TITLE:

On the Proton-Proton Scattering in the Energy Range 25~70 MeV

AUTHOR(S):
Sato, Hikaru

[^0]
ON THE PROTON-PROTON SCATTERING IN THE ENERGY RANGE $25 \sim 70 \mathrm{MeV}$

By
Hikaru SATO*
Department of Physics, Faculty of Science, Kyoto University, Kyoto

(Received January 25, 1975)

Abstract

Proton-proton scattering data in the energy range $25 \sim 70 \mathrm{MeV}$ were analyzed on the several sets of data combination. The correlation between the phase shifts and the observables has been investigated in order to make clear the present situation of the proton-proton scattering experiments in this energy region. Especially we pay our attention to the behaviour of the ${ }^{3} P_{0}$ phase shift and the inconsistency among the experimental data.

1. Introduction

The nucleon-nucleon interaction in the outer region $^{1)}\left(r \geq 1.5 \mu^{-1}\right.$; which is called the static region, where μ^{-1} is the pion compton wave length.) is realized well on the one pion exchange mechanism. But in the inner region $\left(1.5 \mu^{-1} \gtrsim r \gtrsim 0.7 \mu^{-1}\right)$ which is called the dynamical region, nucleon-nucleon interactions should be learned on the multi-pion or boson exchange mechanism.

At low energies (below 20 MeV), triplet P wave phase shifts show the typical tensor type splitting owing to the OPEC-tail. In the energy region $20 \sim 100 \mathrm{MeV}$, the interaction in the inner region are revealed and triplet P-wave phase shifts are determined mainly by the competition of the one pion exchange contribution and the multi-pion exchange contribution. But the contribution from the innermost region are not so large. So the behavior of $3 P$-wave phase shifts in this energy region are very important to make clear the nucleon-nucleon interaction mechanism in the inner region. Especially the behavior of $\delta\left({ }^{3} P_{0}\right)$ is very sensitive to this competition.

From the above consideration proton-proton scattering near 50 MeV region have been systematically investigated by the nuclear force study group in our country. ${ }^{2) \sim 10)}$ The measurements of spin correlation parameters $C_{K P}$ and $C_{N N}$ at 50 MeV were performed at INS, ${ }^{2}$) and in parallel to these experiments, the polarization, D, R and A parameters have been measured at 50 MeV by Rutherford Laboratory group. ${ }^{11) \sim 13)}$ The phase shift analysis with A data gave $\delta\left({ }^{3} P_{0}\right)$ as $11^{\circ} \sim 12^{\circ}$ which was consistent with the prediction of H.J. potential, though analysis without A data gave $\delta\left({ }^{3} P_{0}\right)$ as $14^{\circ} \sim 17^{\circ}$. The significance of this inconsistency was discussed by Tamagaki, Watari and Nisimura in their review articles. ${ }^{10}$

[^1]Since $1967 A_{X X}$ and $A_{Y Y}$ data (these are related to $C_{K P}$ and $C_{N N}$ in the following equation; $A_{X X}=1 / 2\left(C_{N N}-2 \sin (\theta) \times C_{K P}-1\right)$, and $\left.A_{Y Y}=C_{N N}\right)$ in this energy region have been obtained. (i.e., at 26.5 MeV at Saclay, ${ }^{14)}$ at 47.5 MeV at INS, ${ }^{7 \text { 7 }}$) at 37.2 MeV and 26.5 MeV at Grenoble ${ }^{15}$) and at 46.9 MeV and 26.5 MeV at Grenoble. ${ }^{16)}$ These data also requirde relatively large value of $\delta\left({ }^{3} P_{0}\right)$, though there seems to be apparent inconsistency between the $A_{X X}$ value at 47.5 MeV and the $A_{X X}$ value at 46.9 MeV .

If $\delta\left({ }^{3} P_{0}\right)$ is larger than 15° at $T=50 \mathrm{MeV}$, the energy dependence of $\delta\left({ }^{3} P_{0}\right)$ up to 310 MeV hardly be fitted by an energy independent potential. On the other hand the results of Kantor amplitude analysis by Furuichi ${ }^{9}$) suggest a large value of $\delta\left({ }^{3} P_{0}\right)$ near 50 MeV . One Boson Exchange Model prediction are more favorable to the large value of $\delta\left({ }^{3} P_{0}\right){ }^{19) \sim 22)}$ From these situations, more extensive measurements in the intermediate energy region are desired.

In order to clarify the present experimental situation and to test the sensitivity of observables to the splitting of the triplet P-wave phase shifts, we have carried out the phase shift analyses with the different sets of the data combination in this energy region.

2. Results of the numerical test

For the purpose of the present analyses, energy dependences of data in a small energy range are not significant and are disregarded.

The experimental data refered in this paper are summarized in Table 1.
Table I. The experimental data used in our analysis

Energy (MeV)	Number and type of data	Angular range (c.m.) (deg.)	Comment	
25.6	$23 \sigma(\theta)$	$10 \sim 90$	Minesota	see Ref. 23)
27.4	$1 \mathrm{P}(\theta)$	45	Harwell	see Ref. 24)
26.5	$1 \mathrm{~A}_{X X}, 1 \mathrm{~A}_{Y Y}$	90	Saclay	see Ref. 14)
26.5	$1 \mathrm{~A}_{X X}, 1 \mathrm{~A}_{Y Y}$	90	Grenoble	see Ref. 15)
26.5	$1 \mathrm{~A}_{X X}, 1 \mathrm{~A}_{Y Y}$	90	Grenoble	see Ref. 16)
27.6	$3 \mathrm{~A}(\theta), 3 \mathrm{R}(\theta)$	$23 \sim 55$	Rutherford	see Ref. 12)
39.4	27σ	$8 \sim 90$	Minesota	see Ref. 25)
36.8	$1 \mathrm{P}(\theta)$	60	Harwell	see Ref. 24)
38.3	$1 \mathrm{P}(\theta)$	45	Harwell	see Ref. 24)
37.2	$1 \mathrm{~A}_{X X}, 1 \mathrm{~A}_{Y Y}$	90	Grenoble	see Ref. 15)
52.3	$29 \sigma(\theta)$	$14 \sim 90$	INS	see Ref. 3)
47.5	$5 \mathrm{~A}(\theta)$	$23 \sim 87$	Rutherford	see Ref. 11)
47.8	$5 \mathrm{~A}(\theta), 5 \mathrm{R}(\theta)$	$23 \sim 87$	Rutherford	see Ref. 12)
51.7	$1 \mathrm{P}(\theta)$	60	Harwell	see Ref. 24)
50.0	$1 \mathrm{D}(\theta)$	70	Rutherford	see Ref. 13)
52.0	$1 \mathrm{C}_{X X X}, \mathrm{IC} \mathrm{C}_{K P}$	90	INS	see Ref. 2)
46.9	$1 \mathrm{~A}_{X X}, 1 \mathrm{~A}_{Y Y}$	90	Grenoble	see Ref. 16)
47.5	$1 \mathrm{~A}_{X X}, 1 \mathrm{~A}_{Y Y}$	90	INS	see Ref. 7)
68.3	$26 \sigma(\theta)$	$10 \sim 101$	Minesota	see Ref. 26)
66.0	$11 \mathrm{P}(\theta)$	$20 \sim 71$	Harvard	see Ref. 27)
73.5	1 C	90	Harwell	see Ref. 28)

Table II

Analy. No	. $\sigma(\theta)$	P	$C_{\text {KPP }}$	$C_{N N} A_{X X}$	D	R	A	χ^{2} / N	${ }^{1} S_{0}$	${ }^{1} D_{2}$	${ }^{3} P_{0}$	${ }^{3} P_{1}$	${ }^{3} P_{2}$	ε_{2}	Comment
1	29	1	1	1	1	5	5	0.88	38.17	1.65	13.13	-8.24	5.92	-1.71	
2	29	1	1	1	1	5	5	1.15	38.32	1.68	12.31	-8.27	6.10	-1.71	a
3	29	1	1	1	1	5	5	1.00	38.65	1.62	12.84	-7.97	5.82	-1.71	b
4	29	1	1	1	1	5	5	0.97	39.18	1.56	12.60	-7.66	5.70	-1.68	c
5	29	1	1	1	1	5	5	1.02	37.93	1.90	13.89	-8.80	6.11	-1.82	d
6	29	1	1	1	1	5	5	1.06	39.17	1.74	12.53	-7.57	5.67	-1.77	e
7	29	1	1	1	1			0.90	37.70	1.66	13.74	-8.44	5.92	-1.70	
	29	1	1	1	1	5	5	0.91	39.04	1.57	12.57	-7.77	5.76	-1.67	f
9	29	1	1	1	1	5	5	0.94	38.09	1.65	13.23	-8.28	5.92	-1.71	g
10	29	1	1	1	1	5	5	0.84	38.27	1.64	13.02	-8.19	5.92	-1.70	h
11	29	1	1	6	1	5	5	0.90	37.69	1.67	13.37	-8.51	6.04	-1.70	i
12	29	1	1	6	1	5	5	0.76	36.41	1.77	14.07	-9.13	6.30	-1.73	i
13	29	1		11	1	5	5	0.84	38.27	1.64	13.02	-8.19	5.92	-1.70	k
14	29	1		16	1	5	5	0.82	38.30	1.70	13.47	-8.06	5.77	-1.80	j
15	29	1		16	1	5	5	1.82	36.55	1.84	16.32	-8.47	5.55	-1.91	j
16	29	1			1	5	5	0.81	38.33	1.64	12.86	-8.18	5.94	-1.70	
17	29	1		11	1	5	5	0.82	37.30	1.76	13.72	-8.66	6.05	-1.78	h,k
18	29	1		11	1	5	5	1.76	37.21	1.78	15.33	-8.32	5.01	-1.87	h, 1
19	29	1		11	1			1.41	38.26	1.70	13.84	-7.98	5.67	-1.81	h,k
20	29	1		11	1			1.61	37.62	1.83	15.68	-7.84	5.39	-1.94	h,l
21	29			11				0.78	37.02	1.68	14.29	-8.74	6.01	-1.62	h, k
22	29			11				0.78	36.90	1.65	17.54	-7.94	5.02	-1.78	h,1

[^2]

Fig. 1

Fig. 1 a)~e). The predicted velues of some observables at 50 MeV with the data. Annexed numbers to lines correspond to analysis number. The A data by open circle are 47.8 MeV data and solid circle are 47.5 MeV data. The form of angle dependence of $C_{N N}$ in Fig. 1 c) and of $A_{X X}$ in Fig. 1 d) are determined by the result of analysis 1 .

2-1 At $T=52 \mathrm{MeV}$

The sets of the data combination and the values of phase shifts from the present analysis are summarized in Table II and Figs. 1 a) $\sim e$).

In comparison of analysis (1) with analysis (2), A data at 47.5 MeV give larger χ^{2} / N than A data at 47.8 MeV . Moreover the predicted values of A parameter from analysis (2) in which data at 47.5 MeV are adopted as the input data of A parameter are very close to the experimental values at 47.8 MeV as shown in Fig. 1 a). So in the rest of analyses A data at 47.8 MeV are adopted as the input data of A parameter.

When input values of A and R parameters are changed in the vicinity of its experimental values, $\delta\left({ }^{3} P_{0}\right)$ does not move remarkably until we take the normalization factor as large as 1.1. But the predicted values of $C_{N N}, A_{X X}, D$ and P are very sensitive to the A and R parameters as shown in Fig. 1 a). The results of analyses (8) and (9) indicate that a large value of D demand smaller $\delta\left({ }^{3} P_{0}\right)$.

Fig. 2. The phase shifts and χ^{2} / N versus to $\delta\left({ }^{3} P_{0}\right)$ for three cases of the data selection. Selection of the data are described in the text.

Fig. 3

Fig. 3. The predicted values of some observables corresponding to Fig. 2. Annexed number corresponds to $\delta\left({ }^{3} P_{0}\right)$.

Analyses $10 \sim 16$ show that forms of angle dependence of $C_{N N}$ and $A_{X X}$ are influential informations about $\delta\left({ }^{3} P_{0}\right)$. The results of analyses $17 \sim 22$ show that, the $A_{X X}$ data at INS give larger $\delta\left({ }^{3} P_{0}\right)$ than the Grenoble data and value of $\delta\left({ }^{3} P_{0}\right)$ is pulled down by the A and R data.

Then we analyze with fixed $\delta\left({ }^{3} P_{0}\right)$ in following three cases.
a) $C_{N N}=-0.034+0.095$

$$
C_{K P}=0.13+0.11
$$

b) $C_{N N}=-0.1+0.02$
$A_{X X}=-0.75+0.02$
c) $C_{N N}=-0.1+0.02$
$A_{X X}=-0.85+0.015$
The results are shown in Fig. 2 as a function of $\delta\left({ }^{3} P_{0}\right)$ from 10.5° to 17°. In the case a) there are two minimum points of χ^{2} / N. One is at $\delta\left({ }^{3} P_{0}\right)=12.5^{\circ}$ and the other is at $\delta\left({ }^{3} P_{0}\right)=15.5^{\circ}$. In the case b) and the case c) there are minimum point of χ^{2} / N at $\delta\left({ }^{3} P_{0}\right)=15^{\circ}$ and 13.5° respectively. INS data demand rather large $\delta\left({ }^{3} P_{0}\right)$ than Grenoble data. The value of χ^{2} / N in case c) is smaller than that in case b), but in present stage, we can not say, which data is suitable or not, from χ^{2} / N values. The predicted values of observables by this analysis are shown in Fig. 3. These results seemed to give effective information for a phase shift analysis.

2-2 At $25.0 \mathrm{MeV}, 39.4 \mathrm{MeV}$ and 68.3 MeV

The results are summarized in Table 3 and in Figs. $4 \sim 6$. At 25.6 MeV , larger value of $C_{N N}$ and $A_{X X}$ require large $\delta\left({ }^{3} P_{0}\right)$. A and R data prefere a rather small $\delta\left({ }^{3} P_{0}\right)$, which is consistent with the energy dependent phase shift analysis
Table III

Analy. No.	$\sigma(\theta)$	P	$C_{N_{N N}}$	$A_{N N}$	R	A	χ^{2} / N	${ }^{1} S_{0}$	${ }_{1} D^{2}$	${ }^{3} P_{0}$	${ }^{3} P_{1}$	${ }^{3} P_{2}$	Comment
25.6 MeV													
1	23	1	1	1	3	3	0.97	48.73	0.74	8.39	-5.24	2.65	a
2	23	1	1	1	3	3	1.18	48.56	0.74	9.03	-5.31	2.58	b
3	23	1	1	1	3	3	1.13	48.46	0.75	8.92	-5.39	2.63	c
4	23	1			3	3	0.83	49.30	0.73	7.68	-4.69	2.46	
5	23	1	1	1			0.51	48.50	0.74	9.07	-5.29	2.53	a
6	23	1	1				0.50	48.48	0.74	9.41	-5.22	2.42	a
7	23	1		1			0.50	49.01	0.72	8.83	-4.71	2.26	a
39.4 MeV													
1	27		1	1			1.37	43.47	1.29	11.23	-6.13	4.18	
2	27	2	1	1			1.30	43.49	1.28	11.25	-6.10	4.16	
3	27	2	1	1			1.28	43.51	1.28	11.50	-5.95	4.03	d
4	27	2	1	1			1.21	43.57	1.32	9.95	-6.27	4.48	d
68.3 MeV													
1	26	11	1				0.60	32.84	2.62	9.10	-10.66	8.76	-2.03
2	26	11					0.63	32.55	2.58	11.13	-10.71	8.41	-2.11

$C_{N N}$ and $A_{Y Y}$ data at Grenoble in 1970.
c. $\quad C_{N N}$ and $A_{X X}$ data at Grenoble in 1971
d. For input value of $A_{X X}$, see the Text.

Fig. 4. The prediction of some observables at 25 MeV .

Fig. 5. The prediction of some observables at 39 MeV .

Fig. 6. The prediction of some observables at 68 MeV .

Fig. 7. Energy dependence of $A_{x x}$. Closed circles indicate experimental data and open circles are the pseudo data given by the author. Solid line is the prediction of MAWX.

Fig. 8. The value of $\delta\left({ }^{3} P_{0}\right)$ are plotted. Annexed number correspond to analysis number. Solid line is MAWX and solid bars are the energy independent analysis by MAWX.
by Livermore group (MAWX) ${ }^{18)} A_{X X}$ data prefere a larger $\delta\left({ }^{3} P_{0}\right.$). At 39.4 MeV , analyses with P and without P give same results because of the poor statistics of P data at this energy. In analysis 3 , input va ue of $A_{X X}$ is postulated as a value which is seemed upper limit considering the energy dependence of $A_{X X}$ and in analysis 4 it is postulated as a value of the prediction from MAWX. (See Fig. 7) At 68.3 MeV , the result with $C_{N N}$ gave smaller $\delta\left({ }^{3} P_{0}\right)$ than the result without $C_{N N}$. But both require a same predicted value of observables on account of the large error of $\delta\left({ }^{3} P_{0}\right)$.

In Fig. 8 the values of $\delta\left({ }^{3} P_{0}\right)$ given from present analyses are shown with the energy dependent and independent phase shift analysis by Livermore group.

3. Conclusion and discussion

Determination of $A_{X X}$ parameter in the vicinity of 50 MeV is very important because of its sensitivity to $\delta\left({ }^{3} P_{0}\right)$. Now we have a few data in this region and all these data demand rather large value of $\delta\left({ }^{3} P_{0}\right)$ compared with MAWX. But there seems to be appearent inconsistency between these data. The appearent inconsistency is a puzzle because of very good consistency in $A_{Y Y}$ data which are measured simultaneously with $A_{X X}$ data. So the systematical measurments of spin correlations parameter in these energy region are desired. Especially angular dependence of $A_{X X}$ and $C_{N N}$ will give very effective informations. And also more accurate angular dependence of polarization in these energy region make contributions to perform a phase shift analysis. D parameter, which we have only one point in these energy region, is also effective parameter if it is measured accurately and systematically.

Measurements of D, A and R parameters request double scattering experiments, though measurements of $A_{X X}$ and $A_{Y Y}$ can be performed by a single scattering process using polarized beam and polarized target. So the measurements of $A_{X X}$ and $A_{Y Y}$ are desirable in order to fix the phase shifts and to make clear the mechanism of proton-proton sacttering in the intermediate energy region.

ACKNOWLEDGEMENTS

The author would like to express his sincere gratitude to Professor K. Nisimura for suggesting this subject, and many valuable discussions. He would like to thank Dr. N. Tamura and Dr. K. Imai for their valuable discussions. He is greatful to Professor W. Watari for using his program code. Numerical calculations have been performed on the Facom 230-60 at the computer Center, Kyoto University.

REFERENCES

1) For the definition of the nuclear forces, see the Supple. of theor. Phys. No. 3, 1956.
2) K. Nisimura et al., Prog. Theor. Phys. 29 (1963), 616; 30 (1963), 719.

Nisimura et al., INSJ Report 45 (1961), -.
3) J. Sanada et al., Prog. Theor. Phys. 38 (1967), 1205; Nucl. Phys. B4 (1968), 379.
4) N. Hoshizaki et al., Prog. Theor. Phys. 29 (1963), 617.
5) N. Hoshizaki and W. Watari, Prog. Theor. Phys. 33 (1965), 337.
6) N. Hoshizaki, Prog. Theor. Phys. 38 (1967), 1203.
7) K. Nisimura et al., Phys. Lett. 30B (1969), 612.
8) T. Hasegawa et al., J. of Phys. Soci. of Japan 33 (1972), 871.
T. Hasegawa et al., Memoirs of Faculty of Science Kyoto University 34 (1973), 193.
9) S. Furuichi et al., Nucl. Phys. A165 (1971), 211.
10) R. Tamagaki and W. Watari, Supple of Prog. Theor. Phys. 39 (1967), 23.
11) A. Ashmore et al., Nucl. Phys. 73 (1965), 256.
12) A. Ashmore et al., Nucl. Phys. 73 (1965), 305.
13) T. C. Griffith et al., Phys. Rev. Lett. 10 (1963), 444.
14) P. Catillon et al., Nucl. Phys. 32 (1967), 93.
15) D. Garreta et al., Phys. Lett. 31B (1970), 363.
16) D. Garreta et al., Nucl. Phys. A170 (1971), 492.
17) T. Saito, Private communication.
18) M. H. MacGregor et al., Phys. Rev. 182 (1969), 1714.
19) S. Fruichi et al., Prog. Theor. Phys. 44 (1970), 711.
20) T. Ueda et al., Phys. Rev. 174 (1968), 1304.
21) N. Hoshizaki et al., Prog. Theor. Phys. 50 (1973), 1312.
22) M. Wada et al., Soryusiron Kenkyu, Mimeographed Circular in Japanese 47 (1973), 665.
23) T. H. Jeong et al., Phys. Rev. 118 (1960), 1080.
24) P. Christmas et al., Nucl. Phys. 41 (1963), 388.
25) L. H. Johnston et al., Phys. Rev. 111 (1958), 212.
26) D. E. Young et al., Phys. Rev. 119 (1960), 313.
27) J. N. Palmieri et al., Ann. Phys. 5 (1958), 299.
$28)$ D. N. Jarvis et al., Nucl. Phys. A108 (1968), 63.

[^0]: CITATION:
 Sato, Hikaru. On the Proton-Proton Scattering in the Energy Range 25~70 MeV. Memoirs of the Faculty of Science, Kyoto University. Series of physics, astrophysics, geophysics and chemistry 1977, 35(1): 95-107

 ISSUE DATE:
 1977-09
 URL:
 http://hdl.handle.net/2433/257559
 RIGHT:

[^1]: * Now at National Laboratory for High Energy Physics, Oho-machi, Tsukuba-gun, Ibaraki-ken.

[^2]: A data at 47.5 MeV
 Each value of A and R multiplied by 1.05
 Each value of A and R multipited by 1.05
 Each value of A and R multiplied by 0.9 input of the error bar of its experimental value.
 Input value of D is taken as the lower limit of the error bar of its experimental value.
 Form of angle dependence of $C_{N N}$ are estimated by the predicted values of the results of analysis 1 as shown in Fig. ic)

 $$
 \begin{aligned}
 & \text { k. } \quad A_{X X} \text { data at } 46.9 \mathrm{MeV} \text { in Grenu } \\
 & \text { 1. } \quad A_{X X} \text { data at } 47.5 \mathrm{MeV} \text { in INS. }
 \end{aligned}
 $$

 نه

