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TIHE OSCILLATIONS OF AN INCOMPRESSIBLE
                VISCOUS CYLINDER
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Toshiaki ISHIZAWA

Department of Astronomy, Faculty of Science, Kyoto University, Kyoto

              (.2?eceiwed Decefnber 27, l973)

                            ABSTRACT

   The characteristic frequencies for non-axisymmetric oscillations of an inÅëornpressible
viscous cylinder are deterrnined. The viscous damping of the oscillations is discussed.

1. Introduction

    The viscous damping is one of the important elementary processes for energy
dissipation in aR oscillating body. The oscillation of a viscous liquid sphere has been

so}ved by LAMB (1932) and CANDRAsEKHAR (1961). CHANDRAsEKHAR (1962) has
also studied the effect of viscosity on the gravitational instability of an incompressible

viscous cylinder. In this study he has restricted hirnself to axisymmetric perturbations
because the cylinder is supposed to be stable for all non-axisymmetric perturbations.
The non-axisymmetric deformatioBs are important in the study of the stability of a rotating

fluid mass (see IsHrzA•wA 1974). In view ofsuch possible applications, we shall study
the non-axisymmetrlc oscillations of a non-rotating viscous cylinder.

2. Characteristic equations and frequencies

    We consider non-axisymmetric departures from an equilibrium cyllndrical shape of
an incompressible fluid. A normal mode can be expressed uniquely in terms of the de-
formed surface. The deformed surface ls described by the equation

           r= .Z?+eeiMp, (1)
           e=eoem"t) (2)
where R is the radius of the unperturbed cylinder, m is an integer, and a is a characteristic

frequency to be determined.
    The characterlstic frequeRcies of an inviscid fiu!d, namely, the Åëylindrical Kelvin
frequencies are obtained by OsTRiKER (!964) as

           a2 == 2TGp(m-1), m==2, 3, 4, ••-. (3)
    The characteristic frequenc2es in tlae viscous case are determined so that the velocities,

the solutions of the perturbation equations governing the departures from an equilibrium
state, satisfy the boundary conditions: (a) the radia} cemponent must be compatible with
the assumed form of the deformed surface given by equation (1) ; (b) the tangential viscous
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stresses must vanish at r = re; and (c) the (r, r)-component of the total stress tensor must

vanish on the deformed surface. The rnethod is in main that of CHANDRAsEKHAR
(1961).

    Putting

           B==(2TGp)i!2R2/v, (4)
           x== VaR21v, (5)
           am(ec) == ecfm+i(x) 1/m (oo), • (6)
we obtain the characteristic equation

           <.-1>p2--2m(m-1)sc2[1+ scgE3M2Qe.n(Åí:) ]-sc4=-=Åë.(ec). <7)

This characteristic equation is closely analogous to that in the case of a viscous liquid

sphere (see CHANDRAsEi<HAR 1961).
    The curve of Åëm(x) is divided into an infiltite number of separate sections by its sigular

points at the roots of x-2Qm(x)==O, gm,s. The root em,s is just before the root oflm(oo),
7' m,s. In the first section between the origln and gm,i, the value of di?n(x) gradually iR-
creases with sc and reaches a maximum and then decreases, as shown in Figure 2.
Between gm,s and7' m,s, Åëm(x) rapidly falls down from a positive infinity to a negat!ve value.

In such a singular part, we can always find an aperiodic mode, decaying without oscillation.

However, we restrict the following dlscussions to the lowest modes found in the first section

because these modes can survive the longest.
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Fig. 1.
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The function Åëm(x) plotted against x for the orders of the mode m==2, 3, 4 and 5.



THE OSCILLATIONS OF A VISCOUS CYLINDER 277

    From Figure 1, we observe that for any P<Bmax there are two real roots of equation
(7) which lead to the two aperiodic modes of decay : a cyeeping mode decaying very
slow}y for Iarge viscosi3y and a viscous mode decaying ver rapidly for large viscosity.
When x--)-O, we have

           Åëm(x)=2(m-i)(m+1)x2+0(x4). (8)
From equation (7), we find the soiution satisfying ac<<1,

           x2'`-2(.B"IF-o• (g)
From equations (4), (5) and (9), we obtain the characteristic frequency for the creeping

mode

            vtglropur=2(.B+i)• ao)
The characteristic frequencies of the lowest aperiodic modes of decay fer m ==2, 3, 4 and 5

are given in Table 1 and plotted in Figure 2.
    For B>Bmax, the characteristic frequencies of the lowest modes of decay are complex.
If x is the root of equation (7), the comp}ex conjugate bo also is the root becauselm(oo) = =fm(x)

and emiil.ij)=:Qm(`:). When lecI-->oo and [xl>>IQm(x)I, we obtain from equations (4),

(5) ancl (7) • '
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The real parts of the characteristic frequencies of the lowest modes of decay in the
oscjllations of a viscous cylinder. The curves are labelled by the order of the mode m.
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   Fig. 3. The imaginary parts ofthe Åëharacteristic frequencies of the lowest periodic modes of
         decay in the oscillations of a viscous cylinder. The curves are ]abelled by the order of

         the mode 7n.

           --v-2tt-tilp--=Å}iVth',r:1'11"l+h2.ZteS(!Zk,m="1.)ww. (lo

The cltaracteristic frequencies of the lowest periodic modes of decay for m==2, 3, 4 and 5
are given in Table 2 and plotted in Figures 2 and 3.
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