hand plot in Figure 3.3 is scaled to show only the first quarter of the exper-
iment’s duration, since there is no significant change in the average delivery latency after

about 200 seconds.

To cut down on visual noise, the time series in Figures 3.3 to 3.5 show only the measure-
ments taken with the uniformly random request distribution, as this distribution is closer to
expected request patterns in a real IoT scenario. The right hand bar plots, meanwhile, show
the comparisons between the uniform and the Zipfian distributions. For the content delivery

latency, there is no significant difference between the distributions.
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Figure 3.4.: Diversity metric

Diversity Metric

Figure 3.4 shows the Diversity Metric (DM) as a time series and as an average for the different
caching decision strategies. As explained in Section 3.1.5, DM indicates the diversity of cache
contents in all caches across the network by calculating the ratio of disjoint name prefixes
in all caches to the number of distinct content producers. It therefore shows the percentage

of content producers whose content is cached somewhere in the network at a given time.

Overall, the majority of content producers are represented in the network at any given time.
However, the caching strategies differ in both the rate of distribution and the value at which
they peak. CEE starts off at a higher diversity than the probabilistic strategies, since it caches
all content objects from the start, thus filling its caches more quickly. However, as the caches
fill up, the probabilistic strategies are actually able to surpass the diversity of CEE. This is
due to the fact that CEE, while ensuring caches are used to their full capacity, leads to high
redundancy — all caches in the network will have very similar contents since they cache
every object they encounter. The probabilistic methods, on the other hand, result in more
diverse caches, thus increasing the probability of all content producers being represented in

the network to almost 100%, a peak that is not reached by CEE.
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Figure 3.5.: Cache retention ratio

Cache Retention Ratio

As noted in Section 3.1.6, CRR naturally decreases over time as new content objects are con-
stantly being created while cache size stays the same, meaning content chunks will inevitably
fade out of the network entirely after a finite time. However, as shown in Figure 3.5, the rate

at which CRR decays as well as its starting value vary depending on the caching strategy.

If a probabilistic caching strategy is used, caches take longer to fill up and peak at a lower
value than the CEE approach. This is simply due to the fact that the rate of content creation
is the same in all experiment runs, but the probabilistic approaches take longer to accumu-
late data, meaning that by the time they have reached cache saturation, the total number of
content objects created is already greater than what the caches can hold. The static proba-
bilistic approach exhibits a smoother rate of decline, since fewer cache evictions take place

(see Section 3.2.1) and content thus has a longer average lifetime.

It is here in particular that a significant difference can be found between the probabilistic
caching with static p = 0.5 and pCASTING. At the beginning of the experiment, pCASTING
starts at a much higher peak than p = 0.5, and its CRR convergence is more similar to that

of CEE than p = 0.5. This is an effect of the different factors that go into the decision made
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by pCASTING. Since it takes into account both the freshness of the incoming content chunk
as well as the cache occupancy (see Section 3.2.1), it acts differently when the cache is empty
than when it is full. With an empty cache, the caching probability is much higher, as the
corresponding part of the decision is inversely proportional to cache occupancy. This means
that at the beginning of the experiment, pCASTING will act more like CEE or p = 0.9 until
the caches fill up, at which point the probability will drop.

CRR also exhibits a clear distinction between Zipfian and uniform request patterns. The
strong skew of the Zipfian distribution means that less popular content will fade much
quicker while popular content is retained, making caches more homogeneous over time. A
uniform distribution ensures similar lifespans for all content chunks, thus increasing the av-
erage CRR.

3.2.2 Cache Replacement Policies

The three cache replacement policies LRU, MDMR, and RR were evaluated using the most

common caching decision strategy, CEE.

Server Load

The top plot of Figure 3.6 shows the average server load L g for the different cache replace-
ment strategies. It is immediately obvious that all three cache replacement strategies result
in very similar server load rates; both the average values and the variances are very close
across all combinations. It can thus be concluded that the cache replacement strategy has
a negligible effect on this metric. Compare these results to those discussed in Section 3.2.1,
where it was found that the caching decision strategy did have a measurable effect on server
load. Therefore, while it might not be the most conclusive metric, it is still valuable for distin-
guishing between caching decision strategies. It may also be worth investigating how much
of an impact other factors, like network topology, congestion, traffic shape, etc., have on the

server load rate.
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Figure 3.6.: Load, retransmissions, and evictions of different cache replacement policies
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Perhaps most importantly, it is clear that RR, the simplest of the cache replacement strategies,
does not perform any worse than the other approaches, which come with a much larger over-
head. This supports the argument put forward by Zhang et al. [162] that complex heuristics
in the cache replacement policy are not worth the effort and that RR meets all requirements
with the added benefit of being simple and fast.

Interest Retransmission Ratio

The results shown in the middle plot of Figure 3.6 confirm what was established in Sec-
tion 3.2.1 — the caching strategy appears to have no measurable effect on the average per-
centage of Interests that have to retransmitted. This is still a valuable result, however, since
it shows that any variations in retransmission rates one might observe between different

experiments most likely have causes independent from the chosen caching strategy.

Number of Cache Evictions

As noted in Section 3.2.1, the request distribution has a significant effect on the number of
cache evictions. Furthermore, this metric is also affected by the cache replacement strategy.
Interestingly, the relative performances of the replacement strategies differed depending on
the distribution pattern: given a Zipfian distribution, RR outperforms the other approaches,
whereas with a uniform distribution, MDMR produces the best results. MDMR was designed
to maximise diversity (see Section 2.2.3) and was originally evaluated in a scenario with
uniform request patterns [66]. As such, it is unsurprising to see it perform well in this sce-
nario. Given a skewed request distribution, however, it is not able to outperform LRU. This
is because caches in this scenario are already much more likely to hold more popular con-
tent, reducing the impact of cache-shaping strategies. The fact that RR performs better than
the other approaches in the Zipfian scenario is surprising. It may be that there is still some
thrashing at the tail of the Zipf distribution, where popularities even out, and that random

replacement counteracts this effect.
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Figure 3.7.: Content delivery latency

Content Delivery Latency

Figure 3.7 shows the average content delivery latency as a time series using a uniform request
pattern and averaged over the first quarter of the experiment using both request distributions.
While the overall expectation for the average delivery latency is the same for all strategies —
a peak at the beginning followed by a gradual decline — the strategies differ in both the height
of the peak and the rate of decline. LRU exhibits a lower initial peak in the delivery latency,
but converges as slowly as MDMR. RR’s latency peaks similarly to MDMR but declines much

faster.

Since the caching decision strategy used is CEE, it can be assumed that caches fill up at the
same rate on average. The reason MDMR exhibits a higher initial peak is most likely that
content freshness, which is prioritised by MDMR, only becomes a significant factor after
the experiment has run for a certain time and the ages of content objects begin to diverge. In
other words, MDMR needs a minimum amount of time to become effective at making content

available.
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Figure 3.8.: Diversity metric

After a few minutes, the content delivery latency stabilises at a very low value, ensuring
timely delivery during the majority of the network’s lifespan. The significance of the early
spikes in delivery latency is more in the strain that is put on individual devices, which be-
comes particularly important if the devices are battery-powered, putting data producers in

greater danger of early failure.

Diversity Metric

It is immediately obvious from Figure 3.8 that the cache replacement policy seems to have
no measurable impact on the diversity metric. All policies follow roughly the same curve
described in Section 3.2.1, which exhibits consistently high diversity, but never reaches the

peak diversity the probabilistic approaches do.
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Figure 3.9.: Cache retention ratio

It is not necessarily intuitive that the cache replacement policy would have no impact on the
diversity metric. After all, the replacement policy directly affects cache contents, and some
policies, such as MDMR, make it their intended goal to maximise diversity. These results are
thus slightly surprising. However, it needs to be noted that MDMR was explicitly intended
to maximise diversity in a scenario in which nodes would periodically sleep [66], so it may

not be best suited for this experiment setup.

Cache Retention Ratio

Figure 3.9 demonstrates that the CRRs for the cache replacement policies all follow the same
pattern; what cache contents are replaced does not seem to have an impact on how long
contents are retained in the network. As observed in Section 3.2.1, the right hand bar plot

shows that content fades significantly quicker given a Zipfian distribution.
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3.2.3 Summary of Performance Evaluation

This section presented a comparison and evaluation of different caching strategies for in-
formation-centric IoT. The results indicate that it is likely not worth implementing overly
complex cache replacement strategies, as simple stateless policies can perform equally well
or perhaps even better. This confirms that the findings published by Zhang et al. [162] for tra-
ditional ICN also hold true for information-centric IoT, which is very encouraging as it means

that effective caching can be achieved even when using resource-constrained IoT devices.

Identifying the ideal caching decision strategy for an IoT application depends on the require-
ments of that particular application as well as the available resources. Some applications may
produce highly homogeneous content that needs to be disseminated as rapidly as possible,
while others may prioritise maximising the diversity of cached content over fast response
times. Depending on whether the devices are battery-driven or have access to a constant
power source, alleviating strain on single nodes may be more or less important. Therefore,
offering a universal solution in the form of an ideal caching approach for all information-
centric IoT deployments might not be possible. Instead, the research presented here should
serve as a comprehensive overview of the benefits and shortcomings of the different ap-
proaches in relation to different metrics, not all of which may be of equal importance for any

given application.

The results presented so far only scratch the surface of recent developments in caching in
ICN in general and information-centric IoT in particular. Many more strategies than the ones
evaluated here have been proposed, and research in this area remains very active. Section 3.3
will therefore examine a greater number of caching strategies, with a further evaluation fo-

cusing on the effects of network topology on content delivery latency.
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3.3 Content Delivery Latency

This section presents an in-depth evaluation of a number of different in-network caching
strategies in regard to latency and hop count reduction. As in Section 3.2, an experiment
was designed using real IoT hardware in a physical testbed meant to emulate the conditions
of a typical IoT application as closely as possible. Based on the results of the previous eval-
uation, cache replacement strategies — which were found to have little impact on caching
performance — are ignored in favour of a larger selection of caching decision strategies (all
of which are described in Section 2.2). Content delivery latencies are measured, as well as
the average reduction in hop count between cached content and original storage location.
Furthermore, the extent to which the effectiveness of a given strategy is influenced by the

network’s logical topology — and thus by the routing algorithm — is investigated.

The question of where in the network content should be cached is one of the most defining
problems of in-network caching research [35, 41, 52, , ]. In particular, it has not been
definitively established whether it is better to cache content closer to the consumer or closer
to the producer. Intuitively, caching closer to the consumer would seem to make more sense;
after all, if content is kept close to the producer, the load on that particular node can be
reduced, but the potential latency improvements seem to be minimal. If content is requested
from a particular region of the network, it is probably safe to assume that it will be requested
from that region again in the future. If the content was already cached close to that region,
retrieving it will be much faster. This is the argument for caching towards the consumer
and there are a number of caching strategies that employ this paradigm [55, 95, 116, 151].
However, as shown in Section 2.2.4, depending on the logical topology, there is also a strong
argument for the inverse approach. The experiment presented in this section was designed
to shed light on this dichotomy.
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(a) Deployment of nodes in the IoT-LAB Grenoble site  (b) IoT-LAB nodes in the Grenoble Senslab space

Figure 3.10.: The Grenoble site of the IoT-LAB testbed was used for experimental evaluation

3.3.1 Experiment Description

Given an information-centric IoT application where a reduction in content delivery latency
is the first priority, the primary objective of this experiment is to compare and contrast the

effect different approaches to ICN in-network caching have on this metric.

For this comparison, a series of experiments were run on the FIT IoT-LAB [3] open testbed,
using the same IoT hardware and firmware as in Section 3.2. The LRU cache replacement
policy is used in all experiments. As mentioned in Section 3.2, the choice of cache replacement

policy has little to no impact on the performance of in-network caching.

The experiments were conducted on the Grenoble site* of the IoT-LAB testbed, which is larger
than the Lille site used in the previous experiments. The site features more than 380 M3 nodes,
which are distributed across the rooms and corridors of one floor of an office building (see
Figure 3.10). This means that nodes are subject to realistic conditions found in indoor IoT
deployments, such as multipath effects, reflection, and absorption caused by walls, doors, and
windows made of various materials, as well as unpredictable interference by other wireless
signals and people moving around the building. These conditions mean that the behaviour

of the network is very close to what might be expected in a real-world deployment.

4https ://www.iot-1lab.info/deployment/grenoble/
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Of the 380 available nodes, each experiment run is conducted on an arbitrary subset of 50
nodes (chosen randomly each time), each of which act as producers, consumers, and relays
at the same time. This ensures that the logical topology is different in each experiment run
and also that the nodes will not be too strongly connected due to having a large number of
one-hop neighbours. This is desirable as it allows us to study the effects of unreliable con-
nections more closely. The transmission range of individual nodes is not enough to reach all
other nodes in the building, so communication will be predominantly multihop. In a typical
topology generated by this random selection of nodes, the mean path length is between 2
and 3 hops, as shown in Figure 3.1. This kind of multihop setup is commonly found in the
industrial monitoring domain. Real-world deployments tend to have slightly longer average
paths, but this scale is infeasible to achieve within the constraints of physical testbeds such
as IoT-LAB.

For this experiment, cache sizes are kept intentionally small. Each node’s cache can store up
to 5 unique content chunks (all content chunks have the same size). This small cache size
was chosen for two reasons. For one, RAM is extremely limited in IoT devices. The M3 nodes
used in this experiment have 64kB of RAM. A constant fraction of this RAM is occupied
by the operating system (4.4 kB) and the CCN-lite network stack (8.7 kB) [60], leaving about
50 kB that have to be shared between the CCN-lite heap (comprising CS, FIB, and PIT), and
the actual application running on top of the network stack. However, these numbers are at
the upper end of typical RAM sizes for class 2 devices. Class 1 devices with RAM on the
order of 10kB [29] also need to be considered. In these devices, the OS and network stack
already need to be pruned for features, and the remaining CCN-lite heap size will be at most
1kB [21]. Depending on the nature of the data transmitted by the application, available cache
space may thus be severely limited. This motivates the decision to limit the number of CS

entries in this way in order to be able to assess expected performance under these conditions.

The secondary motivation for limiting the number of CS items to 5 is that many adverse ef-
fects of ICN content availability could simply be countered by over-provisioning, i.e. provid-
ing more cache space (if the available RAM allows), thus ensuring content distribution. This
means that performance differences between caching strategies become less pronounced as
cache size increases. Therefore, it is more interesting to look at performance under limited

cache sizes, since this is where differences will be most noticeable.
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The experiment is managed by a control script using the IoT-LAB API, which provides full
control over all node serial interfaces. An experiment begins with a brief (30 seconds) setup
phase, in which every node advertises its own prefix (dictated by its address), which is then
propagated through the rest of the network using HoPP’s [61] routing algorithm. HoPP is
primarily a publish-and-subscribe scheme for information-centric IoT, but also includes a
prefix advertisement mechanism based on the Trickle [87] algorithm. The fact that the rout-
ing algorithm is based on Trickle also means that nodes’ FIBs can be kept up to date during
runtime. After setup is complete, every node will request a piece of content with a random
ID in {0, ..., 49} from each of the prefixes in its FIB. Interest and Data packets are handled as
specified by the NDN standard. The first time a node receives an Interest for a content chunk
it owns, it produces that content chunk (the actual payload is irrelevant for this experiment)
and sends it back towards the consumer. Caching of content chunks at intermediate nodes

is dictated by the caching strategy selected for the experiment.

The network’s logical topology (i.e. the routes taken by Interest and Data packets) is a direct
result of the FIB contents, which in turn are a direct result of the routing algorithm. In the
HoPP/Trickle routing algorithm, prefix advertisements are propagated in a tree-like fashion.
A producer will advertise its own prefixes with a rank of 0, which is then increased by each
node that forwards the advertisement. When forwarding interests, nodes will always prefer
the FIB entry with the lowest rank.

The caching decision strategies examined in this experiment are CEE, LCD, Prob(p), Prob-
Cache, ProbCache-Inv, Labels, and Intervals (see Section 2.2).

Relation between Hop Count and Latency

Figure 3.11 shows how the latency (specifically, the content delivery latency, which is the
time between Interest generation and satisfaction) is affected by the number of hops taken
to retrieve the content. This does not differentiate between cached content and content pro-
duced by the prefix owner, i.e. the hop count shown here is the number of hops traversed

by the Data to the requester from either its original producer or from a caching node. This
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Figure 3.11.: Relation between hop count and latency

means that this figure shows only the correlation between hop count and latency for individ-
ual transfers, which is linear because nodes are evenly spaced in the network. The caching
strategy does not have an impact on this metric in terms of packet travel time, because the

caching strategy affects the hop count and not the actual per-hop transfer speed.

The only impact the caching strategy can have on this metric is the computational overhead
as each hop on the Data path needs to make a decision. However, the difference appears
negligible. Thus, it can already be concluded that the complexity of all caching strategies is
within acceptable bounds, making them worth considering. For the rest of this section, this
graphic mostly serves to illustrate the ground truth of what latency to expect depending on
the hop count. It will be useful for contrasting with the metrics that will be discussed in
the rest of this section, as it effectively also represents the expected latencies if in-network

caching was entirely disabled.
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Hop Count Reduction

For each Interest, the number of hops between its origin and the owner of the prefix it is
requesting is denoted as the distance to source. In other words, this is the number of hops the
Interest/Data packet would always have to travel if there were no caches in the network. This
distance can then be compared to the actual number of hops taken by the Data packet on the
way back. This measure is called hops to hit as it denotes the number of hops it actually took
for the Interest to reach a cache hit. The more efficient a caching strategy, the more content
will be available in a cache closer to the consumer, leading to a lower average hops to hit
value. The difference between the distance to source and the hops to hit is denoted as the hop

count reduction.

The hop count reduction is obviously closely related to the cache hit ratio. That metric was
introduced in Section 3.1.1, but will not be elaborated on in the context of latency, as it is
subsumed by the hop count reduction — any reduction in hop count implies a cache hit and
vice versa. Similarly to the cache hit rate, the hop count reduction can be extended to be

weighted by content size (commonly referred to as footprint reduction [148, 150]).

The top plot of Figure 3.12 shows the average hop count reduction for the different caching
strategies at different distances. The first obvious effect is that most of the strategies only
show a significant hop count reduction starting from a minimum distance to source. In all
strategies except for LCD, there is a slight reduction at 3 hops and then a substantial one at
4 hops. The reason for this is that at shorter distances, there is less cache space between the
producer and the consumer, which means fewer opportunities for content to be cached on
the path. This makes it much more likely that a request will have to be routed all the way to
the prefix owner to be satisfied. After a distance of 4 hops, the hops to hit will increase again
as the distance to source increases. The “turning point” at which caching begins to have a
noticeable impact seems to lie between 3 to 4 hops for most strategies. After this point, there
is enough cache space on the path that content is likely to be found at a closer node. LCD,
on the other hand, already shows a noticeable hop reduction at a distance of 2 hops, which

gets even stronger as the distance increases.
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Figure 3.12.: Hop count, latency, and latency reduction by strategy. Note that while the graphs are

plotted as continuous lines here, this is only for presentation purposes as it allows for
better contrasting between the various strategies. The x-axis is discrete and the interpo-

lation between points is purely visual.
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Another strategy that stands out is Labels, which in terms of hop count reduction is second
only to LCD. This strategy takes a very different approach from LCD in that it favours an even
distribution of content by stratifying it according to content and node IDs [89]. It appears
that this approach, which prioritises making individual pieces of content available in the

same number of nodes across the network, results in a beneficial cache distribution.

It has been observed multiple times [35, , , ] that CEE is not an optimal caching
strategy for ICN, and this is supported by the results presented here. The reason is that CEE
is vulnerable to thrashing effects (especially if the LRU replacement policy is used, which is
almost always the case) when nodes are caching high volumes of diverse data. The limited

size of caches in IoT only exacerbates this effect.

Topology Effects

The fact that LCD exhibits a significantly greater reduction in hop count points to a phe-
nomenon introduced previously: the logical topology of the network has a significant im-
pact on the effectiveness of the chosen caching strategy. This is explained in more detail in
Section 2.2.4.

In ICN, the logical topology is a direct result of the forwarding paths stored in the nodes’
FIBs. The FIBs codify how Interests are forwarded and thus how content is distributed across
the network. Therefore, getting a sense of a network’s logical topology requires knowledge
about how its FIBs are constructed. There is no universal answer to this, because ICN enforces
no standards for how FIBs are populated. However, in most cases, the contents of the FIBs
are the direct result of the routing algorithm that is used by the producers to advertise their
content. The way in which nodes learn about their neighbours’ contents and in turn inform
their own neighbours will dictate what their FIBs will look like. Ultimately, this means that

the routing algorithm dictates the entire network’s logical topology.

The HoPP/Trickle routing algorithm used in this evaluation makes the individual FIBs organ-
ise themselves into tree topologies based on rank [61]. This means that they resemble a core
topology such as the one shown in Figure 2.6. Thus, the paths between consumers and pro-

ducers are more likely to cross closer to the producer, making nodes closer to producers more
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valuable caching candidates. The results in the top plot of Figure 3.12 show that a strategy
like LCD, which always caches close to the producer, clearly benefits from this fact. It is also
evident that ProbCache-Inv, which has increased caching probability near the producer, per-
forms a little better than default ProbCache with increased probability towards the consumer,

especially at higher distances to source, although this difference is not as pronounced.

Although Labels does not reach the same hop count reduction as LCD does, it should be noted
that, unlike that strategy, it is agnostic of topology and thus should be similarly effective in

an edge topology, where LCD would not be expected to reach the same performance.

Latency and Latency Reduction

The middle plot of Figure 3.12 shows the average content delivery latency in relation to the
distance to source. It is immediately obvious that the latencies for different distances follow
the same pattern as the hop reduction but are slightly more vertically stretched, which also
follows from the measurements shown in Figure 3.11. Since the increase in latency with each
hop is linear, the predominant change in latency is solely determined by the average hops to

hit per distance.

Of course, the most relevant measure for this evaluation is the actual reduction in latency, i.e.
how much faster on average content can be retrieved when using a given caching strategy.
For this, the average latency of a given strategy by distance to source is compared to the
average latency for that number of hops, i.e. the expected latency without caching (cf. Fig-
ure 3.11). The results are shown in the bottom plot of Figure 3.12. It is clear that the sweet
spot in terms of latency reduction, i.e. the distance at which caching has the biggest impact,
is found at a distance of 4 hops for all strategies except LCD, where it is 3. This was already
implied by the middle plot of Figure 3.12, where a distance of 4 (3 for LCD) exhibited the first
dip in hop count and thus latency, but when related to the expected latency it becomes even

more pronounced.

Once again, LCD shows by far the best performance at the peak, whereas the other strate-
gies are relatively close together. As might be expected, Labels is once again the strongest

contender out of the remaining strategies, with ProbCache-Inv coming in third.
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Overall Performance

Figure 3.13 shows an overview of the mean hops, the mean latencies, and the mean reduction
in latency across all path lengths for the different strategies. Evidently, across all strategies,
the mean hops needed for each Interest can be reduced to a little over 1. CEE, ProbCache, and
Prob(p) perform the worst overall, whereas LCD and Labels perform the best — Labels has a
slight advantage over the other strategies and LCD has a significant one. Although default

ProbCache performs no better than Prob(p), its inverted variant shows some improvement.

There are several conclusions to be drawn from this. The first is that as described above, due
to the fact that the routing algorithm chosen for these experiments results in a core topology,
caching near the producer is the more effective strategy, making LCD a good choice. From
the results, it can also be seen that strategies that do not take elements of the topology into
account (i.e. CEE and Prob(p)) generally do not perform as well as those that do, although
Labels goes against that trend. The middle ground is covered by ProbCache-Inv, which does
consider topology but still introduces an element of chance. A tentative conclusion from
this is that deterministic, topology-based approaches provide better content placement than

probabilistic ones.

3.3.2 Summary of Content Delivery Latency

This section presented a comparison and evaluation of several different caching strategies
for information-centric IoT, focusing on their effects on content delivery latency. The results
indicate that the logical topology of the network has an impact on which cache distribution is
optimal, and thus it may be fruitful to use caching algorithms that are optimised for the given
topology. However, caching strategies that ignore topology in favour of other approaches,
such as stratifying the data evenly across the network, are also promising and may be prefer-
able if the topology is unknown, mutable, or a hybrid between different types. The network’s
logical topology is influenced by the choice of routing algorithm, thereby creating a direct
link between routing algorithm and caching strategy. In other words, a holistic caching so-

lution for information-centric IoT should ideally take all of these aspects into account.
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Of course, determining the optimal caching strategy for a given IoT application also depends
on the requirements of that particular application as well as the constraints imposed by the
hardware. More computationally intensive caching strategies may yield better results, but
may take too much resources away from the actual application. Overall, however, the re-
sults indicate that even simple caching strategies such as LCD or Labels can improve perfor-
mance compared to indiscriminate caching, so they will almost always be worth considering.
This is especially promising in light of the stated goal of keeping any proposed solution as
lightweight as possible.

3.4 Conclusions

This chapter has presented a series of evaluations of the performance of various caching
decision strategies and cache replacement policies for information-centric IoT, with a special
focus on content delivery latency. The results indicate that the caching decision strategy has
significantly more impact on caching performance than the cache replacement policy. For

the latter, simple stateless policies were found to be sufficient in most cases.

While it is most likely impossible to determine a one-size-fits-all caching strategy that will
guarantee the best performance in all scenarios, the results do indicate that strategies that
are able to adapt to the network topology show a lot of promise. This is because the ideal
location for a given in-network cache appears to be strongly influenced by the shape of the

topology, which in turn is a result of the routing algorithm chosen to construct FIBs.

The direct link between the choice of routing algorithm and the effectiveness of the caching
strategy is a phenomenon that had not been explicitly investigated in ICN caching research.
Most research that compares caching strategies does not take the routing algorithm into ac-
count at all; often, FIBs are just assumed to be populated a priori. The lessons learnt from the
presented research indicate that an in-depth comparison of caching strategy performance on
topologies created by different routing algorithms should yield valuable insights and pave
the way towards a holistic solution. Therefore, Chapter 4 will compare the performance of dif-
ferent caching strategies in core as well as edge topologies and present a lightweight caching

solution designed to be effective regardless of topology.






CHAPTER 4

A Lightweight Centrality-Based Caching

Strategy for Information-Centric loT

Many time-critical IoT applications rely on content being delivered as fast as possible, and the
way in which content is cached throughout the network can have a significant impact on how
quickly relevant information can be disseminated to where it is required. An efficient caching
strategy in this regard is one that minimises the effective distance between the consumer and
the content it needs. The aim of this chapter is to develop a strategy that can achieve this

under the constraints imposed by IoT hardware.

Section 3.3 showed that caching heuristics that take logical topology into account have great
promise, but are often not feasible for use in the IoT as they typically incur high overheads
or require extensive knowledge of the topology. This chapter will discuss a pair of caching
strategies for traditional ICN that aim to take advantage of topological effects to maximise
the benefits of in-network caching. However, these strategies suffer from the issues described
above: they require every device to have at least partial knowledge of the network, and they
incur significant overheads. To address these shortcomings, this chapter then introduces a
new content caching strategy called Approximate Betweenness Centrality (ABC) [114], which
makes use of the topology-based heuristics of existing strategies, but requires no knowledge

of the network and incurs no communications overhead. This new strategy is compared to
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several existing ICN caching strategies and its effectiveness is evaluated using real IoT de-
vices in a large physical testbed. The results show that this lightweight approach can deliver
results that are comparable to those of more expensive strategies while incurring almost no

additional costs.

4.1 Centrality-based Caching Strategies

Section 2.2.2 briefly introduced two caching strategies — Betw and EgoBetw [41] — which
rely on the betweenness centrality measure [146, 154] in order to make a caching decision.

This section will discuss these approaches in more detail.

Betweenness centrality describes the number of times a given node lies on one of the paths
between all pairs of nodes in the network. In general, the betweenness centrality C'z (v) of

anode v € V, where V is the set of all nodes in the network, is defined as:

Cplv)= Y =12 (4.1)

itvrjev i

where o, ; is the total number of paths between two nodes i and j, with i # v # j, and
0; j (v) is the number of paths between i and j that pass through v. This definition accounts
for the possibility that there are multiple paths between ¢ and j. However, in ICN, it can be
assumed without loss of generality that the shortest path between ¢ and j is always used as

the content delivery path. Therefore, the definition can be simplified as:

Cpv)= > o}, ), (4.2)

where

(4.3)
0, otherwise.

, 1, ifvonpath (i,}j)
(v) =
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Algorithm 9 Betw/EgoBetw Caching Decision

1: function HANDLE_INTEREST(Interest)

2: if canSatisfy(Interest) then

3: Data ¢ getData(Interest)

4: Data.Centrality <— Interest.Centrality
5: reply(Data)

6: else

7: if myCentrality > Interest.Centrality then
8: Interest.Centrality <— myCentrality
9: end if

10: forward(Interest)

11: end if

12: end function

13:

14: function HANDLE_DATA(Data)

15: if myCentrality > Data.Centrality then
16: cache(Data)

17: end if

18: forward(Data)

19: end function

Betweenness centrality has been found to be a useful indicator of node importance in a net-
work [146]. This can be applied to ICN caching by arguing that caching at more “important”
(i.e.: central) nodes will be beneficial for caching performance as it increases reachability of
content and thus should increase cache hits and reduce content delivery latency. This is the
motivation for the work of Chai et al. [41]. There are other centrality measures apart from
betweenness, such as closeness centrality, degree centrality, eigenvector centrality, and others,
all of which could potentially be used in the same way as betweenness centrality is used
here. Some of them have been evaluated in related contexts in ICN [75, , ], but only

betweenness centrality has been applied specifically to the caching decision strategy.

The basic concept of the centrality caching strategies proposed by Chai et al. is that when a
content chunk is sent from node ¢ to node 7, it shall be cached at the node v with the highest
centrality value C'z (v) among all nodes on the path (4, j). This is achieved in practice by
extending all ICN packets to include a field for the centrality value. Interest packets will then
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use this field to record the highest centrality value they encounter en route to their desti-
nation. This value is then recorded in the Data packet that is returned, and a node on the
return path caches the Data if and only if its own centrality is greater than or equal to the
centrality value recorded in the Data packet. This mechanism is illustrated in Algorithm 9.
The functions HANDLE_INTEREST() and HANDLE_DATA() define the behaviour when a node
receives an Interest or Data packet, respectively. If the incoming Interest can be satisfied
locally, canSatisfy() returns true, otherwise false. Content chunks are retrieved from the
local CS using getData(); and reply(), forward(), and cache() correspond to the ICN primi-
tives for replying to an Interest with a Data packet, forwarding packets to the next hop, and

caching content.

All centrality caching strategies discussed in this chapter use the same caching mechanism
as described above. The difference is in how they calculate the value for the betweenness
centrality that is used in the caching decision. Chai et al. propose two variants: Betw and
EgoBetw [41].

Betw is a straightforward implementation of the betweenness centrality measure as described
by Wasserman and Faust [154]. Before nodes begin exchanging Interests and Data, there is
a setup phase in which all nodes are assigned a centrality value using Equation (4.2). The
authors do not specify how exactly this setup phase is realised. In a fully static topology
where delivery paths never change, it may be feasible to simply manually assign the correct
centrality value to every node a priori. However, it is more likely that the nodes themselves
will have to exchange neighbour information in such a way that every node in the network
has full information about every other node in the network. This implies a significant over-
head, in terms of (i) communications (exchanging all of the neighbour lists), (ii) memory
(storing neighbour information for the whole network), (iii) computational cost (converting
the neighbour information into a centrality value), and (iv) time (waiting until every node

has full knowledge of the network).

As the complexity of Betw is high along multiple dimensions, Chai et al. propose a more
lightweight alternative called EgoBetw. Instead of using global knowledge, this method cal-
culates an approximation of a node’s centrality value by having it exchange connectivity

information only with its one-hop neighbours. This approach is based on the concept of ego
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network betweenness [53]. A node’s ego network is defined as that node, its one-hop neigh-
bours, and all links between any of those nodes. A node’s ego betweenness centrality is thus
the number of times it lies on one of the paths between all pairs of nodes in its ego network.
The calculation is the same as in Equation (4.2), except that V' denotes the node’s ego network
instead of the whole network. Chai et al. show that a node’s ego betweenness is a reasonable

approximation of the real betweenness measure.

For both Betw and EgoBetw, if it is assumed that the centrality value is to be calculated entirely
on the nodes without any a priori knowledge, each node needs to flood its own FIB entries
to all other nodes in the (ego) network, which equates to a baseline of at least n broadcast
messages, where n is the number of nodes in the network. If Betw is used in a multi-hop envi-
ronment, the initial broadcast will not reach every other node in the network, necessitating
further transmissions. In the worst case, up to n further retransmissions are necessary, thus
placing Betw’s messaging overhead in O (n?). In EgoBetw, nodes only need to exchange and
store the neighbour information of their immediate neighbours. This means that each node
only needs to send one broadcast message. The messaging overhead of EgoBetw is thus in

O (n), where n is the number of nodes in the network.

Since every node requires full knowledge about all pairs of nodes in the (ego) network to
calculate its centrality, the memory overhead per node is in O (n?) for Betw and in O (d?)

for EgoBetw, where d is that node’s degree' (d < n — 1).

In order to calculate its centrality value, each node has to check whether it is on the path
between each pair of nodes, thus placing the computational complexity in @ (n?) for Betw
and in O (d?) for EgoBetw.

Further complexity arises if the topology is dynamic, either because of unstable links result-
ing in variable delivery paths or because of mobile participants. In this case, the exchange
of neighbour information needs to be repeated at a frequency that matches the frequency of

changes to the topology, thus incurring further overhead.

'In graph theory, the degree of a vertex (node) is the number of edges (links) connected to it. Translated to

wireless networking, this means that a node’s degree is the number of one-hop neighbours it has.
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Given the severe limitations of IoT deployments in terms of memory space and link stability,
it is highly questionable whether an implementation of Betw that carries out the centrality
calculations on the nodes themselves can be realistically considered. EgoBetw is more feasi-
ble thanks to reduced knowledge requirements and complexity; however, the overhead in-
duced by the exchange of neighbour information, although only link-local, is still significant,
and especially in a dynamic topology may result in unacceptable contention of the wireless

medium.

4.2 Approximate Betweenness Centrality

Given the fact that, as shown above, Betw and EgoBetw are difficult or even impossible to
implement on IoT hardware, the aim of the research presented in this chapter is to develop a
method of determining node centrality that approximates the results of the existing strategies
while subject to the constraint that it must be feasible to implement and run on typical IoT
hardware with extremely limited memory, bandwidth, and processing power. This approach
is motivated in part by the fact that Rossi and Rossini [124] found that even the simplest
centrality measure — degree centrality — was sufficient to achieve acceptable performance
for their use case of allocating caching space, and that the more complex approaches offered
little improvement. Therefore, it is reasonable to assume that a similarly simple approach

may be promising as a caching decision strategy.

To that end, this chapter introduces a novel contribution to centrality-based ICN caching:
Approximate Betweenness Centrality (ABC). ABC handles the caching decision in the same
way as Betw and EgoBetw do (i.e., content is always cached at the nodes with the highest cen-
trality on the return path) but the centrality calculation does not incur the communications,

storage, and computational overhead inherent in the other strategies.
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Algorithm 10 Centrality Approximation

1: function uPDATE_CENTRALITY(Source, Destination)

2 if (Source, Destination) ¢ myPaths then

3 myPaths <— myPaths 4+ (Source, Destination)
4: myCentrality <— myCentrality 41

5 end if

6: end function

4.2.1 Operation

Instead of relying on a costly setup phase, ABC has each node approximate its own centrality
during runtime using information carried in the packets they receive. It is assumed that a
prefix owned by a producer contains some information that uniquely ties it to that producer.
This can take the form of a unique ID, a physical or logical address, a location identifier,
or similar. Furthermore, Interest packets are extended to carry the unique identifier of the
original requesting node as metadata. The question of whether the assumption of unique
identifiers and the extension of Interest packets in this fashion are reasonable in information-

centric IoT will be addressed in Section 4.2.2.

Embedding producer and consumer identifiers in Interest packets enables each node that
handles an Interest to ascertain that it is on the path between the consumer and the producer
of that Interest. This is equivalent to the knowledge a node in Betw would have about whether
it is on the path between a given pair of nodes. Every Interest from a new producer and/or to
a new consumer would thereby increase the node’s knowledge about which delivery paths
it is on. Thus, by keeping track of which pairs of nodes it serves, each node can over time
approximate a centrality value for itself, which will eventually converge to the value that
would have been calculated by Betw/EgoBetw in the setup phase. Of course, in terms of pure
performance, this convergence time represents a disadvantage as Betw/EgoBetw can make
use of fully accurate centrality values from the start. However, calculating these centrality

values requires an a priori setup phase that is not needed in ABC.
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Algorithm 10 shows how ABC approximates a node’s centrality. The UPDATE_CENTRALITY()
function is called at the start of the HANDLE_INTEREST() function. The rest of the caching

logic is identical to Algorithm 9.

4.2.2 Analysis

As all information required by ABC is piggy-backed onto the Interest packets that are being
sent anyway, there is no need for any additional broadcast messages or any other exchange
of information. Thus, ABC effectively eliminates the messaging overhead by reducing it to

O(1).

Nodes no longer require knowledge about all pairs of nodes in the (ego) network. Instead,
they only need to count the absolute number of paths they are on. In the worst case (if all
paths in the network were to pass through a given node) this equates to a memory overhead
of O (p), where p is the number of paths in the network’ (p < n(n —1)). In a realistic
topology, a node will only ever be on a subset of paths in the network, and the required
memory is bounded by the number of paths it is on. This means that edge nodes will use close
to no additional memory, while central nodes may use more. The actual memory overhead

observed in the evaluation will be discussed in Section 4.3.

In ABC, there is no need to compute nodes’ centrality values by checking their presence
or absence on every path in the network. Instead, nodes simply increment their centrality
values whenever they see a new path in an incoming Interest. The computational complexity
of ABC is therefore O (1).

For ease of comparison, the overheads of Betw, EgoBetw, and ABC are shown in Table 4.1.

Section 4.1 mentions as a compounding problem the issue of dynamic topologies. Both Betw
and EgoBetw rely on an exchange of information and subsequent calculation of centralities
that is separate from regular ICN operations, likely in the form of an a priori setup phase,

and has a static result. This means that this step, along with the communications and compu-

°1t is assumed that a path (4, j) is not necessarily identical to the corresponding path (7, %) if ¢ # j, since FIB
entries are generated independently from one another and there is no guarantee that they will be symmet-

rical.



4.2. Approximate Betweenness Centrality 101

Table 4.1.: Messaging, memory, and computational overheads of the centrality-based caching strate-
gies, where n is the number of nodes in the network, d is the degree of the caching node,

and p is the number of paths in the network.

Strategy Messaging overhead Memory overhead Computational overhead
Betw O (n?) O (n?) O (n?)

EgoBetw O (n) O (d?) O (d?)

ABC o(1) O (p) O(1)

tational overhead it incurs, would need to be repeated whenever there is a change in topol-
ogy (for Betw, the entire network needs to be re-evaluated, while in EgoBetw this is limited
to the ego networks directly affected by the topology change). Depending on the deploy-
ment scenario, changes in topology may be frequent. This means that the already significant
overheads of these strategies will grow even further. ABC, on the other hand, can easily be
adapted to accommodate dynamic topologies. This can be achieved by using time-outs for the

information stored on recorded paths or by weighting path information based on recency.

One open question concerns the convergence time of ABC in case of dynamic topologies. In
general, the approximate centrality values should converge to the actual values if there is
enough path information, i.e. if the request frequency is high enough. However, a scenario is
conceivable in which the topology is highly dynamic but the request frequency is low, mean-
ing that the frequency of path updates is not high enough for centrality values to converge.
One way to address this is with the aforementioned time-outs. If the time-out window is
adapted to the request frequency (the lower the request frequency, the shorter the time-out
window), then this scenario would, in the worst case, lead to the performance of ABC degrad-
ing to that of CEE as all nodes would have the same or similar centrality values. However,
in such a scenario, this would in fact not be a drawback, as a low request frequency would
mean that caches would be underutilised anyway, allowing us to simply cache at all nodes.
In fact, requests in such a scenario may be critical, in which case caching everywhere would

be an advantage.
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Since this time-out mechanism would still only use information from existing Interest pack-

ets, the overheads described above are not affected by this change.

A further advantage of ABC is ease of implementation. Requiring only a simple extension of
Interest and Data packets by one field and an additional code block in the Interest handler
to count node pairs, it is uncomplicated to extend an existing ICN deployment to use ABC.
Betw and EgoBetw, on the other hand, require provisioning for the setup phase (which can
not rely on ICN infrastructure) and, in case computations can not be handled on the nodes
due to hardware constraints, a way to offload the determination of betweenness values to a

central controller.

In Section 4.2.1, it was mentioned that ABC relies on Interests that clearly identify both their
producer and their consumer. This carries both a strong assumption (that a singular source
exists for each prefix) and a break with ICN principles (carrying consumer information in

Interest packets), which need to be addressed.

In the domain of information-centric IoT, the assumption of a single node source for each
prefix is not universally true, but also not unrealistic as nodes in typical IoT deployments
usually have either clearly defined roles (such as being associated with a uniquely identified
sensor/actuator or room) or a defined physical or logical location identifier. There may be
cases in which a prefix is jointly owned by a group of nodes (e.g. in environmental monitoring
where several nodes may be tied to the same region). However, in practice, the operation of
ABC would not be significantly hindered by this as this group of nodes could simply be

treated as a single producer for its path counting purposes.

Extending the information carried by the Interest with information on both source and des-
tination is strictly speaking a break with ICN principles. Recall from Section 2.1 that ICN is
based on treating named content objects instead of hosts as first class entities. This principle
is somewhat weakened here by the reintroduction of source and destination pairs. However,
the only purpose of these host identifiers is to facilitate centrality approximation and thus
caching; the operation of the core ICN forwarding loop is otherwise unchanged. The break
with ICN principles would thus only present a problem if the goal was to deploy ABC in
the wider Internet, where the required information would not be available. However, ABC

is designed specifically with the siloed environment of the IoT in mind, where devices are
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assumed to be under the control of the same entity and adhering to the same protocol. This
means that protocol breaks that are confined to the deployment are less of an issue. It must
however be noted that this extension would not be able to interoperate with services relying

on host anonymity.

Ultimately, ABC’s contribution to centrality-based caching is simple, comprising only of a
way to approximate centrality values, but it is precisely this simplicity that makes it so promis-
ing. It reduces complexity across several dimensions, including the cost of implementation,

as it simply leverages information from existing traffic during runtime.

4.3 Evaluation

This section presents a comparison of the ABC caching strategy with a number of other ICN
caching strategies. Focus is placed on hop reduction and latency as the main performance
metrics, since content delivery latency is typically the most important factor in time-critical
IoT applications. Cache hit rate is also discussed, as this is an important measure for any

caching strategy.

It is important to note that for all metrics evaluated in this section, ABC is not expected to
outperform Betw/EgoBetw directly. In fact, this would be rather surprising as ABC relies on an
inherently less accurate centrality measure for its caching decision. The main motivation for
using ABC is the fact that it can be feasibly implemented and deployed in an IoT environment,
which would not be possible for Betw/EgoBetw due to their a priori calculation requirements

and significant overheads.

The goal of these experiments is therefore to explore whether ABC’s performance is accept-
ably close to that of Betw/EgoBetw, which coupled with its significantly reduced complexity

would make it a much more realistic candidate for deployment on constrained devices.
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4.3.1 Experiment Setup

In order to compare ABC to the other strategies, a series of experiments were run on the
Grenoble site’ of the FIT IoT-LAB [3] open testbed. As in Section 3.3.1, the experiments were
conducted on a random subset of 50 out of the 380 available nodes in the site, with a cache
size of 5 content objects. The experiment setup is identical to the one used in that section,

and details are described there.

As before, the experiment is managed by a control script using the IoT-LAB APIL The API
can execute shell commands on individual nodes, which is used to provide the a priori logi-
cal topology knowledge required by the Betw/EgoBetw algorithms. This makes it possible to
circumvent the issues mentioned in Section 4.1, where it was established that the multiple
overheads implied by the need to exchange node neighbour lists, storing global information
about the network in every node, computing the centrality value at every node, and waiting
until all centrality values have converged would make these approaches entirely unfeasible
for the IoT. Thanks to IoT-LAB, however, the experiment has access to a controller that has
perfect knowledge of the entire network, making it possible to offload the entire process to
more powerful, centralised hardware. Of course, this would not be possible in a real deploy-
ment, but the following evaluation will show that even under these idealised circumstances,
the proposed ABC strategy, which is fully distributed and implemented exclusively on the

nodes themselves, can compete with the algorithms that offload their calculations.

4.3.2 Experiment Topologies

The evaluations were performed on two different network topologies: The core and edge
topologies, as introduced in Section 2.2.4. For reference, the topology types are shown again

in Figure 4.1.

3h‘ctps ://www.iot-lab.info/deployment/grenoble/
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Figure 4.1.: Topology types (identical to figures shown in Section 2.2.4, repeated here for convenience)

Core Topology

An experiment using the core topology begins with a brief (30 seconds) setup phase, during
which every node advertises its own content prefix (dictated by its address), which is then
propagated through the rest of the network using HoPP’s [61] routing algorithm. HoPP is
primarily a publish-and-subscribe scheme for information-centric IoT, but also includes a
prefix advertisement mechanism based on the Trickle [87] algorithm. The fact that the rout-
ing algorithm is based on Trickle also means that nodes’ FIBs can be kept up to date during

runtime.

The resulting logical network topology is a direct result of the FIB contents, which in turn
are a direct result of the routing algorithm. In the HoPP/Trickle routing algorithm, prefix
advertisements are propagated in a tree-like fashion. A producer will advertise its own pre-
fixes with a rank of 0, which is then increased by each node that forwards the advertisement.
CCN-lite’s forwarding plane is configured in such a way that for any matching prefix, the
FIB entry with the lowest rank is always preferred. This means that any multi-hop forward-
ing path will always minimise the number of hops to reach the producer. It also means that
forwarding paths are more likely to converge closer to the producer, as the lowest-ranked

nodes will be found there. This means that the resulting topology is a core topology.
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Edge Topology

In the setup phase of an experiment using the edge topology, each node advertises its own
presence to its neighbours via broadcast. Nodes record every neighbour they can hear and
pass this information on to the IoT-LAB control script. The control script has access to nodes’
physical locations through the IoT-LAB API. This means that it can use the nodes’ neighbour
information to construct an edge topology. The FIB entries for each content prefix are gener-
ated by the control script in such a way that delivery paths run directly from the producer to
the most distant consumers. All other nodes are then connected to the most distant connected
node in range. Thus, instead of connecting to the neighbour that is closest to the producer,
nodes will tend to connect to the neighbour that is furthest toward the edge. This has the
effect that forwarding paths are more likely to converge at the edge, where the outermost

nodes are found. The resulting topology therefore resembles an edge topology.

4.3.3 Experiment Description

After topology setup is complete, every node will request a piece of content with a random
ID in {0, ...,49} from each of the prefixes in its FIB (with 50 producers, there are thus 2500
distinct objects that can be requested). Requested content IDs follow a uniformly random
distribution to model the typical request distribution found in IoT applications [94, 122]. In-
terest and Data packets are handled as specified by the NDN standard. The first time a node
receives an Interest for a content chunk it owns, it produces that content chunk (the actual
payload is irrelevant for this experiment) and sends it back towards the consumer. Caching
of content chunks at intermediate nodes is dictated by the caching strategy selected for the

experiment.

The control script takes periodic snapshots of cache contents and FIBs and logs statistics such
as latency and hop counts. This information is used to evaluate the caching strategies in the

rest of this section.
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In addition to the proposed ABC strategy and the Betw and EgoBetw strategies introduced
in Section 4.1, two more strategies are included in the evaluation: CEE [73] and LCD [84]
(see Section 2.2). CEE is included here to show how much there is to gain from employing a
caching heuristic rather than simply caching all content. LCDis included in order to showcase
a strategy that has very good performance in one topology type and very poor performance
in another, as a contrast to the centrality-based strategies, whose performance is expected to

be strong regardless of topology.

To showcase the effects of the logical topology on the caching strategies, the visualisation of

the results is divided by topology type.

4.3.4 Cache Hit Rate

Although content delivery latency will be the main focus of analysis for this chapter, a basic
performance metric that cannot be overlooked is that of the cache hit rate. Cache hit rate
describes the ratio of content objects that are retrieved as a cached copy from another node
in the network as opposed to being retrieved from the original producer. As in Section 3.1.1,

the cache hit ratio R is defined as:

Ccac €
Rey = Th (4.4)

where C' is the total number of content objects retrieved and C,, is the number of content

cache

objects that are retrieved from the cache of an intermediate node that is not the prefix owner.

In general, a higher cache hit rate is desirable, as it means that (i) content delivery times are
reduced as content requests are being fulfilled without having to traverse the full path to the
producer and (ii) strain on individual producers is reduced as the number of requests routed
to them goes down, thus increasing battery life and reducing the probability of dropped

packets due to saturated buffers.
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Figure 4.2.: Mean cache hit rate by strategy and topology

Figure 4.2 shows the mean cache hit rate for the different strategies in the two topology types.
As has been shown in previous literature [35, , ], CEE’s mean cache hit rate is lower
than 60%, meaning that almost half of all content requests need to be routed to the original
producer to be fulfilled. This is in contrast to the results reported in Figure 3.2, where CEE’s
cache hit rate could reach around 80%. The difference is due to the fact that the experiments
in this chapter were conducted with drastically reduced cache sizes (5 items instead of 20),
which as expected exposed stronger performance differences between the strategies. As an
extreme contrast, LCD can reach a cache hit rate of over 90% in the core topology. In the edge
topology, on the other hand, it performs even worse than CEE. This is to be expected: Since
LCD keeps content close to the core by definition, it is much better suited to core topologies

than it is to edge topologies.

The centrality-based strategies perform well across both topologies, only being outperformed
by LCD in the core topology. It is evident that there is a clear link between the accuracy of
the centrality measure and the performance of the caching strategy (since this is the only dif-

ference between the three strategies): The more information is available to the betweenness
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calculation, the better the estimate, which in turn results in better performance. However, we
can also see that even with the rough centrality approximation provided by ABC, our cache
hit rate is only about 10% worse than that of Betw and still significantly better than LCD in
the edge topology and CEE in both topology types.

The centrality-based strategies perform slightly worse in the edge topology (by about 5% on
average) compared to the core topology. The reason for this is that a core topology will gen-
erally have a larger number of central, well-connected nodes that make good candidates for
caching data, whereas even well-connected nodes near the edge can only provide tangible
benefits for their corner of the network. However, the centrality strategies still clearly out-
perform CEE in both topology types. The relative performance between the three strategies

stays consistent across topology types.

4.3.5 Hop Count and Hops to Hit

For each Interest, the distance to source is the number of hops between its origin and the owner
of the requested content prefix. Put simply, it is the number of hops that would be needed
to deliver the content if there were no caches between the producer and the consumer. This
is contrasted with the hops to hit, which is the actual number of hops taken by the Interest
packet before a cache hit. The closer a cached copy exists to the consumer, the lower the hops
to hit. The more effective a caching strategy is at storing content, the more content will be

available closer to the consumer.

The mean hops to hit for the different strategies in the core and edge topologies are shown
in the top row of Figure 4.3. For both topology types and all caching strategies, there is a
measurable reduction in hops to hit in relation to the distance to source, which becomes
more pronounced as the distance to source increases. In other words, the bigger the distance
between the consumer and the content prefix owner, the more likely it is that the requested

content will be found in a cache in an intermediate node, thus reducing the hops to hit.
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Figure 4.3.: Performance comparison: Core vs. edge topology. Note that the interpolation between

discrete data points is purely for presentation reasons, compare Figure 3.12.
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As with the cache hit rate as shown in Section 4.3.4, it appears that the only strategy that is
significantly affected by the topology type is LCD, which once again is the best-performing
strategy in the core topology, but performs the poorest in the edge topology. Clearly, LCD is
a strategy that can be highly effective if employed in the topology it is designed for, but it

can not be a universal solution to the caching problem.

CEE performs adequately; up to a distance to source of 3 hops, there is no significant reduction
in hop count. At larger distances, the hops to hit even out, meaning that it can generally
satisfy content requests within a reasonable number of hops. This shows the value of ICN
caching even in its most basic state, as the hop count reduction for larger networks will still

be noticeable.

The largest performance gains are achieved by the centrality-based schemes. Interestingly
enough, their hops-to-hit value is even lower at a distance of 4 hops to the producer than it is
at a distance of 3 hops, particularly in the edge topology. This observation can be attributed
to the fact that these strategies exploit centrality when deciding cache placement. At a longer
distance to source, there are more potential caching nodes on the path to choose from, and
thus a more optimal cache distribution can be reached. All centrality-based schemes follow
this overall pattern, with variations in how much they actually reduce the hop count. In the
core topology, the pattern followed by LCD resembles that of the centrality approaches — as
the caching decisions reached by LCD in a core topology are very similar to those reached by
centrality strategies — whereas in the edge topology, LCD’s pattern more closely resembles

that of CEE, as it is entirely divorced from this topology type.

Within the centrality-based schemes, Betw does indeed boast the strongest performance,
closely followed by EgoBetw, and ABC slightly behind the two. This follows the observations
in Section 4.3.4 and is to be expected; after all, Betw has knowledge of the entire network’s
logical topology when making its decision, and both Betw and EgoBetw can rely on intensive
communications between neighbouring nodes to inform their strategy. It is encouraging,

then, that ABC, which does not have global knowledge of the network and requires no ad-
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ditional communication between neighbours, can still achieve results that are comparable
to its more complex relatives and outclass those of CEE and — in the edge topology — LCD.
Unlike Betw and EgoBetw, it was actually possible to implement and deploy ABC in an IoT

environment, making it a very promising choice.

4.3.6 Hop Reduction Ratio, Latency, and Latency Reduction

The previous section discussed the hops-to-hit metric in close relation to the distance to
source. This relation can be formalised into a new metric for easier discussion. The difference
between the distance to source and the hops to hit is called the hop count reduction, and the
hop reduction ratio is the ratio between the hop count reduction and the distance to source.

For a single content delivery operation c, the hop reduction ratio is thus defined as:

HRR. — to_source, — to_hit, (4.5)
¢ to_source, ’ '

where to_source, is the distance to source between the prefix owner of ¢ and the consumer
that requested it and to_hit, is the hops to hit the content chunk c in a cache. Thus, the more
hops a delivery path is reduced by (i.e. the lower to_hit_), the higher HRR, for that content

delivery operation.

Since the hops to hit and the hop reduction ratio are closely linked to the actual content
delivery latency, we need to examine that metric next. Furthermore, analogous to the hop
reduction ratio, we can define the latency reduction ratio which described the reduction in

latency compared to the expected latency without any in-network caching.

The middle row of Figure 4.3 shows the mean content delivery latencies in relation to the dis-
tance to source. It is immediately obvious that the latencies for the different strategies and
topology types follow the same pattern as the hop counts, which is intuitive as a reduction
in hops to hit should result in a proportional reduction in latency. However, it is possible for
a specific caching strategy to introduce additional delay through computational overhead,
meaning that a direct correlation between hop count and latency is not guaranteed and that

there may be latency differences between strategies that would not be evident from the hop
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count alone. Nevertheless, the results show that there is no significant delay introduced by
the different caching strategies. Of course, it needs to be noted here that as stated in Sec-
tion 4.3.1, Betw and EgoBetw were implemented in such a way that the actual computation
of the betweenness measure is offloaded to the IoT-LAB control script, which runs on con-
ventional server hardware and thus has vastly more resources at its disposal than the IoT
hardware. If these calculations were to run on the nodes themselves, it is possible that they
might introduce a significant latency to the forwarding process. This source of latency is

avoided in this evaluation in order to compare the strategies in the most favourable terms.

The most interesting measure when considering novel caching heuristics is not the latency
itself, but the reduction in latency, i.e. the expected gain in performance when employing the
given caching strategy. Similar to the hop reduction, The latency reduction is calculated by
comparing the mean latency per distance to source of each strategy to the mean latency for
that number of hops without caching (i.e. the expected latency without in-network caches).
The result, as shown in the bottom row of Figure 4.3, is the latency reduction of each caching
strategy. Following directly from the hop count and latency results shown in the top and mid-
dle rows, the biggest gains in performance can be seen at a distance to source of 3 to 4 hops.
As shown in Section 4.3.5, LCD, being uniquely suited for core topologies, already exhibits
significant latency reduction at the lowest hop counts and maintains the strongest reduction
overall in the core topology, whereas in the edge topology, it performs the same as the other
strategies at lower hop counts and is quickly overtaken by them as hop count grows, achiev-
ing only minimal improvements over latencies without caching. The other strategies all fol-
low roughly the same pattern, with improvements in latency being slightly smaller overall in
the edge topology compared to the core topology. The hierarchy between the centrality-based
strategies is consistent, but the difference in latency reduction between the lightweight ABC
and the complex Betw is in the range of 10 ms. This is a very encouraging result and shows

that it is indeed possible to achieve satisfactory performance with a lightweight approach.
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4.3.7 Cache Access Factor

While it is easy to interpret at a glance, the cache hit rate only paints a partial picture of
content accessibility in the network, as it contains no information about how accessible the
caches are. For example, LCD or another caching strategy that keeps contents close to the
core might in theory have a very high cache hit ratio while not significantly reducing path
lengths. The hop reduction ratio introduced above provides a more detailed understanding of
this behaviour, but can be quite complex if the caching strategy behaves differently depending
on path length. A single metric that combines both aspects would be desirable. To that end,
the cache access factor F -, is proposed here, which takes both cache hit and hop reduction
ratio into account to produce a single metric that weights pure content accessibility with the

average reduction of delivery paths.

The cache access factor is defined as:

n
. HRR,
Fea=Rey - —leo - (4.6)
n
where R is the cache hit rate, n is the number of content objects delivered, and HRR; is the

hop reduction ratio for a content object ¢ as defined in Equation (4.5).

In effect, F-, condenses into a single metric the expected gains in cache utilisation of a given
caching strategy. In a deployment without caching, F,, is 0 because R is 0. Maximising
F-, requires both maximising R, as well as minimising the hops to hit. A high cache hit

rate alone does not suffice if path lengths are not significantly reduced.

Figure 4.4 shows the cache access factor for the different strategies in the two topology types.
Given what was shown in the two previous sections, these results should not come as a
big surprise given that they are a synthesis of the previous metrics. However, it is evident
how the combination of cache hit rate and hop reduction helps bring some more nuance to
the differences between the strategies — LCD, for example, manages to outclass the other
strategies in the core topology further than it did in either of the individual metrics thanks to
its strong results in both. By contrast, in the edge topology, its relative weakness compared

to CEE in terms of cache hit rate is mitigated by its very similar performance in terms of hop
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Figure 4.4.: Cache Access Factor by strategy and topology

reduction, where for paths of up to 3 hops in length (which make up a plurality of content
requests), the two strategies perform identically. The relative differences between the three
centrality-based strategies remain the same, with ABC being within a reasonable distance of
the more complex strategies — the difference in cache access factor between it and Betw is

around 0.1 for both topology types.

4.3.8 Memory Use of ABC

In Section 4.2.2 it was mentioned that the memory required by nodes in ABC to store the
paths they are on depends on their centrality. In fact, the number of paths stored in a node is
exactly equal to its centrality. During this evaluation, there were only a few nodes with high
centrality values (core nodes in the core topology and nodes connected to edge nodes in the
edge topology), with the upper bound being around 20 on average for the core topology and

5 on average for the edge topology, while non-central nodes averaged below 5.
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4.3.9 Convergence Time of ABC

As mentioned in Section 4.2, ABC eliminates the need for a priori topology knowledge by
approximating nodes’ centralities during runtime. However, this also means that there is a
period of time after ABC is initialised during which the centrality values will not be correct.
In fact, since all nodes have an initial centrality of 0, ABC will perform identically to CEE
until the node centrality values start to diverge. It is important to examine how long it takes
for the node centrality values to reach a suitable level of differentiation, and also how long it
takes for the values to converge to a sufficient approximation of the “real” centrality values

that would be calculated by Betw.

In the experiments performed here, it only took an average of between 3 and 5 Interests
from each node to form a rough distinction in node centralities, such that there were only
one or two nodes with the highest centrality value on any given path. On average, it took
approximately 50 s for all nodes in the network to reach a sufficient approximation C,,, of
obtained by running the centrality calculation of Betw on
Cope <2

their real centrality value C,.,; (
the controller) such that ‘C’T

eal

4.3.10 Summary of Results

Upon first inspection, the results shown here may not seem particularly compelling as ABC
is never able to outperform the existing centrality strategies. However, the actual, tangible
advantage of ABC lies in the fact that its complexity, as shown in Section 4.2.2, is significantly
lower than that of Betw/EgoBetw. This means that in contrast to those strategies, it is actually
a viable candidate for implementation on constrained devices, and the fact that its results are
not significantly worse than the more complex strategies as well as being consistent across

different topology types provide a strong motivation for its use.



4.4. Conclusions 117

4.4 Conclusions

This chapter presented ABC, a simple lightweight caching scheme for information-centric IoT
that uses approximate centrality information to cache data in the most convenient location
regardless of topology. While this approach does not outperform existing strategies that make
use of more precise centrality measures, it can provide similar reductions in content delivery

latency without requiring any setup, global knowledge, or communications overhead.

If the network’s logical topology is well-known, a caching strategy specifically designed
for that topology may be the optimal choice for reducing content delivery latency, whereas
centrality-based caching strategies can achieve strong results in both edge cases examined

here, making them a strong choice if the topology is unknown or mutable.

One potential issue that has not been addressed yet relates to the fact that caching strategies
in the centrality-based family, including ABC, inherently place a higher strain on certain, well-
connected nodes, because those are the nodes with the highest centrality values and thus the
likeliest candidates for caching. This can potentially cause problems, as well-connected nodes
may already have to contend with above-average load due to the very fact that they are more
central, meaning that more traffic is routed through them compared to edge nodes. Choosing
them as the preferred caching locations on top of this may exacerbate this effect, potentially
leading to dropped packets as buffers become saturated, or, in the worst case, node failure as
batteries drain faster than those of less-taxed neighbour nodes (see also Section 2.2.5). How
much of an obstacle this presents in reality will depend on application- and deployment-
specific factors, such as the traffic rate and whether the nodes have access to a constant

power source or easily replaceable batteries.

A related drawback of using betweenness centrality for the caching decision is the fact that
this approach does not consider the transitive importance of nodes, i.e. nodes that are di-
rectly connected to very central nodes but do not have a high betweenness centrality value
themselves. These nodes should perhaps also be considered as caching targets. An advanced

centrality measure that takes nodes’ transitive importance into account is the eigenvector
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centrality [27]. While this centrality measure would likely be too complex to implement on
limited hardware, the notion that nodes directly connected to central nodes have transitive
importance is nevertheless useful and can be applied to a potential solution to the load bal-

ancing problem.

Although there was no immediate evidence for load-related performance degradation in the
experiments presented in this chapter, a more detailed study of the relative load placed on
different nodes when using centrality-based caching would shed more light on this issue
and could suggest reasonable upper bounds for how much central nodes should be preferred

before the risks outweigh the benefits. This study will be presented in the next chapter.



CHAPTER 5

A Lightweight and Modular Off-Path Caching

Extension for In-Network Caching Strategies

The last chapter ended with the conclusion that while Approximate Betweenness Centrality
(ABC) is certainly promising, there is one potential caveat in the form of load imbalance that

needs to be addressed.

Because the nodes that are the most central in the topology are most likely to be selected to
cache content, they will experience more strain from both cache read and write operations
than less central nodes. However, the fact that they are more central means that they are
already subject to more strain even without the caching load, since centrality implies that
they lie on more paths between pairs of nodes, meaning that they have to relay more Interest

and Data packets passing through them.

This twofold strain — in the shape of both communications as well as memory access oper-
ations — may result in detrimental side effects. The nodes’ performance may suffer as they
receive too many requests at once, leading to dropped packets as transmission buffers over-
flow. Furthermore, if the nodes are battery-powered, the most central nodes will run out of
power earlier than others, which may negatively affect the performance of the network as a

whole.
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One potential way to counteract this effect is to make use of an Off-Path Caching (OPC)
approach (see Section 2.2.6), where instead of always caching content strictly on the return
path of the Data packet, it is possible to offload content to other nodes in the network as
needed. As described in Section 2.2.6, OPC can take the form of a complete caching strategy
or it can be a supplement to an existing strategy. This chapter will focus on the latter by
developing an extension of ABC that makes use of OPC to counteract ABC'’s side effects

while not changing its fundamental centrality-based approach.

This chapter consists of a series of studies performed in order to first understand the impact
of load imbalance and then to counteract these effects. First, a holistic definition of “load” is
introduced, broken down into individual metrics that can be applied to quantify the strain
a given node may be experiencing. Then, an experiment is presented that quantifies the ef-
fect of purely centrality-based caching by measuring the above metrics in relation to node
centrality. Then, a modular extension of the ABC caching algorithm called ABC+OPC is in-
troduced, which builds an OPC mechanism on top of ABC. This extension does not change
the fundamentals of how ABC reaches its caching decision. Rather, it extends the cache re-
placement policy to move unused (i.e. less popular) items to adjacent nodes in order to make
use of underutilised cache space. Finally, another experiment is conducted that validates the
load improvements of ABC+OPC using the same load metrics as before while showing that

overall performance in terms of content delivery is not negatively affected.

5.1 Towards a Holistic Definition of Load

Although it is sometimes treated as such, load is not a monolithic phenomenon that can be
expressed with a single value. Rather, load is an emergent property that can be observed
when some combination of factors is present. The circumstances leading to states that would
be described as load can be varied and depend heavily on context. This section introduces

the metrics that are most relevant for determining load in an ICN-IoT context.
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5.1.1 Load on ICN Data Structures

In ICN, the network layer load on individual nodes can be expressed by measuring the read
and write load experienced by the data structures responsible for ICN operations. While the
Forwarding Information Base (FIB) contents are typically fairly static during normal opera-
tion and are almost exclusively read and not written, the Pending Interest Table (PIT) and the
Content Store (CS) are subject to a large number of read and write operations, the frequency
of which can be measured to characterise the node’s load. In particular, a node handling a
large number of Interests will exhibit high PIT load, while a node that is under high caching
load will be subject to a large number of CS operations. From this distinction, it can already be
seen that different nodes in the network will be experiencing different kinds of load (i.e., the
nodes experiencing high PIT load will likely not be the same as the ones experiencing high

CS load). The following sections will show that this observation holds for all load metrics.

5.1.2 'Thrashing

Thrashing occurs when the contents of the CS are being frequently replaced and the average
time a piece of content stays in the CS is low. While this can be caused by insufficient cache
space or inadequate caching or cache replacement policies (see Sections 2.2.2 and 2.2.3), it
is also an indicator of load, as the frequency of incoming contents correlates with the rate
of thrashing. We can measure thrashing directly by observing how frequently content is
replaced in a given CS, as well as indirectly by observing the average age of content objects
in a given CS. It needs to be noted that it should not be the aim of any proposed solution to
minimise this metric, as some rate of replacement is desirable in order to keep cached contents
up to date and make use of the available caching resources. Rather, the replacement rate

should be kept within reasonable bounds and not exceed a (scenario-dependent) threshold.
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5.1.3 Memory Load

As described extensively in previous chapters of this thesis, the IoT nodes that are the target
platform for the research presented here are characterised by extremely limited memory in
the order of tens of kilobytes. Therefore, it is a very common occurrence for nodes to run out
of memory for operation. In ICN, every operation (i.e., receiving, storing, and forwarding In-
terest or Data packets) incurs a temporary memory cost. It is possible to ensure a baseline of
functionality by reserving a constant amount of memory for certain constant-size resources
such as packet queues or the CS. However, this is implementation-dependent and not nec-
essarily guaranteed. The temporary memory costs of ICN transactions, on the other hand,
depend entirely on the rate at which the node receives Interest and Data packets. In CCN-
lite, every received packet results in the allocation of a temporary data structure to hold the
received prefix, which lives until the packet has been fully processed. In addition, every send
operation incurs temporary allocation of a packet buffer. Therefore, if a node attempts to
carry out too many send and/or receive operations simultaneously, it may run out of space
to allocate the required data structures, resulting in failed transactions. Depending on which
phase of the core ICN transaction loop fails, a failed transaction can have several adverse ef-
fects, including but not limited to (i) failing to create a new PIT entry, leading to unsatisfied
Interests down the line; (ii) failing to cache incoming content, leading to decreased content
delivery performance; or (iii) dropping incoming or outgoing packets, necessitating retrans-
missions. All of these situations should be avoided if possible. It should be noted, however,
that these operations fail “gracefully”, i.e., they do not lead to memory leaks and only result
in individual operations being aborted. This also means that there are no lasting effects from
such memory failures. Should the request frequency drop again, the node can resume normal

operation.
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5.1.4 Energy Consumption

Measuring energy consumption can be a reliable indicator for how much load a given node is
experiencing. It can indicate either increased computational strain, meaning the node is per-
forming more calculations that drain its energy, or network load, meaning the node is send-
ing and/or receiving more packets, causing higher power usage by the transceiver. However,
while increased power consumption generally implies higher load, constant power consump-
tion does not necessarily indicate constant load. A node may experience load on its constant-
size resources, such as the CS, packet queues, or RAM (see above), all of which can result in
dropped packets or aborted operations and thus performance degradation, without exhibiting
higher power consumption, because these overloaded states do not increase computational

complexity or result in more transmissions.

5.2 Load Characteristics of Centrality-Based Caching

Since the negative side effects of centrality-based caching were not readily apparent in the
experiments performed in Chapter 4, it is necessary to perform some further experiments in
order to quantify them. To that end, an experiment is conducted in this section that examines

the performance of ABC in respect to the metrics introduced in Section 5.1.

5.2.1 Experiment Setup

As in the previous experiments, the Grenoble site of the FIT IoT-LAB [3] open testbed is
used. The experiment parameters are identical to those described in Section 3.3.1, except that
content requests follow a Zipfian [32] rather than a uniformly random distribution in order
to model a popularity distribution where some pieces of content are more popular (i.e., more

likely to be requested) than others. This is because the negative side effects of centrality
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caching are more easily observed if the content request distribution is not uniform, since
this will result in less popular contents being starved as the most central nodes are occupied
solely by a small number of popular content objects. The OPC solution that will be presented

later in this chapter aims to counteract these effects.

5.2.2 Experiment Topology

Anchor nodes

Centrality (Normalised)

| .

0 20 40 60 80 100

Figure 5.1.: Node centralities

The topology used for these experiments was designed to show the impact of centrality-
based caching on the metrics introduced in Section 5.1. It features a central core with a small
number of highly connected (meshed) nodes, as well as several branches going out of that

core towards a large number of leaf nodes.
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Figure 5.1 shows the logical topology of the experiment setup along with the normalised cen-
tralities of each node. For ease of reference, the nodes in the topology are roughly divided
into three categories: Core, Anchor, and Leaf nodes, examples of which are labelled in Fig-
ure 5.1. Core nodes are the fully connected nodes in the centre of the topology. They have the
highest centrality values of all the nodes in the network. Leaf nodes are the nodes with only
one neighbour, situated at the edge of the network. They have a centrality of 0. The nodes
connecting one or more leaf nodes or small sub-trees to the rest of the network are called
anchor nodes. These three categories are not intended to be all-encompassing. There are a
few nodes that do not neatly fall into a single category and are somewhere between core
and anchor nodes. However, for the sake of the metrics discussed in this section, these three

categories should be sufficient to distinguish between nodes’ overall roles in the topology.

The experiment topology is created in IoT-LAB by explicitly populating nodes’ FIBs to create
the edges. FIBs are bootstrapped by randomly selecting five nodes in the topology to serve as
producers. To set up the topology, it is irrelevant which nodes are selected as producers. The
IoT-LAB control script simply determines the shortest path between any consumer and any
producer using the a priori topology definition, generates the FIB entries accordingly, and
saves them in the nodes. This way, a new set of producers can be randomly selected for each

experiment run while keeping the edges of the topology constant between runs.

After topology setup is complete, every node will request a piece of content with a random ID
in {0, ...,49} from one of the five prefixes in its FIB every second (with some jitter applied).
Requested content IDs follow a Zipfian distribution as explained in Section 5.2.1. Interest
and Data packets are handled as specified by the NDN standard. Content is cached according
to the selected caching strategy (see below). The first time a node receives an Interest for a
content chunk it owns, it produces that content chunk (the actual payload is irrelevant for

this experiment) and sends it back towards the consumer.

To properly demonstrate where centrality-based caching can run into load issues, it is nec-
essary to compare it to another caching strategy that would not exhibit these effects due
to having different caching characteristics. While any of the caching strategies discussed in
previous chapters would be viable candidates for a comparison, LCD [84, 162] was chosen as

a benchmark, because it is another strategy that is strongly affected by topology (as shown
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in Chapter 3), but is not centrality-based and is therefore expected to exhibit different load
characteristics. Other strategies, such as the various members of the probabilistic family dis-
cussed in Chapter 3, are suboptimal candidates for this particular comparison because they
tend to spread cache contents much more evenly across the network. While this in and of
itself would be an advantage these strategies have over ABC, Chapter 4 showed that ABC
tends to outperform them, whereas LCD’s performance is often comparable to ABC. These

two factors make LCD the all around best candidate for a benchmark caching strategy.

Alternative Experiment Scenarios

A number of different experiment scenarios were considered and explored before settling
on the one described above. Other variations included having only a single producer (either
randomly selected or always in the centre of the network) as well as slightly less connected
topology that did not have the full mesh between the core nodes shown in Figure 5.1 and
instead all paths passing through the core would pass through the same node. Ultimately,
the topology shown above was chosen as the most representative, as a topology where all
connections run through one central node would make it harder to attribute performance
losses to load issues instead of just poor topology design. Furthermore, choosing multiple
producers instead of only one was more conducive to bringing the load issues to light. Nev-
ertheless, for the sake of completeness and additional comparison, some results of the load

characteristics experiments with these alternative topologies are presented in Appendix A.

5.2.3 Results

The experiment setup described above was used to perform a series of experiments in order
to characterise the load characteristics of centrality-based caching. These results will then
be used later in this chapter as a baseline to compare against an Off-Path Caching (OPC)
approach, which aims to reduce load across all the relevant metrics. The results of the char-

acterisation experiments are presented here.
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Load on ICN Data Structures

PIT Load (ABC) PIT Load (LCD)
0 20 40 60 80 100 0 20 40 60 80 100

CS Load (ABC) CS Load (LCD)
0 20 40 60 80 100 0 20 40 60 80 100

Figure 5.2.: Load on ICN data structures: ABC vs. LCD
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Figure 5.3.: Load on ICN data structures (CDF)

Figure 5.2 shows the load placed on the ICN data structures of each node relative to its po-
sition in the topology, while Figure 5.3 shows the cumulative load distribution. PIT load
measures the average number of unsatisfied (waiting) Interests in a node’s PIT at any given
time, while CS load measures the frequency of read and write operations on a node’s CS. Both

measures are normalised across both strategies in the visualisation to show relative load.

It is immediately obvious from Figure 5.2 that while both load metrics correlate broadly with
node centrality, the impact on the two data structures differs slightly depending on the node’s
role in the topology. In LCD, PIT load is distributed slightly more evenly across the network,
with each non-leaf node holding some amount of PIT entries at any given time. We can see a
distinct cutoff point at which PIT load increases, both in the topological view and especially
in Figure 5.3. Here, we can also see the stark difference between LCD and ABC, which has
an almost binary delineation between low-load and high-load nodes. CS load, by contrast,
is concentrated in a smaller number of (mostly core) nodes in both strategies and although

overall load is slightly higher in ABC, it follows the same distribution.
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The difference in load distribution between the strategies can be explained using both the
caching approaches of ABC and LCD as well as the different roles nodes play in terms of
PIT and CS load. In ABC, data is only ever cached at the node with the highest centrality
value along the delivery path. This means that the core nodes carry the highest caching
load, and leaf nodes carry virtually none (the only CS load at leaf nodes comes from storing
content they themselves have requested and subsequently received). LCD, on the other hand,
gradually pushes content out towards the edges the more it is requested, which alleviates
the load on all but the most central of nodes (these core nodes still experience load simply
because of the number of requests they handle due to their central position in the network.) In
contrast, when looking at the anchor nodes, we can see how differently content disseminates
in a centrality-based strategy. Once the core nodes begin storing content, requests that travel
from the edge to the core nodes will result in content being stored on the most central of the
intermediate nodes between edge and core — in other words, the anchor nodes that connect
several leaf nodes or small sub-trees to the core. Nodes between anchor and core nodes, with
lower centrality, are essentially ignored by ABC. We can see that anchor nodes experience
a level of CS load that is about halfway between that of the core and the leaf nodes, while
their load under LCD is much closer to leaf nodes since content takes almost the same time

to reach them.

Contrast this observation with the PIT load experienced by anchor nodes in both strategies.
There is a much clearer distinction between leaf nodes on the one hand and core and anchor
nodes on the other. This is because anchor nodes have the crucial role of aggregating the
requests coming in from their respective leaf nodes. In ABC, this role falls to the small num-
ber of high-centrality nodes, while LCD smooths out the distribution. This creates the stark

difference in PIT load distribution.

It is evident that there is indeed an uneven distribution of load on the ICN data structures of
individual nodes, with more central nodes handling a much larger proportion of the requests.
While this effect is present in both LCD and ABC to some extent, particularly the uneven PIT
load is much more apparent in the latter. Although this observation alone does not necessarily
imply a loss of performance — and the experiments in Chapter 4 did not directly observe any
such effects — it is still an issue that may cause problems in critical applications and could

easily be exacerbated in situations with high traffic load.
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Thrashing

Replacement Rate (ABC) Replacement Rate (LCD)
0 20 40 60 80 100 0 20 40 60 80 100

Content Age (ABC) Content Age (LCD)
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Figure 5.4.: Thrashing: ABC vs. LCD



5.2. Load Characteristics of Centrality-Based Caching 131

--- ABC —LCD\

Content Age

Replacement Rate
1F el

0.8 | i

0.6 | fH
[ 1
@) N
O '

0.4 - VA

0.2 o Ar

\ \ \ : LILEZ \ \ \ \ \
1 2 3 4 5 165 205 245 285 325 365

Replacements [%] Age [ms]

Figure 5.5.: Thrashing (CDF)

Figures 5.4 and 5.5 show the observed rate of thrashing at each node in the network, measured
by both the rate at which content is replaced as well as the average age of the contents in
each node’s CS. There is a clear distinction between the core and non-core nodes in both
strategies. The entire replacement load of the network appears to be confined to only the
core nodes, while the content age distribution is continuous but clearly linearly increasing
with decreased centrality. While we would not expect any significant thrashing to occur in
the leaf nodes (since they only cache the contents they themselves requested), it is remarkable
that not even the anchor nodes exhibit any notable thrashing. This can be explained by the
fact that a Zipfian distribution is used for content requests, meaning that content that is more
likely to be requested is also more likely to be found in a given CS. This mirrors the findings
from Section 3.2.1. Coupled with the fact that anchor nodes are less likely to cache a given

content chunk in the first place, this leads to negligible thrashing rates. By contrast, the core
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nodes in ABC are exhibiting noticeable thrashing, with two nodes in particular appearing to
churn through their contents at an extreme rate. These same nodes are also affected in LCD
— again due to their central position in the network and being the likeliest caching candidate

for any content originating in the core — but the thrashing rate is at a much lower level.

There is considerably more variation in average content age between the nodes than implied
by the replacement rate. First and foremost, this is due to the fact that content requests follow
a random distribution and are triggered at random intervals. The overall trend, however,
is maintained. The oldest contents are found in leaf nodes, as these only cache their own
requests, while core nodes have mostly recent contents. LCD is able to hold content for longer
on average, especially at the leaf nodes. This is not an unequivocal positive, however, since
very high average content age can also be interpreted as an underutilisation of cache space

at these nodes.

There is an obvious difference in pure thrashing rate and average content age in regard to
anchor nodes. While anchor thrashing rate is virtually identical to that of leaf nodes, their av-
erage content age is much closer to core nodes, particularly in the centrality-based approach.
LCD, by contrast, sees anchor nodes in their own distinct age category, that is close to, but
distinguishable from, that of core nodes. This shows how differently thrashing and average
content age are distributed and that both metrics are necessary to give a holistic view of
caching. For the thrashing rate, the distribution is heavily skewed towards the core nodes,
with the majority of the nodes’ values being relatively closer to each other, whereas for con-
tent age, the skew is on the opposite side, with the leaf nodes exhibiting higher values than

the rest of the network.

The high rate of thrashing in centrality-based caching is likely to have a detrimental effect on
the overall performance of the network, as individual content chunks will not stay in these

nodes long enough to result in many cache hits.
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Memory Load (ABC) Memory Load (LCD)
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Figure 5.6.: Memory load: ABC vs. LCD

Memory Load

Figure 5.6 and the left-hand side of Figure 5.8 show the frequency at which nodes are forced to
abort operations due to insufficient memory. In both strategies, this appears to affect anchor
nodes above all, which when viewed in conjunction with Figure 5.2 implies that it is primarily
PIT load that causes memory load and that both metrics are thus less dependent on the choice
of caching strategy. This hypothesis is further corroborated by the fact that the maximum
number of PIT entries is 20 by default, whereas the maximum CS size has been limited to
5 entries as in all previous experiments. This means that in the experiments presented here,
nodes experiencing high PIT load will put a higher strain on their memory resources than
those experiencing high CS load. However, it also means that this expression of load is highly
configuration-specific and can be interpreted as a simple extension of the load on ICN data
structures as described above. The differences in memory load between ABC and LCD are

largely negligible.
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consumes

Energy Consumption (ABC) Energy Consumption (LCD)
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Figure 5.7.: Energy consumption: ABC vs. LCD

Energy Consumption

Figure 5.7 and the right-hand side of Figure 5.8 show the peak energy consumption of each
node in the topology. Immediately, there is an obvious difference between ABC and LCD in
that the former has a starker contrast between leaf and non-leaf nodes. While this difference
can also be seen in LCD, energy consumption values there are less varied and lower overall.
A further qualitative difference is that LCD appears to consume the most energy in anchor
nodes, while ABC follows the familiar centrality curve with the highest consumption found
in the core. Thus, it is possible that the main cause for energy consumption differs between
the two strategies. In the centrality approach, it appears that the high CS load causes the
affected nodes to consume more energy due to the increased frequency of read/write opera-
tions, while LCD energy consumption is more closely correlated to PIT load and the number

of Interests handled by a given node.
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Figure 5.8.: Memory Load and Energy Consumption (CDF)

5.2.4 Summary of ABC Load Characteristics

The load placed on nodes by the ABC caching approach can be observed in a number of
ways. The overarching observation is that, as postulated, load is correlated with centrality.
While core nodes are affected by all of the effects falling under the mantle of “load”, anchor
nodes are only affected by a subset, namely anything resulting from PIT operations and, by
extension, Interest management. Leaf nodes are largely unaffected. Almost all examined load
metrics show that centrality-based caching experiences more — and more uneven — load than
LCD. All of these observations can be traced back to ABC’s uneven caching characteristics.
It obviously directly affects CS load and the rate of thrashing, but PIT load is also an indirect
consequence, as fewer caching nodes means fewer paths in the network for Interests to take

and thus a stronger concentration of pending Interests at fewer nodes.
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Overall, then, it is clear that ABC could stand to benefit from a solution that would spread
out the caching load more evenly across the network without sacrificing the performance
benefits afforded by caching at central network locations. The following sections will explore

how to implement such an approach.

5.3 Approaches to Off-Path Caching

As stated in the introduction to this chapter, a promising way to achieve a more even distri-
bution of cache load is by applying the principle of Off-Path Caching (OPC) to the existing
caching strategy. The following sections will discuss how to approach such a solution given

the constraints of information-centric ICN.

The first question to answer when developing an OPC approach is whether the choice of
caching node should be based on local or global information; in other words, whether the
node that decides to offload its content to another node can choose its target autonomously
based on the information it has or whether that target is determined by a central authority
with full knowledge of the topology. As discussed in Section 2.2.6, most existing OPC ap-
proaches in traditional ICN choose the centralised route, because this allows making more
informed decisions that are based on the state of the entire network. However, this approach
is infeasible for the IoT domain, as both obtaining a global view of the topology and then
disseminating either that information or a decision based on it to any node that needs it

represents an unacceptable overhead.

Therefore, a solution based on nodes’ local knowledge is necessary. Essentially, whenever a
node is about to replace a content chunk in its cache with a new content chunk it has just
received, it will need to make a local decision on which node to send the old content chunk

to.

The offloading operation can be implemented using one of two general approaches. It could
either be a direct command — i.e., the offloading node sends the offloaded content to the
selected node directly — or it could be a request, meaning the offloading node broadcasts
its intention to offload the content to its neighbours, who then choose whether or not to

cache it based on their own state. However, the latter approach is far more resource inten-
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sive, as it requires at least two broadcasts. The first broadcast offloads the content, the second
notifies the caching node’s neighbours of their decision to cache. This approach also raises
non-trivial questions about contention and decision-making. With only local information,
there is no guarantee for either a minimum or a maximum number of nodes caching the
offloaded content, which could lead to either an over-replication of content, reducing effec-
tive cache utilisation, or an under-replication, where the benefits of OPC do not become
apparent. Furthermore, the amount of FIB updates implied by multiple nodes caching each
offloaded content chunk could easily counteract the desired gains in memory use. All in all,
this approach does not seem feasible, which is why the former approach was chosen, named
Targeted Offloading (TO) in the following.

5.3.1 Off-Path Caching by Targeted Offloading

In this approach, the offloading decision is confined to the node doing the offloading. Every
one-hop neighbour of the offloading node is a potential offloading target. The offloading node
chooses a neighbour based on a given criterion (see below) and sends the replaced content
to that neighbour, who is then required to cache it. In the case of ABC+OPC, the criterion
for the offloading decision is the neighbour’s centrality value. However, this could easily be

replaced with another measure, as discussed later in this section.

In the approach chosen for ABC+OPC, the offloading node chooses the node with the lowest
centrality value among its neighbours. Nodes are informed of their neighbours’ centrality
values via regular link-local broadcasts, which incur a small, but manageable, communica-
tions overhead. Choosing the neighbour with the lowest centrality directly counteracts the
load issue and makes the most efficient use of underutilised cache space. Cache space at more
central nodes is still likely to be used effectively because of the higher number of requests

going through them.
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An argument could be made for caching at the neighbour with the highest centrality value
instead. This would be a more conservative variant of the strategy, as content would tend
to remain at high-centrality nodes while reducing some strain on the most central nodes.
Keeping content at well-connected nodes means that the likelihood of direct cache hits re-
mains high, thus benefiting content delivery latencies. This would be an approximation of

the transitive importance measured by the eigenvector centrality approach (see Section 4.4).

On the other hand, it is questionable whether this alternative approach would adequately
address the load balancing problem, as content would still be concentrated in core and anchor
nodes with higher load. Keeping content central also means that the available cache space of

leaf nodes would largely remain underutilised.

The main potential drawback of the lowest-centrality approach, on the other hand, is that it
might negate the benefits of centrality-based caching, as content will now be stored at less
well-connected nodes, meaning that the hops-to-hit value (see Section 3.3.1) is expected to
increase. It will therefore be necessary to quantify the potential performance drawbacks of

this approach compared to pure centrality-based caching without OPC.

As mentioned in the introduction to this section, making the offloading decision based on
neighbour centralities is only one of many possible approaches. The decision could be made
based on any other metric or combination of metrics, such as the neighbour’s load, remaining
battery life, content popularity or age, or wireless link quality, without affecting the basic
functionality of the strategy. OPC is designed to be modular and the overall functionality is

independent of how the offloading decision is reached.

Another open question concerns updating of nodes’ FIBs. Once an offloading decision has
been reached, it is necessary to enable forwarding of Interests to the new caching node. In
normal (on-path) caching, this is not an issue since contents are always cached on the path
taken by Interests anyway. If content is cached outside of that path, on the other hand, other
nodes need to be made aware so that Interests can be forwarded to the new caching node.

This raises several questions.
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The easiest way to ensure Interests can reach the new caching node would be to simply update
the offloading node’s FIB to point to the caching node for the offloaded content. This would
be enough to guarantee Interest delivery. However, it would also mean that most requests
for the content would still be routed through the offloading node, meaning average hops to
hit would increase while the amount of traffic handled by the offloading node would not

decrease significantly; essentially, the only gain would be in better utilisation of cache space.

Therefore, it is better for the caching node to directly inform other nodes of the new caching
location by broadcasting the new content to its one-hop neighbours so that they can update
their FIBs accordingly. This makes it easier for new Interests to reach the content’s new

location. However, any such broadcast does imply additional communications overhead.

The last question that needs to be addressed is what to do if there is no suitable candidate node
to offload the content to — e.g., when offloading to the neighbour with the lowest centrality,
what happens if the offloading node is already the node with the lowest centrality in its
one-hop neighbourhood. However, this question is easily answered by asserting that if a
piece of content has been offloaded so much that it has reached a local minimum in terms
of caching node centrality, it is likely unpopular enough that it can be removed from cache
circulation entirely without affecting performance. Therefore, if the offloading node has no
viable candidate to offload to, it will fall back to pre-OPC behaviour of simply evicting the

content chunk.

The additional functions needed to extend ABC with OPC are shown in Algorithm 11. The

extension consists of three simple steps:

1. Whenever a node would discard a content chunk from its CS, it instead sends that
content chunk to the node with the lowest centrality among its one-hop neighbours
with the instruction to cache it (see the oFrLoAD() function in Algorithm 11). Ties are
broken by Random Number Generation (RNG).

2. The receiving node caches the content chunk and broadcasts a notification containing
the content prefix to its one-hop neighbours (see the RECEIVE(offloadedContent) func-
tion in Algorithm 11). This serves as both an acknowledgement to the offloading node
that offloading was successful as well as an instruction to all neighbours to update
their FIBs.
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Algorithm 11 Off-Path Caching by Targeted Offloading

1: function ofFFLOAD(content)

targetNode <~ n € neighbours: Vm € neighbours: centrality < centrality,
send(n, content)

end function

function receive(offloadedContent)
cache(offloadedContent)
broadcast(offloadedContent.prefix, myAddr)

end function

11: function receive(offloadPrefix, addr)
12: addFIBEntry(offloadPrefix, addr, static=false)

13: end function

3. Any node that receives the broadcast creates a temporary FIB entry for this prefix (see
the RECEIVE(offloadPrefix, addr)function in Algorithm 11). By default, FIB entries do
not expire in this setup because routes are static, but the NDN standard allows setting
an expiry time. This option is utilised in order to allow Interests to be routed to the
new caching location while accounting for the fact that the offloaded content will not

be stored at that new location forever.

5.4 Evaluation of ABC+OPC

ABC+OPC was evaluated in the same experiment setup as used in Section 5.2. The new ap-
proach was compared to pure ABC across all load metrics introduced in Section 5.1. Further-
more, the performance was evaluated using the cache hit and hop reduction rate metrics

introduced in previous chapters.
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Figure 5.9.: PIT load: ABC vs. ABC+OPC

5.4.1 Load Improvements

Load on ICN Data Structures

Figure 5.9 and the left-hand side of Figure 5.11 show the change in PIT load after applying
OPC to ABC. As can be seen, OPC results in reduced overall PIT load for almost all nodes,

forming a similar distribution as LCD. Anchor and core nodes, which were previously under

heavy load, see significantly reduced PIT usage in almost all cases, while load on leaf nodes

stays similarly low to before, with minor improvements in some cases. Even relatively iso-

lated anchor nodes (such as the one labelled in Figure 5.9) are able to offload their contents

to the leaf nodes attached to them, allowing those leaves to exchange contents without going

through the anchor. This in turn reduces load on the next anchor upstream.
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Figure 5.10.: CS load: ABC vs. ABC+OPC

In this experiment topology, there is only one core node (labelled as “Bridge” in Figure 5.9)
that still experiences similar load to before. This node has the responsibility to bridge the
connection between multiple large sub-trees and the core of the network. This shows the
limits of OPC. If the topology has a single bridge between two partitions, with no alternative
nodes to form alleviating paths, there is little opportunity for OPC to improve connectivity.
However, performance issues arising from such a situation would be observed regardless of
the chosen caching strategy, as they are simply a result of the topology. Thus, they would
have to be addressed by improving the topology itself, e.g. by deploying additional nodes

near the problem area.

Figure 5.10 and the right-hand side of Figure 5.11 show OPC’s improvements in terms of CS
load. In contrast to PIT load, which was decreased overall under OPC, the effect on CS load
is more of an equalisation — the distribution is smoothed out. Total load is not decreased by
much and remains higher than LCD, but load on core nodes is alleviated, while previously

untapped resources in anchor and especially leaf nodes are utilised more. The result is higher



143

5.4. Evaluation of ABC+OPC
--- ABC —LCD ------ABC+OPC
PIT Load CS Load
1F s F
0.8 | ! 3.
0.6 | . B
[N ]
Q ]
O '
0.4 | ; L
0.2 - :: L
| | | e -
0.4 0.6 0.8 1 0.2 0.4
Load

0.2
Figure 5.11.: Load on ICN data structures (CDF)

cache diversity, as explained in more detail in Chapter 3. By choosing to offload contents to
low-centrality nodes that would otherwise be ignored by ABC, we have effectively added a

large amount of caching space to the network, making it much easier e.g. for leaf nodes to

exchange contents without having to go via core or even anchor nodes.

Thrashing
Without OPC, thrashing was observed at high rates in core nodes and at negligible rates ev-

erywhere else. That general trend is still clearly present even with OPC. However, Figure 5.12
and the left-hand side of Figure 5.14 show that the overall replacement rate has gone down
slightly, pointing to improvement in caching efficiency. The replacement rate is now compa-

rable to that of LCD, so the remaining differences between core and non-core nodes can be
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attributed to their positions in the topology. Since the replacement rate of non-core nodes
stays the same while that of the core nodes is reduced, this means that OPC uses previously
unused resources and thereby enabled the rest of the network to pick up some of the core
nodes’ slack.

The reduction in thrashing is more evident in Figure 5.13 and the right-hand side of Fig-
ure 5.14, which shows that the average age of content objects has increased for almost all
nodes. While there is still a significant difference between core and leaf nodes — which is to
be expected given the sheer difference in traffic handled by these node roles — content has a

longer lifetime in most core nodes, which should have a positive effect on the cache hit rate

(see Section 5.4.2).
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Figure 5.15.: Memory load: ABC vs. ABC+OPC

Memory Load

Under OPC, memory load still affects anchor nodes the most. Interestingly, the improvements
to memory load are stronger in core nodes, implying that spreading out CS load as shown
in Figure 5.10 has a bigger impact on memory use than the overall reduction in PIT load.
Taken in conjunction with previous observations on PIT load, the implication here is that the
memory load experienced by anchor nodes (which is an extension of PIT load) is more of a
result of network topology rather than caching decisions, whereas core memory load (which
comes from CS load) is clearly the result of the caching strategy. Therefore, it is intuitive
that OPC would impact core nodes more strongly than anchor nodes, because their much
higher CS access rates mean that they have more opportunities to offload contents and thus

experience load equalisation, while PIT load can not be equalised as easily.
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Figure 5.16.: Energy consumption: ABC vs. ABC+OPC
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Energy Consumption

Extending ABC with OPC does not drastically alter the energy consumption profile. The
overall shape of consumption remains the same, with a stark distinction between leaf and
non-leaf nodes. However, there is a slight reduction of energy consumption levels at anchor
nodes specifically, indicating the slightly decreased strain on these nodes. The difference,

however, is fairly minute.

5.4.2 Caching Performance Metrics

While it is clear that OPC reduces the load of ABC across all metrics, it is important to en-
sure that this does not come at the cost of the other advantages ABC provides, namely its
strong performance in terms of content delivery. In particular, since OPC will lead to some
contents being cached at less central nodes, it would be reasonable to expect an increase in
the average number of hops it takes to hit a cached copy of a content chunk, and therefore
an increase in content delivery latency. The question is how much of an impact this has.
Therefore, further evaluation is needed that compares ABC+OPC to non-OPC caching using
some of the approaches discussed in previous chapters. To this end, ABC+OPC was compared
to ABC (without OPC), LCD, and the default caching strategy Cache Everything Everywhere
(CEE) in terms of the caching performance metrics used previously in this thesis: cache hit
ratio, content delivery latency, and hop reduction rate. This evaluation is presented in the

following sections.

Cache Hit Rate

The cache hit rate for each strategy was calculated in the same manner as done previously
in Sections 3.2 and 4.3.4.
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Figure 5.18.: Caching performance: ABC+OPC vs. other strategies

In Section 4.3.4, it was shown that the cache hit rate (and other performance metrics) of LCD
were highly dependent on network topology, with the strategy posting strong results in core
topologies and very weak results in edge topologies (cf. Section 2.2.4) due to the tendency
to keep contents close to the core. The topology used in this experiment, which is closer
to a realistic setup than the two extreme cases discussed previously, has elements of both
topology types, with both a strongly connected core as well as anchor nodes with multiple

branching leaf nodes.

As can be seen in Figure 5.18(a), this topology allows LCD to perform reasonably well while
not outclassing other strategies entirely as was the case in a full core topology. CEE’s cache
hit ratio stays at the expected level of just under 60% (CEE is largely unaffected by network
topology). As would be expected from results in Chapter 4, ABC outclasses CEE, but it is not
able to reach quite the same cache hit ratio as LCD, staying around 70%. However, once the
strategy is extended by the OPC component, its cache hit rate increases to a level comparable
to that of LCD. This means that OPC is indeed successful in not only reducing load, but also
in making better use of available caching resources, allowing a greater number of content

objects to be cached than before.
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Figure 5.19.: Hop reduction and cache access factor

Content Delivery Latency

While LCD has a better cache hit rate than ABC in this experiment topology, this does not
directly translate to lower overall latency, as LCD keeps contents closer to the core while ABC
places them at the most accessible location. For ABC+OPC, however, Figure 5.18(b) confirms
the expectation that the OPC extension would result in a slight performance loss in terms
of content delivery latency. Because some contents are now stored at nodes that are not as
central and thus less easily accessible by other nodes, the delivery path lengths for some
contents will increase. This increase, however, still results in lower latencies than those of
LCD, which when taken in conjunction with the comparable cache hit rates in Figure 5.18(a),

paints a very promising picture.
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Hop Reduction

The increased content delivery latency shown in the previous section already implies a gen-
eral trend for average path lengths in ABC+OPC. Nonetheless, it is helpful to further break
this down into a ratio of hops to hit by distance to source. As explained in detail in Section 4.3.5,
this ratio contrasts the distance in hops between a consumer and a producer of a given con-
tent chunk with the actual average number of hops it takes for that content chunk to reach
the consumer. The more efficient a caching strategy is at making use of caching space and

placing contents in accessible locations, the lower that strategy’s hops to hit value.

While the shape of the hops to hit curves for the different strategies in Figure 5.19(a) differ
slightly from those shown in Section 4.3.5 due to the different network topology, the relative
differences between the strategies remain comparable. All strategies show some reduction
in the hops to hit count, particularly for path lengths of around 4 hops. As expected given
previous results so far, CEE performs the worst while ABC performs the best. LCD is not able
to outperform the other strategies like it did in the core topology in Section 4.3.5, as was

already implied by its slightly higher content delivery latency in the previous section.

This metric reveals some more interesting details about the behaviour of ABC+OPC. It starts
off worse than LCD and ABC without OPC, but then manages to outperform LCD at path
lengths of 5 or more hops. This means that the benefits of caching off the content delivery
path become more apparent the longer that delivery path is. More intermediate hops means
(in most cases) more one-hop neighbours to offload contents to, which increases the cache
hit rate. While it never quite reaches the reduction rate of ABC, ABC+OPC is clearly a solid

choice for networks with long delivery paths.

Cache Access Factor

The final performance metric to consider before coming to a conclusion on the effectiveness
of ABC+OPC is its cache access factor. As defined in Section 4.3.7, the cache access factor
combines the cache hit rate and the hop reduction rate into one metric to provide a weighted

valuation of the expected gains in caching performance.
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Figure 5.19(b) shows the cache access factors of the different strategies. With the topology
being somewhere near the middle of the core-edge spectrum, the differences between the
strategies are not quite as pronounced as in Section 4.3.7. ABC’s strong hop reduction rate, es-
pecially for shorter delivery paths, earns it the top spot. Interestingly, ABC+OPC and LCD end
up sharing the same cache access factor, even though it might be expected that LCD would
beat the new strategy thanks to its stronger performance at shorter path lengths, which tend
to dominate the path length distribution. However, it appears that the fact that ABC+OPC
matches LCD in cache hit rate and outperforms it in hop reduction at longer path lengths is

enough to place it on the same level.

5.4.3 Summary of ABC+OPC Results

As anticipated, the introduction of OPC has resulted in measurable improvements to the load
experienced by the network. Just as load is expressed in multiple ways as described in Sec-
tion 5.1, the effects of OPC on the different load metrics is varied. Some aspects, such as the
PIT load, see an absolute decrease as a more balanced use of available caching space results
in more possible request paths and thus in Interests being spread more evenly, while others,
such as the CS load, stay at a comparable level but are more evenly distributed, with previ-
ously underutilised nodes storing more contents and overloaded nodes experiencing some
relief. The better distribution of load can also be seen in the reduction in thrashing, which
is still present to some extent purely due to the fact that some nodes are more connected
than others, but does not exhibit the same extremes as before. Consequently, average con-
tent age is also positively affected, with the average content chunk being cached for longer

than before.

The tradeoff from the introduction of OPC comes, as expected, in the form of an increase in
average content delivery latency, as some contents are now stored in less readily accessible
locations. However, the increase is small, and ABC+OPC still manages to outperform LCD in

the experiment topology.
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5.5 Conclusions

This chapter has demonstrated that while load imbalance is indeed an issue for ABC as feared
in Chapter 4, its negative side effects can be mostly mitigated by employing a simple off-path
caching strategy on top of the existing caching decision strategy. This has beneficial effects

across almost all metrics save for a tolerable increase in content delivery latency.

This chapter has introduced a nuanced way of understanding load in an information-centric
IoT deployment. Rather than relying on a single metric, a range of factors affecting different
components of the network was examined, and nodes were categorised according to their
roles in the topology. This helps predict which nodes are most likely to suffer from which
expression of load, and allows the design of a comprehensive strategy to combat performance

drains caused by load imbalance.

An approach to off-path caching tailored towards centrality-based caching strategies for
information-centric IoT was presented. This OPC approach follows the same design philoso-
phy as ABC, in that it is intended to be easy to understand and implement and is designed
with the severely limited hardware of the IoT in mind. That means no access to global knowl-
edge and a minimisation of computational, memory, and communications overhead. Other
OPC strategies, such as those discussed in Section 2.2.6, may theoretically deliver even better

results, but are not feasible for deployment in a realistic IoT scenario.

The proposed OPC solution was compared against its non-OPC counterpart in terms of the
load metrics introduced previously, as well as other familiar caching strategies across relevant
performance metrics. The results show a reduction in load across almost all dimensions, with
only a slight increase in energy use due to the additional communication introduced by the
offloading operation, and an overall acceptable loss of performance that mostly concerns
slightly increased content delivery times in exchange for more evenly balanced load and

more stable cache hit rates.

Overall, ABC+OPC is a promising extension to the ABC caching algorithm, which maintains
the lightweight approach of ABC while reducing the potential drawbacks of uneven load
on load-sensitive IoT hardware. Chapter 4 concluded that if the network topology is well-

known and immutable, it is very likely that a caching strategy can be explicitly tailored to be
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optimal in that particular topology. However, if there is a need for a universally applicable
caching strategy, for example if the topology is unknown or subject to change, a strategy
such as ABC that performs reasonably well for all topology types is a viable option. The

same considerations are true for ABC+OPC.

While the OPC extension presented in this chapter was developed and tested in conjunction
with ABC, it is not exclusive to that strategy and could provide benefits for any centrality-
based strategy. It may even be worth considering as an extension to other on-path caching

strategies in case they struggle with similar load balancing issues.



CHAPTER 6

Increasing Content Delivery Reliability by

Introducing QoS Constraints

While the previous chapters have focused on reducing latency, many IoT scenarios have an
additional constraint: the reliability of content delivery. Reliable delivery is particularly im-
portant in areas such as industrial control systems (where high precision is required and often
depends on not only low-latency but also lossless communications), disaster management
and emergency alert systems (where every single message may be of critical importance),
or autonomous driving. The inherent unreliability of IoT communication poses a significant
hurdle to its pervasive application in these scenarios. However, as opposed to traditional so-
lutions, where opportunities for Quality of Service (QoS) improvements are thought to be
limited [24, 30, 31, ] and essentially only extend to managing forwarding resources [155],
ICN includes further resources, such as in-network caches, that can be exploited for QoS

purposes.
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Figure 6.1.: QoS Service Levels [64]

This chapter presents a simple and straightforward approach to integrate QoS considerations
into information-centric IoT. This is achieved by introducing the traffic service classes prompt
and reliable. Traffic marked as prompt is given higher priority in terms of delivery latency,
while reliable traffic receives higher priority in terms of in-network caching. A flow can have
one, both, or neither of these classes. This chapter shows how a few simple adjustments to
ICN primitives are enough to realise these service classes and presents an experiment that

demonstrates the effectiveness of the proposed approach.

The contributions presented in this chapter are part of a larger set of contributions that are
the result of fruitful collaboration with researchers from the Hamburg University of Applied
Sciences, the Free University of Berlin, and Safety io, LLC. This chapter focuses on the caching
aspect of QoS; the full scope of the proposed QoS improvements can be found in the publica-

tions resulting from this collaboration [62-64].

6.1 QoS Service Levels and Flow Classification

In order to achieve service differentiation in terms of both latency and reliability, the two
quality dimensions prompt and reliable are proposed, as shown in Figure 6.1. For the sake of
simplicity, only a binary distinction is made, but more fine-grained distinctions are possible.
Traffic can then be assigned a service class using prefix matching. An example is shown in
Table 6.1. Consider a simple building monitoring system with sensors that measure room
occupancy and temperature and actuators for an alarm system, as well as any number of ad-
ditional, miscellaneous sensors and actuators. Any traffic under the /ICN/monitoring prefix

is by default treated as <Regular, Regular>, i.e. without any special QoS considerations. Then,
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Table 6.1.: Examples of prefix to service class mappings [64]

Prefix Service Class

/ICN/monitoring <Regular, Regular>
/ICN/monitoring/occupancy <Reliable, Regular>
/ICN/monitoring/temp <Regular, Prompt>
/ICN/monitoring/alarm <Reliable, Prompt>

the rules are extended to assign different service classes to certain subclasses of the moni-
toring traffic. Traffic from occupancy sensors is required to be reliable (i.e. this information
should be guaranteed to arrive at the sink) but does not need to be delivered in a timely fash-
ion. Conversely, temperature readings should be prompt because they are only useful within
a limited time window, but dropped temperature packets are acceptable. Finally, packets that
trigger an alarm need to be both prompt and reliable, i.e. they need to be delivered as fast as

possible and never dropped.

This method of marking QoS service levels using the content prefix expands the role of the
prefix beyond its influence on the forwarding plane and into further aspects of the NDN stack,
such as the Pending Interest Table (PIT) and the Content Store (CS). Consequently, it intro-
duces some new constraints regarding namespace design. The hierarchy of the namespace
needs to be constructed with QoS service levels in mind in order to be able to benefit from
the differentiated services introduced in this chapter. However, in most deployments, this
should be easy enough to implement by extending content prefixes with appropriate service

level markers.

6.2 QoS-Enabled In-Network Caching

The introduction of traffic flow priorities adds an additional dimension to the caching de-
cision strategy. Regardless of which specific approach is used, content marked as reliable
should always be cached, as it is imperative that this content is available throughout the

network. Thus, reception of reliable content should not trigger the caching decision strategy;
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instead, control should be handed directly to the cache replacement policy (see below). The
question whether prompt content should be cached with a higher priority than content with
regular latency requirements is not as clear-cut. Caching prompt content with higher priority
would have a positive effect on future transmissions of that content object (either by retrans-
mission of the original request or by new requests) and thus have a positive effect on latency,
although the potential gain in this aspect is dependent on path length. Any content that is
marked as regular in both QoS dimensions should be treated as normal; in other words, the

caching decision strategy is consulted.

After a node has decided to cache a new content object, the cache replacement policy is
typically consulted if the CS is at capacity. As explained in Section 2.2.3, in most cases, CS
contents will be replaced using a simple heuristic such as Least Recently Used (LRU). However,
once again the introduction of traffic flow priorities adds an additional dimension to this

decision.

In general, incoming content should not replace content of a higher priority. Therefore, con-
tent with regular latency requirements should not replace prompt content and content with
regular reliability should not replace reliable content. When it comes to the correlation be-
tween latency and reliability, the primary goal of the CS should be to ensure content avail-
ability, which places a stronger emphasis on the reliability aspect. Thus, reliable content with
regular latency should be able to replace prompt content if no other content is eligible to be re-
placed. If all content is of the same priority class, regular replacement rules (e.g. LRU) should
apply.

In probabilistic caching, as introduced in Section 2.2.2, each node caches incoming content
according to a certain probability p. Regardless of how exactly p is determined (whether stat-
ically or dynamically), the probabilistic approach may be refined by differentiating between
two separate probabilities p,,, for regular content and p,,, for reliable content, with p,,; > p,,,.
This has the effect that a CS at each node will have different contents, thus contributing to
CS diversity across the network by making a larger range of content available as cached
copies, while giving consideration to service classes ensures that higher-priority content is

still treated preferentially.
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Figure 6.2.: Flow description for Interest and Data messages in a QoS enabled NDN forwarder [63]

Figure 6.2 shows the complete flow of ICN decisions with QoS service levels enabled, as an
extension of the flow diagram shown previously in Figure 2.4. This includes alterations made

to the forwarding queues and the PIT, which are described in detail by Glindogan et al [62-
].

6.3 Starvation and Fairness

Introducing QoS considerations to ICN caching creates further open questions that need to
be addressed. If CS contents can only be replaced by new contents and unprioritised content
may not replace prioritised content according to Section 6.2, then it is easy to construct a
scenario in which the CS is fully saturated with prioritised content and unprioritised content
is starved. In an extreme case, the entire caching space of the network could be poisoned by
an initial burst of prioritised content. Then, if all subsequent traffic is unprioritised, none of it

would be cached given the simple rules stated above. This further implies that unprioritised
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content would not even be able to rely on intermediate caches as retransmit buffers, poten-
tially causing transmission to fail entirely. Therefore, fairness measures are needed for QoS
enabled caching. The following sections will identify two specific starvation-related issues

and introduce potential countermeasures to address them.

6.3.1 Cache Blocking

Cache blocking occurs when prioritised content takes up all cache space in a CS, preventing
unprioritised content from being cached. This can be prevented by introducing a priority de-
cay time 7, which specifies how long a piece of content may be treated as prioritised. Any
prioritised content chunk that has been in the CS for a time ¢ > 7 is reclassified as unpri-
oritised and thus free to be replaced by newer unprioritised content. The value of 7 depends
on the application, but a practical value would be the expected time of cache utility, i.e. how

long on average a given content item will be valid or useful.

6.3.2 Cache Preemption

When prioritised content arrives at such a rate that unprioritised content can never be stored
in a CS for long enough to make an impact on performance, this is called cache preemption.
The priority decay time 7 introduced above can not prevent this if new prioritised content
arrives faster than the priority decay rate. In this case, any unprioritised content in the cache
will be evicted as soon as new prioritised content arrives. The preemption problem could
be countered by reserving a certain proportion of the CS for unprioritised content (which
may be problematic if CS capacity is extremely limited) or by modifying 7. However, these
solutions are highly dependent on scenario-specific traffic patterns and cannot be generalised.

Therefore, a simpler solution utilising probabilistic caching may be more appropriate.
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Figure 6.3.: Nodal success rates for Scenario 1 using regular traffic and reliable actuator traffic [62]

6.4 Evaluation

As in previous chapters, a series of evaluation experiments was conducted on the FIT IoT-
LAB [3] using the same constrained hardware as before (see Section 3.2 for details). The RIOT-
OS/CCN-lite stack on the nodes was extended with the QoS management scheme described

above.

6.4.1 Experiment Parameters

The experiments were conducted with two different caching decision strategies — CEE and
Prob(p) — and with LRU as the cache replacement policy. CEE functions almost exactly the
same as in a non-QoS enabled system, except that incoming reliable Data with no correspond-
ing PIT entry (which would normally be discarded) is cached opportunistically as described
in Section 6.2. Prob(p) is extended to use the two probabilities p,,, and p,,; for regular and

reliable content. They are set to 30% and 70% respectively.
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6.4.2 Experiment Topology

An experiment topology of 31 M3 nodes was constructed in the Grenoble site'. The topology
(shown in Figure 6.3) is a Destination Oriented Directed Acyclic Graph (DODAG) with 30
nodes forming two main branches with path lengths of up to 12 hops connected to a single

gateway. The two branches correspond to two corridors in the IoT-LAB Grenoble site.

6.4.3 Experiment Scenarios

Three experiment scenarios were designed using this topology in order to show the impact

of QoS provisioning on the performance of the different ICN resources.

Scenario 1: PITs and Forwarding

The first of these experiments focused on the impact on the forwarding queues and the PITs.
The results have been published previously [62, 63]. They are not discussed here because
PIT and forwarding queue considerations are not closely related to the caching questions
discussed in this thesis. However, Figure 6.3 gives an impression of how forwarding efficiency

is improved by the introduction of QoS measures.

Scenario 2: Caching

The second experiment scenario was designed to measure the impact of QoS enabled caching
on network performance. In this scenario, the gateway requests temperature readings with
increasing sequence numbers from the other 30 nodes every 8-12 seconds. Furthermore, the
non-gateway nodes send actuator requests with increasing content IDs to the gateway every

4-6 seconds. Traffic is thus bidirectional and divided into sensor traffic and actuator traffic.

Ihttps://www.iot-lab.info/deployment/grenoble/
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The nodes are randomly assigned to one of five actuator groups. Nodes in the same group
receive identical commands from the gateway, meaning that actuator traffic can be cached.
For sensor traffic, the CS only functions as a retransmission buffer because sensor requests

are device-specific and sequence numbers do not repeat.

In this scenario, the rate of successful deliveries, the content delivery latency, and the cache

hit ratio are measured.

Scenario 3: Starvation and Fairness

The third experiment scenario is identical to the second scenario, except that the priorities
of sensor and actuator traffic are inverted. The sensor traffic, which due to its sequential,
node-specific nature can not benefit from caching, is prioritised, while the actuator traffic is
unprioritised. Furthermore, CS capacity is limited to 5 throughout. This should help shine a

light on starvation effects.

In this scenario, the average CS utilisation as well as the delivery success and cache hit rates

are measured.

6.4.4 Results

Scenario 2

Figure 6.4 shows that the success rate of content delivery for prompt and reliable traffic is al-
most 100% across all configurations. With a sufficiently large CS, delivery of reliable content
becomes virtually guaranteed. Severely limited CS sizes (capacity 5) as used in previous ex-
periments in this thesis still result in unreliable sensor traffic at high path lengths, but even an
increase to 10 entries is enough to ensure success rates above 80%. Contrast this performance
with that of regular traffic, which at large delivery distances can not exceed 70% even with a
cache capacity of 30. As would be expected given the conclusions from Chapter 3, the prob-
abilistic caching strategy performs better than CEE thanks to its increased cache diversity.

However, the difference is only significant with small caches and long delivery paths.
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Figure 6.4.: Success rates per rank for Scenario 2 using varying CS sizes [62]
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Figure 6.5.: Content delivery latencies for Scenario 2 [63]
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Figure 6.6.: Cache hit rate for actuator traffic in Scenario 2 [62]

Figure 6.5 shows that the introduction of QoS service classes has a positive impact on content
delivery latencies. Again, Prob(p) outperforms CEE, although for this metric the difference is
not as strong and mostly affects smaller cache capacities. Furthermore, the differences in CS
capacity are less significant when QoS classes are observed. However, this is most likely due
to the adaptations regarding prioritised forwarding rather than caching alterations. Prompt
traffic is prioritised and therefore less affected by cache replacement effects. On the other

hand, for regular traffic, not even a CS capacity of 30 is enough for full reliability.

The cache hit rate as shown in Figure 6.6 further supports the previous observations. The
experiment scenario, with its extremely long paths, was designed not to be conducive to
caching efficiency. This is reflected in the poor performance of the regular traffic. The QoS
enabled traffic, on the other hand, shows significant improvement for both caching strategies
even with minimum cache capacity. This is because the reliable actuator traffic is virtually
guaranteed to be found in a cache on the path thanks to its prioritisation. As in Chapter 3,

probabilistic caching further increases the cache hit rate.

Scenario 3

To highlight the impact of starvation, the average CS utilisation over time for a specific node
is shown in Figure 6.7. This node is the direct successor of the gateway node on the right-
hand side of Figure 6.3. It is the root of a large subtree with 18 nodes and thus expected to

route large amounts of both prioritised and unprioritised traffic in both directions.
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Figure 6.7.: CS utilisation in a starvation-prone node in Scenario 3 [63]

It is clear that the unprioritised actuator content is indeed prevented from being cached when
using CEE. At no point during the experiment run is there a significant amount of unpriori-
tised content in the node’s CS. Contrast this with the scenario in which QoS is disabled. In
that scenario, the ratio of sensor to actuator traffic stays constant on average and only swings
in one or the other direction for short amounts of time. On the other hand, when using proba-
bilistic caching (with p,,, = 0.3 and p,,; = 0.7 as established above), the effects of starvation
are diminished. While prioritised content is still more prevalent, there is always some room
for unprioritised content (about 30% of the available space on average). This reflects the de-
sired CS composition, as prioritised content is supposed to be afforded more of the available

caching space, but not at the cost of shutting out unprioritised content entirely.

Figure 6.8 shows the success and cache hit rates for the third scenario with QoS disabled and
enabled for CEE, as well as with QoS enabled for Prob(p). We can see that enabling QoS greatly
increases the success rate of the prioritised sensor traffic while having a smaller impact on the
unprioritised actor traffic’. This is true for both caching strategies. In contrast, while actuator
traffic profits from caching with QoS disabled due to the fact that it uses groups as described
in Section 6.4.3, these cache hits are prevented entirely when QoS is enabled. Instead, caches

are poisoned with prioritised sensor traffic, which does not profit from caching due to its

“Even unprioritised traffic profits from enabling QoS because it significantly reduces retransmissions, which
has a positive effect on overall network load. This is explored in more detail in Scenario 1 in previously

published work [62, 63].
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Figure 6.8.: Success rates and cache hits for different actuator request intervals in Scenario 3 [63]

strictly increasing sequence numbers. Using probabilistic caching brings the cache hit rate of
unprioritised content back up while allowing for both types of traffic to be cached. At longer
actuator request intervals, actuator cache hits outperform those of the prioritised content

because the cached contents are valid for longer and are replaced less frequently.

6.5 Conclusions

The QoS extensions discussed in this chapter are easy to implement in information-centric
ICN and show promising results. The interconnected resources specific to ICN are exploited
to realise a simple QoS system based on service classes. The role of caching in QoS-enabled
ICN is significant, and particular care must be taken to ensure fairness and prevent starva-
tion. The evaluations presented here show that enabling QoS can improve the content deliv-
ery performance of the network as a whole, not just for prioritised traffic flows. They also
prove that ensuring fairness in a lightweight and non-intrusive manner is possible while still

maintaining QoS guarantees.






CHAPTER 7

Conclusions and Future Work

Information-Centric Networking is a promising new approach to networking that warrants
further attention. Particularly in the Internet of Things, where blank-slate approaches such as
ICN are much more realistic to deploy than in the global Internet, it offers a range of tangible
benefits such as a drastically compressed network stack and a content-centric philosophy

that meshes well with the type of traffic IoT applications typically produce.

Nevertheless, there is a range of issues and open questions raised by the prospect of bringing
ICN to the IoT owing to the idiosyncratic nature of the hardware used in that domain. Many
of the assumptions that underlie the variations on ICN proposed for traditional networks
simply do not hold true in the IoT space. Network participants are extremely heterogeneous,
with some having severe limitations in terms of processing power and/or available memory.
This means that the ubiquitous caching that is fundamental to ICN can not be realised in the
IoT. Furthermore, ICN generally assumes stable, wired links between network participants,
something IoT can not generally guarantee. This means that further research is needed in
order to bring the advantages of ICN to the IoT in a way that actually makes it a worthwhile

competitor to the current state of the art.
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To that end, the question of how and where to cache content was identified as one of the most
important open research questions in the field at the time of writing. Although some research
had been conducted into this and some promising approaches had been developed, there had
been no general attempt to fully characterise the adaptations needed to make full use of
ICN’s caching philosophy in the IoT. There was no comprehensive study on how existing
caching strategies actually behaved in realistic IoT scenarios with real hardware, and very
little research in the way of developing solutions that would actually work well on such

hardware. This brings us to the contributions of this thesis.

7.1 Review

The contents of this thesis are summarised below:

« Chapter 3 presented a series of experiments intended to characterise the behaviour and
performance of a range of potential solutions for caching in information-centric IoT.
Useful metrics for such a performance analysis were introduced, including the new
cache access factor metric that combines the cache hit and hop reduction ratios into
a single metric. A large number of caching decision and cache replacement strategies
(previously introduced in Chapter 2) were compared across these metrics using real
IoT hardware. The first important finding was that in general, the choice of cache re-
placement strategy appears to have little impact on caching performance, while there
are significant performance differences between the different caching decision poli-
cies. These findings were expanded upon in further experiments broadly focused on
the efficiency of content delivery, in particular the reduction of delivery path lengths
and thus content retrieval latency. These experiments demonstrated that topology ef-
fects account for a significant proportion of the caching behaviour of some of the more
prominent caching strategies, an effect that, while not entirely unknown, had not pre-

viously been considered in the design of new caching strategies.
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« The previous chapter’s findings about the effects of network topology on caching ef-
ficiency led naturally to the development of a new caching strategy for information-
centric IoT that would take these effects into account explicitly. This new caching strat-
egy is called Approximate Betweenness Centrality (ABC) and comprises the main con-
tribution of Chapter 4. By leveraging the concept of betweenness centrality, a caching
algorithm was designed that relies exclusively on local information to store contents
at the most accessible point in any given network, regardless of its topology. This ap-
proach was compared to several other state-of-the-art caching strategies using real
IoT hardware, and while it did not outperform strategies that relied on full network
information (which is unfeasible in a full IoT setup), it did exhibit very comparable
performance while fully adhering to the restrictions imposed by the limited IoT hard-

ware.

« Chapter 5 expanded upon the ABC caching strategy introduced in the previous chapter
by characterising its main drawback: the uneven load it potentially places on partic-
ular nodes in the network. The chapter presents a comprehensive discussion of how
load can be quantified in an information-centric IoT context, which serves as a basis to
tackle the issue. The chapter addresses ABC's load problem by extending the strategy
with an Off-Path Caching (OPC) component designed to offset the potential load bal-
ancing issues implied by the centrality-based approach to caching. The new extension
builds on the foundation of ABC while remaining modular and able to be applied to
any other strategy. The new combined strategy, called ABC+OPC, performs satisfacto-
rily and is able to successfully mitigate the negative load effects exhibited by pure ABC

while only suffering from minor increases in content delivery latency.

« Chapter 6 discussed an intuitive approach to enabling Quality of Service (QoS) ser-
vice classes in information-centric ICN. Particular attention is given to the impact
of caching on such a solution. Reasonable modifications to existing caching decision
strategies and cache replacement policies are discussed. Furthermore, potential caveats
in the form of starvation are addressed with workable solutions. A series of experi-
ments is presented that shows that enabling QoS in information-centric ICN is feasible
and beneficial while not breaking with the overarching goal of providing lightweight

solutions for constrained devices.
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7.2 Contributions

The contributions of the thesis are summarised below:

+ A comprehensive study of caching performance metrics in information-centric IoT was
designed and carried out entirely on real, physical IoT hardware. At the time of writing,
this is the first published study to cover such a wide range of caching strategies and

the first overall study to examine caching in IoT on real hardware.

« A further study was presented that characterised content delivery latency and identi-
fied hitherto undiscovered topology effects that had a significant impact on the perfor-

mance of caching strategies in information-centric IoT.

« The new cache access factor metric was proposed. This metric combines the cache hit

rate and the hop reduction rate into a single weighted metric.

« ABC was proposed, a new, lightweight centrality-based caching strategy for informa-
tion-centric IoT that is explicitly aimed at mitigating the topology effects discovered

previously while being optimised towards deployment on limited IoT hardware.

+ ABC+OPC was proposed, an extension to ABC that improves its performance and mit-

igates load issues observed in the vanilla implementation.

» QoS extensions were proposed that enable differentiated treatment of traffic flows of
varying priorities. The proposed scheme is simple but effective and leads to notable

performance increases.

7.3 Limitations and Future Work

The presented work still has a number of limitations that present opportunities for future
research. In several places, only one of multiple possible avenues of research was considered,
where ideally all possible solutions should be explored for their viability. This includes us-
ing other measures of centrality such as degree or eigenvector for the caching decision (see

Section 4.1) and exploring alternative approaches to off-path caching. In fact, while the pre-
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sented work focuses heavily on the centrality-based approach to topology-agnostic caching,
the range of possible caching solution extends far beyond this narrow slice of strategies. Ide-
ally, all of the families of caching strategies shown in the taxonomy in Figure 2.5 should be

afforded the same level of scrutiny in order to find the best possible solution.

As briefly stated in Section 5.5, while the presented off-path caching solution was designed
to address the load-balancing issues inherent to ABC, it is in no way limited to it and could
be applied to any other caching strategy. Exploring the interactions of this solution with
other strategies may shed light on other caching and load balancing phenomena that were

not considered in this work.

The rest of this section will give an overview of several avenues of future research that are

left open by this thesis.

« Evaluating other approaches to off-path caching. Section 5.3 briefly touched on the
fact that OPC could be implemented using a number of different approaches. In the
end, just as when developing ABC, the simplest approach was chosen for this thesis in
order to keep overheads as low as possible and to show that satisfactory results can be
achieved in information-centric IoT with comparatively little effort. However, this is
not to say that performance improvements are out of the question. Even when keeping
to the Targeted Offloading (TO) approach, the heuristics for which neighbour to choose
for offloading could be expanded to include more factors, such as relative content popu-
larities, request distributions, knowledge about neighbours’ cache contents, or energy
(see above). Furthermore, the feasibility of other, more cooperative offloading imple-
mentations should be explored, such as the idea mentioned in Section 5.3 that would

allow the offloading node’s neighbours to decide whether to cache the content.

« Integrating energy considerations into ABC. One of the negative side effects of un-
even load in a battery-powered IoT is that individual nodes may run out of power at
very different rates. A node that is receiving, processing, and forwarding significantly
more packets than its neighbours will have to have its batteries replaced much sooner.
Depending on the environment the network is deployed in, battery replacement may
pose a significant effort. Therefore, there may be significant financial incentive to avoid

situations where only a small number of nodes is at critical battery levels, as opposed
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to being able to schedule regular replacements of all batteries at longer intervals. While
this problem is partially addressed by ABC+OPC’s equalisation of load, ABC itself could
also be extended to include energy considerations directly in its caching decisions. For
example, instead of simply always caching at the node with the highest centrality, a
combined metric of centrality and remaining energy could be introduced that aims
to cache content at the “healthiest” nodes while still maintaining content accessibility
through centrality. Furthermore, OPC might also be extended to include energy con-
siderations, where offloading targets are not simply chosen by centrality but also by
energy levels, thereby directing traffic to the healthiest nodes in the neighbourhood

and equalising the overall power consumption.

Other open issues facing information-centric IoT. While caching on constrained de-
vices is a major open question, it is not the only hurdle facing the implementation
of ICN solutions in the IoT space. Another way in which IoT communications differ
from the traditional Internet is the fact that the packet MTU is usually much smaller.
While the Ethernet standard defines a fixed MTU of 1500 bytes, common IoT link layer
technologies typically have MTU sizes of less than a tenth of this (e.g. 127 bytes for
IEEE 802.15.4 [1] or even just 27 bytes for Bluetooth Low Energy up to protocol ver-
sion 4.1 [26]). This has several implications for ICN functionality. The first is that
the hierarchical, human-readable names traditionally used in ICN may not be feasi-
ble in IoT as a single packet might not be able to fit a whole name. Furthermore,
long names can result in a processing bottleneck as string comparisons with vari-
able lengths are typically among the most costly operations, especially on constrained
hardware [21]. Therefore, a rethinking of the naming approach towards compressed,
machine-readable names may be in order. Furthermore, the small MTU may necessi-
tate fragmentation, particularly of Data packets. This raises further questions that can
be connected back to caching: How can efficient caching be achieved if content chunks

are fragmented across different content stores?

Testing and evaluation in real-world IoT deployments. While the [oT-LAB testbed
used for the experiments in this thesis provides very realistic testing conditions, it still
does not cover the whole range of possible IoT scenarios. There are deployments that

have to deal which much more prohibitive external factors, such as battery-powered
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nodes in locations that make physical access almost impossible. Deployments in hostile
environments, such as underwater or space networks, also exist or are conceivable.
While it may never be possible to find an ICN solution that fits all deployments, there
is definitely more room for research and development encompassing more complex

scenarios.






APPENDIX A

Alternative Experiment Scenarios for Load

Characteristics and Off-Path Caching

In Chapter 5, experiments to determine the load characteristics of ABC and the performance
improvements of ABC+OPC were performed on a specific topology with specific experiment
parameters. The main scenario featured a full mesh between the five most central nodes, with

five nodes being randomly chosen as producers for each experiment run.

An alternative topology was considered in which the core was not fully meshed. Instead, all
connections between the subtrees of the topology would run through the logical centre of
the topology. This would severely increase the load on that central node, potentially exacer-
bating the effects discussed in Section 5.2. However, since it would be easier to approach this
problem by meshing the core than by introducing OPC, it was decided to perform the main

evaluation on a topology that already featured a meshed core.

An alternative experiment setup was further considered in which there was only a single
producer, chosen randomly for each experiment run. This would have the effect of consoli-
dating content request paths across the network, as all FIBs would point towards the same
node. However, the diversity of content requests would be decreased. Although these alter-
native experiment scenarios were not discussed in Chapter 5 for the reasons stated above,

their results are shown here for the sake of completeness and comparison.
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PIT Load (ABC) PIT Load (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(a) ABC, Non-Mesh Topology, Single Producer (b) LCD, Non-Mesh Topology, Single Producer
PIT Load (ABC) PIT Load (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(c) ABC, Non-Mesh Topology, Multi Producer (d) LCD, Non-Mesh Topology, Multi Producer

Figure A.1.: PIT Load: Non-Mesh topology
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PIT Load (ABC) PIT Load (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(a) ABC, Mesh Topology, Single Producer (b) LCD, Mesh Topology, Single Producer

PIT Load (ABC) PIT Load (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(c) ABC, Mesh Topology, Multi Producer (d) LCD, Mesh Topology, Multi Producer

Figure A.2.: PIT Load: Mesh topology
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CS Load (ABC) CS Load (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(a) ABC, Non-Mesh Topology, Single Producer (b) LCD, Non-Mesh Topology, Single Producer

CS Load (ABC) CS Load (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(c) ABC, Non-Mesh Topology, Multi Producer (d) LCD, Non-Mesh Topology, Multi Producer

Figure A.3.: CS Load: Non-Mesh topology
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CS Load (ABC) CS Load (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(a) ABC, Mesh Topology, Single Producer (b) LCD, Mesh Topology, Single Producer

CS Load (ABC) CS Load (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(c) ABC, Mesh Topology, Multi Producer (d) LCD, Mesh Topology, Multi Producer

Figure A.4.: CS Load: Mesh topology
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Replacement Rate (ABC) Replacement Rate (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(a) ABC, Non-Mesh Topology, Single Producer (b) LCD, Non-Mesh Topology, Single Producer

Replacement Rate (ABC) Replacement Rate (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(c) ABC, Non-Mesh Topology, Multi Producer (d) LCD, Non-Mesh Topology, Multi Producer

Figure A.5.: CS Replacement Rate: Non-Mesh topology
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Replacement Rate (ABC) Replacement Rate (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(a) ABC, Mesh Topology, Single Producer (b) LCD, Mesh Topology, Single Producer

Replacement Rate (ABC) Replacement Rate (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(c) ABC, Mesh Topology, Multi Producer (d) LCD, Mesh Topology, Multi Producer

Figure A.6.: CS Replacement Rate: Mesh topology
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Content Age (ABC) Content Age (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(a) ABC, Non-Mesh Topology, Single Producer (b) LCD, Non-Mesh Topology, Single Producer
Content Age (ABC) Content Age (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(c) ABC, Non-Mesh Topology, Multi Producer (d) LCD, Non-Mesh Topology, Multi Producer

Figure A.7.: Average Content Age: Non-Mesh topology
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Content Age (ABC) Content Age (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(a) ABC, Mesh Topology, Single Producer (b) LCD, Mesh Topology, Single Producer
Content Age (ABC) Content Age (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(c) ABC, Mesh Topology, Multi Producer (d) LCD, Mesh Topology, Multi Producer

Figure A.8.: Average Content Age: Mesh topology
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Memory Load (ABC) Memory Load (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(a) ABC, Non-Mesh Topology, Single Producer (b) LCD, Non-Mesh Topology, Single Producer

Memory Load (ABC) Memory Load (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(c) ABC, Non-Mesh Topology, Multi Producer (d) LCD, Non-Mesh Topology, Multi Producer

Figure A.9.: Memory Load: Non-Mesh topology
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Memory Load (ABC) Memory Load (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(a) ABC, Mesh Topology, Single Producer (b) LCD, Mesh Topology, Single Producer

Memory Load (ABC) Memory Load (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(c) ABC, Mesh Topology, Multi Producer (d) LCD, Mesh Topology, Multi Producer

Figure A.10.: Memory Load: Mesh topology
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Energy Consumption (ABC) Energy Consumption (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(a) ABC, Non-Mesh Topology, Single Producer (b) LCD, Non-Mesh Topology, Single Producer
Energy Consumption (ABC) Energy Consumption (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(c) ABC, Non-Mesh Topology, Multi Producer (d) LCD, Non-Mesh Topology, Multi Producer

Figure A.11.: Energy consumption: Non-Mesh topology
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Energy Consumption (ABC) Energy Consumption (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(a) ABC, Mesh Topology, Single Producer (b) LCD, Mesh Topology, Single Producer

Energy Consumption (ABC) Energy Consumption (LCD)
0 20 40 60 80 100 0 20 40 60 80 100
(c) ABC, Mesh Topology, Multi Producer (d) LCD, Mesh Topology, Multi Producer

Figure A.12.: Energy consumption: Mesh topology
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Figure A.13.: PIT load: ABC vs. ABC+OPC, Non-mesh topology
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Figure A.14.: PIT load: ABC vs. ABC+OPC, Mesh topology
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Figure A.15.: CS load: ABC vs. ABC+OPC, Non-mesh topology
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(c) ABC, Mesh Topology, Multi Producer (d) ABC+OPC, Mesh Topology, Multi Producer

Figure A.16.: CS load: ABC vs. ABC+OPC, Mesh topology
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Figure A.17.: Replacement rate: ABC vs. ABC+OPC, Non-mesh topology
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(c) ABC, Mesh Topology, Multi Producer (d) ABC+OPC, Mesh Topology, Multi Producer

Figure A.18.: Replacement rate: ABC vs. ABC+OPC, Mesh topology
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Figure A.19.: Average content age: ABC vs. ABC+OPC, Non-mesh topology
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Figure A.20.: Average content age: ABC vs. ABC+OPC, Mesh topology
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Figure A.21.: Memory load: ABC vs. ABC+OPC, Non-mesh topology
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Figure A.22.: Memory load: ABC vs. ABC+OPC, Mesh topology
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Figure A.23.: Energy consumption: ABC vs. ABC+OPC, Non-mesh topology



201

Energy Consumption (ABC) Energy Consumption (ABC+OPC)
0 20 40 60 80 100 0 20 40 60 80 100
(a) ABC, Mesh Topology, Single Producer (b) ABC+OPC, Mesh Topology, Single Producer
Energy Consumption (ABC) Energy Consumption (ABC+OPC)
0 20 40 60 80 100 0 20 40 60 80 100
(c) ABC, Mesh Topology, Multi Producer (d) ABC+OPC, Mesh Topology, Multi Producer

Figure A.24.: Energy consumption: ABC vs. ABC+OPC, Mesh topology
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