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ABSTRACT

   The propagation of shock waves through a model atmosphere of an RR Lyrae type star
is examined on the basis of BRml<LEy-KmKweoD method. The effects of gravity, radia-
tion pressure and variation of specific heat ratio with dept.h are taken into consideration. It

is supposed that a shock wave is generated below the convective region with the shock strength

and shock energy taken as parameters. The numerical results shew that the shock strength
remains almost constant in the convective region while it abruptly increases from the top of

this region toward the outer surface. The results are generally in good agreement with those

of Sachdev and others. A brief discussion on the validity of our calculations ofshock propaga-

is also presented.

1. Introduction

    The problems of shock wave propagation have been investigated by numerous astro-
nomers in connection with the probiems of novae and supernovae, Cepheids, and the solar
chromosphere and corona. Among several methods of treating the shock propagation,
the BmNKLEy-KiRKwooD method (BRiNKLEy-KiRi<wooD 1947) has proved its utility
in wide applications. A generalization of the rnethod to the case of inhomogeneous
medium has been made, for example, by ONo, SAKAsmTA and OHyAMA (1961) and
KoGuRE and OsAKi (1962). Appllcations ofthe methodhave been made, for example,
by ScHATzMAN (1949) and SAiTo (1964) to the solar chromosphere, by ODGERs and
KusHwAHA (1960) aBd BHATNAGAR and KusHwAHA (!961) to pulsating variable
stars, and by NADEzmN and FRANK-KAMENETsKii(1965) and SAcHDEv (1968) to
stellar envelopes.

    RR Lyrae type stars are population II variables with periods between O.3 and 1 days
and show various interesting phenomena, such as, the discontinuity of radial velocities and

the appearence of emission and dottble absorption lines, at the phases of the ascending
branch of the light curve. Therefore, in connection with these phenomena it is generally
accepted that shock waves are formed in the photosphere and propagate outward.
    IRosmNiKov (i962) considered a shock wave model in an RR Lyrae atmesphere
and examined the relation between the variation of ffa line profile and a shock wave
propagation. PREsToN, SMAK and PAczyNsKi (2965) rnade a spectral analysis
of RR Lyrae by use of extensive observatlons, particularly at the phases of the ascending
branch of the Iight curve and showed that the results can be interpreted qualitatively as a
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shock wave phenomenon. CHRisTy (1964, 1966) and HiLL (!972) made nonlinear
hydrodynamic model atmospheres for RR Lyrae type stars. HiLL's results give excellent
agreements between radial velocity curves from the model calculation and observed radial
velocities of X Ari.

    In this paper, followlng the current view that a shocl< wave is generated in the outer
region of an RR Lyrae type star, we study the shock propagation through a static atmos-
pheric model of such a star on the basis of the B-[K method. In sectiok 2 the expressions

for the propagation of shock waves are presented. A static atmospheric model of RR
Lyrae is constructed in section 3, and shock propagation through the atmosphere is then
examined in section 4 with numerical results and discussions.

2. Equations of Shock Propagation

   We consider one dimensional spherical shock propagatlon through a stellar atmosphere
!n hydrostatic equilibrium. In deriving the equations of shock propagation based on tke
B-I< method, we take into account the radiation pressure, gravity and the variations with
depth of specific heat and ofmean molecular weight, Viscosity, conductivity and magnetic
field are not considered.

    The hydrodynamic equations specialized for the shock front are (e.g., BhR!NKLEy
and KmKwooD)

,P, g.i' +,22 ee'P, + 2f" -=o,
(1)

and

eu     1 a.tP
el + po or =:-g, (2)

where p is the deRsity, .P the total pressure, u the particie velocity, T the Lagrangian ce-
ordinate of the shock front at time t, c the velocity of sound andg the gravitational accelera-

tion, The subscript "o" denotes quaRtities in the undistrubed medium.
    The Rankine-Hugoniot relations at the shock front are

and

pouUs ==P( =P-Po),

p( C71s -u) = =po Us,

A.i!z :Sp ( pi, +;-) ,

(3)

where Us is the shock front velocity, A.U tke increment of specific enthalpy across the
shock front andp the excess pressure behind the shocl< front.
    Applying the derivative ddr == -l81t/--i- zil, -oQi to the first of equations (3), we get

-a,ly' +us gu. - ,} (-[ipi-+-.-!, ge )- uUs dpo
pe dr

   dU,-
-fl    dr '

(4)

where Us is considered as Us== Us(p, p, po) through the equations (3).
    The shock energy D(r) when the front is at a point r at tlme l is defined by

D(r) ..,Leer2p'u'dl' == r2pulcv,
(5)
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where u' aBdp' denote particle velocity and excess pressure behind the shock front, vtvl
and lc is defilted by

           -ii-... -[ain(g;ge'u') ],,.,.., -ls- ge nvi zu, - 2` (6)

and expresses the steepness of the shock wave behind the shock front. Eiimination of
Xc from equations (5) and (6) gives

         Ii'iwwaaipmai+i,:'03Ui+2.Z`'=:-riiPif.ZY• (7)

Solving the expressions for ePlel and apler from equations (1)N(4) and (7), and substituting

them into

           dP OP                     1 0P           -al-. =er+u, el, (8)
we get an ordinayy differential equation for the excess pressurep as a function of pt.

    It is conveRient to write down the dlfferential equation in a nondimensional form.
To do so, we define the shock strength Z, y and the non-dimensionai shock energy S as
foilows :

          z=Slol ,y== Ullti-,6== R3Dpoe, (g)

where 1? is the stellar radius, .Poo the value of .Po at the initial shock position.

Then, combinations of equations (3) under the assumption that the specific heat ratio 7
remains unchanged across the shock front lead

           Us2- f,e Z,I;, u2-= f,O (Z-i)(i-y),

          .yZ[7A2+B(1-7A2)]==A2(Z-Ly)+7A2+Po(1-7A2) ,

whereB is the ratio of the gas pressure Åío the total pressure and A2 ==iliil. Taking into

account the above relations, we finaily have the following non-dimensional dlfferential
equation for Z.

          md2".Z.,,, Sooex2(Zmi)(iswwy)(i-a)v-FF2dldn.-Po+F3d}n.pe

                                 dA2 2[2y+(1-y)(1-a)]                       d ln pa                   +F4 d. +F5du . , (11)
where x===r/1?. The first and last terms on the right kand side of equation (11) represent
pulse and spherical damplngs, respectively, while the second through the fifth terms express,

in order, the effects of the variations of pressure, denslty, mean molecular weight and
specific heat ratio upon the propagation. The non-dimensional coethcients .Fl, F2, .F3,
.F4 and F5 expressed in terms of Z andy are:

          Fi==f-Zi+ r(ft.) +il, $; Z•
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           F2==-(2+.'igffmi,))+,3-k.),

                                    4k .                   4k
           F3 ==1+                            P4==--                                                                 (12)                                   1-y '                  Fy'
                                           'and F5 == {7[(1-Bo) -(1 -B)yZ] +Z-y}'/(1 -y)Åë2 ,
     '
where r is the adiabatic coethcient given by

           J" ==B+(4-3B)2(y-1)/[B+12(1-B) (7-1)] ,

                                               y(Z-1)
and . I} rm:(1-7A2){f(/9e)-LvZf(i3)}/g62) "==-Ir:-t2(1rm,ww

y/,

           g6i==BL7-A2+7A2L],(1-fll)-3(1-7A2).;tf(B), (13)
and di2==BZ+A2+7A2Z(1-B) -4(1-7A2) lf(B) ,

          f(P)==P(1-iB),/(4-3B) .

    Next the variation of the shock energy D(f) with depth is given by

                  tt                           '          '           d8.(pt) == -r2po{(k*+Åë*)-(lio+Åëo)}, ' ' (14)

where li is the specific entha}py, Åë the gravitational potential energy, and the subscript

"*" denotes the final state Åío which the gas particie will return after passage of the shock
front.

    By adopting the "Schalxman'spalli" which states that after the passage of the shock
front eaclt gas particle returns adiabatically to the same pressure as it had before the pas-

sage of the shock wave, we have

           ii.-iio- AM(,illi,(r( g-'i[,Z".* )+4( i{l" nd i(: *)], (!s)

wltere .Pg is the gas pressure, and .Pr the radiation pressure. The potential eneygy
increment ls calculated in the same manner as in SA!To (1964), and is given by

                            2D eln Pe           PO(Åë*rmÅëO)= r2(pl.po-1) ar ' (16)

Accordingly we obtain from equations (14)-(16) a differential equation for D(r) in the
non-dirnensional form;

           alal.8 .., (z2-8 i) dza.PO -.RP,O,x2[-}(z-i)(pt+i)-g(p)yz(i-zix"-i)] ,

                                                                 (17)
                    pwhere g(P)==(4-3B)+7-1 '

    The two differential equations (11) and (17) must be solved simultaneously to deter-
mlne the variations of the shock streBgth and the shocl< energy with depth.
    Let us consider the case of S infinite, i.e., a quasi-stationary shock, altd discuss the

relations between the B-K and Chisnell-Whitharn (C-W) method (CHisNELL 1955;
WHrTKAM 1958). The C-W method is based on the ordinary differential gquation valid
along a posiÅíive characteristic curve. This fundamental equation, which is applled to the
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motion behind the shock front, is given by

                              '           SP. +cp alal". +.C+t,(g+ 2.C2`)"=O, (is)
                                                                 tt
and must be combined with the sltock conditions (3).

    Taking into account the variations of B, y and p we obtain the following final equation

for the shock strength Z (SAKAsHiTA aRd TANAKA 1962) :

          m,ww( }n.Z .= F2, d laln."Po + ,l73t d }n.rmpo- + f74,Lel,en. pa + 17s,AdAl$

                        4i'- '                                                              (19)                     -ma+invx: '• .
where

          F,t,.,,2Z-,+ma,2,.+,SX/I-,

          F2'--(i+i-2itz+igley riif(&+oytt')'

          F3'=-1+r2tt', F4'==-iT-4'/'rm,

          F5'"=ii'ttliTs;'{7[(i-Bo)-(i-p)yz]+z-y}fdi,, M2=(irm{ii)>Znvi),

                                                              (20)
and dii, ip2 and fe are the same as in the B-K method.
When compared with the results of the B-K method, the equation (19) coincides with
equatioR (11> when -D-oo and u+c- Us, that is, when the shock is stationary and weak.
0n the other hand, in the lirnit of strong stationary shock, we havey--eFA2, and both F2!.Fl

and -F2'fFl'-->1 ifB=Be ==1, but .Fl>.Fl' since .Fl-2+-l)- or-2 1 and .Fl-1+-il-l/YS1 .

In other words, when dpo/dx<O, the damping of the shocl< strengÅíh due to the density
stratification is larger in the C-W method than ln the B-K method,

3. Construction of a Static Atmospherie Model

   A static atmospheric model of an RR Lyyae star is constructed followiBg a computer
program given by MizuNo (2971). In this program the convection is treated with the
mixing length theory as is usually done (e.g., MmALAs 1967). The ratio of mixing
length to pressure scale height is taken to be 1.5.' The chemical abundance adopted is
X== O.5, Y== O.499 and Z=O.OOI where X, Y and Z are the abundances of hydrogen, helium
and heavy elements by mass, respectively. The atmospheric mean opacity used ls that
published by Cox and STEwART (1971). Fo}lowing the observat!onal data of HARDrE
(1955),STEBBiNs(1953)andALBADAandBAKER(1971),wehave adopted an RR Lyrae
mode}:

          LL@==si, .iMid[@=L4s, T,=6soooK, RR@===7.2,

where l, M, Te and R are the limunosky, the mass, the effective temperature and the radius

of the star, respectively. . . '
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    The numerical integration for the construction of atmospheric model is made from the
point of optica} depth T==10m4 up to T =105. In the upper layers (T<1) the following
temperature-optical depth relation derived

has been used
            )

for the Sun by KRisHNA SwAMy (1966)

T4 == -ii- Te4 [
T+e(T)], e(T) ==1.39- O.825xem2•54r-o.o2sx-30r. (2])

Since the spectral type of an RR Lyrae star is not so far from that of the Sun, we except
that there is no drastic dlfference between atmospheric structures in both type stars. Thus

we can approxlmately apply the above T-7• relation to RR Lyrae atmospheres.
    The numerical results of the distributions of temperature Te, pressure aPo, density
po and specific heat ratio 7 with optical depth are shown in Figures 1 and 2. In our model
the convective region extends from T=O.5 to r ==2.26Å~ 103 and a density inversion occurs

near T==1.01. The density increases from 1.94Å~10miO to 3.75Å~10-8glcm3 between

"g

2

Log P

Log ,q,

:I
'g   -8

-9

3

Fig. 1.

  2 i O -] -2 -3 -4
           Log r

Initial distributions of density po and pressure Po

static RR Lyrae atmospheric model.

for a

'e

3

2

E

2,O
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[.o

Fig. 2.

3 2 I O -I -2 -5 -4              Log T
Initial distributions of temperature To and specific heat ratio

7 for a static RR Lyrae atmospheric model. '

'
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Table 1. Physical quantities of the atmospheric model at T== 1.01Å~103, 1.01 and 10rm4.

r
l dynf/cm2 I

1.01Å~103 2. 77 Å~ 104

1. 01 1. 34 Å~ Z03

 pgfcm3
R o

y
l
E @

2.43xie-8 i 1.33Å~104 l

         I .i
1. i4 O. 97

3. 75 Å~ IO-8

10-4 54.1
i

I L94Å~lo-ie

6. 52 Å~ 103

5. 21 Å~ i03

2. 42 1. 59

1. 61 L60

B

O. 997

I O. 999

E O.999

r=10-4 and T==!.el, while decreases from 3.75Å~10-8 to 2.07Å~10rm8 between Txl.Ol and
T ==2.26Å~103 and again increases sharply for T>2.26Å~le3. The values of temperature,
pressure, specific heaÅí ratio and other parameters at r = 10nv4, !.el and !.OlÅ~ 103 are given

in Table l.

4. Numerical Results and Discussion

  (a) Initial Values

    The radial dependence of pulsational velocity calcuiated by CHRisTy (i964, 1966)
for RR Lyrae type stars suggests that the shock waves are generated below the convective
region in such stars. Based on this suggestion we start our numerical integration for the
shock propagation from the optical depth T===1.01 Å~ 103, near the bottom of the convective

   'reglon.
    If the particle velocity behind the shock front at T =i.OlÅ~ 103 were 1<nown, the initial

shock streRgth could be given as in the case of ODGERs and KusHwAHA (196e) foer
BW Vulpecula. We have, however, no observational data on the velocity in such deep
layers. Therefore the numerical integration is carried out in the three cases of initial shock

strength Zo==3.0, 5.0 and 7.0.
    Next we consider the initial shock energy So, which is re}ated to the characteristic time

lc through equation (6). Hence, in order to have the shock energy, one has to evaluate
l,, which should be, at least, smaller than the pulsation period of the star.

    The shock energy may also be estimated by anoÅíher way. Following ODGERs and
KusHwAHA (1960), we apperoximately have

Se :
1

R3.Poo
ft"OT2p'u'dl' ... Iiftco (R-r ) 2dsc,v lzftOOdx ,

(22)

where li is the average ratio of tke excess pressure after passage of the shock front to the
equilibrium pressure and ./[Oe dsc is the fraction of the stellar radius traversed by the gas

behind the front. For RR Lyrae stars we may take ./Icodx to be NO.1, and then

soNiiloEr ig •
(23)

In any case, however, the evaluation of lc or li is dithcult in general. We thus tentatively
adopt the following thyee cases lc==2Å~ 102, 2Å~ 103 and 2Å~ 104 sec with v =:1. Tke average

ratio li of the excess pressure to the equilibrium pressure is in the range 10-2NIO if the

above values of lc are adopted.
   With various combinations of the initial values of Ze and So mentioned above, equations

(11) and (17) are integrated simultaneously.
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  (b) Results and Discussion

   Table 2 gives the initial values adopted and the values of Z, S, Us and u calcu}ated
at r== 10-4. Further, in order to make a comparison, the results obtained through the

C-W method are given in Table 3.
    Strictly speak!ng we can not compare these results directly with the observational data
because of the roughness of the atmospheric model adopted and of approximations involved
in the calculation of shocl< propagation. But let us assume here that the velocity derived
from the observed ffa emission line of RR Lyrae expresses the particle velocity behind the

shocl< front at the phase when the front reaches the region of Tff.Nl in our rnodel. The
symbol Tffa means the optical depth in ffa line center. 'I'he velocity ef the observed

ffa emissien line is 50N60 kmlsec (SANFoRD 1949), and TH.Nl corresponds TNIe-4
in our model. Thus the results given in Table 2 show that the allowable ranges of initial
values of Zo and tc are approximately 5 to 7 for Zo and 2x 102 to 2Å~ 103 for lc, respectively.

    In the following the results of shock propagation calculated by use of the B-K method
are shown for a typical case of Zo= :5, together with the complementary resuits obtained
by the C-W method. The variation of the shocl< strength Z against the optical depth T
is given in Figure 3. The ratio T/To of temperature behlnd tlie shocl< front to that in the

undisturbed medium is shown in Figure 4. Further the shocl< velocity l7s and theparticle
velocity u behind the shock front are given in Figure 5.

Table 2. Initial va}ues and the values of Z, 5,

7== 10-4 on the B-I< method.

Us and u calculated at

Initial values

Zo o8
i tc

sec
 Use
km/sec

 tto
kmlsec

Values calculated at T==:ILOm4

3.0

i 2. 02 Å~ 10--3

 1.02Å~10-2

i 1. e2Å~lo-i

s.e

 3. I6 x le-3

 3. 16 Å~ le-2
i' 3• 16 Å~ io-th

7.0

5. 63 Å~ iO-3

5.63Å~10--2

5. 63 Å~ 10-i

2Å~102

2Å~I03

2Å~I04

2Å~102

2xI03
2Å~104

2Å~102

2Å~103

2Å~104

19. 4

25. 0

l 6
i

l

12. 8

i 23.4
59. 1

67.2

71.3

147.0

l82.4

 Us
kmlsec

3.2sÅ~lo-4 I

        i6. 85 Å~ 20-3        i
7. 48 Å~ iO-2        i

28. 5

44.6

47.5

  u
km/sec

l

:
i

l9. 8

29. 5 23.4

91.9

l96.1

215. 5

21. 7

36. 0

38. 5

        l1. 49 Å~ 10-3

2. 54 Å~ 20--2

2.70Å~IO-i

47.5

71.0
79. 8

I

2. 98 Å~ 10-3

4. 79 Å~ 10-2

5. 05 Å~ le-i

55. 3

80. 2

84. 1

40. 5

61.0

67.9

45.4

67.1

70.4

-
Table 3. Initial values and the values of Z,

7=mlO"4 on the C-W method.
Us and u calculated at

Initial values Values calculated at T==iO"4

Ze  Uso
1<m/sec

E  leO
kmlsec z

t

E  Us
km/sec

  tf
km/sec

3.0 19.4 22.8 45.i 39.I 31.1

5.0 25. 0
I

i9. 0 94.8 56.1 46.1

7.oI 29.5 23.4 168.0 74.3 61.9
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(i) Shock Strength and TITe

   It is noticed in Figure 3 that the propagation of shock waves reveals rather different
behaviours in the convective region (103;})T;})1) and in the outer region (T gO.1). In the
convective region the shock strength remains practically unchanged, especialiy so for the
shock waves with small energy. This behaviour is readily attributed to the density inver-
sion in the convective region. In contrast, when the shock reaches the transition zone
between the convective and radiative regions, the shoek strength Z turns to steep increase

toward outer surface. This is again explained as a result of density variation in outer
layers as is seen in Figure 1. For example, the shock wave with So :3.16Å~!O-2 varies
its strength oniy from Z==5.0 to 10.5 in the range 103>..T>Nl, but increases as much as
Z= 1.47Å~102 at T =10nv4. Similarly, for the shock wave with So =3.16Å~iO-3, Z varies

l60

l20

80

40

#iie

            
,(   .xb   

,,t/l   eilg    ,:        .,-,.,b

          3 2 ] O -l -2 -5 -4
                      Log v
Fig. 3. Variation of shock strength Z with the initial strength Ze==5.0

      against the optical depth r. The results by the B-K and C-W
      method aredenoted by "B-K" and "C-W", respectively. So is the
      non-dimensional initial shock energy.

30

20

]o

o

+o

5=oZ
  s   slei   ,il   Bt

Fig. 4.

 5 2 j O -I -2 -3 -4
             Log 'r
Ratio of the temperature T behind the shock front to the

uRdisturbed temperature To.
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from 5.0 to 7.52 for le3,})r}l1, whereas lt attains 91.3 at T =10-4. These results show also

that the shock strength at the outer layers strongly depends on the initial shocl< energy.

   The quantity TITo is given by

T r
ToM7oZy. (24)

Since the density jump ratio 11y is found to be 3N6 throughout the shock propagatioB,
the optical depÅíh depeltdence of TITe has the behavior slmilar to that of Z. That is, in
the case 8o=3.!6Å~ 10m2, T/To var2es frorn 1.32 to 2.79 in the range I03 >NT)1 and attains

the value 23.e at T =10-a. Besides, the temperature T behind the shock front decreases
first until it reaches the minimum value 2.33Å~ le40K at T=6.8 and then increases outward

reaching the value 1.2Å~le50K at TxlOm4. Slmilarly in the csae 8o=3.16Å~10-3, TITo
varies from 1.31 te 2.26 for le3>NT)1 and then increases to 1!.3 at r ==10-4. The tem-
perature T decreases down to the minimum value 1.22 Å~ i040K at T =6.0 and the increases

to 59Å~104eK at Tm10-4.
    Let us compare the above results of the B-K method with those calculated by the C-W
method. From Figure 3 we see that the shock strength obtained by the latter method ls
larger than that obtained by the former one when the shock energy is as small as
8o== 3.16Å~10m3. This is because the pulse damping is absent in the C-W method. This
a}so shows that the C-W method is not a good approximation in this case. Figure 3 shows
further that when Se ==3.16Å~10-2, the shock strength obtained by the C-W method
colncides with the one by the B-I< method in the range le3)T) 1O-2, while becomes smaller
for T<10-2. The pulse damping is not effective when the iniÅíial shock energy ls as much

as So =3.16Å~10-2. Thus the difference mentioned above is related to the damping of
shock strength due to density stratificatiolt. In the C-W method, the daJmping is over-

estimated compared with in the B-K method when the shock wave becomes rather strong
in the outer region T<iO-2, as stated at the end of section 2. These characteristics are also

found in results obta2ned by NADEzHiN and FRANi<-KAMENETsKii (1965).
    Fina}ly the effects of the variations of 7, P and " with depth on shock strength are
noted. We have found that while the variations of f3o and iL have no large infiuence on the
sltock strength, the variatioB of 7 infiuences Z. On the other hand, the variation of B due

to shock propagation has non-negligible effects on the shocl< strength where the shock
grows in the outer atmosphere. It loweres the shocl< strengJh and particularly the ratio
T/To compared with that in the case where the radiatlon pressure is neglected. In shocl<
propagation problems in the ste}lar atmosphere it wiil be important, in general, to take
account of the effects of radiation pressure.

(ii) Sheck Velocity Us and Particle Velocity u

    As is shown in Flgure 5, the variations of Us and u with optical depth resemble thae
of temperature T in the point that these quantities attain minimum values near the upper

layer of convective region. The minimum occurs at TN3 for U$ and at T =e.5NO.7 for u.
The abrupt lncreases of Us and er in the outer region are also remarkable. These behaviors
are well explained principally as a result of densiÅíy inversion in the convective reglon.
The pareicle velocity u in the numerical examples here considered never attalns the escape
velocity of 278 km/sec at T==10m4. The duratlon of shocl< propagation from T ==103 to
T==20-4 is foundi to be 798 sec for Se==3.16Å~1or2 and 992 sec for So===3.16Å~10-3.
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80
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    o    4,2
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Variations of the shock velocity Us and the particle velocity "

behind the shock front against the optical depth r.

(iii) Shock Energy

   The decrease of shock energy with height is shown in Table 4 for two cases So==
3.!6Å~ 10-2 and 8e==3.l6Å~ 10-3 with Xe==5.0. The Table shows that the decrease is siow:
slower when the initial shock energy is larger and the shock is stronger.

The decrease of shock energy given in this table, howevey, might be underestimated because
in the smail T region, considerable energy would be lost frorn the shock front by radlatlon.

   Recently, NARITA (1973) investigated the radiative energy losses from the shock
froRt in the case ef a plane stationary shock, under the assumption that the rnedium ahead
the shock front is optically thin for Balm.er continuum radiation. He showed that the
radlative energy losses are considerable when the shock is strong and the gas density is Iow.
Aceording to him, the energy fiux llo of radiation passing through the shocl< front is, in
unit of kinetic energy fiux -il-poUs3 of the preshock gas,

             il x tO•88NO.75 for M,iv14,
          Fo/ <'iirpo Us3) = =                      iO.65NO.45 for MsN5,

when po===10rmiOtvlO-8g/cm3, where .ids expresses the Mach number of shock velocity.
Let us apply this to our present problem and estimate roughly the radiative energy losses
Åíhrough the region with a small TS10-2, where the shocl< wave becomes strong. We take
po =10rm9 glcm3, and Us= :5e and 3e femlsec for 8o ==3.16Å~ 10-2 and 3.16Å~ 10-3, respectively.

Table 4. Variation of the non-dimensional shock energy S due to shock propa.cration.

----Zis
tc=2xi02

tc==2Å~103

103 102 10i 1 10-1 le-2 10--3 10-4

3. i6 2.46 2. 30 2. 19 1. 92 1.68 1. 54 1.49 (Å~10-3)

3. 16 2.96 2.90 2.86 2.75 2. 64 2. 57 2. 54 (Å~ 10-2)
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Further we take 500 sec as the time for the shock to propagate through the region.
Then, the radiative energy losses are given in non-dimensional forms 8R by

SR ==

o.s4 Å~ (-21-po u,3) Å~ soo

R'.iPeo

o.ss Å~ (Spo us3) Å~ soo

Nl.9 Å~ IO-3 for Us == 50 km,lsec ,

re•Poo tv2.6Å~le-4 for Us=:301<m/sec.

If we tal<e po==10-8, we have UsS30kmfsec from Figure 5, and then 8RS2.6Å~10-3.
Comparison ef SR given above with 8 shows that our results concerning shock propagation
wouid not be affected seriously by the radiative energy }osses in the case 8o ==3.l6Å~ 10-2,

but would be appreciably infiuenced in the case 6o ==3.16Å~ 10-3.

    In addition to this, HiLL (1972) showed that the total amount of dissipation of
pulsational energy due to the shocks was 1.3 Å~ 1038 ergs per period in RR Lyrae type stars.

In our case the shock energyD for So =3.16Å~10-3 ls 1.13Å~2037 ergs and seems to be too
small. Accordingly we rather prefer So==3.16Å~10rm2 to So =3.16Å~IO-3 as the value of
initial shock energy.

(iv) Cemparisen with other Results

    Our resuits are compared with SAcHDEv's and VmGopiA's. SAcHDEv (1968)
calculated shock propagation through the envelopes of a hot star and a giant star by
the B-Kmethod, neglecting thevariationsof7andBo. IIe tool< account of tlte radiative
energy losses from the shock front by assuming "vaeymann.sPalli" (WEyMANN 1960)
instead of "Sachalsman's Palli". His results can not be compared in detail with ours
because of the differences of the initial static modei. However we observe that the
characteristics concerning the variations of shocl< energy and strength wlth depth are
similar to ours.

    ViRGopiA (1970) examined shock propagat!on through the atmosphere ofag!ant
star with MIM@===3, LIL@== 224, Te ==54400K and RIR@== 17 by the C-W method. He
treated very strong shocks. The effects of the radiation pressure and the dissipation of the

shock eltergy were not taken into account. Although the characteristics of the atmospheric
model used by him are similar to ours, his results are quite differeltt from ours: the shock

strength reackes the maximum near T ==1 and then decay rapidly outward. In his case,
the damping of shocl< strength is mainly due to the sphericai geometry. This darnping is,
however, smaller in geReral by several orders fo magnitude than the gravitational growth.
    Finally our results are summarlzed ln the following way. The shock waves generated
below the convective region by the pulsation of an RIR Lyrae star propagate through the
region with almost constant strength but grow rapid!y toward the outer atmesphere from
the top of the convective region. If we take SorvlOm2 and Zo==5N7 at Tml03 as initial
shock energy and shock strength, the particle veiocities become cons!stent with the observed

radial veioclties. Shock strength calculated in this paper may be a little Iowered if the
radiative energy losses from the shock front are correct}y taken7'into account. If we had
more appropriate atmospheric models for the upper layer of small optical depth in RR
Lyrae type stars and better treatment for the radiative eltergy losses, we could investlgate

the shock propagation in more detail. Further, it is also important to treat a noniinear

hydrodynamic model atmosphere as done by ]lxLL (1972). These problems wlll be
treated in future.
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