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ABSTRACT We propose a sophisticated channel selection scheme based on multi-armed bandits and
stochastic geometry analysis. In the proposed scheme, a typical user attempts to estimate the density of
active interferers for every channel via the repeated observations of signal-to-interference power ratio (SIR),
which demonstrates the randomness induced by randomized interference sources and fading effects. The
purpose of this study involves enabling a typical user to identify the channel with the lowest density of
active interferers while considering the communication quality during exploration. To resolve the trade-off
between obtaining more observations on uncertain channels and using a channel that appears better, we
employ a bandit algorithm called Thompson sampling (TS), which is known for its empirical effectiveness.
We consider two ideas to enhance TS. First, noticing that the SIR distribution derived through stochastic
geometry is useful for updating the posterior distribution of the density, we propose incorporating the SIR
distribution into TS to estimate the density of active interferers. Second, TS requires sampling from the
posterior distribution of the density for each channel, while it is significantly more complicated for the
posterior distribution of the density to generate samples than well-known distribution. The results indicate
that this type of sampling process is achieved via the Markov chain Monte Carlo method (MCMC). The
simulation results indicate that the proposed method enables a typical user to determine the channel with
the lowest density more efficiently than the TS without density estimation aided by stochastic geometry, and
ε-greedy strategies.

INDEX TERMS Channel selection, multi-armed
bandit, Thompson sampling, stochastic geometry, Markov chain Monte Carlo method.

I. INTRODUCTION
Given explosive growth in wireless communications, the
existing wireless networks are insufficient to satisfy signif-
icant demand for broad-bandwidth access driven by mod-
ern mobile traffic, such as multimedia transmissions and
cloud computing tasks [1]. To cope with the exponential
growth of mobile broadband data traffic, an important issue
involves enhancing the spectrum utilization is a serious
issue (e.g., device to device communication, heteroge-
neous networks) [2]. Conversely, these extensive uses of
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communications can lead to new challenges related to
resource sharing and interference between communication
nodes [3]. Problem solutions include efficient channel selec-
tion that plays an important role in the adoption of interfer-
ence mitigation and performance improvement.

To efficiently identify the optimal available channel, a user
should be able to monitor and sense the surroundings, and
learn information about the unknown environment (e.g., the
information about randomized interference source). It should
be noted that seeking better channels requires more obser-
vations on uncertain channels, while excessive observations
lead to less transmission opportunities on a channel that
appears better. Hence, there is a dilemma between exploration
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and exploitation. The aforementioned perspective scenario
attracts significant research effort to develop learning tech-
niques that can optimize the trade-off between the exploration
and the exploitation of environment and resources [4].

A relevant class of problem formulation corresponds to
the multi-armed bandits (MAB), which is a powerful tool for
online learning theory [5], [6]. The set of solutions is termed
as bandit algorithms and play an important role in balancing
the trade-off between exploration and exploitation. In most
MAB frameworks, given a set of arms (actions), a player pulls
an arm at each time to receive some reward. The rewards are
not available for the player in advance. However, upon pulling
any arm, the instantaneous reward of that arm is revealed [7].
There are a variety of applications of bandit algorithms to
resource allocation in wireless networks [8]–[11].

However, to the best of the authors’ knowledge, most of
the applications of bandit algorithms require some necessary
conditions or empirical parameter tunings. For example, the
rewards in the upper confidence bound (UCB) [12] algo-
rithms are required to satisfy the moment conditions, such as
uniform distribution; and the performance of ε-greedy [13]
depends on the configuration of ε, which controls the degree
of exploration.When rewards for the arms are generated from
arbitrary distributions (e.g., interference power and signal-to-
interference power ratio (SIR)), a straightforward application
without parameter dependence of these arbitrary distributions
is difficult because the environment information of the chan-
nels vary over time, thereby resulting in a more complicated
reward distributions.

Conversely, Thompson sampling (TS) [14] is an old heuris-
tic based on Bayesian inference that selects an arm based
on posterior samples of each arm; it has attracted signifi-
cant attention for its empirically excellent performance [15].
Thus, TS exhibits more generality due to its flexibility to
incorporate the complicated reward distributions of the arms.
The reward distribution can be set by preferences based on
different application scenarios.

In [11], Zhao et.al. proposed a TS-based antenna state
selection scheme. They used the normalized signal-to-noise
ratio (SNR) as the reward. Thus, the algorithm proposed
in [16] can be applied in their system. This idea is also
helpful for our study. However, as previously mentioned,
the environment information (i.e., SIR) in the channels vary
over time and the dynamic range is significant due to the
spatial randomness of the interferers. Hence, it is inefficient
to identify the channel with smallest interference only by
the normalized SIR or normalized interference powers. With
respect to capturing the randomness due to the topology
of interferences, stochastic geometry is an important math-
ematical tool that provides the SIR distribution under the
consideration of a spatial randomness of interference sources,
and spatial averages calculated over a large number of nodes
at different locations or over many network realizations [17].
It is useful to capture the relationship between the observation
data and the system parameters (e.g., SIR and density of
active interferers).

In the study, we propose a channel selection scheme based
on TS and stochastic geometry. We provide a new perspective
based on density estimation. In our systemmodel, we assume
that the locations of active transmitters in each channel fol-
low a homogenous Poisson point process (HPPP) with a
respective density. Our objective is to enable a typical user
to identify the channel with the lowest density of other active
transmitters (i.e., interferers) while considering the commu-
nication quality during exploration. It is noted that the values
of densities are not given in advance. Hence, the user have
to update the posterior distribution of density based on the
measured performances (i.e., the measured SIRs associated
with transmissions) to estimate its value.

In order to elaborate the TS-based scheme, we introduce
two techniques that are related to reward distributions and a
sampling method. First, to capture the relationship between
measured SIR and density of active interferers more struc-
turally, we employ the SIR distribution derived by stochastic
geometry, and provide a method to incorporate this type of
a statistical model into Thomson sampling. However, the
resulting posterior distribution of each density parameter that
appears in the process of TS, is not a well-known distri-
bution (e.g., Gauss distribution and beta distribution), and
thus we cannot draw samples in a simple way. The second
technique is a sampling method termed as Markov chain
Monte Carlo (MCMC) method [18], via which we overcome
the difficulty of sampling from complicated posterior dis-
tributions. The MCMC-based sampling allows us to draw
samples from the posterior distributions obtained through
stochastic geometry analysis and Bayesian inference, and
thus the TS-based algorithm performs well.

The contributions of the study are summarized as follows:
• Given the significant dynamic range of SIR in the chan-
nels, we provide a new perspective based on density
estimation to the channel selection problem. In detail,
we propose a framework to utilize the SIR distribution
derived by stochastic geometry as a reward distribution
in TS. In our system, a typical user can update the
posterior distribution of densities based on the measured
SIR and efficiently identify the channel with the lowest
density.

• To overcome the difficulty of drawing samples from the
complicated posterior distribution of density, we pro-
pose to employ the MCMC method which is a general
and powerful tool for sampling from complicated distri-
butions with high dimensionality of the sample space.

• We demonstrate that the proposed scheme resolves the
exploration-exploitation trade-off more efficiently than
the ε-greedy and the TSwithout density estimation aided
by stochastic geometry through simulations. It is noted
that although the performance of ε-greedy scheme sensi-
tively depends on the parameters that are to be tuned, ε,
the proposed scheme does not require such a learning
parameter.

The rest of the study is organized as follows. In Section II,
we introduce the system model and problem formulation. In
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Section III, we present the proposed algorithm, and describe
the stochastic geometry and sampling method. Section IV
shows the algorithms selected for comparison, and Section V
provides the simulation results. Finally, we conclude the
study in Section VI.

II. SYSTEM MODEL
We consider K available channels on the Euclidean plane
R2 and denote the index set of these channels by C =
{1, 2, . . . ,K }. We assume that these channels are orthogonal,
and thus each channel is independent from each other and
the locations of the active transmitters in kth channel form an
independent HPPP8k of density λk . For simplicity purposes,
we assume λ1 < λ2 < · · · < λK .
We specifically focus on a user inR2, who attempts to iden-

tify the channel with the lowest density, i.e.,81. We term this
typical user as the learning user. We assume that the learning
user does not possess information on the density parameters
{λk} in advance. Without loss of generality, we can assume
that the learning user is placed at the origin o and it attempts
to communicate with the transmitter at a distance of r . The
desired and interference signals experience path loss with an
exponent of α and Rayleigh fading, i.e., the channel gain is
constant during a time slot and is exponentially distributed
with a mean of 1.

Our objective is to enable the learning user to efficiently
identify the channel with the fewest interferers, i.e., channel
1 ∈ C. However, in general, the learning user is generally
unaware of the density of interferers directly and can only
sense the surrounding environment. In the system, the learn-
ing user updates the posterior distributions of densities to esti-
mate the densities of interferes in each channel through the
observation of SIR associated with the communication after
channel selection. Additionally, we assume that the locations
of the interferers continuously change as time progresses.
In other words, the set of the active interferers varies over
time while maintaining a constant proportion of all potential
interferers. When the aggregate interference at the learning
user in channel k is expressed by

Ik = E

∑
x∈8k

hx‖x‖−α

 , (1)

where ‖·‖ denotes the Euclidean norm, hx denotes the fading
coefficient between the interferes at x ∈ 8k and the learning
user [19].

III. PROPOSED SCHEME
We formulate the aforementioned channel selection prob-
lem as an MAB problem and solve it via the TS algo-
rithm, which selects the optimal arm by optimizing a random
sample from the posterior distributions. It is noted that in
the context of an MAB problem, arm is used to denote an
action to be selected. Hereinafter, we use channel and arm
interchangeably.

In this section, we first briefly describe the TS algo-
rithm, and propose a TS-based channel selection scheme in
Section III-A. Sections III-B and III-C focus on the explana-
tion of the mathematical preliminaries, i.e., stochastic geom-
etry and sampling method MCMC, respectively.

A. THOMPSON SAMPLING
The basic idea of TS involves assuming a simple prior distri-
bution on the underlying parameters of the reward distribution
of every arm, and selecting an arm based on its posterior
probability of being the optimal arm at every time step. The
general TS involves the following elements [20]:
• A set of interested parameters θ ; In the study, the param-
eter corresponds to density λ.

• An assumed prior distribution P(θ ) on these parame-
ters. This term can be removed, and this is indicated in
Section III-C.

• Past observation data D for the arms played in the past
time steps; In the study, the observation data corresponds
to the measured SIR. Hereinafter, we use observed and
measured interchangeably.

• An assumed likelihood function P(D | θ ), which gives
the probability of the observation data, given a parame-
ter θ ;

• A posterior distribution P(θ |D) ∝ P(D | θ )P(θ ).
By sampling actions (playing arms) based on the optimal

posterior probability, the algorithm continues to sample all
actions that could plausibly be optimal, while shifting sam-
pling away from those that are unlikely to be optimal [21].
Thus, the algorithm gradually discards the arms that are con-
sidered to underperform and finally converges to the optimal
arm.

The proposed scheme is summarized in Algorithm 1. First,
the arbitrary initial samples are set at the beginning of the
algorithm. After selecting the channel with the lowest value
of λi,∀i ∈ C, the learning user measures the SIR of the
selected channel, and the posterior distribution of density in
the selected channel is updated. It is noted that, as previously

Algorithm 1 Thompson Sampling With Density Estimation
Aided by Stochastic Geometry (C = {1, 2, . . . ,K }, P =
{P1,P2, . . . ,PK })

Initialization: Determine the initial samples λi[0],∀i ∈
C, where λi[0] is a non-zero positive number.

1: for t = 0, 1, . . . ,T do
2: Select channel k = argmin i∈C λi[t] to be observed.
3: The learning user attempts to connect to channel k ,

and observes the corresponding SIR.
4: Update the posterior distribution Pk of λk

according to (7).
5: for every channel i ∈ C do
6: Draw the next samples λi[t + 1] independently

according to the updated posterior distribution Pi.
7: end for
8: end for
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mentioned, in each iteration, the locations of the other trans-
mitters in every channel are changed, based on HPPPs with
respective densities, λ1, λ2, . . . , λK at Step 3. Subsequently,
the new sample is obtained by employing MCMC. The algo-
rithm then goes back to Step 2 and the learning user once
again chooses a channel with the lowest value of λi,∀i ∈ C.
It should be noted that MCMC is executed several times and
only takes the last sample at the Step 6. This is because
maintaining sufficient sampling intervals can mitigate the
interdependence between samples [18].

B. STOCHASTIC GEOMETRY
As previouslymentioned, the information of the posterior dis-
tributions is essential for TS algorithm to solve the problem.
In this subsection, we derive the posterior distribution of the
densities λ using stochastic geometry andBayesian inference.
Stochastic geometry is extensively applied to evaluate the

system performance of the wireless networks. Specifically,
stochastic geometry models random topologies based on a
point process (e.g., HPPP) to derive a direct and tractable
mathematical expressions of the performance metrics (e.g.,
SIR distribution, transmission success probability, etc.) with-
out loss of accuracy. In this section, we treat the cases without
and with fading separately.

1) INTERFERENCE DISTRIBUTION WITHOUT FADING
In this case, the signal power is constant, and thus the SIR is
only determined by the interference power. Hence, it is only
necessary to consider the interference distribution. Based on
[19], [22], the probability density function (pdf) of interfer-
ence in Poisson networks without fading where the value of
α is 4 is given as follows:

fI (x) =
πλ

2x2/3
exp

(
−
π3λ2

4x

)
, (2)

As previously mentioned, the environment information
(i.e., interference power) of the selected channel is observed
in each iteration in Algorithm 1. Let ithmeasured interference
power be denoted by xi. Hence, the likelihood function of λ
can be expressed as follows:

P(I | λ) =
N∏
i=1

fI (xi)

=

(
πλ

2

)N N∏
i=1

x−2/3i exp

(
−
π3λ2

4

N∑
i=1

1
xi

)
, (3)

where N denotes the number of observations.
Based on Bayes’s theorem, the posterior distribution of λ

is expressed as follows:

P(λ | I ) =
P(I | λ)P(λ)∫

λ
P(I | λ)P(λ) dλ

, (4)

where P(λ) denotes the prior distribution.

2) SIR DISTRIBUTION WITH RAYLEIGH FADING
In this case, the effects of Rayleigh fading are considered.
Based on Theorem 5.7 in [19], the pdf of SIR is expressed as
follows:

fSIR(x) =
2cλ
α
x2/α−1 exp(−cλx2/α), (5)

where SIR = S/I , and S denotes the signal power, which
is exponentially distributed with mean r−α . c = πr2 0(1 +
2/α)0(1− 2/α).

It is noted that, fSIR(x) denotes the function of x and λ.
As previously mentioned, the SIR of the selected channel
is observed at Step 3 in Algorithm 1. Let ith measured SIR
be denoted by xi. Hence, the likelihood function of λ is
expressed as:

P(SIR | λ) =
N∏
i=1

fSIR(xi)

=

(
2cλ
α

)N N∏
i=1

x2/α−1i exp

(
−cλ

N∑
i=1

x2/αi

)
, (6)

where N also denotes the number of the observations.
Similarly, based on Bayes’ theorem, the posterior distribu-

tion of λ is expressed as follows:

P(λ | SIR) =
P(SIR | λ)P(λ)∫

λ
P(SIR | λ)P(λ) dλ

, (7)

where P(λ) denotes the prior distribution.

C. MARKOV CHAIN MONTE CARLO METHODS
In order to obtain samples from the posterior distributions in
the TS algorithm, we employ a sampling method termed as
MCMC [18].

To draw samples, a simpler distribution q(z), that is
sometimes termed as a proposal distribution is required.
In the MCMC, the proposal distribution is symmetric, i.e.,
q(zA | zB) = q(zB | zA) for all values of zA and zB. At each
step t , a candidate sample z′ is drawn from the proposal
distribution, and z[t + 1] is updated by z′ with following the
probability:

min
{
1,

p(z′)
p(z[t])

}
, (8)

where p(z) denotes the target distribution. If the candidate
sample z′ is discarded, z[t + 1] is set to z[t] and another
candidate sample will be drawn. This rule is also termed as
the Metropolis-Hastings criterion.

In the study, we utilize randomwalk to obtain samples
from the posterior distribution P(λ | SIR) (i.e., target distribu-
tion). Hence, at each step t , the candidate sample λ′ is given
as follows:

λ′ = λ[t]+ e, (9)

where e denotes a sample from the normal distribution
N (0, 1).
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Algorithm 2 ε-Greedy With Maximum Likelihood Estima-
tion (A = {{λ̂1[t]}, {λ̂2[t]}, . . . , {λ̂K [t]}})

Input: the value of ε
1: for t = 0, 1, . . . ,T do
2: if t = 0 then
3: Randomly select a channel from the available

channels.
4: end if
5: Select a channel from the available channels with

probability ε to be observed. Otherwise, select the
channel with the minimum mean
k = argmin i∈N E[{λ̂i[t]}].

6: Observe SIR of the selected channel k .
7: Calculate the maximum likelihood value λ̂k [t]

of the selected channel according to the (13).
8: end for

Algorithm 3 Thompson Sampling Without Density Estima-
tion Aided by Stochastic Geometry

For each channel i = 1, . . . ,N set Si(1) = 0,Fi(1) = 0.
1: for t = 0, 1, . . . ,T do
2: for each channel i = 1, . . . ,K do
3: Sample θi(t) from the Beta (Si + 1,Fi + 1)

distribution.
4: Select channel i(t) := argmaxi θi(t) and

observe SIR.
5: r̃t ← normalized SIR
6: Perform a Bernoulli trial with

success probability r̃t and observe output
rt ∈ {0, 1}.

7: end for
8: end for
9: if rt = 1 then

10: Si(t) = Si(t)+ 1.
11: else
12: Fi(t) = Fi(t)+ 1.
13: end if

From (6), (7), (8), the acceptance probability inMCMC for
the proposed algorithm is expressed as follows:

p = min
{
1,
P(λ′ | SIR)
P(λ | SIR)

}
= min

{
1,
P(SIR | λ′)
P(SIR | λ)

}
= min

{
1,
(
λ′

λ

)N
exp

(
−ce

N∑
n=1

(SIR)2/α
)}

. (10)

It is noted that the denominator and P(λ) in (7) are
removed. Hence, it is feasible to calculate this acceptance
probability.

Similarly, in the case of without fading effects, the accep-
tance probability in MCMC is expressed as follows:

p = min
{
1,
P(λ′ | I )
P(λ | I )

}
= min

{
1,
P(I | λ′)
P(I | λ)

}
= min

{
1,
(
λ′

λ

)N
exp

(
−
π3

4

N∑
i=1

1
xi
(λ′2 − λ2)

)}
, (11)

where candidate sample λ′ is also given by λ′ = λ+ e.

TABLE 1. Algorithms for comparison.

TABLE 2. Simulation parameters.

FIGURE 1. Probability of selected channels (TS (w/ DE)) in the case where
the set of channel densities is given by {10−4,1.5 · 10−4,2 · 10−4}.

IV. ALGORITHMS FOR COMPARISON
In order to prove the effectiveness of the proposed scheme,
we compare its performance with a conventional algorithm
termed ε-greedy [13] and the TS without density estima-
tion aided by stochastic geometry. Specifically, ε-greedy is
a method that selects an available action with probability
ε and selects a greedy action which is designed by users,
otherwise. A naive approach is that the greedy action involves
selecting the channel with the largest mean of the measured
SIR. In the study, for the purpose of fairness, we provide
another ε-greedy algorithm with maximum likelihood esti-
mation (MLE) of λ for comparison. We assume that the
greedy action selects a channel with the minimum mean of
the maximum likelihood values of λ.

A. ε-GREEDY WITH MLE FOR CHANNEL SELECTION
Based on MLE, the log-likelihood function of λ is given as
follows:

ln [P(SIR | λ)]

= N ln λ+ N ln
(
2c
α

)
+

N∑
i=1

ln x2/α−1i − cλ
N∑
i=1

x2/αi ,

(12)
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FIGURE 2. Kernel density estimation of expected number of interferers in
πr2, λπr2.

FIGURE 3. Comparison of TS algorithms and ε-greedy algorithms in the
case where the set of channel densities is given by
{10−4,1.5 · 10−4,2 · 10−4}.

By taking the derivative with respect to λ, and setting the
derivative to 0, we obtain the following expression:

λ̂ =
N

c
N∑
i=1

x2/αi

, (13)

which denotes the maximum likelihood value.
We summarized the ε-greedy algorithm with MLE in

Algorithm 2. It should be noted that the maximum likelihood
value of the selected channel is updated in each iteration.

B. TS WITHOUT DENSITY ESTIMATION THROUGH
STOCHASTIC GEOMETRY
When rewards for arm i are generated from an arbitrary
unknown distribution with support [0, 1] and mean µi,
TS can be modified to adapt to the general stochastic bandits
case [16]. The main idea is that the algorithm performs a
Bernoulli trial with success probability r̃t after observing the
reward r̃ ∈ [0, 1]. Furthermore, the SIR of each channel in
our system is bounded, and thus we can use normalized SIR
at each time as the reward.

The algorithm in this case is summarized in Algorithm 3
as reference [16]. Let Si(t) and Fi(t) denote the number of
successes and failures in the Bernoulli trials, respectively,
until time t . The remaining algorithm is identical to that for
Bernoulli bandits.

V. SIMULATION RESULTS
We evaluate and compare the performance of Algorithm 1,
the aforementioned naive approach, Algorithm 2, and 3 via
simulations. All algorithms are listed in Table 1, and the
example parameters are listed in Table 2. In the simulations,
three available channels are set, and the desirable channel
corresponds to channel 1. The locations of the transmitters
in these channels are change based on HPPPs with respective
densities, λ1, λ2, and λ3 in each iteration. All transmitters are
assumed to exhibit the same configurable transmission power
levels and to experience Rayleigh fading with a mean of 1 in
the case with fading effects.
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FIGURE 4. Empirical cumulative distribution function in the case where
the set of channel densities is given by {10−4,1.5 · 10−4,2 · 10−4}.

We demonstrate the simulation results where the fading
effects (i.e., Rayleigh fading) is considered in Section V-A
and Section V-B. The case without fading effects is described
in Section V-C.

A. PERFORMANCE OF TS WITH DENSITY ESTIMATION
Fig. 1 shows the probability of the selected channels at inter-
vals of twenty steps. Evidently, the probability of channel 1

FIGURE 5. Comparison of TS algorithms and ε-greedy algorithms in the
case where the set of channel densities is given by
{10−4,1.1 · 10−4,1.2 · 10−4}.

(which denotes the desired channel) converges to one in a
short time. Although the action concentrates on channel 2 at
the beginning of the simulation, the proposed algorithm can
escape from that and eventually identifies the optimal channel
as time progresses.

Figs. 2(a)-2(d) illustrate the kernel density estimation of
the samples of expected number interferers in πr2 for four
periods. As shown in Fig. 2(a), it is intuitive that channel 2 is
the optimal channel. However, when time progresses, the
shapes of the distributions change because the posterior dis-
tribution of selected channel is updated. Finally, the desired
channel with the lowest density is identified along with the
updates of posterior distribution. Additionally, it should be
noted that the means of λπr2 in the channels are close to the
true values.

B. COMPARISON OF TS ALGORITHMS AND ε-GREEDY
ALGORITHMS
Fig. 3 shows a comparison of TS algorithms and ε-greedy
algorithms (ε = 0.01, 0.1, 0.5). The result is based
on 100 independent simulations of each algorithm. It is noted
that, 0.1-greedy (w/o DE) denotes the aforementioned naive
approach without MLE. For every algorithm, the proportions
of the selected channels in the four periods (i.e., step 100, 500,
1000, and 2000) are shown by four stacked histograms, and
these results indicate the mean proportions of 100 indepen-
dent simulations. We focus on the blue bars that reflect the
proportion of channel 1. Evidently, the proposed algorithm
(i.e., TS (w/ DE)) exhibits the optimal performance. The
proportion of channel 1 in the proposed algorithm exceeds
0.7 at step 100.

Figs. 4(a)-4(d) show the empirical cumulative distribution
function of the probability of channel 1 in 100 independent
simulations in Fig. 3. It is observed that TS (w/ DE) keeps
the optimal performance in the four periods. As shown in
Fig. 4(d), over 90% of the simulations in the proposed algo-
rithm, the probability of channel 1 exceeds 0.9.

Fig. 5 shows a comparison of TS algorithms and ε-greedy
algorithms (ε = 0.01, 0.1, 0.5), when the values of densities
in channels are {10−4, 1.1 · 10−4, 1.2 · 10−4}. In this case,
the environment information of the available channels are
similar, and thus, it is difficult to identify the optimal channel.
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FIGURE 6. Empirical cumulative distribution function in the case where
the set of channel densities is given by {10−4,1.1 · 10−4,1.2 · 10−4}.

It is observed that the proportion of channel 1 for every
algorithm is reduced. However, the proposed algorithm still
exhibits the optimal performance in this case.

Figs. 6(a)-6(d) show the empirical cumulative distribution
function of the probability of channel 1 in 100 independent
simulations in Fig. 5. It is observed that the performance of
ε-greedy algorithms are biased. For example, the probability

FIGURE 7. Probability of selected channels (TS (w/ DE)) when the
interference distribution without fading is considered, and the set of
channel densities is given by {10−4,1.5 · 10−4,2 · 10−4}.

of channel 1 exceeds 0.9 in 50% of the simulations, espe-
cially, in 0.01-greedy algorithm. However, the mean propor-
tion of channel 1 in Fig. 5 is lower than 0.5. Conversely,
over 80% of the simulations in the proposed algorithm, the
probability of channel 1 exceeds 0.6, and the mean proportion
of channel 1 exceeds 0.7 in Fig. 5. Thus, the results indicate
that the proposed algorithm exhibits the overall optimal per-
formance.

Additionally, Figs. 3 and 5 show that the performance of
ε-greedy algorithms rely on the value of ε. Conversely, it is
not necessary for the proposed algorithm to configure the
values of the parameters in advance. Therefore, the proposed
algorithm exhibits a higher generality than the ε-greedy algo-
rithms.With respect to the density estimation, the results indi-
cate that the performance of TS algorithm can be improved
by considering the density estimation. Conversely, it does not
perform well in ε-greedy algorithms.

C. INTERFERENCE DISTRIBUTION WITHOUT FADING
The key parameters in this case are identical to that in Table 2
except the part of Rayleigh fading. In the simulation, three
available channels are set, and the desirable channel also
corresponds to channel 1.

Fig. 7 shows the probability of the selected channel at
intervals of twenty steps where the set of channel densities
is given by {10−4, 1.5 · 10−4, 2 · 10−4}. Evidently, the result
is similar to Fig. 1. The action focuses on exploration at
the beginning of the simulation, and eventually converges to
the best channel as time progresses. Therefore, the results
indicate that the proposed scheme exhibits high generality
when the distribution given by stochastic geometry analysis
is considered.

VI. CONCLUSION
In the study, we formulate the channel selection problem of as
an MAB problem and solve it with a TS-based algorithm by
employing density estimation based on stochastic geometry
and MCMC. The user can utilize the SIR distribution derived
by stochastic geometry to update the posterior distribution
of densities to estimate the densities of the channels and
efficiently identify the optimal channel. We compare the per-
formance of the proposed algorithm, the ε-greedy algorithms,
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and TS without density estimation through stochastic geom-
etry. The results indicate that the proposed algorithm can
identify the optimal channel more accurately and efficiently,
and exhibits a steady performance. Additionally, the proposed
algorithm is not restricted to the posterior distribution of λ
and can be widely applied to other models with different
posterior distributions (e.g., the distribution of interference
with other fading as Nakagami fading). Future works include
verifying the performance of the proposed algorithm in a
non-stationary system.
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