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Abstract. Helmbholtz-type equation with fixed boundary was solved numerically in regard to the squashed sea
urchin egg cell by cell.  The results suggest that the equation may predict the direction of the spindle axis and the
position of the division plane.

1. Introduction

What does determine the cleavage pattern? This is one of the greatest problems in
developmental biology. Birds, fishes, snakes and others usually show cleavage pattern called
discoidal cleavage. Fig. la shows the standard beautiful pattern of discoidal cleavage up to
the 16-cell stage (Patten and Carlson, 1974; Ham and Veomett, 1980). Fig. 1b shows the
eigenfunctions of the following Helmbholtz-type equation (Mizumoto, 1973):

(0%[ox24-0%[oyH)u=—2u )

Uz -
Fxg. 1. a, the standard beautiful discoidal cleavage pattern (redrawn from Patten and Carlson, 1974); b, the
eigenfunctions of eq. (1) with an almost circular ellipse (redrawn from Mizumoto, 1973).
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with the fixed boundary condition
u=0 on 290,

where  is an almost circular ellipse and a9 is its boundary.

Comparing these figures we notice that there is a close similarity between Fig. la and b.
The nodal lines I,..., IV in Fig. Ib correspond to the cleavage lines I,..., IV in Fig. la, re-
spectively. From this fact we may well have the following question extended three dimen-
sionally:

Are there any relationship between the cleavage pattern and the following equation?

(0%/8%24-02Jay?+3%[02%) U= —pU (2)
with the boundary condition
U=0 on a2,

where £, is a three-dimensional domain and 9%, is its boundary.

I attempted to solve eq. (2) with regard to a living egg, but it is difficult to solve eq. (2)
as it is, so eq. (2) is put in two-dimensional, i.e. eq. (1), and solved with regard to the cleavage
pattern of a squashed sea urchin egg. This paper presents the results.

2. Preliminary theory

From many isolated blastomere experiments E. B. Wilson (1904) had concluded that the
cell develops independent of the other cells. So, when we consider the similarity, it might be
adequate that we consider the Laplacian not to operate in a whole embryo but in a component
cell. We solve eq. (2) separately with regard to each cell boundary, then every cell has the
individual solutions of eq. (2). And if the cell divided, two new cell boundaries are formed,
we solve eq. (2) with each new boundary. Thatis, eq. (2) is solved cell by cell. In case of an
ellipse, the eigenfunction for the second eigenvalue of eq. (1) has one nodal line and this ellipse
is divided into two halves (Fig. 1b). Thus we hypothesize as follows:

(H) A dividing cell (2, is its three-dimensional shape) cleaves along the nodal plane U,=0
of eq. (2), where Uj is the eigenfunction for the second eigenvalue.

The i-th eigenvalue of eq. (2) (i=1, 2,...) is denoted by p! and the eigenfunction for !
(the i-th mode) by U,. With regard to eq. (1), in the same way, its i-th eigenvalue is denoted
by 2! and the eigenfunction for 2! (the i-th mode) by u,. Here <2< and 22225,

When £, is a pillar with an altitude L, long and the base 2, where Q is a two-dimensional
shape on x—y plane (Fig. 2, we call this pillar an Q-pillar), we separate the variables of U(x,
y, z) as follows:

U=ux, y)v(z).

Eq. (2) is represented as follows:

(0%fox2+%foy?)u=—iu (u=0 on 3Q) (3)
{ d?v/dx?=-2,v (v=0atz=0andL,) “4)
=2+ ©)
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nodal plane U= 0

Fig. 2. The nodal plane U=0 of an £-pillar (2,)
and the nodal line u==0 of £2. The projection of
the nodal plane to x~y plane is the nodal line. See
text,

X

nodal line u=0

Eq. (3) is just the same as eq. (1). Moreover, if £, is flat, then there is a positive integer
I (>2) such that

{ p=aal (<I—1) (6)
p=242 ™)

where 2%=(kz/L,)? (k==1, 2). The smaller L, is, the bigger 12 is. In other words, the
flatter 2, is, the bigger I is. For example, when £ is a rectangular parallelepiped with a
height three long, a width five long and a depth two long, I equals eight, i.e. g8> 4! (i=1,..., 7;
see Table 1). The nodal plane of the i-th mode (U,=0) of eq. (2) is perpendicular to x—y
plane. Its projection to x—y plane coincides with the nodal line of the i-th mode (u;=0) of
eq. (1) (Fig. 2). When £, is a flat Q-pillar, therefore, to look for the nodal plane U,=0 is
reduced to do the nodal line u;=0, i.e., to solve eq. (1).
Thus when £, is flat, we may put the hypothesis (H) in two dimensional.

Table 1. The eigenvalues of eq. (2) with the rectangular parallelepiped in text.

i 1 2 3 4 5
A4jx 1/25 4/25 9/25 16/25 25/25
[z 1/9 4/9 9/9 16/9 25/9
At 1/4 4/4 9/4 16/4 25/4
/li flilﬁz ﬂi #llzz
pr=2 AL 2 361/900 =2 2L+ 22 1144/900
pE=22 AL 2L 469/900 pR0=214-234-21 1161/900
=23 2L+ 2 649/900 pM =24 422 2 1201/900
A=Al 222 6617900 P =25+ 2L+ 21 1225/900
=2+ 2 2L 769/900 =224 2342 1269/900
L= 2421+ 2 901/900 =28 A2 1324/900
pT=23 28+ 2 949/900 =R 22422 1336/900
=242 22 1036/900 8= 2422 422 1444/900
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3. Materials and methods

(1) Obtaining squashed cells

Gametes of the sea urchin Hemicentrotus plucherrimus were obtained by injection of 0.5 M
KCl. Eggs were collected in artificial sea water (Jamarin U) and washed several times to
remove the jelly coats. Sperm was taken “dry” from excised testes, and diluted just before
use. Eggs were fertilized and allowed to develop in artificial sea water. All experiments were
performed at 18-19°C. To get squashed cells, glass-bars (about 35 ym in diameter) which act
as spacers were plziced on plate. A drop of egg suspension (at the streak stage) was placed
among them and pressed with a coverslip. This preparation was sealed with liquid paraffin.
Control eggs under the similar preparation with glass-bars of about 150 ym in diameter showed
normal development until at least blastula stage. Unitreated control eggs developed at least
Pluteus larva.

The development of a specified embryo, called embryo I, was recored on 16 mm color film
with Nikon movie camera adapted for microscope (Oplympus, BH).

(2) Computation

Eqg. (1) was solved numerically with the difference method. The boundary 80 was
obtained by approximating the observed cell boundary with mesh points. We use the cell
boundaries of embryo I just before cytokinesis. The mesh size is (30/6.2) ym to the cells at
the two-cell stage and (20/6.2) ym to those at the four- and eight-cell stages. When the mesh
is of these sizes, in solving eq. (1) with each cell boundary we may choose the coordinate system
arbitrarily and independently of other cells in the embryo. For, when the mesh is of these
sizes, the eigenvalues and the eigenfunctions little change by the rotation and the parallel

Fig. 3. An illustration to solve eq. (1) numerically.
%, boundary mesh point; @, inner mesh point.
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translation of the coordinate system. Note: The rotation and the parallel translation of the
coordinate system do not change the eigenvalues of eq. (1) and essentially even the eigenfunc-
tions. This method transforms solving eq. (1) into searching for the eigenvalues and the
eigenvectors of a matrix D with 0, I, —4. For example, the matrix D to the figure and the
mesh points in Fig. 3 equals to

1 2 3 4 5 6 7 8 9 10

1 —4 1 0 1 0 0 0 0 0 0
2 1 —4 0 0 1 0 0 0 0 0
3 0 0 —4 1 0 0 0 0 0 0
4 1 0 1 —4 1 1 0 0 0 0
5 0 1 0 1 —4 0 1 0 0 0
6 0 0 0 1 0 —4 1 0 0 0
7 0 0 0 0 1 1 —4 1 1 0
8 0 0 0 0 0 0 I —4 0 I
9 0 0 0 0 0 0 1 0 —4 1
10 0 0 0 0 0 0 0 1 I —4

To solve eq. (1) in regard to this figure equals to do Du=—2iu, where u={(ul, u?,..., ulo)r
and u! is the value of u at the i-th point (i=1, 2,..., 10). DSEIG2 (one of the scientific sub-
routines, SSL II, constructed by Fujitsu Co. and installed in Data Processing Center of Kyoto
Univ.) computed the eigenvalues and the normalized eigenvectors of D. The computation

results were displayed in the form of two-dimensional patterns on printer sheets such as Fig.
4a—d.

4. Results
(1) Comparison of 2, and 2’s

As the spacer diameter is about 35um, let L,=35 (um), then 1! =(z/35)2 (um~2) and
22=(2r/35)2 (pm=2), approximately 2!}=0.80486Xx10-2 and 22=0.32195%10-1.. On the
other hand, 2! (i=1, 2,..., 5) of each cell of embryo I to the eight-cell stage are given in Table
2. From Table 2 and the values of 2} and 22, we can tell that the integer I (>5) exists, which
satisfies equation (6) and (7), for each cell to the eight-cell stage. For ¥<i? (i<I—1) from
equation (6) and (7), and the all eigenvalues in Table 2 are smaller than 42.

(2) General comments on the eigenfunctions

Fig. 4a and b show the sign and the magnitude of the normalized eigenfunction u; {the
first mode) of cell-1 at the two-cell stage just before cytokinesis, respectively. Fig. 4c and d are
of the second mode u; of the same cell, and Fig. 4e shows the A-B section of us, P and M in
these figures indicate the maximum and the minimum points of the eigenfunctions, respectively.
- D denotes that the value u of the normalized eigenfunction at that point is smaller than 0.11 and
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Table 2. The eigenvalues of eq. (1) with regard to each cell of embryo I up to the eight-cell stage. “E-4”
denotes “1074”, and “E-3"" does “1073".

2 cell stage 4 cell stage
Cell 1 2 1 2 3 4

At 0.26187E—+4 0.28699E—4 0.53803E—4 0.47480E+4 0.52541E+4 0.51872E—4
A2 0.47539E—4 0.51163E4 0.12299E-3 0.10621E-3 0.11100E-3 0.11015E-3
A3 0.73025E+4 0.79590E—4 0.13769E-3 0.12677E-3 0.14361E-3 0.13944E-3
a 0.86879E—+4 0.95108E—+4 0.21216E-3 0.18023E-3 0.18690E-3 0.18594E-3
23 0.10454E-3 0.11357E-3 0.24855E-3 0.22251E-3 0.23896E~3 0.23707E-3

8 cell stage

Cell 1 2 3 4

At 0.13965E-3 0.11567E-3 0.95640E—4 0.12475E-3
Ve 0.33808E~3 0.34173E-3 0.26930E-3 0.31197E-3
a3 0.33808E-3 0.34173E-3 0.26930E-3 0.31197E-3
A 0.40816E-3 0.38162E-3 0.29446E-3 0.50489E-3
2® 0.48600E-3 0.49997E-3 0.38499E-3 0.52988E-3
Cell 5 6 7 8
e 0.11636E-3 0.94537E-4 0.98330E+4 0.12237E-3
a 0.25029E-3 0.19562E-3 0.18570E-3 0.26818E-3
A3 0.30207E-3 0.24322E~-3 0.27213E-3 0.31056E-3
a 0.43553E-3 0.32107E-3 0.32100E-3 0.47419E-3

» 0.50235E-3 0.41820E-3 0.41144E-3 0.53542E-3
TxrzEIFER 000000000
XXbALSEEPLEXE 0071111111100
EXIEHEFLEELERITT 00112233333321100
THEAEEPALEILLIEREIEL 0T123344555544321100

THEIRIEILE bR b AP
TEELREIE R R R R AL AAT
L T ]
S Y SRR eY
R Y I RN TSRS eY
THER L R bbb bbb b4
R T

OF123455666666544325T0
0T12345677888776654321T0
0T1234567389998877654321T¢
0T123456788999999877454321T0
0T12345678990PD99927654321T0
0U12345677899DDD999876544321T0
0712345567889999992876544321T0
0712234566733283327766543321TU0
0T112344585667777776655433221TU0
0UT1223344555555555544332211T40
0T111222333344443333222111TTU0
OUTTT111111222221111111TTTUU0
000000000000000000000000000
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xxxxxxxxxxxxxxxxxxxxxxxxxxx
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P0¥TTTUVUTYOO
£0111131UUT311100
01223332170122222100
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0124678388653113568888764310 . . .
0235789995753113578999876420 Flg. 4, The elgenfunctlons of cell-1 at the two-cell
B A’Dl?'-677‘7-‘193753113579DPD‘1565310<B
013467999957531135789009875310 1 i
D1346789987643T13578999586532T0 Stage of embryo I (See Flg' sa and e). a, the Slgn
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000000000000060000000000000 respectively; e, the A—B section of us.
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Fig. 5. a-d, the cleavage pattern of embryo I; e-h, the schematic diagrams; @, the maximum and the minimum
points of the second mode; the dotted line, the nodal line of the second mode. See text. Bar, 70 ym.
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not smaller than 0.10, ie., 0.11>|u|=0.10. Similarly 9, 0.10>|{u|=0.09; 8, 0.09>|u]|=
0.008; ...; 1, 0.02> |u]| =20.01; T, 0.01> |u|=0.005; U, 0.005> |u]|=0.001; V, 0.001>|u|=
0.0005.

The first mode v; has only one mountain (plus area), and the second mode u,; has one
mountain and one conical valley (minus area). The nodal line of the second mode (u;=0) is
the boundary between them. The maximum point is the top of the mountain and the minimum
point is the bottom of the valley. This fact is generally observed with the first and the second
modes of every cell of embryo 1.

We call the direction of line segments connecting the maximum and the minimum points
of the second mode the max-min axis.

(3) Solutions of embryo I

Fig. 5a-d show the cleavage pattern of embryo I up to the 16-cell stage. These still
pictures were printed from the 16 mm color film, so unsightly, but give the information about
the direction of the spindle and the division pattern. In these pictures, the mitotic apparatus
of each cell is seen as a black longitudinal zone. It was formed parallel to plate, and its axis
coincides with the spindle axis.

At the fourth cleavage of the normal embryo, the four vegital blastomeres divide unequally
into micromeres and macromeres. The similar phenomena also take place at the fourth
cleavage of the squashed embryo (the two cells with $; Fig. 5¢).

Fig. 5e-h are the schematic diagrams of Fig. 5a~d. The nodal line and the max—min
axis of the second mode of each cell is drawn in these schema according to the numerical solu-
tions such as Fig. 4a—-d. Except for the cells with §, every cell forms the spindle of which axis
almost agrees with the max—min axis of its second mode, and it seems to divide along the nodal
line of the second mode.

5. Discussion

From the results we might conclude that: Helmholtz-type equation may predict the
direction of the spindle and the division plane. But when a model supporting the results is
devised, the following problem remains: What are the eigenfunction and the eigenvalue?

We get eq. (1) from both the wave equation and the diffusion equation by the variable-
separation method. So when we regard u dynamically as the variable of the cytoplasm or some
material, we think of the following non-linear wave equation:

820 fot2=f (T) +c240

with the fixed boundary condition, where c is the spread velocity. While if u is the concentra-
tion of a diffusible material, we think of the following non-linear diffusion equation:

a0 Jot=f (0)+D40

with the Dirichlet boundary condition, where D is the diffusion constant. We also obtain
eq. (1) as the equation of the steady state from these non-linear equation. In either case,
however, we cannot interpret what 1 is. We must find some phenomena which help us to
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explain what u and 2 are.

If u is the concentration of a diffusible material, the cell is not uniform in a strict sense.
This is because it has the granules and vesicles in which the material cannot diffuse. We may
disregard these obstacles whose sizes are smaller than the mesh size of the difference method.
That is, even granules whose diameters are about 3 ym (see Materials and methods, (2) Com-
putation) do not hinder the determination of the division plane.

In case of the curved boundary, the difference method is not so precise, compared with the
finite element method (FEM). In addition a contour plot would give a more professional

display of results such as those in Fig. 4. I am now under attempt to solve eq. (1) by FEM and
to display results by a contour plot.
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