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1. Introduction

A lot of theoretical ecologists (Volterra, Lotka, MacArthur, May, e.t.c.) have
tried to represent temporal developments of various ecosystems in various cases by
differential equations. Such formulations are next ones.

i = Fi(N1> Nz; -+ N,

s Gy Gy e al) i=1,2,m
where N; is the number of i-th species, and af (s=1,2, -+ k) are coefficients in the
function F;. Then we must get solutions N;(¢) of these equations as functions of
a¥s and initial values N;(0)’s. This is impossible except a few of very simple cases.
So, qualitative properties of these equations have been resecarched by using
properties of the functions F}’s, also by various men. ‘
Especially, behaviours when the time ¢ becomes infinity, are most interesting.
These final states, of course, change dependent on aj. Recently topologists (Thom,’
Zieman®) researched how properties of the solutions of dynamical systems changes
when the parameters of the system change continuously. This is so called ‘catastor-
ophe theory’. In this paper, we look again at basic equations of mathematical
ecology from this view-point.

2. Malthus Equation

If one individual produces ¢ other individuals per unit time, the time variation
of whole individuals N, is represented by next equation (Malthus®).
dN

— =¢N
dt
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The solution is
N = N(0) exp (ef) ,

where N(0) is the value of N at the time 1=0.

The behaviour of the solution at sufficiently large ¢, depends on the value e.
Drawing the orbits and stationary points in a space ¢ X N, we can see this behaviour
at one glance. (Fig. 1) The set of the stationary points dN/di=0 in this space, is
called a stationary manifold. Here, this is straight line N=0. The right half (¢>0)
is a repellar, that is, any orbits starting from the neighborhood of this half line
leave there. Conversely the left half (¢<C0) is an attractor, that is, orbits approach
to this. Thus, the stationary manifold is separated to two parts carrying different
properties at a point (0, 0). Such a point is called a catastorophe point.

Fig. 1.
3. Saturation Level and Constant Flow

As we saw in the previous section, if ¢e>0, N becomes infinity. Actually, in-
traspecies competitions occur when N becomes large, and N saturates to a value s.
(Verhulst') What matter happens if we add a constant flow furthermore? (the
positive flow means immigrations and the negative flow means emigrations or cap-
tures) Such a situation is represented by next equation.

dN -
DL — N =N+

The stationary manifold in the space NXsxfJe, is a paraboloid fle=N®—sN.
(Fig. 2) The upper surface of the paraboloid is an attractor and lower surface is
repellar.  When >0, all orbits starting from N(0)>0, approach to the attractor
(stable states). But when f is negative (for example, fishery), there are two cases.
One is stable one, and the other is the case having no equilibrium points. In the
parameter space s X fle, the two regions are separated by a line fle=—s*/4 (Fig. 3).
This is named ‘fold catastorophe’ by Thom.
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Fig. 3.

Starting from a point A (s>0, f=0) in Fig. 2 and Fig. 3, let us decrease f. At
the moment the point reaches B on the catastorophe, the point falls down rapidly to
C(N=0). The same thing occurs if we decrease s, starting from D. In other words,
the population may extinct rapidly, even if we increase a fish catch slowly or the
saturation level decreases continuously because of changes of environments such as a
pollution.

4. Competition

Next, we consider interactions berween two species. The growth rates e,, ¢,, of
each species are functions of N,, N,. Iftwo species compete one another for same food
or habitat, ¢; is decreasing function of N;. We assume ¢; is first order function of
N, so that

el(Nn Arz) = e?"‘anjvl_'alz]\rz

gzu\rv *Nz) = eg“ame"”azzzvz

where ¢}, a;; are all positive. Because we want to seek only qualitative properties

of the solution, it is sufficient that we assume el=e}=1, a,,=a,,=1, a,,=1/a, a,,=1/b.

dN
dt

where 1/a represents how much species 1 disturbs species 2, and 1/b represents how
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much species 2 disturbs itsell. The global situation is separated to next four cases
(Fig. 4).
(i) a>1, b>1; extinction of species 1.
(i) a<l, b<<1; extinction of species 2.
(iit) a<l, b>1; extinction of either species | or species 2.
(iv) a>1, b<1; coexistence of both species.
The manifold dN,[dt=0, dN,/di=0 in the four-dimentional space N, X N,xaxb
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is two-dimentional surface. It is impossible to illustrate it on the two-dimentional
paper. So, we project only attractor of the manifold on three-dimentional space
N, xaxb (Fig. 5). Mapping on parameter space a X b brings a cusp-like catastrophe
at a point (1,1) (Fig. 5). If we project the attractor on another space N, XaX®b,
we get similar figure.

There are two types of processes for plant succession from one species to another
species.” One is rapid substitution in a short interval. The other is slow change
through coexistence states. These processes are reappeared on this model, by chang-
ing parameters a,b continuously through pathes ABCD and AED in Fig. 5 and 6.

5. Predation

We consider the case which species 2 captures and eats species 1. The reproduc-
tion rate of species | has a maximum at a suitable value of N,, and decreases after

then, so that we may write

%l‘ = (—N"+2N,)N,—aN N,
dN.
A;’Tz = —N2+GN1N2

There are three cases depending on the predation rate a. When it is small
(a<1/2), the predator extincts. As it becomes larger to some extent (1/2 <<a<(1),
the two species coexist with constant populations. When « is more larger (a>1),
the stable state is a sustained oscillation or a limite cycle. The attractor in space
N, X N, X a is illustrated in Fig. 7. At a=1, we see a catastorophe which is a bifurca-
tion point from the stable point to the periodic attractor.

(i)

(v th

Fig. 6. Fig. 7.
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