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Machine Learning for Metabolite Identification with Mass Spectrometry Data
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Metabolites are small molecules which are used in, or created by, chemical reactions
occurring in living organism. They play important functions such as energy transport,
signaling, building block of cells and inhibition/catalysis. Understanding biochemical
characteristics (or identification) of metabolites is an essential part of metabolomics
to enlarge the knowledge of biological systems. It is also key to the development of many
applications and areas such as biotechnology, biomedicine or pharmaceutical sciences.
However, this still remains a challenging task with a huge number of potentially
interesting but unknown metabolites. Mass Spectrometry is a common analytical technique
that measures the mass—to—charge ratio of ions converted from a portion of a chemical
sample. The results are typically presented as a mass spectrum, a plot of intensity as a
function of mass—to—charge ratio. Another way to represent a mass spectrum is as a list
of peaks, each is defined by its mass—to—charge ratio and intensity value.

Identification of metabolites based on mass spectra can be regarded as a retrieval
task: given a query spectrum of an unknown molecule, we aim to find molecules which have
similar spectra from a reference database. A traditional approach is to compare the query
against reference spectra in the database. The candidate molecules from the reference
database are ranked based on the similarity between their reference spectra and the query,
and the best matched candidates are returned. However, the reference databases often
contain spectra of a small fraction of molecules in reality, leading to unreliable
matching results if the molecule of query spectrum is not in the reference database.
Consequently, to mitigate the insufficiency of such databases, alternative approaches for
the task are devised. In this thesis, we explore computational methods for metabolite
identification from spectra data with a focus on machine learning (ML), which has two
stages: (i) mapping a spectrum to an intermediate representation (usually a molecular
fingerprint, which is a binary vector to encode the presence of predetermined
substructures or chemical properties in a molecule) and (ii) retrieving candidate
molecules from the reference database. The contributions of this thesis include: 1) we
present a comprehensive survey on recent advances and prospects of computational methods
for metabolite identification from mass spectra with an emphasis on ML approach; 2) we
present SIMPLE, a method for predicting molecular fingerprints from spectra with ability
to explicitly incorporate peak interactions and has interpretation, which are not
addressed by the current cutting—edge methods for fingerprint prediction (stage (i)); 3)
we present ADAPTIVE, a method for predicting chemical structures from spectra through
learnable intermediate representations to overcome the drawbacks of molecular
fingerprints: being very large to cover all possible substructures and redundant. We
summarize each topic below in more detail.

In Chapter 1, we thoroughly survey computational methods for metabolite
identification from mass spectra. The primary purpose of this survey is not only to
summarize the proposed techniques in literature, but also to systematically organize them
into groups according to their methodology and approaches. It would be beneficial for
researchers to comprehend the key differences between techniques as well as rationale
behind their groupings. We grouped computational techniques for the task into the
following main categories: 1) spectra library; 2) in silico fragmentation and 3) ML
Given a query spectrum, spectra library is to compare it against a database of reference
spectra of known molecules and rank the candidates based on their similarity to the query.
In contrast, in sil/ico fragmentation attempts to generate simulated spectra from the
chemical structures in a compound database and then compare them with the query spectrum.
ML is to predict intermediate representations between spectra and chemical structures of




compounds and then use such representations for matching or retrieval. Our research
focuses on developing ML models for predicting the intermediate representations with high
accuracy and interpretation.

In Chapter 2, we present SIMPLE, a sparse learning based tool for fingerprint
prediction. It takes a query spectrum of an unknown molecule as an input and predicts
binary fingerprints as output, indicating which substructures or chemical properties are
present in the molecule corresponding to the query spectrum. We then can use these
predicted fingerprints to query candidate molecules with most similar fingerprints in the
reference database. SIMPLE achieved around accuracy of 78.86%, which was comparable to
the top—performance kernel based methods, which achieved around 76-80%, obtained by 10-
fold cross validation on the MassBank dataset with 402 spectra. On the other hand, these
kernel based methods needed around 1500 milliseconds, which is more than 300 times slower
than that of SIMPLE, which required less than 5 milliseconds on the same dataset. This
is a sizable difference when we process a huge amount of spectra produced by the current
high—throughput mass spectrometry. One advantage of sparse learning models over kernel
based methods is interpretation. SIMPLE clearly revealed individual peaks and peak
interactions that contribute to enhancing the performance of predicting a particular
fingerprint, shown by some case studies. In more technical detail, we formulate a sparse
interaction model for spectra data. The model encourages sparsity over peaks and low—
rankness over peak interactions while minimizing the classification errors for predicting
the presence of fingerprints. The formulation of model is convex and guarantees global
optimization, for which we develop an alternating direction method of multipliers
algorithm.

In Chapter 3, we present ADAPTIVE, a tool for metabolite identification with
learnable intermediate representations from given pairs of spectra and corresponding
chemical structures of known molecules. It takes a spectrum of an unknown molecule as
input and outputs a list of candidate compounds from the reference database. Instead of
using fingerprints as in existing methods, ADAPTIVE could learn intermediate
representations (called molecular vectors) between spectra and chemical structures of
compounds. The benefits of learning molecular vectors are: 1) specific to both given data
and task of metabolite identification and 2) more compact than molecular fingerprints,
leading to a significant improvement in terms of both predictive performance and
computational efficiency. ADAPTIVE with the molecular vector size of 300 achieved top—10
and —20 accuracies of 71.1% and 78.52%, which are 4% and 5% higher than those of the
current best method, input output kernel regression (IOKR), respectively, obtained by 10-
fold cross validation on a benchmark dataset with 4138 spectra. Furthermore, ADAPTIVE
took 1000 milliseconds for retrieving one spectrum, while IOKR needed more than 3000
milliseconds on the same dataset, meaning that ADAPTIVE was three times faster than IOKR.
Technically, ADAPTIVE has two parts for learning two mappings: (i) from chemical
structures to molecular vectors; (ii) from spectra to molecular vectors. The first part
learns molecular vectors for molecular structures by maximizing the correlation between
given spectra and molecular structures. The second part uses input output Kkernel
regression, the current cutting—edge method for mapping spectra to molecular vectors
obtained by the first part.
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