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Abstract. Helmholtz-type equation with fixed boundary was solved numerically in regard to the squashed sea

urchin egg cell by celi. The results suggest that the equation may predict the direction ofthe spindle axis and the

position of the division plane.

                                  1. Introduetion

    What does determine the cleavage pattern? This is one of the greatest problems in
developmental biology. Birds, fishes, snakes and others usually show cleavage pattem called

discoidal cleavage. Fig. Ia shows the standard beautiful pattern of discoidal cleavage up to

the l6-cell stage (Patten and Carlson, l974; Ham and Veomett, 1980). Fig. Ib shows the
eigenfunctions of the following Helmholtz-type equation (Mizumoto, 197S) :

             (02/Ox2+02/6y2)u=-2u (1)
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Fig. 1. a, the standard beautifu1 discoidal cleavage pattern (redrawn from Patten and Carlson,

eigenfunctions ofeq. (l) with an almost circular ellipse (redrawn from Mizumoto, l973).
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with the fixed boundary condition

            u=O on 09,

where 9 is an almost circular ellipse and a9 is its boundary.

    Comparing these figures we notice that there is a close similarity between Fig. Ia and b.

The nodal lines I,..., IV in Fig. Ib correspond to the cleavage lines I,..., IV in Fig. Ia, re-

spectively. From this fact we may well have the following question extended three dimen-
sionally:

Are there any relationship between the cleavage pattern and the following equation?

            (o2fox2+a21ay2+a2faz2)U :-ptU

with the boundary condition

            U==O on a9o,

(2)

where 9o is a three-dimensional domain and 09o is its boundary.

    I attempted to solve eq. (2) with regard to a living egg, but it is diMcult to solve eq. (2)

as it is, so eq. (2) is put in two-dimensional, i.e. eq. (1), and solved with regard to the cleavage

pattern of a squashed sea urchin egg. This paper presents the results.

                             2. Prelimbarytheory

   From many isolated blastomere experiments E. B. Wilson (l904) had concluded that the
cell develops independent of the other cells. So, when we consider the similarity, it might be

adequate that we coRsider the Laplacian not to operate in a whole embryo but in a component

cell. We solve eq. (2) separately with regard to each cell boundary, then every cell has the

individual solutions of eq. (2). And if the eell divided, two new cell boundaries are formed,

we solve eq. (2) with each new boundary. That is, eq. (2) is solved cell by cell. In case ofan

ellipse, the eigenfunction for the second eigenvalue of eq. (l) has one nodal line and this ellipse

is divided into two halves (Fig. Ib). Thus we hypothesize as follows:

(H) A dividing cell (9o is its three-dimensional shape) cleaves along the nodal plane U2 =e

of eq. (2), where U2 is the eigenfunction for the second eigenvalue.

    The i-th eigenvalue of eq. (2) (i== 1, 2,...) is denoted by pti and the eigenfunction for pti

(the i-th mode) by U,. With regard to eq. (1), in the same way, its i-th eigenvalue is denoted

by Ri and the eigenfunction for R' (the i-th mode) by u,. Here ptiSpt2S.••• and Ri$22-<-.•••.

    When 9o is a pillar with an altitude L, long and the base 9, where 9 is a two-dimensional

shape on x-y plane (Fig. 2, we call this pillar an 9-pillar), we separate the variables of U(x,

y, z) as follows:

            U==u(x, y)v(z).

Eq. (2) is represented as follows:

              (021ax2+o21oy2)u=-2u (u==O on 09) (3)            (,d2x12d42:-2,v (v-=Oatz=-OandLz) [g]



Helmholtz-Type Equation and Cieavage Pattern 99

z
nodal plane U=O

R.pl}lar(ae)

X

   ----N-- t'-'-

l-
,

ss-

iisa I
Y

nodal line

E

u=O

Fig. 2. The nodal plane U==O of an 9-pillar (9o)

and the nodal }ine u==O of 9. The projection of
the nodal plane to Å~-y plane is the nodal line. See

text.

Eq. (3) is just the same as eq. (1). Moreover, if 9o is fiat, then there is a positive integer

I (>2) such that

               pti=2'+2.i (iSI-1) (6)             Ipti==ki+22 (7)
where 2lj==(kTIL,)2 (k=:1, 2). The smaller L, is, the bigger 2g is. In other words, the
flatter 9o is, the bigger I is. For example, when 9o is a rectangular parallelepiped with a

height three long, a width five Iong and a depth two long, I equals eight, i.e. pt8>pti (i==1,..., 7;

see Table l). The nodal plane of the i-th mode (U,==O) of eq. (2) is perpendicular to x-y

plane. Its projection to x-y plane coincides with the nodal line of the i-th mode (u,==O) of

eq. (1) (Fig. 2). When S2o is a fiat S2-pillar, therefore, to Iook for the nodal plane U,==O is

reduced to do the nodal line u,=O, i.e., to solve eq. (1).

    Thus when 9o is fiat, we may put the hypothesis (H) in two dimensional.

Table l. The eigenvalues ofeq. (2) with the rectaRgular parallelepiped in text.

i l 2 3 4 5

2Yaa
2yng
21/ze

lt25

l19

l14

4125

4/9

414

9125

9/9

914

l6/25

l6/9

16/4

25125

2519

25/4

t
ltt

pti/rr2 i
pt Ftl/za

ia'=- 2k +2" +RS

itt2=-R;+2"+21

pt3.=2g+2;+21
pt4= al +2 ,Z +21

pt5===2k+2a,+2;

itt6 = 2k+R"+R;

pt7 === 2.3 +2; +2S

pts==al+2}+2ij

3611900

4691900

6491900

661/900

769i900

901/900

9491900

1036i900

iu9== 2k+2}+Rij

ptEo..21+2e+21
ittii--2l+2g+2;

ptia..,21+2}+21

pti3...21+2g+21

pti4..2g+2e+2Z
ptts--2k-l-23+2Z

FtiS-= 2k+2;+RZ

1 1 tlti1900

1161/90e

12el1900

l225/900

1269i900

l324/900

l3S6/900

l4tl41900
   ,
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                            3. Material$andmethods

(1) Obtaining squashed cells

    Gametes of the sea urchin Hemicentrotus Plucherrimus were obtained by injection of O.5 M

KCI. Eggs were collected in artificial sea water (Jamarin U) and washed several times to
remove the jelly coats. Sperm was taken "dry" from excised testes, and diluted just before
use. Eggs were fertilized and allowed to develop in artificial sea water. All experiments were

performed at 18-190C. To get squashed cells, glass-bars (about 35 ptm in diameter) which act

as spacers were placed on plate. A drop of egg suspension (at the streak stage) was placed

among them and pressed with a coverslip. This preparation was sealed with liquid parathn.
Control eggs under the similar preparation with glass-bars of about l50 ptm in diameter showed

normal development until at least blastula stage. Untreated control eggs developed at least
Pluteus larva.

    The development ofa specified embryo, called embryo I, was recored on 16 mm color film

with Nikon movie camera adapted for microscope (Oplympus, BH).

(2) Computation
    Eq. (1) was solved numerically with the difference method. The boundary a9 was
obtained by approximating the observed cell boundary with mesh points. We use the ceil
boundaries of embryo I just before cytokinesis. The mesh size is (3016.2) ptm to the cells at

the two-cell stage and (2016.2) ptm to those at the four- and eight-cell stages. When the mesh

is of these sizes, in solving eq. (l) with each cell boundary we may choose the coordinate system

arbitrarily and independently of other cells in the embryo. For, when the mesh is of these
sizes, the eigenvalues and the eigenfunctions little change by the rotation and the parallel

9
e

oel

e6 e7 8

3 e4 5

Å~
1

e
2 Fig. 3. An il}ustration to solve eq. (1) numerical}y.

x, boundary mesh point; e, inner mesh point.
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translation of the coordinate system. Note: The rotation and the parallel translation of the

coordinate system do not change the eigenvalues of eq. (1) and essentially even the eigenfunc-

tions. This method transforms solving eq. (1) into searching for the eigenvalues and the
eigenvectors of a matrix D with O, l, -4. For example, the matrix D to the figure and the

mesh points in Fig. 3 equals to
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To solve eq. (l) in regard to this figure equals to do Du== -2u, where u==(ui, u2,..., uiO)T

and u' is the value ofu at the i-th point (i==l, 2,..., le). DSEIG2 (one of the scientific sub-

routines, SSL II, constructed by Fujitsu Co. and installed in Data Processing Center of Kyoto

Univ.) computed the eigenvalues and the normalized eigenvectors of D. The computation
results were displayed in the forrn of two-dimensional patterns on printer sheets such as Fig.

4a-d.

4. Results

(l) Comparison ofR, and 2's

    As the spacer diameter is about S5ptm, let L.=35 (ptm), •then 2.'=(rr/35)2 (ptm-2) and

2.2 =(2rt135)2 (ptm-2), approximately 2,i--O.80486Å~10m2 and 2,2--O.32195xlO'i. On the
other hand, 2t (i= l, 2,..., 5) of each cell of embryo I to the eight-cell stage are given in Table

2. From 'I"able 2 and the values ofR,i and a,2, we can tell that the integer I (>5) exists, which

satisfies equation (6) and (7), for each cell to the eight-cell stage. For 2'<2.2 (iSI-l) from

equation (6) and (7), and the all eigenvalues in Table 2 are smaller than 2.2.

(2) General comments on the eigenfunctions

    Fig. 4a and b show the sign and the magnitude of the normalized eigenfunction ui (the
first mode) ofcell-l at the two-cell stagejust before cytokinesis, respectively. Fig. 4c and d are

of the second mode u2 of the same cell, and Fig. 4e shows the A-B section of u2. P and M in

these figures indicate the maximum and the minimum points of the eigenfunctions, respectively.

D denotes that the value u of the normalized eigenfunction at that point is smaller than O.I ! and
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Table 2. The eigenva}ues of eq. (l) with regard to

denotes "10-4") and "E-3" does "10-3".

each ce}1 of embryo I up to the eight-cell stage. "E-4"

2 cell stage 4 ce}l stage

Cell 1 2 1 2 3 4
iii, O.26187Enet}

e.47539EA
O.73025E"l,

O.86879E-tl

O.le454E-3

O.28699E-tl
e.5 i l 63E--4r

e.79590E-tl

e.95108E-4
O.!l357E-3

O.53803EJi
O.l2299E--3

O.l3769E-3
e.21216E-3
O.24855E-3

O.47480E-4
O.I0621E-3
O.12677E-3
e.18023E-3
O.22251E-3

O.52541E4
O.111OeE-3
e.I4361E-3
O.18690E-3
O.23896Il--S

e.51872E-4
O.11O15E-3
O.l3944rE-3

O.l8594E-3
O.23707E-3

8 cell stage

Cell 1 2 3 tlr

21

R2

23

R4

2s

Cell

21

22

23

24

Rs

O.13965E-3
O.33808E-3
O.338e8E-3
O.40816E-3
O.4860eE-3

    5
O.!1636E-3
O.25e29E-3
e.30207E-3
O.43553E-3
e.50235E-3

O.1l567E-3
O.3<lrl73-3

e.34173E-3
O.38162E-3
O.49997E-3

    6
O.94537E-4
O.19562E-3
O.24322E-3
O.32107E-3
O.41820E-3

O.95640E-4
O.26930E-3
O.2693eE-3
O.29"6I!Fe3

e.38499E-3

    7
O.98330E-tl,

e.18570E-3
O.27213E-3
O.321eOE-3
O.4 1 1 44rE-3

e.l2475E-3
O.31197M3
O.31197E-3
e.50489E-3
O.52988E-3

    8
O.12237E-3
O.26818E-3
O.SI056E-3
O.47419E-3

O.53542E-3

a

     l==tt===t
    tt+++++++++lt
   tl+++++++++-++II
  t+++-++-i-++++++Å}t
  t++++-+++-+t+++++++Å}
 t++++++++++++++++++++++:
 t+++++++++++-+++++++++++=
t++++++++++++++++;++-+++++Å}
=++++++++4+++P++++++++++-+Å}

Å}+-+++-++++++++++++++-++-++Å}
=+++++++++++-+++++++++++++++l
=++-++++++++++-+++++++++-++++'
=+t++++++-++++++++--+-++++Å}
Å}++++++++i--+++++++-++++++-#
I++++++++++++++++++++-++++-=
t++++++I++-++++++++++++++++Å}

 =t=Tl#tUtlÅ}Å}tt=U;:=t=#lt
b.

     ooooooeoo
    ooT:tttltttee
   eel12a33J3S3alleo
   OT12334aSSSS4432ileO
  OTI?34SSS6666SS"UiTe
 oTla34SS77S887766S432tTe
 eT1234S6?SSeeeeST7SS4321Te

OT:234S67Se9999gge77eS4321Te
oTt?14567e99eP09eee7e5432tVO

OU12S4S677aYPODeg99S76S44321re
eTt234SS6TSS9ee9eeeS76S44521Te
OT12234S6S7SSaeSSe775eS43321Tue
eTl12344SSS677777766SSa33221tVe
eVT12e33L4SSS5SSSSSSL43322"TUe
OTII12223333444al333212111TTVe
OUT;Tlll=i2222211ilitiTTTUUO

 oooooeooooooeoeoeooooooeoee

        =Å}Å}tÅ}Å}ttt
       t#--"-L+++ttt
      =s-------++++++tt
     :--.--..--++++++++=:
     Å}.-.-."----++++++++++=
    t"---M--r--ne+++++++++++;
   tv.--"TT---JT++++++++++++S
   =------'-------+-+-+-+i
   t-v-----------+++++4-++++++=
A-=--k--.M--.-.-t--+p+++++++:-tB
  t-r-"-------mf--+++++++++++t+I
  t-"'-""'-"-+++-++++++++++t
  l-L.-".LL.-"--++++++++-+++++=
  t--"-----"-'-"-+++++++++++-++Å}
   t-.-.-..-----+++++++++++++++=
   Å}'---nt-------'+-++--+++++t
   Å}l=Å}Å}Å}Å}Å}=Å}"====tUl=U"==
c.

       oooeoooeo
      OOTtTTuVUTIoe
     eeltlll!vuTlnloo
     e122333elTVI??2?2100
    O123"L43?TT1334443?10
    O134S666SC2TT13SS6SS4310
   e13467T776431T?4677776431e
   ot24"essa6s31z3ssseee76a31e
   023S7899eS7S3113S7S9e?s7642e
A).ol?L67egMge?S3n3s7gppbee6s31o---tB
  O134e797?9S7S31135?SeDD9B7S310
  e134G78eeS7643T:35?SS9eee6S32TO
  Oi24S6TT77GS4?T134G7sSSS76S32iO
  eT234ss6G6S43aTT2;kseeesssc3:To
   e1233"L433?aVTt?3444L4;322110
   eTll12222111TVVTIIee2?2211iTO
   eooooeoeeeeeeeeoeeeeooooeoo
d.

Fig. 4. The eigenfunctions of cell-l at

stage of embryo l (see Fig. 5a and e).

b, the of ui; magnitude of ut; c and d,

respectively; e, the A-`B section ofu2.
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a, the sign
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not smaller than O.10, i.e., O.11>lul)O.10. Similarly 9, O.10>lul)O.09; 8, e.e9>luk
o.ooss ...; 1, o.o2>1ulko.el; r, o.ol>lul2mo.oes; u, o.oos>Iullo.oel; v, o.ool>1utk
o.eoos.

    The first mode uz has only one mountain (plus area), and the second mode u2 has one
mountain and one conical valley (minus area). The nodal line of the second mode (u2=O) is

the boundary between them. The maximum point is the top ofthe mountain and the minimum
point is the bottom of the valley. This fact is generally observed with the first and the second

modes of every cell of embryo I.

    We call the directlon of line.segments connecting the maximum and the minimum points
of the sec,ond mode the max-min axis.

(3) Solutions ofembryo I

    Fig. 5a-d show the cleavage pattern of embryo I up to the 16-cell stage. These stiil
pictures were printed from the !6 mm color film, so unsightly, but give the information about

the direction of the spindle and the division pattern. In these pictures, the mitotic apparatus

of each cell is seen as a black longitudinal zone. It was formed parallel to plate, and its axis

coincides with the spindle axis.

    At the fourth cleavage of the normal embryo, the four vegital blastomeres divide unequaily

into micromeres and macromeres. The similar phenomena also take place at the fourth
cleavage of the squashed embryo (the two cells with $; Fig. 5c).

    Fig. 5e-h are the schematic diagrams of Fig. 5a-d. The nodal line and the max-min
axis of the second mode of each cell is drawn iR these schema according to the numerical solu-

tions such as Fig. 4a-d. Except for the cells with $, every cell forms the spindle of which axis

almost agrees with the max-min axis of its second mode, and it seems to divide along the nodal

line of the second mode.

                                 5. Discussion

    From the results we might conclude that: Helmholtz-type equation may predict the
direction of the spindle and the division plane. But when a model supporting the results is

devised, the following problem remains: What are the eigenfunction and the eigenvalue?
    We get eq. (1) from both the wave equation and the diffusion equation by the variable-

separation method. So when we regard u dynamically as the variable of the cytoplasm'or some

material, we think of the following non-linear wave equation :

              .v k N            a2U/at2==f(U)+c2AU

with the fixed bouRdary conditiori, where c is the spread velocity. While ifu is the concentra-

tion of a diffusible material, we think of 'the following non-linear diffusion equation:

             N -V SV            aUlat ==f(U) +DAU

with the Dirichlet boundary condition, where D is the diffusion constant. We also obtain
eq. (1) as the equation of the steady state from these non-linear equation. In either case,

however, we cannot interpret what R is. We must find some phenomena which help us to
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explain what u and 2 are.

    If u is the concentration of a diffusible material, the cell is not uniform in a strict sense.

This is because it has the granules and vesicles in which the material cannot diffuse. We may

disregard these obstacles whose sizes are smaller than the mesh size of the difference methed.

That is, even granules whose diameters are about 3"m (see Materials and methods, (2) Com-
putation) do not hinder the determination of the division plane.

    In case of the curved boundary, the difference method is not so precise, compared with the

finite element method (FEM). In addition a contour plot would give a more professional
display ofresults such as those in Fig. 4. I am now under attempt to solve eq. (l) by FEM and

to display results by a contour plot.

                                     Referenees

Mizumoto, H. (1973) Difference Method on Manifold. Kyoiku-Shuppan, Tokyo (inJapanese). 253pp.
Patten, B. M. and B. rV{. Carlson (l974) Foundations of Embryology, 3rd ed. McGraw-Hill Book Co., New

Ham, R. G. and M.J. Veomett (1980) Mechanisms of Development. The C.V. Mosby Company, St. Louis.
   843 pp.
Wilson, E. B. (1904) Experimental studies in germina! localization. J. Exp. Zool. 1; 197.




