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Abstract Growth of a plant species as a function of a single mineral nutrient is described
by a noniinear response model. The model consists of four nonlinear differential
equations; three of them describe the nutrient flow; the remaining equation describes the
growth of plant species. The nutrient circulates between three compartments: the plant
species, litter, and the nutrient pool compartment. The input and output of nutrient in
respect to the system are considered as weH; the nutrient pool and litter compartment are
open, whereas the plant species is not assumed either to absorb or lose any nutrient in its
contact with the environment. The uptake of nutrient is described by a general function,
which takes saturation effect into account. The growth rate of plant species is described
by a generalized logistic equation which depends on the concentration of absorbed
nutrlent.
   The stationary states of the model are studied and their Iocal stability thoroughly
investigated. The model's dependency on its own parameters is given an extensive
consideration, which, in turn, leads to a theoretical answer on what kind of environment
is best, in terms of survival, for a given plant species.

1. INTRODUCTION

    Recently, a number of papers on growth of plants as a function of the circulating
rr}aterials have been published (e.g. Hallarn & de Luna, 1984) aRd Rarrowed the gap
between the experimental and theoretical studies on plaRt growth. There exists vast
literature (e.g. Waide et al., 1974) which assumes linear respoRse of the species to the

nutrient concentration. However, this assumption may Rot suffice when a more detailed
picture of the ecosystem's response to varying material levels is required.

    This paper, tkough it contains a similar idea as Hallam aRd de Luna's paper
(generalization of the linear approach models on material circulation), attacks the
problem in a different way. Whereas Hallam and de Luna take the material concentra-
tion (in their case a pollutaRt) as the crucial system variable, the present model deals
instead with the total amounts of the circulatiRg nutrient, and leads to theoretical results

that are in complete agreement with biological facts as reviewed by Chapin (1980).
    This paper emphasizes the importance of material input and output. The roles of
the other parameters are fully investigated elsewhere (Leiler, 1986); their roles are the

same for both models, the closed, as well as the open variant.
   The analysis of the model will show that, both, insufficient and excessive inputs
negatively affect tke plaRt species. The same result holds for either too small or too

large an output. The number of parameters that govem the system, though }arge, is
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brought to the essential limit, and each parameter, as it will become clear through the
altalysis, plays its owR fole ifi the system.

   The system (see Fig. 1.) is assumed to consist of three compartmeRts: a nutrient

pool, a plaRt species, and a litter cornpartment aRd each of these compartments is
assumed to be homogeReous, responding immediately to the nutrient level contained in
itself. Two of these compartments, the nutrient pool and litter compartment, are
assumed open to the enviroRment; i.e., the nutrient can be both, lost and absorbed, by
either of the two compartments. The absorption caR be due to atmospheric input, as
well as due to the weathering of the basic rock. The loss of nutrient can be due to
leaching and logging. Consumers are not considered a part of the system. The
circulatioR of nutrient, together with its input aRd output, ferms tke base of the model,
and this base is described by three nonlinear differeRtial equations. Tke planÅí species is

assumed to respond to different nutrient levels by its growth. An insufficient nutrient
level results iR stunted growth; the same effect follows from an excess of the nutrient.
This response is described by a general logistic equation.

Fig. I.
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 Nutrient circulation. N: nutrient pool; P: plant population; L:
lnputs and outputs of the material.
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litter and decomposers;

   The model and its explanation are given in section two. Section three deals with
local stability of critical poiRts. The biological analysis of the model is given in the fourth

section, and the mathematical proofs form the last, fifth, section.

                             2. THEMODEL

   The rnodel is schematically showR in Figure1. Let x, y, and z denote the total
amounts of a mineral nutrient in the Rutrient pool, plant species, and litter compart-
ment, respectively, at time t. Further, let w represeRt the pop"lation biomass in pure
dry weight ( =dry weight-nutrients) of the planÅí population.
   The system dynamics is given by tke set of differeRtial equations:
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                    x'==-AS(x)w+Ly+Dz-Pi(x)+ei

                    y' == - Ly - My +AS(x)w

                    z'=-Dz+My-P2(z)+C, (2.1)
                    w' == R{F(c) - rv]w

with an appropriate set of initial conditioRs, aRd

                                    y
                               c=                                  y+w
   The coRstants 24L, D, ei, 22, and R are positive, whereas L aad M are nonnegative
and do not vanish simultaneously.
   The uptake rate, AS(x)n,, depends on the Rutrient availability and the plant
biomass. Generally accepted Michaeiis-Menten kinetics is replaced by a general function
form AS(x), with S strictly increasing, differentiable, and

                          s(o)=e, lims(x)=1
                                   x-.co
Further, the uptake rate is assumed proportional to the plant biomass, which is, in turn,

proportional to its pure dry weight w.
   The leaching of nutrient from the plant to the nutrieRt pool is proportional to the
total amount of nutrient contained in the plant population; L is the leaching constant; it

can be zero for some nutrients and plants.
   The decompositioR rate, Dz, is liRearly dependent on the amouRt of nutrient
contaiRed in the littef compartment; D is the decomposition constant.
   Tke loss of Rutrient from the system is given by Pi(x) aRd P2(z). Botk functions are

strictly increasiRg: the more Rutrient is there, the more is lost. On tke one hand, the
nutrient pool is Rot assumed to bind the nutfieRt; thefefore Pi(x) is unbouRded. On the
other hand, the litter can hold the Rutrient, rendering it largely inaccessible to leaching;

therefore, P2(z) can have an upper limit. Both functions are differentiable and

                             Pi (O) = P2(e) == O

   Tke input of Rutrient (from the environment) is constant; 2i, 22 are the input rate

constants.
   The loss of nutrient due to the death process (Åíallen leaves and branches, dead
roots) of the plant is proportional to the amouRt of nutrient iR the plant; M is the
mortality constant: it can be zero for some nutrients and plants.

   The growth of the plant species, described by a general logistic equation (see
Larcher, 198e), depends on the parameter R aRd fuRctioR F(c) (Fig. 2). The parameter
R is the maximum growth rate; i. e., the growth rate when the amount of nutrient is
optimal. The function F(c) represents the relative growth rate which depeRds on the
nutrient concentratioR, c, in the plant species. Either too high or too low nutrient
concentratioR causes stunted growtk (Austin & Austin, 1980) of the plant population.
Thus, F(c) has a functional form similar to the one in Figure 2. For a giveR ,F(c) it seems

reasonable to introduce a constant, w., with the followlng properties (see Fig. 2):

   w. is a critical value that separates the lower level from the upper level of the growth rate: it
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   serves as a measure of the plant's stuntedness. If wsw. then the plant is said to be stunted.

    The introduction ofthis growth coRstant w. (which, of course, depends on the plaRt
species) induces the following two constants:

   c. is a deficiency constant: if c:i{c. then the plant growth will be stunted (wf{w.) due to the

   deficiency of the nutrient.

   cM is a toxicity constant: if c;}rcM then the plant growth will be stunted (ws{;yy.) due to the

   nutrlent toxlclty.

                                3. RESULTS

A. CRmcAL PolNTs and THEIR STABImTy

    A brief look at the system (2.1) clearly shows that its every solutioR (x, y, z, w) is

nonnegative and bounded, Os{(x, y, z, w)<co, if such are the iRitial conditioRs.
    In the rest of the paper, the following functions whose character will become clear
through the subsequent analysis are extensively used:

                                       c                               f(c) =                                         F(c) (3.0.a)                                     1-c
                       h(c)=C,+C,-P,[S-i(-S} IS, )] '' (3.0.b)

                          g(c) =P2IPi'-i(Mf(c)+22)] (3.0.c)

                              Pi*(z)=Dz+P2(z) (3.0.d)
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where B=:L+M. S-i and P2*wwi are the inverse functions of S and P2* respectively.
Clearly, h(c) is a strictly decreasing fuRction, whereas the functioRal form of g(c)
depends on the functional form of f(c), wkich, in tgrn depends on F(c). A graphical
representation of these functions is given in Figure 3., where it is assumed tkat F(c) is a

oRe humped curve, the most probable forrn the function F(c) would take on in real

sltuatlons.

F(c}
h{c}

g(c)

ili

l

Ii

Fig. 3. Critical points of the system.

by c2 is unstable; A point given by
mainly on R.

    Cl
A point given by ci is

c3 can be either stable

 C2 C3 {C)
asimptotically stable; A point given
or unstable-its character depends

    The critical points of the system will be derived first.

Statement 1 All the Rontrivial (w=t=O) critical points, (x., y., z., w.), of the system are

given by

                                  B c*                          x.=Swii(T 1-c" )

                          Yc--f(c*)
                                                                      (3.1)
                          z. == P2* -'(Mf(c') + e2)

                          Wc=:F(c*)

where c" is a solution of the equation

                                h(c)-g(c) (3.2)
   Note that y,1(w.+y.)--f(c")f(F(c*)+f(c*)) =c"; that is, c* repfesents the fiutrieRt

concentration in the plaRt. Note also that these critical points do not depend on the
iRitial conditions.

   The stability properties of the critical points are summarized in the following
statements (see section 5 for the proofs).
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StatemeRt 2 Every critical poiRt, given by Eqs. (3.1) and (3.2), is asymptotically stable
if

                      dfi,C) I,.,.,.. ->o and F(c) >o

Statement 3 If the conditions

                                 df(c)
                                      <e
                                  dc

and

                               dg(c)                                      dh(c)
                                    >                                dc                                       dc

are satisfied aÅí a critical point given by Eqs. (3.1) and (3.2) then the critical point will be

asyrnptotically stable for any sufficiently small R.

Further, the critical point will be uns{able if

                               dg(c)                                      dh(c)
                                    <                                dc                                       de

    The global stability of the model is still an open problem; however, all the numerical

studies thus far conducted suggest that the model is globally stable at least when there
exisÅís exactly one critical point which is, in addition, asymptotically stable.

B. CRITIcAL PolNTs and SysTEM PARAMETERs
    In this paragraph, the dependency of critical points on the parameters and functions

iRvolved iR the model is studied. The parameters and functioRs in the model can be
divided into several groups, according to their specific roles in the model:

 i) uptake rate-maximum uptake rate A and function S(x)
ii) loss rate-leaching constant L and moftality constant M

iii) nuÅírient availability---decomposition constant D, inputs ei and e2, outputs Pi(x)

    and P2(z)
iv) growth-response function F(c), deficiency constant c. and toxicity constant c.,
    and the maximum growth rate R
    As it has been said already, this paper emphasizes the roles of input aRd output;
therefore, only the parametefs and functions concerned with input and output will be
discussed.

    All tke subsequent propositions are coRcemed with the effects of the model
parameters and functions on She model's critical poiRts in terms of nutrient deficleRcy
and nutrient toxicity. The term "nutrient deficiency" states that all the solutions of the

equation h(c) ==g(c); i. e., the nutrient concentrations iR the plaRt, lie in the deficiency

interval [O, c.]. Likewise, RutrieRt toxicity means that they all lie in the toxicity interval

[cM, 1).

PropositioR 1 A small iRput ei (e2) teRds to cause deficiency. A large input 2i (e2)

may cause toxlclty.
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Proposition 2 A fast increasing output Pi(x) causes the deficiency. A slowly increasing
output Pi(x) may cause the toxicity.

Propositien 3 A fasÅí increasiAg output P2(z) may cause the deficiency. A slow}y
increasing output P2(z) raay cause the toxicity.

    All these propositions, which may appear to the reader heuristic, are such only
because the number of parameters and fuRctions which govern tke system is rather large.
The subsequent aRalysis of model and especially Eq. (3.2) will show that explicit
formulations are by all means possible; however, various possibilities make the explicit

formulations rather awkward-the essential information, mathematical as well as biolo-
gical, becomes blurred.

                       4. BIOLOGICALANALYSIS

    A closed variant (Pi(x)==P2(z)=Ci==22= O) of the present model, discussed iR
Leiler (1986), has led to a number of hypotheses on the evolutionary adaptation of plaBt

species. A comparisoR of the closed model to the present model would show that both
models display in essence the same features and lead to the same hypotheses. Those
hypotheses have been based on the iRterplay between the intrinsic properties of the plant

and the environmental conditions.
    In this section I shall give an iRterpretation for the results of the model aRalysis in

terms of evolution. This iRterpretation will form the answer to the followiRg questioR:

    Given an environment (Pi(x), P2(z), ei, e2, and sometimes D), what plant species
caR survive iR it?

    The followiRg two cases may be considered:

    Case a). Nutrient-poor enviroRment: tke case wkeA the inputs ei and C2 are
relatively small, whereas the outputs aPi(x) and P2(z) are relatively fast increasiRg
functions. "Irhere are many ecosystems with a Rutrient-poor eRvironmeRt, aRd yet, the
plant species are surviving. This fact can be explained iR terms of the model if the plant

has the following properties:

 i) The deficiency constant, c., has to be sufficiently small. In other words, a plant
    species has to be highly tolerant to low levels of the available nutrient.
ii) The uptake rate /IS(x) should be sufficieRtly large, i. e., a plant species should be

    sufficiently effective in taking up the nutrient at its low concentrations.

iii) The loss of nutrient through leaching (L) and death pfocess (M) should not be too

    large, i. e., both, the leaching constant L and death constant M should be
    sufficiently small.

iv) The plant blemass, w ==F(c), sheBld not be too large.

    Case b). Nutrient-rich environmeRt: fhe case where the inputs 2i aRd e2 are
relatively large, whereas the outputs Pi(x) and P2(z) are relatively slowly increasiRg
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functions. A nutrieRt-rich eRvironinent may not be too good a host of a plant species
with a low toleraRce for high nutrient concentrations. lrhus, a nutrient-rich enviroRment

caR support only those species that can successfully tolerate and avoid toxicity. The

following conclusions are based on the analysis of the model:

 i') The toxicity constant, cM, has to be sufficieRtly large, i. e., the plaRt species has to

    be highly tolerant to the toxic nutrient levels.
ii' ) The maximum uptake rate, A, should not be too large.

iii' ) The loss of nutrient through leaching (L) afid death process (M) should be
    sufficientiy large.
iv' ) The plant species's size, w=F(c), should not be too small.

   The above conclusions help explain certain facts on the adaptation of plants to
differeRt enviroRmental conditioRs; moreover, the theoretical explanatioR is in complete

agreement with known biological facts as reviewed by Chapin (1980).

              S. MATHEMATICAL ANALYSIS AND PROOFS

Proof of StatemeRt 1 First, Eqs. (3.1), together with Eq. (3.2), will be derived, and
then the existence of at least one solution of Eq. (3.2) proved.
   Every critical point satisfies the following equations:

                            x' =y' == z' == w'= O

and the first three equations give:

                 e,+ e,-p, (x)-p, (z) ==e (input == output) (s.1)

A trivial cfitical point is obtained by setting w :e. Thus, a trivial critical point, (x., y.,

z., w.), is given by

                    x.=pii[Dpi*-i(e,)+e,], y.=o
                         z.= p2* ww1(e2), w.=e

The function Pi as well as Pi, is strictly increasing; therefore, its inverse P2*-i (Pii)

always exists.

   A nontrivial critical point is obtained by settiRg

                                w= F(c)

Frorn z'=O follows that

                           z -- P2" -i(My + e2)

and Eq. (5.1) changes into
         t
                    P,[P,*-i(My+C,)]=e,+C,-P,(x) (5.2)
Further, from y' ==O follows that '

                                   Bc                            x=S-i(T lbe,) (5.3)
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It is also obvious that

                                  y=f(c) (5.4)
Combinifig (5.2), (5.3), and (5.4) gives

                                                  Bc               P2[P2"-i(Mf(c)+C2)]==2i+e2-PilS-i(7i- i-,)] (5•5)

which is equivalent to Eq. (3.2); Eqs. (3.1) are an obvious consequence of the above
calculation. A graphical represeRtatioR of Eq. (5.5), i.e., (3.2), together with the
function F(c), is giveR in Figure 3.

    Eq. (5.5), i.e., (3.2), consists of only continuous fuRctioRs. Clearly (see also Fig. 3)

                             h(o) =c,+e,>e (s.6.a)
                           g(O)==P2[P2*-i(C,)]>e (5.6.b)
From (5.6.b) follows that

                   g(O) == P,[P,* -i(2,)] < Pi [P,* ww i(e,)] == e2

Thus;

                               o<g(e) f{h(o) (s.7)
    It is obvious from (3.0.b) that the fufiction h(c) is strictly decreasing, aRd h(c)=O at

                c=:AsA(S.()"+)B<AA+B<i u==p-i(e,+e,) (s.s)

    The function g(c) is continuous, nonRegative and g(O)Sh(e); therefore, there exists
c, such that h(c)==g(c). This completes the proof of Statement 1. Q. E. D.

Preef of Statement 2 Let F(c)>O; then the matrix of the linearized system is

                   -AS'F-Pi' L D -AS
                      /IS'F -B O AS
             A==                        O M -D-Pi O
                        O R*F' O rmR*ft
where

              S'= dSd(.X) l.=.. I7=" F(c) Pi'= dPdilS") Ex,,.x,

               s=s(x.) p2' -- dPiiZ) I.,..., R" =(1-c)2R

               F'=: dFd(,C) f' = dfii,C)

    A critical point is asymptotically stable if and only if all the roots of the characteris-

tic polynomial
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                    det(A-AI) ==A`+aiA3+a2A2+a3A+a4 (5.9)
                    (I is the unit matrix)

have Ronitegative real parts.

Here

           ai = AS'F+ Pi+B+D+p5 +R*f'

           a2 =BPi' + MA S'F+ B(D + P2') + BRF+ (D + pi )As'F

               +Pi(D+Pi)+(D+Pi)R*f' (5.le)
               +AS' FR *f' + P,' R *f'

           a3 == PiB(D + Pi) + Pi MAS'F+ Pi' BRF+ MA S' FR "f'

               + B(D + Pi )RF+ (D + P,' )A S' FR *f' + Pi (D + Pi )R *f'

           a4 :Pi'B(D+Pi)RF+PiMAs'FR*f'

   In order to see that all the roots of (5.9) have nonnegative real parts, the following

inequalities must be proved (Routh-Hurwitz condition):

                         ai>O

                         ala2-a3>e

                         (aia2-a3)a3-ai2a4>O

                         a4>O

The proof of these inequalities is quite leRgthy, yet elementary, aRd as such omitted. Q.

E. D.

Preof of Statement 3 In order to prove this proposition, the coefficients ai of Eq. (5.9)

are rewrltten as:

                      ai=Ai+BiRf' i= 1, 2, 3, 4

Comparison of these with (5.le) shows that

                       ALb Bi>O i=1, 2, 3,4

Further, a4 can be transformed into

                 a, ==ARs'F(D+p,')(1-c)2{ dgd(,C) - dhd(,C) ]

aRd the condition

                            dg(e)                                   dh(c)
                                 >                             dc                                    dc

assures that a4>O which is a necessary coRdition for the asymptotic stability of the
critical point.

If, on the oÅíher hand
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                                    dh(c)                             dg(c)
                                  <                               dc                                     dc

which can happen only if

                                df(c)
                                    <e                                 dc

then the point in question will be unstable. This proves the secoRd part of Statement 3.

   The first part assumes

                                df(c)
                                    <e                                 dc

and

                             dg(c)                                    dh(c)
                                  >                               dc                                     dc

which assures that a4>O as mentioRed above. Further, if R is sufficieRtly small then

                     ai--Ai+BiRf' :Ai>O i=1,2,3

and it can be easily seen that

                              ala2-a3>O

                          (aia2-a3)a3-ai2a4>O

Thus, the point in question is asymptotically stable. This completes the proof of
StatemeRt 3. Q.E.D.

Proof oÅí Proposition 1 IR order to prove this propositioR, as well ' as all the others, the
aRalysis of Eq. (3.2), i.e.,

                               h(c)-g(c) (5.11)
is necessary.

   The function h(c) (see Fig. 3 and (3.0.b), (3.e.c)) is strictly decreasing, and g(c) is a

strictly increasing function at least at those poiRts wkere F(c) is not decreasing. Further,

it has been shown (Eq. (5.7) and (5.8)) that

                             h(o)})g(o)>o

and h(c.)=O at

                         AS(u)                                    u==P,-i(Q,+e,)                    Cz ==                        AS(u)+B

Let c" be a solution of Eq. (5.11); then

                                      A                             c"SCz<                                                                  (5.12)
                                    A+B
   It can easily be seefl that Eq. (5.11) possesses at most one so}ution iR an interva} iR
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which F(c) is not decreasing; for in such an interval g(c) is strictly increasing, whereas

h(c) is strictly decreasing.

    Proposition 1 is a consequeRce of the foliowing consideration: the function g(c) is

independeRt of ei, and

                   h(c, C,*)<h(c, 2,**) if ei<2i*

This means that h(c) decreases together with Ci. So does also c". Note that the present
analysis is concerRed oRly with the stable critical poiRts which lie in the range where g(c)

is increasiRg. Thus, the deficiency may follow. OR the other hand, a sufficiently large 2i

will cause the toxicity provided that

                                      A
                                CM<                                    A-l-B

for if this is not the case then the toxicity raRge cannot be attained (see (5.i2)).

    The same is true for e2, which can be shown by the following: FunctioR g(c) can be
rewritten with the help of (3.0.b) and (3.e.d) as

                    g(c) == Mf(c) + e, - DPi* - i[Mf(c) + e,]

Thus, the Eq. (5.11) becomes

                         Bc              2i -Pi[S-i(x- 1-, )] =Mf(c) -DP2* -i(Mf(c) + e2)

By deRotiRg the left side of this equation by H(c) and its right side by G(c) the foliowiRg

caR be easily seen: The function H(c) is indepeRdeRt of e2 and strictly decreasiRg in c.

The function G(c) depends on e2 and

                           G(c, 22")})G(c, 22*")

if

                                e2*<e2**

because P2*-i is an increasing function. Therefore, the fuRction G(c) decreases as 22

iRcreases, whick means that c" decreases together with e2; the deficiency may follow.
Ofi the other hand, a sufficieRtly large 22 will cause the toxicity provided that

                                      A
                                CM<                                    .A+B

and given that D is large enough; however, a small D caR prevent the toxicity. Q.E.D.
    Proposition 2 is obvious. From Eq. (3.0.b) it caR be easily seen that a fast increasing

P! meaRs that h(c) decreases fast; tkerefore, c., together with c*, will be small; hence,

the deficiency is unavoidable. A slowly increasing Pi leads Åío a relatively large c.;
however, Åíhat need not cause the toxicity; e.g., a small enough ei will prevent it.
Q.E.D.
    Similar reasoRing proves Proposition 3. A fast increasing output P2 causes function
g(c) to iRcfease fast; thus, c" will be small, and the deficieRcy may follow. On the other

hand, a slowly increasing P2 leads to a relatively large c*, which may cause the toxicity.

Q.E.D.
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