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Abstract Growth of a plant species as a function of a single mineral nutrient is described
by a ponlinear response model. The model consists of four nonlinear differential
equations; three of them describe the nutrient flow; the remaining equation describes the
growth of plant species. The nutrient circulates between three compartments: the plant
species, litter, and the nutrient pool compartment. The input and output of nutrient in
respect to the system are considered as well; the nutrient pool and litter compartment are
open, whereas the plant species is not assumed either to absorb or lose any nutrient in its
contact with the environment. The uptake of nutrient is described by a general function,
which takes saturation effect into account. The growth rate of plant species is described
by a generalized logistic equation which depends on the concentration of absorbed
nutrient.

The stationary states of the model are studied and their local stability thoroughly
investigated. The model’s dependency on its own parameters is given an extensive
consideration, which, in turn, leads to a theoretical answer on what kind of environment
is best, in terms of survival, for a given plant species.

1. INTRODUCTION

Recently, a number of papers on growth of plants as a function of the circulating
materials have been published (e.g. Hallam & de Luna, 1984) and narrowed the gap
between the experimental and theoretical studies on plant growth. There exists vast
literature (e.g. Waide et al., 1974) which assumes linear response of the species to the
nutrient concentration. However, this assumption may not suffice when a more detailed
picture of the ecosystem’s response to varying material levels is required.

This paper, though it contains a similar idea as Hallam and de Luna’s paper
(generalization of the linear approach models on material circulation), attacks the
problem in a different way. Whereas Hallam and de Luna take the material concentra-
tion (in their case a pollutant) as the crucial system variable, the present model deals
instead with the total amounts of the circulating nutrient, and leads to theoretical results
that are in complete agreement with biological facts as reviewed by Chapin (1980).

This paper emphasizes the importance of material input and output. The roles of
the other parameters are fully investigated elsewhere (Leiler, 1986); their roles are the
same for both models, the closed, as well as the open variant.

The analysis of the model will show that, both, insufficient and excessive inputs
negatively affect the plant species. The same result holds for either too small or too
large an output. The number of parameters that govern the system, though large, is
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brought to the essential limit, and each parameter, as it will become clear through the
analysis, plays its own role in the system.

The system (see Fig. 1.) is assumed to consist of three compartments: a nutrient
pool, a plant species, and a litter compartment and each of these compartments is
assumed to be homogeneous, responding immediately to the nutrient level contained in
itself. Two of these compartments, the nutrient pool and litter compartment, are
assumed open to the environment; i.e., the nutrient can be both, lost and absorbed, by
either of the two compartments. The absorption can be due to atmospheric input, as
well as due to the weathering of the basic rock. The loss of nutrient can be due to
leaching and logging. Consumers are not considered a part of the system. The
circulation of nutrient, together with its input and output, forms the base of the model,
and this base is described by three nonlinear differential equations. The plant species is
assumed to respond to different nutrient levels by its growth. An insufficient nutrient
level results in stunted growth; the same effect follows from an excess of the nutrient.
This response is described by a general logistic equation.

as— 1,

I

04

Fig. 1. Nutrient circulation. N: nutrient pool; P: plant population; L: litter and decomposers;
I, Oy: inputs and outputs of the material.

The model and its explanation are given in section two. Section three deals with
local stability of critical points. The biological analysis of the model is given in the fourth
section, and the mathematical proofs form the last, fifth, section.

2. THE MODEL

The model is schematically shown in Figure 1. Let x, y, and z denote the total
amounts of a mineral nutrient in the nutrient pool, plant species, and litter compart-
ment, respectively, at time t. Further, let w represent the population biomass in pure
dry weight (=dry weight—nutrients) of the plant population.

The system dynamics is given by the set of differential equations:
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X' =—AS(X)w+Ly+Dz—P(x)+ Q4
y'=—Ly—My+AS(x)w
7 =—Dz+My—P,(2)+Q, 2.1
w =R[F(c)—w]w
with an appropriate set of initial conditions, and

__J
y+w

The constants A, D, O, O,, and R are positive, whereas L and M are nonnegative
and do not vanish simultaneously.

The uptake rate, AS(x)w, depends on the nutrient availability and the plant
biomass. Generally accepted Michaelis-Menten kinetics is replaced by a general function
form AS(x), with § strictly increasing, differentiable, and

S(0)=0, lmsS(x)=1

Further, the uptake rate is assumed proportional to the plant biomass, which is, in turn,
proportional to its pure dry weight w.

The leaching of nutrient from the plant to the nutrient pool is proportional to the
total amount of nutrient contained in the plant population; L is the leaching constant; it
can be zero for some nutrients and plants.

The decomposition rate, Dz, is linearly dependent on the amount of nutrient
contained in the litter compartment; D is the decomposition constant.

The loss of nutrient from the system is given by P;(x) and P,(z). Both functions are
strictly increasing: the more nutrient is there, the more is lost. On the one hand, the
nutrient pool is not assumed to bind the nutrient; therefore P;(x) is unbounded. On the
other hand, the litter can hold the nutrient, rendering it largely inaccessible to leaching;
therefore, P,(z) can have an upper limit. Both functions are differentiable and

P1(0)=P5(0)=0

The input of nutrient (from the environment) is constant; Q,, O, are the input rate
constants.

The loss of nutrient due to the death process (fallen leaves and branches, dead
roots) of the plant is proportional to the amount of nutrient in the plant; M is the
mortality constant: it can be zero for some nutrients and plants.

The growth of the plant species, described by a general logistic equation (see
Larcher, 1980), depends on the parameter R and function F(c) (Fig. 2). The parameter
R is the maximum growth rate; i. e., the growth rate when the amount of nutrient is
optimal. The function F(c) represents the relative growth rate which depends on the
nutrient concentration, ¢, in the plant species. Either too high or too low nutrient
concentration causes stunted growth (Austin & Austin, 1980) of the plant population.
Thus, F(c) has a functional form similar to the one in Figure 2. For a given F(c) it seems
reasonable to introduce a constant, w,,, with the following properties (see Fig. 2):

W, 18 & critical value that separates the lower level from the upper level of the growth rate: it
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Fig. 2. Dry weight v.s. nutrient concentration. Response of a plant to various nutrient levels.
wy,: minimum growth constant; c,,: deficiency constant; cu: toxicity constant. (After Larcher,
1980)

serves as a measure of the plant’s stuntedness. If w<w,, then the plant is said to be stunted.

The introduction of this growth constant w,, (which, of course, depends on the plant
species) induces the following two constants:

¢ 18 a deficiency constant: if c<c,, then the plant growth will be stunted (w<w,,) due to the
deficiency of the nutrient.

¢y 1s a toxicity constant: if c=>cy then the plant growth will be stunted (w<w,,) due to the
nutrient toxicity.

3. RESULTS

A. CrrricaL Points and THEIR STABILITY

A brief look at the system (2.1) clearly shows that its every solution (x, y, z, w) is
nonnegative and bounded, 0<(x, y, z, w)<oo, if such are the initial conditions.

In the rest of the paper, the following functions whose character will become clear
through the subsequent analysis are extensively used:

fl©)=7=F() (3.0.2)
h(C)=Q1+Q2—P1[S‘1(~§— 1_C_C)] (3.0.b)
g(©)=P[P;* 1 (Mf(c)+ Q»)] (3.0.c)

P (z)=Dz+ Py(z) (3.0.d)
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where B=L+M. S™! and P;*~! are the inverse functions of S and P;* respectively.
Clearly, h(c) is a strictly decreasing function, whereas the functional form of g(c)
depends on the functional form of f(c), which, in turn depends on F(c). A graphical
representation of these functions is given in Figure 3., where it is assumed that F(c) is a
one humped curve, the most probable form the function F(c) would take on in real
situations.

F(c)

N\

h{c)

gl(c)

fo)) IS Y

€1 Co 3 (c)

Fig. 3. Critical points of the system. A point given by ¢ is asimptotically stable; A point given
by ¢, is unstable; A point given by ¢; can be either stable or unstable—its character depends
mainly on R.

The critical points of the system will be derived first.

Statement 1 All the nontrivial (w=0) critical points, (x., Y., Z., W.), of the system are
given by
B

z.=P; " (Mf(c*)+Q,)
w.=F(c*)

where ¢* is a solution of the equation

h(c)=g(c) (3.2)

Note that yJ(w.+y)=fc*Y(F(c*)+f(c*))=c*; that is, c¢* represents the nutrient
concentration in the plant. Note also that these critical points do not depend on the
initial conditions.

The stability properties of the critical points are summarized in the following
statements (see section 5 for the proofs).
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Statement 2 Every critical point, given by Egs. (3.1) and (3.2), is asymptotically stable
if
%(CC) C:C*zo and Fc)>0

Statement 3 If the conditions

df(c)
dc <0

and

dg(c) _ dh{c)
dc = de

are satisfied at a critical point given by Egs. (3.1) and (3.2) then the critical point will be
asymptotically stable for any sufficiently small R.
Further, the critical point will be unstable if

dg(c) _ dh(c)
dc < dc

The global stability of the model is still an open problem; however, all the numerical
studies thus far conducted suggest that the model is globally stable at least when there
exists exactly one critical point which is, in addition, asymptotically stable.

B. CriricaL Points and SYSTEM PARAMETERS

In this paragraph, the dependency of critical points on the parameters and functions
involved in the model is studied. The parameters and functions in the model can be
divided into several groups, according to their specific roles in the model:

i) uptake rate—maximum uptake rate A and function S(x)
ii) loss rate—leaching constant L and mortality constant M
iii) nutrient availability—decomposition constant D, inputs Q; and Q,, outputs P;(x)

and P,(2)

iv) growth—response function F(c), deficiency constant ¢,, and toxicity constant c,,,

and the maximum growth rate R

As it has been said already, this paper emphasizes the roles of input and output;
therefore, only the parameters and functions concerned with input and output will be
discussed.

All the subsequent propositions are concerned with the effects of the model
parameters and functions on the model’s critical points in terms of nutrient deficiency
and nutrient toxicity. The term “nutrient deficiency” states that all the solutions of the
equation h(c)=g(c); i. e., the nutrient concentrations in the plant, lie in the deficiency
interval [0, ¢,,]. Likewise, nutrient toxicity means that they all lie in the toxicity interval

[CM7 1)

Proposition 1 A small input Q; (Q,) tends to cause deficiency. A large input Q; (Q-)
may cause toxicity.
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Proposition 2 A fast increasing output P;(x) causes the deficiency. A slowly increasing
output P;(x) may cause the toxicity.

Proposition 3 A fast increasing output P,(z) may cause the deficiency. A slowly
increasing output P,(z) may cause the toxicity.

All these propositions, which may appear to the reader heuristic, are such only
because the number of parameters and functions which govern the system is rather large.
The subsequent analysis of model and especially Eq. (3.2) will show that explicit
formulations are by all means possible; however, various possibilities make the explicit
formulations rather awkward—the essential information, mathematical as well as biolo-
gical, becomes blurred.

4. BIOLOGICAL ANALYSIS

A closed variant (P(x)=P,(z)=0;=0,=0) of the present model, discussed in
Leiler (1986), has led to a number of hypotheses on the evolutionary adaptation of plant
species. A comparison of the closed model to the present model would show that both
models display in essence the same features and lead to the same hypotheses. Those
hypotheses have been based on the interplay between the intrinsic properties of the plant
and the environmental conditions.

In this section I shall give an interpretation for the results of the model analysis in
terms of evolution. This interpretation will form the answer to the following question:

Given an environment (P;(x), Py(z), Q;, @», and sometimes D), what plant species
can survive in it?

The following two cases may be considered:

Case a). Nutrient-poor environment: the case when the inputs Q; and Q, are
relatively small, whereas the outputs Pi(x) and P,(z) are relatively fast increasing
functions. There are many ecosystems with a nutrient-poor environment, and yet, the
plant species are surviving. This fact can be explained in terms of the model if the plant
has the following properties:

i) The deficiency constant, c,, has to be sufficiently small. In other words, a plant
species has to be highly tolerant to low levels of the available nutrient.

ii) The uptake rate AS(x) should be sufficiently large, i. e., a plant species should be
sufficiently effective in taking up the nutrient at its low concentrations.

iii) The loss of nutrient through leaching (L) and death process (M) should not be too
large, i. e., both, the leaching constant L and death constant M should be
sufficiently small.

iv) The plant biomass, w=F(c), should not be too large.

Case b). Nutrient-rich environment: the case where the inputs Q; and Q, are
relatively large, whereas the outputs P;(x) and P,(z) are relatively slowly increasing
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functions. A nutrient-rich environment may not be too good a host of a plant species
with a low tolerance for high nutrient concentrations. Thus, a nutrient-rich environment
can support only those species that can successfully tolerate and avoid toxicity. The
following conclusions are based on the analysis of the model:

i) The toxicity constant, c,, has to be sufficiently large, i. e., the plant species has to
be highly tolerant to the toxic nutrient levels.
ii") The maximum uptake rate, A, should not be too large.
iii") The loss of nutrient through leaching (L) and death process (M) should be
sufficiently large.
iv') The plant species’s size, w=F(c), should not be too small.

The above conclusions help explain certain facts on the adaptation of plants to
different environmental conditions; moreover, the theoretical explanation is in complete
agreement with known biological facts as reviewed by Chapin (1980).

5. MATHEMATICAL ANALYSIS AND PROOFS

Proof of Statement 1 First, Eqs. (3.1), together with Eq. (3.2), will be derived, and
then the existence of at least one solution of Eq. (3.2) proved.
Every critical point satisfies the following equations:

¥ =y =z'=w=0
and the first three equations give:
Q1+ 0,—Pi(x)—P5(2)=0 (input=output) 5.1)
A trivial critical point is obtained by setting w=0. Thus, a trivial critical point, (x., y.,
Z., W), is given by
x=P{ '[DPy N Q)+ 01, y.=0
ZCZPZ*”I(QZ)a Wc:O

The function P, as well as Py, is strictly increasing; therefore, its inverse P;* ™! (P 1)
always exists.
A nontrivial critical point is obtained by setting

w=F(c)
From z'=0 follows that
=P (My+Q,)
and Eq. (5.1) changes into
P[P~ (My+0)]=01+ 02— Pi(x) (5.2)
Further, from y’ =0 follows that

_Q c

x=S" g 1)

(5.3)
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It is also obvious that
y=f(c) (5.4)
Combining (5.2), (5.3), and (5.4) gives

PPN (MFQ)+Q2)]=01+ 0~ S~ (5 5] (5.5

which is equivalent to Eq. (3.2); Egs. (3.1) are an obvious consequence of the above
calculation. A graphical representation of Eq. (5.5), i.e., (3.2), together with the
function F(c), is given in Figure 3.

Eq. (5.5), i.e., (3.2), consists of only continuous functions. Clearly (see also Fig. 3)

h(0)=01+0,>0 (5.6.a)
g(0)="P,[P;*~1(02)]>0 (5.6.b)
From (5.6.b) follows that
8(0)=P,[P;* Q)] <P [P "1 (Q2)]=0:

Thus;
0<g(0)<h(0) (5.7
It is obvious from (3.0.b) that the function i(c) is strictly decreasing, and A(c)=0 at
_ AS(u) A o
= AS(u)+B <A¥B <l u=P7(Q:1+0Qy) (5.8)

The function g(c) is continuous, nonnegative and g(0)<A(0); therefore, there exists
¢, such that h(c)=g(c). This completes the proof of Statement 1. Q. E. D.

Proof of Statement 2 Let F(c)>0; then the matrix of the linearized system is

—AS'F—P; L D —AS
AS'F —B 0 AS
- 0 M  —-D-P; 0
0 R*F’ 0 —R*f’
where
_ s

F=F(c) P{:-‘%l-(ﬂ[

§= |
dx 1x=x, X X=X

,_dP
S§=5(x,) PZ:“Ziz;EL)ImzC R*=(1—c)’R

,_dF(c) . df(c)
F= dc f= dc

A critical point is asymptotically stable if and only if all the roots of the characteris-
tic polynomial



108 IGorR LEILER

det(A—A) =2 +a;\>+a,)* +azh+a, (5.9)
(I is the unit matrix)

have nonnegative real parts.
Here

a,=ASF+P{+B+D+P;, +R*f

a,=BP{+MAS F+B(D+P;)+BRF+(D+P,)AS'F
+P{(D+Py)+(D+P;)R*f (5.10)
+AS FR*f’ + P{R*f’

a3=P{B(D+ P;)+ P, MAS F+ P{BRF+MAS FR*f
+B(D+ P;)RF+(D+ P;)AS FR*f’ + P{(D+ P;)R*f’

a;=P{B(D+ P;)RF+P; MAS FR*f

In order to see that all the roots of (5.9) have nonnegative real parts, the following
inequalities must be proved (Routh-Hurwitz condition):

a; >0

aa,—as>0
(a1a;—a3)az—aia; >0
a;>0

The proof of these inequalities is quite lengthy, yet elementary, and as such omitted. Q.
E. D.

Proof of Statement 3 In order to prove this proposition, the coefficients g; of Eq. (5.9)
are rewritten as:

a,-=A,~+BL~Rf’ l:-l, 2, 3, 4
Comparison of these with (5.10) shows that
Ay, B>0  i=1,2,3,4

Further, a, can be transformed into

a=ARS F(D+P;)(1 - o 21— 1)

and the condition

dg(c) __ dh(c)
dc > dc

assures that a,>0 which is a necessary condition for the asymptotic stability of the
critical point.
If, on the other hand
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dg(c) _ dh(c)
dc < de

which can happen only if
df(c)
dc <0

then the point in question will be unstable. This proves the second part of Statement 3.
The first part assumes

df(c)
7 <0

and

dg(c) . dh(c)
dc > dc

which assures that a,>0 as mentioned above. Further, if R is sufficiently small then
a;=A;+BRf =A;>0 i=1,2,3
and it can be easily seen that
aa,—az >0
(a1a,—az)as—afa,>0

Thus, the point in question is asymptotically stable. This completes the proof of
Statement 3. Q.E.D.

Proof of Proposition 1 In order to prove this proposition, as well as all the others, the
analysis of Eq. (3.2), i.e.,

h(e)=g(c) (5.11)
is necessary.
The function h(c) (see Fig. 3 and (3.0.b), (3.0.c)) is strictly decreasing, and g(c) is a

strictly increasing function at least at those points where F(c) is not decreasing. Further,
it has been shown (Eq. (5.7) and (5.8)) that

h(0)zg(0)>0
and A(c,)=0 at

Ay v—PQi+0)

Let ¢* be a solution of Eq. (5.11); then

c*<c, < (5.12)

A+B

It can easily be seen that Eq. (5.11) possesses at most one solution in an interval in
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which F(c) is not decreasing; for in such an interval g(c) is strictly increasing, whereas
h(c) is strictly decreasing.

Proposition 1 is a consequence of the following consideration: the function g{c) is
independent of O,, and

h(c) Ql*) <h(C, 1**) if ‘Ql* <Q1$*

This means that i(c) decreases together with O;. So does also ¢*. Note that the present
analysis is concerned only with the stable critical points which lie in the range where g(c)
is increasing. Thus, the deficiency may follow. On the other hand, a sufficiently large O,
will cause the toxicity provided that

M<AYB
for if this is not the case then the toxicity range cannot be attained (see (5.12)).

The same is true for Q,, which can be shown by the following: Function g(c) can be
rewritten with the help of (3.0.b) and (3.0.d) as

g(c)=Mf(c)+Q,—DP;* ~'[Mf(c)+ Q]
Thus, the Eq. (5.11) becomes

01~ PIS™ (5 S 1=Mf(e)~DPS~ (Mf(0)+ )

By denoting the left side of this equation by H(c) and its right side by G(c) the following
can be easily seen: The function H(c) is independent of O, and strictly decreasing in c.
The function G(c) depends on O, and

G(e, 0)=G(e, 02*)
if
0 <O

because P, ! is an increasing function. Therefore, the function G(c) decreases as Q,
increases, which means that c¢* decreases together with O,; the deficiency may follow.
On the other hand, a sufficiently large O, will cause the toxicity provided that

A

MSATEB

and given that D is large enough; however, a small D can prevent the toxicity. Q.E.D.

Proposition 2 is obvious. From Eq. (3.0.b) it can be easily seen that a fast increasing
P, means that k(c) decreases fast; therefore, c,, together with ¢*, will be small; hence,
the deficiency is unavoidable. A slowly increasing P; leads to a relatively large c,;
however, that need not cause the toxicity; e.g., a small enough Q; will prevent it.
Q.E.D.

Similar reasoning proves Proposition 3. A fast increasing output P, causes function
g(c) to increase fast; thus, ¢* will be small, and the deficiency may follow. On the other
hand, a slowly increasing P, leads to a relatively large ¢*, which may cause the toxicity.
Q.E.D.
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