
RIGHT:

URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:

Hand Gesture Recognition Using a
Radar Echo I–Q Plot and a
Convolutional Neural Network

Sakamoto, Takuya; Gao, Xiaomeng; Yavari, Ehsan;
Rahman, Ashikur; Boric-Lubecke, Olga; Lubecke,
Victor M.

Sakamoto, Takuya ...[et al]. Hand Gesture Recognition Using a Radar Echo I–Q Plot and a Convolutional Neural
Network. IEEE Sensors Letters 2018, 2(3): 7000904.

2018-09

http://hdl.handle.net/2433/259194

This is an open access article.



VOL. 2, NO. 3, SEPTEMBER 2018 7000904

Sensor signals processing

Hand Gesture Recognition Using a Radar Echo I–Q Plot and a Convolutional
Neural Network

Takuya Sakamoto1,2,3∗ , Xiaomeng Gao4,5,6∗∗ , Ehsan Yavari4∗∗ , Ashikur Rahman1,7∗∗ ,
Olga Boric-Lubecke1†, and Victor M. Lubecke1†
1Department of Electrical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822 USA
2Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
3Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
4Adnoviv LLC, Honolulu, HI 96822 USA
5University of California, Davis, CA 95616 USA
6Cardiac Motion LLC, Sacramento, CA 95817 USA
7Aptiv PLC, Kokomo, IN 46902 USA
∗Senior Member, IEEE
∗∗Member, IEEE
†Fellow, IEEE

Manuscript received June 4, 2018; revised July 7, 2018 and August 2, 2018; accepted August 18, 2018. Date of publication August 21, 2018; date of current
version September 6, 2018.

Abstract—We propose a hand gesture recognition technique using a convolutional neural network applied to radar echo in-
phase/quadrature (I/Q) plot trajectories. The proposed technique is demonstrated to accurately recognize six types of hand
gestures for ten participants. The system consists of a low-cost 2.4-GHz continuous-wave monostatic radar with a single
antenna. The radar echo trajectories are converted to low-resolution images and are used for the training and evaluation of
the proposed technique. Results indicate that the proposed technique can recognize hand gestures with average accuracy
exceeding 90%.

Index Terms—Sensor signals processing, gesture recognition, machine learning, neural network, radar.

I. INTRODUCTION

Automatic gesture recognition, as represented by Google Soli [1],
is an active field of research having various applications, including
man-machine interfaces. Different approaches have been proposed for
gesture recognition; e.g., the use of wearable devices [2]–[8], computer
vision, and depth cameras [9]–[12]. The wearable devices allow the
accurate and reliable measurement of human posture and motion,
although the frequent wearing of such devices might be inconvenient
and interfere with daily life. In contrast, computer vision techniques
with RGB and depth cameras offer a noncontact measurement and
more convenience to users. Nonetheless, the use of camera-based
systems in a private space can cause privacy concerns.

Hand gesture recognition using radar and wireless sensors has at-
tracted interest recently. Google Soli [1] uses a 60-GHz ultrawideband
radar with a 2 × 4 multiple-input multiple-output array, and its out-
standing performance has been demonstrated, although such a radar
system could be costly. Fan et al. [13] developed a low-cost contin-
uous wave (CW) radar system with two receivers and succeeded in
measuring target position and motion. Molchanov et al. [14] proposed
a technique for measuring gestures by combining a depth camera and
frequency-modulated CW radar. Kim and Toomajian applied a con-
volutional neural network (CNN) to spectrogram images containing
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micro-Doppler information for the recognition of gestures [15]. Simi-
lar techniques using machine learning with spectrogram images have
been used for a radar target classification [16], [17].

In the case of real-time systems, however, time-domain approaches
are preferable because they do not require time-consuming time-
frequency analysis. Kim et al. applied the CNN to the time-domain
signals of an impulse-radio radar and the recognized gestures with
accuracy exceeding 90% [18]. Gao et al. proposed an alternative ap-
proach of using barcode-like patterns generated from zero-crossing
points of the time-domain waveform [19]. In this article, we propose
a new time-domain gesture recognition technique using a low-cost
2.4-GHz CW radar and CNN. The proposed method applies CNN to
in-phase/quadrature (I/Q) trajectory patterns of radar echoes and rec-
ognizes six types of hand gesture. The performance of the proposed
method is evaluated using experimental radar data for ten participants.
A preliminary result of this study has been reported in [20].

II. SYSTEM MODEL

A. Radar System

We use a monostatic CW radar system with an operating frequency
of 2.4 GHz and transmitting power of 10.0 dBm. This radar system
uses a fixed frequency of 2.4 GHz without modulation. The same
antenna is used for transmitting and receiving, where the trans-
mitting/receiving signals are isolated using a hybrid coupler. The
antenna has a gain of 8.0 dBi, vertical polarization, and respective
E- and H-plane beamwidths of 60.0° and 80.0°. The received signal
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Fig. 1. Block diagram of the measurement setup.

Fig. 2. Measurement setup and a participant seated in an anechoic
chamber.

is mixed with in-phase and quadrature signals and low-pass filtered,
and analog-to-digital (A/D) converted to obtain in-phase (I) and
quadrature (Q) signals, where the sampling frequency is 1.0 kHz.

The A/D converter is connected to the signal cable through dc
coupling, and the A/D converted data contain dc components that are
removed through dc subtraction in postprocessing. The dc subtraction
does not distort I–Q plots, and thus, does not affect even slow-moving
movements such as respiration and head movements. These slight
movements can negatively affect the gesture recognition accuracy. A
block diagram of the measurement setup is shown in Fig. 1.

B. Measurement of Hand Gestures

We measured radar echoes from ten participants. The received sig-
nals contained mainly echoes from the arm and hand of the participants
because echoes from stationary body parts were rejected by dc subtrac-
tion. Each participant was instructed to perform each of six gestures
while remaining seated with his/her arm approximately 120.0 cm from
the antennas. Each measurement took 2.0 s, and each gesture was re-
peated 150 times. The measurement setup is shown in Fig. 2. We denote
by s p

i, j (t) the complex-valued time-domain signal from the jth measure-
ment ( j = 1, 2, . . . , N0) of the ith type of gesture (i = 1, 2, . . . , Ng)
performed by the pth participant (p = 1, 2, . . . , Np), where N0 = 150,
Ng = 6, and Np = 10.

Fig. 3. Examples of radar-echo I–Q plot JPEG images.

Fig. 4. Block diagram of the CNN.

III. GESTURE RECOGNITION AND THE CNN

For gesture recognition, our proposed method uses the trajectory
image of the I–Q plot of received signals s p

i, j (t) that are normalized
so that maxt,i, j |s p

i, j (t)| = 1 for each p. The complex signal changes
not only in phase but also in amplitude during the measurement. The
trajectory images are converted to low-resolution JPEG images with
a size of Ns × Ns, where Ns = 30 pixels. For each participant, we
measured each gesture N0 times, generating N0 = 150 JPEG images.
Fig. 3 shows three example trajectory images for each of the six
gestures.

Fig. 4 is a block diagram of the CNN used in this study. The input
image with a size of Ns × Ns = 30 × 30 pixels is convoluted with 40
types of filters having a size of 5 × 5, resulting in 40 images having a
size of 22 × 22. These images go through a rectified linear unit (ReLU)
and max-pooling with nonoverlapping 2 × 2 pixels, resulting in 40
images with a size of 11 × 11. In the second convolution layer, these
images are convoluted with 30 types of 5 × 5 filters, then subjected
to an ReLU and max-pooling layers, and finally connected to six
output neurons with a dense (fully connected) network, whose weights
are optimized using the stochastic gradient descent with momentum
(SGDM) optimization algorithm to minimize the difference between
the training and output labels.

The CNN in Fig. 4 applies convolution and max-pooling twice for
each, resulting in the final image size of 2 × 2, which means that the
initial image size cannot be smaller than 30 × 30. Thus, we selected
this image size as an input to make the CNN size small. Note that the
CNN structure in this article is not optimized, and it will be important
to optimize the CNN structure in future studies.
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Table 1. Accuracy of the Proposed Method With the CNN Trained
and Tested Using Nonoverlapping Data for the Same Single Participant
(Columns 2, 3, and 4) and Accuracy of the Proposed Method With the
CNN Trained Using Data for all Participants Except One and Tested on
the Excluded Participant (Column 5).

Note: Training and test datasets do not overlap, and are randomly
selected multiple times for averaging accuracies.

IV. PERFORMANCE EVALUATION

This section presents the application results of the proposed tech-
nique and evaluates the accuracy of the technique. We first investigate
the gesture recognition accuracy when the CNN is trained using sig-
nals only from a single participant and is tested on a different subset
of signals from the same participant, where datasets for training and
testing do not overlap. For this purpose, we used Ng Ntr images to
train the CNN, where Ntr is the training data size for each partici-
pant and gesture; the remaining Ng(N0 − Ntr) images were used to
evaluate the performance, where Ntr(≤ N0) was set to different values
to see how the accuracy is affected by the training data size. In the
training process, Ng Ntr images were used to optimize the weights in
the fully-connected network. The number of iterations of the SGDM
optimization algorithm was empirically set to be 300.

The second, third, and fourth columns of Table 1 show the accura-
cies of the proposed method with the CNN trained using 10%, 50%,
and 90% of all data (900 measurements) from a single participant and
tested on the remaining data for the same participant. When training
the CNN using 90% of the dataset of each participant, the average
accuracy of the proposed method was 91.3%. It is noted that the accu-
racy depends on the training data size; the more data used for training,
the higher the accuracy obtained.

We next investigate the applicability of the proposed method trained
and tested using data for different people. The CNN was trained
using data from Np − 1 participants (i.e., all but one participant)
and tested on the excluded participant, giving a training data size
(Np − 1)Ng Ntr = 8100. The accuracy in this scenario is shown in the
rightmost column of Table 1. Although the accuracy is higher than that
of random selection from the six gestures (1/6 = 16.7%), the average

Table 2. Accuracy of an Existing Method [15] Using the Time-
Frequency Distribution With the CNN Trained and Tested for a Single
Participant.

accuracy was only 38.4%, which is much lower than the accuracy of
the proposed method trained and tested on the same single participant.

This result suggests that I–Q plots of the same gesture performed by
multiple participants can appear to be different and that the CNN was
unable to be trained well enough to recognize the gestures correctly,
possibly because participants interpreted our instructions on how to
perform gestures differently; the participants performed gestures in
different ways, although they were given the same instruction. There-
fore, the proposed system is suitable for personal use only with a single
user; the system is not intended to be shared by multiple users.

We also investigate the performance of the proposed method when
I/Q channels have unbalanced gains α and β. The average accuracies
of the proposed method for α/β = 2 and 5 are shown in Table 1,
indicating that this method can tolerate a relatively large imbalance,
especially when the training data size is sufficiently large.

Finally, we apply a single-layered CNN [20] for comparison instead
of the multiple-layered CNN used above. The single-layered CNN uses
input images of 16 × 12 pixels convoluted with ten types of 3 × 3
filters, which is followed by a ReLU, 2 × 2 max-pooling, and a fully
connected network. Its average accuracies are shown in Table 1, which
indicates that the multilayered CNN adopted in this study achieves a
higher accuracy than the single-layered one [20].

V. COMPARISON WITH AN EXISTING TECHNIQUE

This section compares the proposed method with an existing method
[15], which we refer to as Kim’s method in this article. Kim’s method
uses a spectrogram (time-frequency power distribution) as input data
of a CNN. We use the same CNN architecture shown in Fig. 4 for
both the proposed method and Kim’s method. In Kim’s method, a
spectrogram is obtained using the short-time Fourier transform with
a window size of TFFT = 256 ms, and the spectrogram is normalized
to its maximum value and converted to a decibel-scale image with a
color range from −10 to 0 dB, which is resized to 30-by-30 pixels.

We applied Kim’s method to the same data used in the previous
section and evaluated its accuracy, as shown in Table 2, where the CNN
was trained and tested using data of the same single participant. When
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90% of data were used for training, the average accuracy of Kim’s
method was 93.5%, which was 2.2% higher than that of the proposed
method. This is because spectrogram images used in Kim’s method
contain information of time and the Doppler frequency, whereas the
I–Q plot images used in the proposed approach contain only amplitude
and phase without a temporal information. Nonetheless, the difference
in accuracies of the proposed method and Kim’s method was less than
3%, while an advantage of the proposed technique is that the received
signal can be directly used as an input of the CNN, whereas Kim’s
method requires preprocessing.

Because signals are sampled every �t = 1 ms over Tobs = 2.0 s, to
obtain a spectrogram when using Kim’s method, the fast Fourier trans-
form with a length of NFFT = 256 must be applied (Tobs − TFFT)/�t +
1 = 1745 times, which requires 1.8 × 106 complex-valued multipli-
cations using the Cooley–Tukey algorithm. The proposed method can
avoid such processing and still recognize gestures with accuracy higher
than 90%. This means that the proposed approach can avoid prepro-
cessing for time-frequency analysis, and thus, it is suitable for real-time
applications. The computational time for generating a spectrogram im-
age and an I–Q plot image were 1.4 and 0.10 ms, respectively, on a
64-bit Windows computer with Intel Core i7-4600U processor and
16 GB RAM.

Although we compared different algorithms using the same hard-
ware system (and the same data) above, it will be necessary to also
compare different hardware systems (e.g., different frequencies, mod-
ulation waveforms, and antenna types) for gesture recognition in future
work. In the future, more comprehensive analysis will be needed to
clarify the difference between single-user and multiuser results, in-
cluding the special case when a user imitates another user’s gesture.

VI. CONCLUSION

We proposed a radar-based hand gesture recognition technique,
which applies a CNN-based machine learning algorithm to time-
domain I–Q plot trajectory images. The measurement data were ana-
lyzed to evaluate the accuracy in recognizing six different hand ges-
tures for the ten participants. The proposed technique achieved average
accuracy of 91.3% for the ten participants, which suggests the feasi-
bility of gesture recognition using computationally inexpensive time-
domain signal representation. Nonetheless, additional studies consid-
ering existing micro-Doppler-based techniques will be necessary to
assess its real-time performance. In addition, a neural network itself
can be computationally expensive, which must be also considered in
such applications.
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