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Abstract: Type II DNA topoisomerase enzymes (TOP2) catalyze topological changes by strand
passage reactions. They involve passing one intact double stranded DNA duplex through a transient
enzyme-bridged break in another (gated helix) followed by ligation of the break by TOP2. A TOP2
poison, etoposide blocks TOP2 catalysis at the ligation step of the enzyme-bridged break, increasing
the number of stable TOP2 cleavage complexes (TOP2ccs). Remarkably, such pathological TOP2ccs
are formed during the normal cell cycle as well as in postmitotic cells. Thus, this ‘abortive catalysis’
can be a major source of spontaneously arising DNA double-strand breaks (DSBs). TOP2-mediated
DSBs are also formed upon stimulation with physiological concentrations of androgens and estrogens.
The frequent occurrence of TOP2-mediated DSBs was previously not appreciated because they are
efficiently repaired. This repair is performed in collaboration with BRCA1, BRCA2, MRE11 nuclease,
and tyrosyl-DNA phosphodiesterase 2 (TDP2) with nonhomologous end joining (NHEJ) factors. This
review first discusses spontaneously arising DSBs caused by the abortive catalysis of TOP2 and then
summarizes proteins involved in repairing stalled TOP2ccs and discusses the genotoxicity of the
sex hormones.

Keywords: topoisomerase II; genotoxicity; cell cycle; estrogen; breast cancer; transcription;
BRCA1; BRCA2

1. Introduction

Double-strand breaks (DSBs) are the most genotoxic type of DNA lesion, and a single unrepaired
DSB can trigger apoptosis. If misrepaired, DSBs often cause deletions and chromosome translocation,
which may trigger carcinogenesis [1]. Lethal DSBs are generated not only by environmental mutagens
such as ionizing-radiation but also by endogenous cellular processes, with several DSBs generated per
cell cycle as a consequence of replication blockage at spontaneously arising DNA lesions (Figure 1) [2,3].
They include damaged nucleotides on template strands and single-strand breaks. Homology-directed
repair (HDR) repairs DSBs using the homologous sister chromatid as the template DNA for repair.
(Figure 1) [4]. Breast cancer susceptibility gene 1 (BRCA1) and breast cancer susceptibility gene 2
(BRCA2), are tumor suppressor proteins that play a key role in HDR (Figure 1) in cycling cells, and
the loss of these proteins causes accumulation of DSBs. Mutations in the BRCA1 and BRCA2 genes
predispose carriers to a higher risk of breast and ovarian cancer [5,6]. One major question in BRCA
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biology is why carcinogenesis occurs mainly in estrogen-regulated organs, arising in the epithelial cells
in the mammary and ovarian ducts.

Figure 1. Release of replication blockage by breast cancer susceptibility gene 1 (BRCA1) and breast
cancer susceptibility gene 2 (BRCA2). DNA replication forks often stall at both damaged nucleotides (A)
and single-strand breaks (B) on template strands (Step 1). Homology-directed repair (HDR) proteins
including BRCA1 and BRCA2 initiate strand invasion of the 3′ end of nascent DNA strands into the
intact sister chromatid (Step 3) followed by DNA synthesis (Step 4, green arrow). This pathway allows
the fork to move past the damaged nucleotides (A) and single-strand breaks (B) (Step 5).

2. The Consequences of Failure of Catalysis by DNA Topoisomerase I and II

DNA replication and transcription overwind duplex DNA ahead of replication forks and
transcription bubbles, respectively, and the resulting torsional stress would eventually stop DNA and
RNA polymerases. Topoisomerase I (TOP1) cleaves one strand of a DNA double helix, allowing one
end of the resulting single-strand break (SSB) to rotate around the uncut strand prior to re-ligation
of the SSB and thereby resolving torsional stress [7]. TOP1 fails to re-ligate SSBs when TOP1 cleaves
at ribonucleotides embedded in DNA and near ultraviolet (UV) lesions, abasic sites, or SSBs [7–10].
This failure causes the formation of stabilized TOP1 cleavage complexes (TOP1ccs), where SSBs are
covalently attached to TOP1 at their 3′ end (Figure 2A). Tyrosyl-DNA phosphodiesterase 1 (TDP1)
as well as tyrosyl-DNA phosphodiesterase 2 (TDP2) accurately removes such trapped TOP1 adducts
from SSBs [11–13]. Loss of these proteins causes spinocerebellar ataxia with axonal neuropathy [14,15],
which is associated with the endogenous accumulation of stabilized TOP1ccs in neural tissue [16–18],
indicating that TOP1 is frequently trapped in the genomic DNA.

Similar to TOP1, topoisomerase II (TOP2) can be trapped on genomic DNA, which leads to the
formation of stabilized TOP2 cleavage complexes (TOP2ccs) (Figure 2B). There are two human TOP2
paralogs, topoisomerase IIA (TOP2A) and topoisomerase IIB (TOP2B) [19]. TOP2A is expressed only
in cycling cells while TOP2B is ubiquitously expressed. TOP2A is essential for DNA replication,
chromosome condensation, and separation of sister chromatids. Both TOP2A and TOP2B are involved
in transcriptional initiation and elongation [20]. The two TOP2 enzymes resolve DNA catenanes
by catalyzing the transient formation of DSBs, which is followed by enzymatic religation of the
broken strands (Figure 2B). Thus, TOP2 has the capacity to rejoin cleaved DNA ends through intrinsic
intramolecular ligation activity [21]. Transient DSB formation allows an intact DNA duplex to pass
through the DSB. During such transient DSB formation, TOP2 becomes covalently bound to the 5′

DNA end of the break, forming TOP2-DNA cleavage-complex intermediates (TOP2ccs). An anti-cancer
TOP2 poison, etoposide, stabilizes TOP2ccs, and this can trigger cell death (Figure 2B) [22] and may
cause secondary leukemia by inducing chromosome translocations [23]. Exposure to etoposide at an
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elevated temperature, 39 ◦C, synergistically suppresses cellular viability [24]. Likewise, the exposure
to etoposide together with an inhibitor against heat shock protein 90 (HSP90), a protein-folding
chaperone, which transiently binds other proteins to protect them from misfolding and aggregation,
also synergistically suppresses cellular viability. These data suggest that the conformation of TOP2 is
sensitive to a temperature shift and its maintenance requires HSP90. Nonetheless, it was previously
believed that the abortive catalysis of TOP2 occurs extremely rarely under physiological conditions.

Figure 2. Abortive catalysis of topoisomerases causes DNA cleavage. (A) TOP1 cleaves one strand of a
DNA double helix and religates the nick (Step 1 and 2). Topoisomerase I (TOP1) is covalently associated
with 3′ end generating a TOP1 cleavage complex (TOP1cc shown in Step 2). TOP1 occasionally fails to
religate, generating stable TOP1ccs (Step 3). 3′ TOP1 adducts are removed by the proteasome and TDP
enzymes (Step 4) followed by religation of single-strand breaks (step 5). (B) A topoisomerase II (TOP2)
homodimer generates a gated double-strand breaks (DSB) called a TOP2 cleavage complex (TOP2cc),
where TOP2 covalently associates with 5′ end of DSB (Step 2). When TOP2 fails to religate TOP2ccs
called abortive catalysis of TOP2 (Step 3), religation of the DSB is carried out by the removal of 5′ TOP2
adducts (Step 4) preceding nonhomologous end joining (NHEJ) (Step 5). (C) Two major sources of
spontaneously arising DSBs, the blockage of replication forks leading to replication fork collapse (left)
and abortive catalysis of TOP2 leading to the generation of stalled TOP2ccs (right).

Spontaneously arising stabilized TOP2ccs have not been considered as a serious threat to genome
instability for the following reasons. While TDP2 accurately removes 5′ TOP2 adducts, a defect in
TDP2 does not cause prominent carcinogenesis or genome instability in patients or mice [25–27].
However, subsequent studies show that conditional inactivation of MRE11 nuclease activity causes
the endogenous accumulation of stabilized TOP2ccs in human cells leading to prominent genome
instability [28]. This study highlights the abortive catalysis of TOP2 in addition to replication blockage
on a damaged template strand as the two major mechanisms for spontaneously arising DSBs (Figure 2C).
This review will discuss the accumulation of such stalled TOP2ccs and the crucial role that MRE11
plays in repair of DSBs.

3. Removal of 5′ TOP2 Adducts to Restore Ligatable DNA Ends is Necessary for DSB Repair
by NHEJ

There are two major DSB repair pathways, HDR and nonhomologous end joining (NHEJ). HDR
functions in the S and G2 phases, and accurately repairs DSBs using sister chromatids to provide an

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



Genes 2019, 10, 868 4 of 18

intact DNA template. NHEJ, on the other hand, operates in all cell cycle phases. The choice between
the major DSB repair pathways, HDR versus NHEJ, can be mediated by resection, to produce 3′

single-strand (ss) tails at DSBs (Figure 3A). This resection promotes HDR and suppresses NHEJ. DSB
resection is initiated by endonucleolytic cleavage by MRE11, which is physically associated with RAD50
and NBS1 (MRN complex), followed by extensive resection by two exonucleases, DNA2 and EXO1 [4].
BRCA1 and CtIP significantly contribute to DSB resection by interacting with MRE11 at DSB sites.
RAD51 recombinase polymerizes on 3′ ss tails, and this polymerization is promoted by breast cancer
susceptibility genes 1 and 2 (BRCA1 and BRCA2). Approximately 80% of ionizing-radiation-induced
DSBs are repaired by NHEJ even in the G2 phase [29,30], indicating the dominant role played by NHEJ
in DSB repair when DSBs are not caused by stalled DNA replication (Figure 2C, left).

Figure 3. Removal of 5′ TOP2 adducts. (A) DSBs are repaired by HDR or NHEJ. DSBs occurring
during DNA replication are repaired exclusively by HDR (Figure 1). The choice between HDR and
NHEJ is determined by DSB resection, the generation of 3′ single-strand tails, which inhibit NHEJ
and stimulate HDR. (B) DSB resection is carried out by the coordinated action of the MRE11, EXO1,
and DNA2 nucleases. Endonucleolytic cleavage of 5′ strands by MRE11 near DSB ends removals 5′

TOP2 adducts together with oligonucleotides. (C) NHEJ ligates ‘clean’ DSBs having 5′-phosphate
and 3′-hydroxyl moieties but not DSBs bearing blocking adducts. 5′ TOP2 adducts are partially
digested by the proteasome generating DSBs carrying 5′ oligopeptides. 5′ oligopeptides are removed
by tyrosyl-DNA phosphodiesterase 2 (TDP2) (Left) or MRE11 (Right). Resulting ‘clean’ DSBs are
repaired by NHEJ, which is initiated by binding of the KU70/KU80 heterodimer to DSB ends.

HDR efficiently removes 5′ TOP2 adducts at its initial step, DSB resection by MRE11 endonuclease
(Figure 3B). In contrast with HDR, NHEJ requires 3′-OH and 5′-phosphate DSB ends, termed ‘clean’ DSB
ends, for direct ligation [31]. NHEJ is initiated by binding of KU70/KU80 proteins and is completed by
ligation by DNA ligase 4 (LIG4) (Figure 3C) [32]. Ligation by LIG4 requires ligatable DSB ends [31,33],
including DSBs carrying ribonucleotides at their ends [34], and NHEJ requires prior removal of blocking
adducts and restoration of ligatable DSB ends. TDP2 and MRE11 remove 5′ TOP2 adducts prior to
direct ligation by NHEJ (Figure 3C). The removal by TDP2 has two routes either digestion of 5′ TOP2
adducts by the proteasome prior to TDP2 action or interaction of the TOP2ccs with the sumo ligase
ZATT (ZNF451) to facilitate TDP2 action [35,36]. The contribution of MRE11 to the removal of 5′ TOP2

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



Genes 2019, 10, 868 5 of 18

adducts is considerably larger than that of TDP2, as evidenced by the fact that the loss of MRE11, but
not the loss of TDP2, results in endogenous accumulation of TOP2ccs [28].

4. MRE11 Contributes to DSB Repair through Two Distinct Mechanisms: The Removal of Stalled
TOP2ccs and DSB Resection in HDR

HDR is essential for repairing lethal DSBs occurring during DNA replication. Conditional
inactivation of RAD51 recombinase causes spontaneously arising lethal DSBs in every cell and
immediately kills cycling cells [37]. The loss of MRE11, RAD50, or NBS1 causes a dramatic increase
in the number of spontaneously arising DSBs leading to cell death [37]. Conditionally generated
MRE11-null deficient mice (MRE11−/−) and nuclease-deficient MRE11−/H129N mice display a very
similar phenotype: hypersensitivity to ionizing radiation, very severe genome instability, and cellular
senescence, resulting in cellular mortality [38]. These data have been interpreted as evidence that a
defect in DSB resection by the MRE11 nuclease activity in HDR is solely responsible for the genome
instability seen in the MRE11-deficient mice. However, it remains elusive whether the defective DSB
resection is responsible for the severe phenotype of the MRE11−/H129N and MRE11−/− mice for the
following reasons. These mice showed only a ~50% decrease in X-ray induced RAD51-focus formation
compared with wild-type controls [38]. It is unlikely that the ~50% decrease causes the genome
instability seen in the MRE11 mutant mice because only a two-fold reduction of DSB resection does not
affect the overall efficiency of HDR including heteroallelic HDR [39]. Taken together, mammalian cells
perform excessive DSB resection, and it remains unclear whether a modest defect in DSB resection
causes the very severe genome instability in MRE11-deficient cells.

Several lines of evidence have suggested that MRE11 contributes to genome stability through a
mechanism other than DSB resection. Although the conditional inactivation of MRE11 does not impair
DSB resection in cell lines such as human TK6 and chicken DT40 B cell lines, the MRE11-deficient
cells show spontaneously arising chromosomal breaks in mitotic chromosome spreads leading to
cell death [37,39]. In Saccharomyces cerevisiae, MRE11 is dispensable for HDR-dependent repair
of ‘clean’ DSBs carrying 5′-phosphate and 3′-hydroxyl termini [40]. However, MRE11 significantly
contributes to cellular tolerance of ionizing-radiation [4,41], which induces ‘dirty’ DSBs associated
with non-physiological chemical adducts. The data suggest that the MRE11 nuclease activity removes
chemical adducts from ‘dirty’ DSBs and restores ‘clean’ DSBs. This idea is supported by the following
reverse genetic studies. The nuclease activity of Schizosaccharomyces pombe MRE11 is involved in
the removal of TOP1 and TOP2 adducts from 3′ and 5′ ends, respectively, in vivo [42]. Likewise,
human MRE11 nuclease activity, as well as NBS1, is required for the removal of 5′ topoisomerase
adducts from DSBs in vivo [28,43]. Biochemical studies show that non-covalent DNA-bound KU70/80
proteins stimulate the endonuclease activity of MRE11 cleaving up to 30 nucleotides inside from DSB
ends, leading to removal of blocking adducts from both 3′ and 5′ termini of DSBs [44,45] (reviewed
in [46]) (Figure 3C). In summary, the endonuclease activity of MRE11 may have two distinct roles, DSB
resection for HDR and removal of non-physiological chemical adducts from DSB ends.

The conditional inactivation of MRE11 nuclease causes a number of spontaneously arising
chromosome breaks in mitotic chromosome spreads and kills all cycling cells [28,37,47]. It was believed
that this lethality results solely from a defect in HDR, which rejoins multiple lethal DSBs (Figure 1)
in each cell cycle [4]. However, the conditional inactivation of MRE11 nuclease activity also causes
the endogenous accumulation of stalled TOP2ccs in human cells in addition to cellular mortality [28].
Moreover, overexpression of TDP2 suppresses by ~25% both the lethality and prominent genome
instability during the depletion of MRE11-nuclease activity [28]. Thus, the lethality of MRE11-deficient
cells results not only from defective HDR but also from the endogenous accumulation of stabilized
TOP2ccs. These data indicate that stabilized TOP2ccs have the potential to lead to the generation of
lethal DSBs.

Neuron-specific loss of NBS1 also causes endogenous DSB accumulation in the adult brain of
mice [28], indicating that the MRE11 complex plays a critical role in the elimination of 5′ TOP2 adducts
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even in postmitotic cells. The viability of the MRN-deficient post-mitotic cells indicates that the number
of spontaneously arising TOP2ccs is not large enough to cause mortality in non-cycling cells but might
impair neural function [47,48]. In summary, MRE11 plays dominant roles in repairing the two major
sources of spontaneously arising DSBs, abortive catalysis of TOP2 and replication collapse at damaged
template strands (Figure 2C).

5. Abortive TOP2B Catalysis Occurs during Early Transcriptional Responses to Estrogens

While TOP2A is essential for cell division, homozygous TOP2B−/− murine embryos are born
displaying no apparent morphological abnormality [49], indicating that TOP2B is dispensable for
cellular proliferation. Detailed examination of TOP2B−/− embryos and brain-specific TOP2B-deficient
mice revealed neurological defects, such as defects in the innervation of both motor neurons to
skeletal muscles and sensory neurons to the spinal cord [49,50]. TOP2B−/− new-born mice die due to
neurological defects resulting in lack of innervation to the diaphragm. These data indicate that TOP2B
activity is required for proper development of neural networks.

A number of studies have suggested that TOP2B controls transcriptional initiation as well as
elongation. Analysis of TOP2B ChIP-seq profiles indicates enrichment of TOP2B binding within
the promoters and gene bodies of transcribed genes [20,51–61]. TOP2B contributes to neuronal
development by facilitating the transcription elongation of the neuronal genes that are longer than
200 kb [51]. In addition to transcriptional elongation, TOP2B has been reported to be involved in
transcriptional initiation and RNA polymerase II (Pol II) promoter-pause release upon physiological
stimulations including androgens, estrogens, insulin, glucocorticoids, N-methyl-d-aspartate (NMDA),
retinoic acid, heat shock, and serum [55,59,62–66]. Such signal-dependent transcriptional activation
mediated by the mechanism called Pol II promoter-proximal pausing (Figure 4). This mechanism
ensures the prompt and robust transcription of early response genes and some non-coding RNA genes
immediately after stimulation with ligands and stresses [67–69]. In transcriptional activation of early
response genes, TOP2B causes DSB formation, which is evidenced by the recruitment of NHEJ factors
to transcriptional initiation sites of stimulus-inducible genes (Figure 4) [59,62,63,66,70–73].

Pol II promoter pausing involves multiple layers of regulations exerted by protein and nucleic acid
factors that control Pol II enzyme processivity and nucleosome architecture [68,74,75]. In particular,
recent studies have suggested that Pol II pausing is influenced by DNA torsion and that either negative
or positive supercoiling can prevent Pol II from translocating on the DNA (Figure 4, Step 1) [76–79].
Biochemical analyses have demonstrated that TOP2B functions to resolve positive supercoiling
ahead of transcribing Pol II [7,80,81]. Contributed to by the +1 nucleosome, a characteristic of the
signal-dependent genes utilizing Pol II pausing [82,83], the positive supercoiling is likely to be generated
in the early elongation step in these genes (Figure 4, Step 2) [78,81]. It is thus speculated that the
catalytic activity of TOP2B to remove the supercoiling is required for Pol II pause release and productive
transcription [7,59,66,74,84]. An interesting aspect of TOP2B function in Pol II pause release is that a
DSB and DNA damage response involving diverse DNA repair factors are provoked in the process
(Figure 4, Step 3), whereas TOP2B typically reseals the DSB immediately after resolving DNA torsion,
without needing DNA repair factors. Therefore, it has been hypothesized that the TOP2B-mediated
DSB during transcriptional pausing release is rather a persistent one that leads to the induction of the
DNA damage response [7].
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Figure 4. Model of topoisomerase IIB (TOP2B)-mediated DSB and DNA damage response signaling
during RNA polymerase II (Pol II) pause release in stimulus-inducible protein-coding genes in humans.
Top in the uninduced state of transcription, Pol II is paused between +25 and +100 from the transcription
start site. The pausing is attributed to different elements including pausing-stabilizing transcription
factors, the +1 nucleosome, and DNA structure and torsion. Positive supercoiling ahead of Pol
II may require the function of TOP2B. Middle, transcription activation induced by various stimuli
activates TOP2B to resolve DNA torsion in the promoter and gene body. Bottom, in this process,
DSB could be formed from abortive catalysis of TOP2B, which occurs frequently in some genes. This
may be responsible for DNA damage response signaling that has been observed in a number of
stimulus-inducible genes in humans [59,66,70].

It is not yet clear whether or not the DSB introduced by TOP2B to relieve supercoiling plays
additional physiological roles. An unsolved question is whether the TOP2B-mediated DSBs that
require NHEJ for their rejoining have a physiological role in transcription regulation. The DSB
formation might be programmed and contribute to robust transcriptional control (reviewed in [20,73]).
Another possibility is that TOP2B-mediated DSBs are generated by non-physiological abortive catalysis
of TOP2B, which is a stochastic event [85]. This idea is supported by the following data. There
are two well-known examples of ‘programmed DSBs’. One triggers V(D)J recombination in the
immunoglobulin variable gene [86], and the other is induced by SPO11, a TOP2-like enzyme, to
initiate meiotic homologous DNA recombination (HR) [87,88]. Both impaired formation of typical
programmed DSBs and defects in subsequent DSB repair cause the same phenotype. For example,
the absence of the RAG1/RAG2 DNA cleavage enzyme [89] and a defect NHEJ-mediated DSB repair
cause the same phenotype, impaired lymphocyte development. By contrast, the lack of innervation to
the diaphragm in new-born TOP2B−/− mice [49,50] is not seen in mice deficient in KU70, a protein
essential for NHEJ [90,91]. In other words, the loss of TOP2B-dependent programmed DSBs causes the
phenotype very different from that of the mice deficient in subsequent DSB repair. Thus, it remains to
be proven whether or not the DSB introduced by TOP2B plays additional physiological roles other than
relieving supercoiling. Nonetheless, the following data support the physiological roles. The inhibition
of NHEJ by a DNA-PKcs inhibitor causes a deregulated Pol II pause release [62–66]. We also found that
the loss of DNA-PKcs caused an increase in the transcription of c-MYC gene at 30 min after addition of
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estrogens (manuscript in preparation). These data indicate that TOP2B-mediated stable DSB formation
and its subsequent rejoining by NHEJ may have a physiological role in immediate transcriptional
responses. In summary, the recruitment of NHEJ factors to TOP2B mediated catalytic sites in early
transcriptional responses (reviewed in [73]) supports two alternative scenarios: the physiological role
played by NHEJ in rejoining programmed DSBs and, the very frequent occurrence of abortive catalysis
of TOP2B that affects immediate transcriptional response to ligands.

6. BRCA1 and BRCA2 Promote MRE11-Mediated Removal of 5′ TOP2 Adducts from
Pathological TOP2ccs

Recent studies revealed that BRCA1 and BRCA2 promote the repair of DSBs caused by abortive
catalysis of TOP2. Before describing this new finding, this paragraph and the next one summarize
previous key findings. Monoallelic germline mutations in the BRCA1 and BRCA2 genes predispose
carriers to a high incidence of breast and ovarian cancer [92]. Loss of heterozygosity (LOH) causing
biallelic BRCA gene inactivation provokes genomic instability and greatly enhances carcinogenesis
(reviewed in [6]). Both BRCA1 and BRCA2 play a critical role in HDR of DSBs [93,94] as well as in
protecting stalled replication forks from the fork collapse (Figure 1) [95–98]. Defects in the functionality
of BRCA1 or BRCA2 increase the rate of mutagenesis, but no mutations in any specific genes account
for oncogenesis selectively in estrogen-regulated tissues [99,100]. Considering that the occurrence of
LOH events is extremely rare, inactivation of BRCA1 and BRCA2 by LOH may dramatically enhance
the carcinogenesis of the estrogen-regulated tissues. Since HDR (Figure 1) plays an essential function
in all cycling cells, it remains unclear why the carcinogenesis caused by defects in BRCA1 and BRCA2
manifests in such a highly tissue-restricted manner.

In addition to HDR (Figure 5A), BRCA1 and BRCA2 contribute to the maintenance of chromosomal
DNA by suppressing the accumulation of RNA: DNA hybrid structures, which are known as
R-loops (Figure 5B) and by promoting the repair of stalled TOP2ccs (Figure 5C). R-loop occurs
co-transcriptionally at GC-rich sequences including G-quadruplex-containing sequences. R-loop
formation is facilitated by SSBs and DSBs (reviewed in [101]) and seems to be induced by Pol II
promoter pausing [102]. Replication blockage by R-loops causes genome instability and abnormal
recombination, and it is believed that R-loops are not a serious threat to genome instability in G0/G1
phases (reviewed in [103]). Accumulating evidence implicate BRCA1 and BRCA2 in the turnover
of R-loops (reviewed in [6]). BRCA1 removes R-loops by associating with Senataxin, a helicase
implicated in the resolution of R-loops [104,105]. BRCA2 may bind to the branched structure formed
at RNA: DNA hybrids and facilitate the access of Ribonuclease H1, an enzyme that selectively digests
the RNA portion of an R-loops [106,107]. A recent study showed that BRCA2 binds to Pol II and
controls the release of Pol II from promoter-proximal pausing sites [108]. BRCA2 inactivation results in
accumulation of R-loops and DNA breakage at these sites. BRCA1, which was previously shown to
co-immunoprecipitate with Pol II [109], also suppresses the accumulation of R-loops specifically at
promoter-proximal pausing sites [109]. Interestingly, this accumulation is detectable only in luminal
epithelial cells of murine mammary glands [110]. These data suggest BRCA1 and BRCA2 prevent the
oncogenesis of mammary epithelial cells by inhibiting abnormal R-loop formation (Figure 5B).
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Figure 5. The roles of BRCA1 and BRCA2 in genome maintenance. (A) They play a critical role
in the repair of DSBs formed during DNA replication by promoting strand exchange between
two sister chromatids as shown in Figure 1. (B) BRCA1 and BRCA2 reduce the accumulation of
transcription-associated R loop. (C) BRCA1 and BRCA2 promote the repair of stalled TOP2ccs as
shown in Figure 3C.

The vast majority of mammary epithelial cells are in the G0/G1 phases, and the following data
suggest that BRCA1 and BRCA2 may repair pathological TOP2ccs in these phases (Figure 5C). A defect
in BRCA1 in mice causes embryonic lethality while mice deficient in both BRCA1 and 53BP1 are viable
showing a rescue of the HDR defect in BRCA1 mutant cells [111]. These viable mice still constitutively
manifest prominent genomic instability [111]. Moreover, despite the fact that HDR is suppressed in
the G1 phase BRCA1 still accumulates at etoposide-induced DNA damage sites [112]. These data
indicate that BRCA1 contributes to genome stability through a mechanism other than HDR. This
idea is supported by data that the loss of BRCA1 is associated with an increase in the number of
etoposide-induced TOP2ccs in the G1 phase [112] (Figure 3). Thus, BRCA1 promotes the repair of
etoposide-induced DSBs independent of HR [112,113]. Etoposide-dependent physical interaction
between BRCA1 and MRE11 in G1-arrested cells and cycling ones [114–116] indicates that BRCA1
stimulates the endonuclease activity of MRE11 and promotes the removal of 5′ TOP2 adducts preceding
NHEJ (Figure 3C). BRCA2 also promotes the removal of 5′ TOP2 adducts (manuscript in preparation).
In summary, BRCA1 and BRCA2 contribute to genome maintenance through at least three mechanisms.
First, the two proteins promote HDR for rejoining DSBs occurring during DNA replication and also
for protecting stalled replication forks (Figures 1 and 5A). Second, BRCA1 and BRCA2 promote the
resolution of R-loops and inhibit their collision with DNA replication forks (Figure 5B). Finally, these
proteins promote the rejoining of stalled TOP2ccs, DSBs resulting from abortive TOP2 catalysis, during
the whole cell cycle (Figures 3C and 5C).

7. Estrogens Cause Accumulation of Stalled TOP2ccs in BRCA1-Deficient Mammary
Epithelial Cells

Estrogens are very potent growth factors and are involved in the proliferation of mammary
glands and ovarian tissue. Estrogens stimulate cell proliferation by activating estrogen receptor
alpha and beta (ERα and ERβ). Activated ERs serve as ligand-activated transcription factors and
bind to estrogen-response elements (EREs) in ER target genes (Figure 6, Step 1). TOP2A and TOP2B
are involved in the initiation of ligand-activated transcription [25,59,60,64,70,71,117–119] (reviewed
in [7,20]). TOP2s have been shown to play a role in transcriptional control by steroid hormones
including both androgen and estrogen hormones (Figure 6, Step 2 and 3) presumably by promoting
interactions between transcriptional promoters and enhancer segments. Previous studies using
chemical inhibitors and reverse genetic approaches, however, have not yet identified the exact function
of TOP2s in ligand-activated transcription. This is due to functional overlap between the two TOP2s,
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functioning of TOP2s in both transcriptional elongation and initiation, and an essential role for TOP2A
in cellular proliferation.

Figure 6. Estrogen-induced TOP2B catalysis causes the formation of stalled TOP2Bccs presumably
at transcriptional regulatory sequences. (Step 1) Estrogen receptors (ER) bind at their target genes.
(Step 2) TOP2B catalysis at transcriptional regulatory sequences, and (Step 3) estrogens upregulate
the transcription of ER-target genes. (Step 4) TOP2B undergoes abortive catalysis generating stalled
TOP2Bccs. (Step 5) From the resulting lethal DSBs TOP2B adducts are removed by the coordinated
action of BRCA1, BRCA2, and Mre11. (Step 6) NHEJ seals DSBs leading a cycle of TOP2B-mediated
catalyses (Step 2).

Exposure of the MCF-7 human mammary adenocarcinoma cell line to 1 nM estrogens induces
DSBs, and this DSB formation depends on ERs [118,119]. Activated ERs stimulate the transcription of ER
target genes leading to formation of R-loops (Figure 5B), which cause DNA cleavage by interfering with
the progression of DNA replication forks during S phase [118,119]. BRCA1 prevents the accumulation
of estrogen-induced DSBs by suppressing transcriptional DNA damage occurring at R-loops [104].

A recent study has indicated that activated ERs induce DSBs also in G1 phase [112]. This induction
depends on TOP2B and does not require ongoing transcription or formation of R-loops. Remarkably,
unrepaired DSBs are detectable even one day after a two-hour pulse exposure to estrogens in the absence
of either BRCA1, BRCA2, or NHEJ [112]. The exposure to estrogen causes accumulation of unrepaired
DSBs also in mammary epithelial cells of mice deficient in BRCA1 or NHEJ [112]. These results suggest
the following mechanism for estrogen-induced DSBs and their repair. Activated ERs often cause
the formation of stalled TOP2ccs in G0/G1 phases presumably at promoter and enhancer sequences
(Figure 6, Step 4). Stalled TOP2ccs are quickly repaired by collaboration of BRCA1, BRCA2, Mre11,
TDP2, and NHEJ (Figure 6, Step 5 and 6). In summary, there are two mechanisms for the induction of
DSBs by estrogens: the induction of R-loops and their collision with DNA replication forks during the
S phase (Figure 5B), and the induction of TOP2ccs throughout the cell cycle (Figure 5C). The above
genotoxicity of estrogen is relevant to other ligands that cause immediate early transcriptional responses
including physiological and medically relevant concentrations of glucocorticoid and dexamethasone,
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drugs widely prescribed to treat allergy and inflammation (manuscript in preparation). The genotoxicity
of glucocorticoid and dexamethasone has not been appreciated because of efficient repair of the DSB
caused by these chemicals in DNA-repair-proficient wild-type cells.

Immediate early transcriptional responses by a wide variety of ligands often cause the formation of
stalled TOP2Bccs [59], and BRCA1 and BRCA2 promote the repair of these DSBs. Thus, inactivation of
BRCA1 and BRCA2 may increase the genotoxicity of these ligands in a variety of tissues. A prominent
question has been why does the inactivation of BRCA1 and BRCA2 selectively enhance the oncogenesis
of the estrogen-regulated organs. One scenario is that estrogens strongly stimulate the proliferation of
epithelial cells in mammary glands and the ovary by controlling estrogen-receptor-target genes, and
promote the oncogenesis of these tissues (Figure 7). Stalled TOP2ccs not only induce DNA mutations
but also might enhance transcriptional responses to estrogens by further activating the transcription of
oncogenes or decreasing the expression of tumor suppressors (Figure 7). The idea that unrepaired
DSBs enhance transcription of neighboring genes challenges the view that unrepaired DSBs suppress
transcription from the promoter localized within several kb from the DSBs in an ataxia telangiectasia
mutated (ATM) kinase-dependent manner [120,121]. However, unrepaired DSBs localized far beyond
several kb from the transcriptional promoter can upregulate the immediate transcriptional response to
ligands as evidenced by the data that a CRISPR/Cas9-mediated DSB at a TOP2B catalysis site actually
upregulates transcriptional responses to a neurotransmitter [59]. A possible scenario is that estrogens
cause abortive catalyzes of oncogenes perhaps in their transcriptional enhancer segments (Figure 7 Red
arrows) and that the resulting stable DSBs might facilitate physical interactions between promoter and
enhancer sequences. This scenario may help to understand molecular mechanisms for oncogenesis
selectively in estrogen-regulated tissues in the absence of BRCA1 or BRCA2.

Figure 7. TOP2B catalysis and the formation of TOP2ccs affect transcriptional responses to estrogens.
TOP2B catalysis changes the three-dimensional structure of ER-target genes such as C-MYC and induces
their transcription. DSB-repair-proficient normal cells are capable of very quickly repairing stalled
TOP2Bccs. The loss of BRCA1 or BRCA2 protein causes accumulation of unrepaired DSBs, which may
upregulate the transcriptional response of oncogenes to estrogens.
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8. Conclusions and Unsolved Questions

Recent studies have demonstrated that abortive catalysis of TOP2s poses a major threat to
genome stability in addition to DSB formation caused by replication blockage (Figure 2C). While
DSBs caused by replication blockage are accurately rejoined exclusively by HDR, pathological
TOP2ccs are repaired frequently by NHEJ, with rejoining often being associated with insertion and
deletion mutations forming at joint/junction sequences. The endonucleolytic cleavage by MRE11 to
remove 5′ TOP2 adducts generates 3′ overhang at DSB ends. If the ends are incompatible, they are
processed until DSB ends have a ligatable configuration such as a few nucleotides microhomology,
and microhomology-mediated NHEJ would lead to deletion mutations at joint/junction sequences.
Considering a dominant role for MRE11 in the repair of stalled TOP2ccs [28], cells might have evolved
the mechanism by which collaboration between MRE11 and NHEJ performs accurate rejoining without
causing deletion mutations. It remains elusive by which mechanism NHEJ ensures accurate rejoining in
transcription-coupled abortive TOP2B catalysis. The role of TOP2s in the regulation of transcription is
the major unsolved question. Previous studies examined the effect of etoposide on the transcription of
genes. However, this method does not clearly distinguish the role of TOP2 in transcriptional initiation
from that in transcriptional elongation and TOP2-mediated DSB sites. In addition, the sequential order
of events including the reception of activating signal and TOP2B activity during Pol II pause release is
less defined in many signal-inducible genes. To address these questions, we propose that the effect of
TOP2 depletion on ligand-mediated transcriptional activation in cells synchronized at G0/G1 phase
needs to be studied. In addition, the mechanisms by which BRCA1 and BRCA2 facilitate the removal
of TOP2ccs needs to be addressed in future studies.
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