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ABSTRACT

The propagation of shock waves through a model atmosphere of an RR Lyrae type star
is examined on the basis of BRINKLEY-KIREWOOD method. The effects of gravity, radia-
tion pressure and variation of specific heat ratio with depth are taken into consideration. It
is supposed that a shock wave is generated below the convective region with the shock strength
and shock energy taken as parameters. The numerical results show that the shock strength
remains almost constant in the convective region while it abruptly increases from the top of
this region toward the outer surface. The results are generally in good agreement with those
of Sachdev and others. A brief discussion on the validity of our calculations of shock propaga-
is also presented.

1. Introduction

The problems of shock wave propagation have been investigated by numerous astro-
nomers in connection with the problems of novae and supernovae, Cepheids, and the solar
chromosphere and corona. Among several methods of treating the shock propagation,
the BrINRLEY-Kirkwoop method (BrRINKLEV-KirgwooD 1947) has proved its utility
in wide applications. A generalization of the method to the case of inhomogeneous
medium has been made, for example, by Ono, SaxasuaitTa and Orvama (1961) and
Kocure and Osaxi (1962). Applications of the method have been made, for example,
by Scrmatzman (1949) and Sarro (1964) to the solar chromosphere, by Opcers and
Kusuwana (1960) and Brarnvacar and Kusawama (1961) to pulsating variable
stars, and by Napezainy and Franxk-Kamenersxii(1965) and Sacupsv (1968) to
stellar envelopes.

RR Lyrae type stars are population 1I variables with periods between 0.3 and 1 days
and show various interesting phenomena, such as, the discontinuity of radial velocities and
the appearence of emission and double absorption lines, at the phases of the ascending
branch of the light curve. Therefore, in connection with these phenomena it is generally
accepted that shock waves are formed in the photosphere and propagate outward.

IrosHiNIROV (1962) considered a shock wave model in an RR Lyrae atmosphere
and examined the relation between the variation of Ha line profile and a shock wave
propagation. PrestoN, Smax and Paczynsxi (1965) made a spectral analysis
of RR Lyrae by use of extensive observations, particularly at the phases of the ascending
branch of the light curve and showed that the results can be interpreted qualitatively as a
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shock wave phenomenon. Curisty (1964, 1966) and Hirr (1972) made nonlinear
hydrodynamic model atmospheres for RR Lyrae type stars. Hiry’s results give excellent
agreements between radial velocity curves from the model calculation and observed radial
velocities of X Ari.

In this paper, following the current view that a shock wave is generated in the outer
region of an RR Lyrae type star, we study the shock propagation through a static atmos-
pheric model of such a star on the basis of the B-K method. In section 2 the expressions
for the propagation of shock waves are presented. A static atmospheric model of RR
Lyrae is constructed in section 3, and shock propagation through the atmosphere is then
examined in section 4 with numerical results and discussions.

2. Equations of Shock Propagation

‘We consider one dimensional spherical shock propagation through a stellar atmosphere
in hydrostatic equilibrium. In deriving the equations of shock propagation based on the
B-K method, we take into account the radiation pressure, gravity and the variations with
depth of specific heat and of mean molecular weight. Viscosity, conductivity and magnetic
field are not considered.

The hydrodynamic equations specialized for the shock front are (e.g., BhRINKLEY
and KIirRgkwooDb)

P u 1 8P, 2u

oo o T T =0 @
and

du 1 9P

o T =8 (2

where p is the density, 2 the total pressure, # the particle velocity, » the Lagrangian co-
ordinate of the shock front at time #, ¢ the velocity of sound and g the gravitational accelera-
tion. The subscript “0” denotes quantities in the undistrubed medium.

The Rankine-Hugoniot relations at the shock front are

por Us=p(=P—Fy),
and o(Us—1)=po Us, 3

a8=5p (o),

where U is the shock front velocity, 4 the increment of specific enthalpy across the

shock front and p the excess pressure behind the shock front.
. oo d 3 1 9 .
Appl the d tive ——==-a—-+—5- = to the first of equat
pplying the derivative —y-=-7- -+ 7 T e first of equations (3), we get

Ou O 103 13\ _ _ wUsdpo_ dUs
a tUs% 0 (5+ )= o dr @

where U is considered as Us=Us(p, p, po) through the equations (3).
The shock energy D(») when the front is at a point » at time Z is defined by

D(#)= ./t w?’%ﬁ'u'dt':?‘%ﬁul‘cu, 5)
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where #’ and p’ denote particle velocity and excess pressure behind the shock front, v~1
and /, is defined by

1 dln(#%p'") 19 10 2u
T R s ©

and expresses the steepness of the shock wave behind the shock front. Elimination of
4, from equations (5) and (6) gives

10 10w 2u 7w

? a tu = D(r) - )

Solving the expressions for dp/9 and 9p/d» from equations (1)~(4) and (7), and substituting
them into

dp  0p 1 9
=TT ®

we get an ordinary differential equation for the excess pressure p as a function of ».

It is convenient to write down the differential equation in a nondimensional form.
To do so, we define the shock strength Z, y and the non-dimensional shock energy 8§ as
follows:

P 0 D
P’S

='P;)'> y= p =R3POO ’ (9)

where & is the stellar radius, Pgo the value of £y at the initial shock position.
Then, combinations of equations (3) under the assumption that the specific heat ratio y
remains unchanged across the shock front lead
Z—
va=2 32, @=22 (210,
and (10)
YZITNABL—TAD]=NAZ—p) +TN2HBo(1—TM),

where B is the ratio of the gas pressure to the total pressure and )\2=$__}_1. Taking into

account the above relations, we finally have the following non-dimensional differential
equation for Z.

dinZ Py a¥Z—(1—)(1—ap . dnPy 41n po
K= " 5 T
Zln A% 202y +(—p)(l—a
pr B e Ao (oi—a)] an

where x==»[&. The first and last terms on the right hand side of equation (11) represent
pulse and spherical dampings, respectively, while the second through the fifth terms express,
in order, the effects of the variations of pressure, density, mean molecular weight and
specific heat ratio upon the propagation. The non-dimensional coefficients #1, 72, 73,
F4 and F5 expressed in terms of Z and y are:

Fl=

2Z ¥ 1 ¢
Z=1t T 11 6 2



264 T. OKUDA

»(Z-1)
2= <2+PZ(1 y)+1_y>
F3=1+~1—:i7 , F4=—I-4;'§— , (12)
and F5={7[(1—Bo)—A—B)yZ]+Z—y}[(1—p)d2,

where I' is the adiabatic coefficient given by

P=p+4(4—3B)%y—1)/[B+12(1—B) (y—1)],

and B=A-D) (fE)Z EMbe,  a=Tigooys
L=y — XD (1) —3(1L TN/ ), (1)
and ba=BZ-N2LTN2Z(1—P) —4(1—TA2) ZF (B)

F(B=B(1—B)/(4—3B) .
Next the variation of the shock energy 2D(#) with depth is given by

4DO) 3y ((hst B —Cho-+ O0), 1

where /4 is the specific enthalpy, @ the gravitational potential energy, and the subscript
“*7 denotes the final state to which the gas particle will return after passage of the shock
front.

By adopting the “Schatzman’s pat/’’ which states that after the passage of the shock
front each gas particle returns adiabatically to the same pressure as it had before the pas-
sage of the shock wave, we have

N I ™

where P, is the gas pressure, and /A, the radiation pressure. The potential energy
increment is calculated in the same manner as in Satto (1964), and is given by

20D dn Py
PO(Q*—QSO):— rz(P/P0—~l) 97 . (16)

Accordingly we obtain from equations (14)-(16) a differential equation for 2(») in the
non-dimensional form:

s 28 din/P 2
T i — P FE DO+ —gBy 20— 27D,

(17)

where g(8)=(4—38)+-L .

The two differential equations (11) and (17) must be solved simultaneously to deter-
mine the variations of the shock strength and the shock energy with depth.

Let us consider the case of § infinite, i.e., a quasi-stationary shock, and discuss the
relations between the B-K and Chisnell-Whitham (C-W) method (CuisneLL 1955;
Warraam 1958). The C-W method is based on the ordinary differential equation valid
along a positive characteristic curve. This fundamental equation, which is applied to the
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motion behind the shock front, is given by
dP du ( 2
717—{—5’)74’—7"}_%—}—5 +-*> =0, (18

and must be combined with the shock conditions (3).
Taking into account the variations of B, y and p we obtain the following final equation
for the shock strength Z (Saxasuira and Tanaxa 1962):

z I 1 1 2
- 42; oyl nPo+F3,d np0+F4,d n,,L+F5, /\
401
~Wfiw’ (19)
where
pr_Z 2 Z &
=zttt 4
(12 2 1
F2'= <1+FM+1_-y FM(M—[—I)yZ)’
‘e AR e 4k
e T e
1 (=) (Z—1
P =g 11—~ —fy 21+ Z—) o, r2=DEZD
(20)

and 1, ¢2 and £ are the same as in the B-K method.

When compared with the results of the B-K method, the equation (19) coincides with
equation (11) when D—co and w+-¢— U, that is, when the shock is stationary and weak.
On the other hand, in the limit of strong stationary shock, we have y—»A2, and both #2/#1

and F2’/F1'—>1 lfB:B[):l) but F1>F1' since F1—>2+%2’—E_1 and Fl—-)l-{—;/z-]/')’——

In other words, when dpg/dx<C0, the damping of the shock strength due to the density
stratification is larger in the C-W method than in the B-K method.

3. Construction of a Static Atmospheric Model

A static atmospheric model of an RR Lyrae star is constructed following a computer
program given by Mizuno (1971). In this program the convection is treated with the
mixing length theory as is usually done (e.g., Minavras 1967). The ratio of mixing
length to pressure scale height is taken to be 1.5. The chemical abundance adopted is
X=0.5, ¥=0.499 and Z=0.001 where X, ¥ and Z are the abundances of hydrogen, helium
and heavy elements by mass, respectively. The atmospheric mean opacity used is that
published by Cox and STewarT (1971). Following the observational data of HarpIE
(1955), STeBRINS (1953) and ALBADA and BARER (1971), we have adopted an RR Lyrae
model:

—L%=81, 7%:1.45, T=6500°K, 7% =7.2,
where L, M, Te and R are the limunosity, the mass, the effective temperature and the radius
of the star, respectively.
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The numerical integration for the construction of atmospheric model is made from the
point of optical depth v==10"% up to r==105. In the upper layers (r<<1) the following
temperature-optical depth relation derived for the Sun by Krisuna Swamy (1966)
has been used,

T4:—:~2—Te4[7'—{—g(7')], g(r)=1.39—0.815 X ¢~2:54"—0.025 x =307,  (21)

Since the spectral type of an RR Lyrae star is not so far from that of the Sun, we except
that there is no drastic difference between atmospheric structures in both type stars. Thus
we can approximately apply the above 7 relation to RR Lyrae atmospheres.

The numerical results of the distributions of temperature 7%, pressure Pp, density
po and specific heat ratio ¢ with optical depth are shown in Figures 1 and 2. In our model
the convective region extends from r==0.5 to 7=2.26 X 103 and a density inversion occurs
near 7=1.01. The density increases from 1.94X 10710 to 3.75x 10-8 gfcm3 between

%

3 1%
=3 L
= =
@ 47 @
© 2
2 i8¢
@ A
a

4-9
32 [ (O B S S
Log T

Fig. 1. Initial distributions of density po and pressure 7 for a
static RR Lyrae atmospheric model.

Log =

Fig. 2. Initial distributions of temperature 7 and specific heat ratio
v for a static RR Lyrae atmospheric model.
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Table 1. Physical quantities of the atmospheric model at 7==1.01x 103, 1.01 and 104,
P P T
T dyne/cm? g/em3 °K Y © B
1.01x108 2.77x104 2.43x10-8 1.33x104 1.14 0.97 0.997
1.01 1.34x108 3.75x10-8 6.52x10% 1.42 1.59 0.999
10-¢ 54.1 1.94x10-10 5.21x108 1.61 1.60 0.999

+=10"% and 7=1.01, while decreases from 3.75x 10-8 to 2.07 X 10~8 between 7==1.01 and
7==2.26 X 108 and again increases sharply for +>>2.26>103. The values of temperature,
pressure, specific heat ratio and other parameters at =10"4, 1.01 and 1.01 X 103 are given
in Table 1.

4. Numerical Results and Discussion

(a) Initial Values

The radial dependence of pulsational velocity calculated by Curisty (1964, 1966)
for RR Lyrae type stars suggests that the shock waves are generated below the convective
region in such stars. Based on this suggestion we start our numerical integration for the
shock propagation from the optical depth 7==1.01 X 103, near the bottom of the convective
region.

If the particle velocity behind the shock front at 7==1.01 X 103 were known, the initial
shock strength could be given as in the case of Opcers and Kusawana (1960) for
BW Vulpecula. We have, however, no observational data on the velocity in such deep
layers. Therefore the numerical integration is carried out in the three cases of initial shock
strength Zp=3.0, 5.0 and 7.0.

Next we consider the initial shock energy 8¢, which is related to the characteristic time
#, through equation (6). Hence, in order to have the shock energy, one has to evaluate
Ze, which should be, at least, smaller than the pulsation period of the star.

The shock energy may also be estimated by another way. Following Opcers and
Kusuawana (1960), we approximately have

30_—.;?31700 /t “rputdl = i /t m(%) ® docms /t "z, (22)

where /% is the average ratio of the excess pressure after passage of the shock front to the

equilibrium pressure and A “ dx is the fraction of the stellar radius traversed by the gas

behind the front. For RR Lyrae stars we may take /t “dzx to be ~0.1, and then

So~is . (23)
In any case, however, the evaluation of #, or 4 is difficult in general. We thus tentatively
adopt the following three cases 7,==2X 102, 2 103 and 2 10¢ sec with y=1. The average
ratio % of the excess pressure to the equilibrium pressure is in the range 10-2~10 if the
above values of #, are adopted.
With various combinations of the initial values of Zy and 8¢ mentioned above, equations
(11) and (17) are integrated simultaneously.
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(b) Results and Discussion

Table 2 gives the initial values adopted and the values of Z, 8, U, and # calculated
at 7==10-%. Further, in order to make a comparison, the results obtained through the
C-W method are given in Table 3.

Strictly speaking we can not compare these results directly with the observational data
because of the roughness of the atmospheric model adopted and of approximations involved
in the calculation of shock propagation. But let us assume here that the velocity derived
from the observed Ao emission line of RR Lyrae expresses the particle velocity behind the
shock front at the phase when the front reaches the region of rxe.~1 in our model. The
symbol 7z« means the optical depth in Hu line center. The ‘velocity of the observed
Ho emission line is 50~60 Am/sec (SANFORD 1949), and Tme~1 corresponds 7~10-4%
in our model. Thus the results given in Table 2 show that the allowable ranges of initial
values of Zp and #, are approximately 5 to 7 for Zg and 2 x 102 to 2 x 103 for #,, respectively.

In the following the results of shock propagation calculated by use of the B-K method
are shown for a typical case of Zo==5, together with the complementary results obtained
by the C-W method. The variation of the shock strength Z against the optical depth
is given in Figure 3. The ratio 77 of temperature behind the shock front to that in the
undisturbed medium is shown in Figure 4. Further the shock velocity U, and the particle
velocity #» behind the shock front are given in Figure 5.

Table 2. Initial values and the values of Z, §, U; and # calculated at
7==10"4 on the B-K method.

Initial values Values calculated at 7=10"4
Z g | U, %
Zo | 8 séc I km/ssoec | kmjsec 4 8 km/gec km/sec
1.02x10-3 | 2x102 23.4 | 3.25x104 28.5 21.7
3.0 |1.02x102 | 2x108 19.4 12.8 59.1 | 6.85x10-3 44.6 36.0
1.02x10° | 2x104 67.2 | 7.48x102 47.5 38.5
3.16x10-3 | 2x102 71.3 | 1.49x10-8 47.5 40.5
5.0 |3.16x10~2 | 2x103 25.0 19.8 147.0 | 2.54x 102 71.0 61.0
3.16x10°1 | 2x104 182.4 | 2.70x 101 79.8 67.9
5.63x10-8 | 2x102 91.9 | 2.98x10-8 55.3 45.4
7.0 |5.63x10~2 | 2x103 29.5 23.4 196.1 | 4.79x10-2 80.2 67.1
5.63%x 101 | 2x104 215.5 | 5.05x 10t 84.1 70.4
Table 3. Initial values and the values of 2, U and # calculated at
7=10~4% on the C-W method.
Initial values Values calculated at r=10-4
U, %o U, 2
Zo km/ssoec km/sec Z km/ssec km/sec
3.0 19.4 12.8 45.1 39.1 31.1
5.0 25.0 19.0 94.8 56.1 46.1
7.0 29.5 23.4 168.0 74.3 61.9
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(i) Shock Strength and T/T,

It is noticed in Figure 3 that the propagation of shock waves reveals rather different
behaviours in the convective region (108272=1) and in the outer region (r<0.1). In the
convective region the shock strength remains practically unchanged, especially so for the
shock waves with small energy. This behaviour is readily attributed to the density inver-
sion in the convective region. In contrast, when the shock reaches the transition zone
between the convective and radiative regions, the shock strength Z turns to steep increase
toward outer surface. This is again explained as a result of density variation in outer
layers as is seen in Figure 1. For example, the shock wave with 83=3.16 X 10~2 varies
its strength only from Z=5.0 to 10.5 in the range 1032721, but increases as much as
Z=1.47x102 at r=10"4. Similarly, for the shock wave with 8¢==3.16x10~3, Z varies

160F 4

120

80r

log T

Tig. 3. Variation of shock strength Z with the initial strength Zg==5.0
against the optical depth ». The results by the B-K and C-W
method aredenoted by “B-K” and “C-W?”, respectively. §p is the
non-dimensional initial shock energy.

201

logT

Fig. 4. Ratio of the temperature 7" behind the shock front to the
undisturbed temperature 7.
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from 5.0 to 7.52 for 103 >7>1, whereas it attains 91.3 at 7=10"4. . These results show also
that the shock strength at the outer layers strongly depends on the initial shock energy.
The quantity 77 is given by

r I

Since the density jump ratio I/y is found to be 3~6 throughout the shock propagation,
the optical depth dependence of 777 has the behavior similar to that of Z. That is, in
the case 8p==3.16 X 102, 7'/7’¢ varies from 1.31 to 2.79 in the range 103>7>1 and attains
the value 23.0 at 7==10"4. Besides, the temperature 7" behind the shock front decreases
first until it reaches the minimum value 1.33 X 104°K at +=6.8 and then increases outward
reaching the value 1.2X105°K at r=10"%. Similarly in the csae 8p=3.16 X 10-3, 7°/7
varies from 1.31 to 2.26 for 10371 and then increases to 11.3 at 7=10"4. The tem-
perature 7" decreases down to the minimum value 1.22 X 104°K at 7=6.0 and the increases
to 5.9x104°K at r=10"4

Let us compare the above results of the B-K method with those calculated by the C-W
method. From Figure 3 we see that the shock strength obtained by the latter method is
larger than that obtained by the former one when the shock energy is as small as
80==3.16x10-3, This is because the pulse damping is absent in the C-W method. This
also shows that the C-W method is not a good approximation in this case. Figure 3 shows
further that when 8¢=3.16X 1072, the shock strength obtained by the C-W method
coincides with the one by the B-K method in the range 1032 7>1072, while becomes smaller
for r<<10~2. The pulse damping is not effective when the initial shock energy is as much
as 8§0==3.16x 10~2. Thus the difference mentioned above is related to the damping of
shock strength due to density stratification. In the C-W method, the damping is over-
estimated compared with in the B-K method when the shock wave becomes rather strong
in the outer region 7<C10-2, as stated at the end of section 2. These characteristics are also
found in results obtained by Napmzuin and Franx-KameneTskir (1965).

Finally the effects of the variations of y, B and p with depth on shock strength are
noted. We have found that while the variations of fp and u have no large influence on the
shock strength, the variation of y influences Z. On the other hand, the variation of § due
to shock propagation has non-negligible effects on the shock strength where the shock
grows in the outer atmosphere. It loweres the shock strengrh and particularly the ratio
2| Ty compared with that in the case where the radiation pressure is neglected. In shock
propagation problems in the stellar atmosphere it will be important, in general, to take
account of the effects of radiation pressure.

(i) Shock Velocity U; and Particle Velocity u

As is shown in Figure 5, the variations of Us and » with optical depth resemble that
of temperature 7 in the point that these quantities attain minimum values near the upper
layer of convective region. The minimum occurs at 7~3 for Us and at r==0.5~0.7 for #.
The abrupt increases of Us and # in the outer region are also remarkable. These behaviors
are well explained principally as a result of density inversion in the convective region.
The particle velocity # in the numerical examples here considered never attains the escape
velocity of 278 km/[sec at 1=10"%. The duration of shock propagation from r=103 to
7=10~%is found to be 798 sec for 8p=3.16X 1072 and 992 sec for 8p=3.16 X 10-3.
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Fig. 5. Variations of the shock velocity Us and the particle velocity »
behind the shock front against the optical depth .

(iiiy Shock Energy

The decrease of shock energy with height is shown in Table 4 for two cases §p=
3.16 X102 and 8p=3.16 x 10~3 with Zy=>5.0. The Table shows that the decrease is slow:
slower when the initial shock energy is larger and the shock is stronger.

The decrease of shock energy given in this table, however, might be underestimated because
in the small 7 region, considerable energy would be lost from the shock front by radiation.

Recently, Narita (1973) investigated the radiative energy losses from the shock
front in the case of a plane stationary shock, under the assumption that the medium ahead
the shock front is optically thin for Balmer continuum radiation. He showed that the
radiative energy losses are considerable when the shock is strong and the gas density is low.
According to him, the energy flux Fy of radiation passing through the shock front is, in

unit of kinetic energy flux é—po Ug of the preshock gas,

1 0.88~0.75 for Ms~14,
7ol (50 ={
0.65~0.45 for Ms~5,
when po=10"19~10-8 g/em3, where M expresses the Mach number of shock velocity.
Let us apply this to our present problem and estimate roughly the radiative energy losses
through the region with a small 7<10-2, where the shock wave becomes strong. We take
po==10"9 g/cm3, and U;=>50 and 30 Am/sec for §o=3.16 X 10~2 and 3.16 X 10~3, respectively.

Table 4. Variation of the non-dimensional shock energy § due to shock propagation.

\ 108 102 10t 1 10~ 10-2 10-3 104

t==2x 102 3.18 2.46 2.30 2.19 1.92 1.68 1.54  1.49 (x1078)

2c=2%103 3.16 2.96 2.90 2.86 2.75 2.64 2.57  2.54 (xX107%)
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Further we take 500 sec as the time for the shock to propagate through the region.
Then, the radiative energy losses are given in non-dimensional forms 8z by

0.84 x ("%“po (]83) X 500
I ~1.9x 1073 for Us==50 km/sec,

8R=

0.55 X (“]"‘poU 3) %500
. 2 ES
%P ~2.6x10~4 for Us=30km/sec.

If we take pg=10-8, we have Us;<30 &m/sec from Figure 5, and then 8§z<2.6x 1078,
Comparison of 8z given above with 8 shows that our results concerning shock propagation
would not be affected seriously by the radiative energy losses in the case 8p==3.16 X 10-2,
but would be appreciably influenced in the case 8p=3.16 X 1073,

In addition to this, Hivr (1972) showed that the total amount of dissipation of
pulsational energy due to the shocks was 1.3 X 1038 ergs per period in RR Lyrae type stars.
In our case the shock energy 2 for §p=3.16 X 10~3 is 1.13 X 1037 ¢rgs and seems to be too
small. Accordingly we rather prefer §o=38.16 X102 to §p=3.16 X 103 as the value of
initial shock energy.

(iv) Comparison with other Results

Our results are compared with Sacupev’s and Vircoria’s. Sacuprv (1968)
calculated shock propagation through the envelopes of a hot star and a giant star by
the B-K method, neglecting the variations of y and 8y. He took account of the radiative
energy losses from the shock front by assuming “Weymann.s patZs”’ (Weymany 1960)
instead of “Sachatzman’s pat’”’. His results can not be compared in detail with ours
because of the differences of the initial static model. However we observe that the
characteristics concerning the variations of shock energy and strength with depth are
similar to ours.

Vircoria (1970) examined shock propagation through the atmosphere of a giant
star with M| Me=3, L|Lg=224, T,=5440°K and R/Rg=17 by the C-W method. He
treated very strong shocks. The effects of the radiation pressure and the dissipation of the
shock energy were not taken into account. Although the characteristics of the atmospheric
model used by him are similar to ours, his results are quite different from ours: the shock
strength reaches the maximum near 7=1 and then decay rapidly outward. In his case,
the damping of shock strength is mainly due to the spherical geometry. This damping is,
however, smaller in general by several orders fo magnitude than the gravitational growth.

Finally our results are summarized in the following way. The shock waves generated
below the convective region by the pulsation of an RR Lyrae star propagate through the
region with almost constant strength but grow rapidly toward the outer atmosphere from
the top of the convective region. If we take §p~10~2 and Zy=5~7 at r=103 as initial
shock energy and shock strength, the particle velocities become consistent with the observed
radial velocities. Shock strength calculated in this paper may be a little lowered if the
radiative energy losses from the shock front are correctly takenjinto account. If we had
more appropriate atmospheric models for the upper layer of small optical depth in RR
Lyrae type stars and better treatment for the radiative energy losses, we could investigate
the shock propagation in more detail. Further, it is also important to treat a nonlinear
hydrodynamic model atmosphere as done by Hiri (1972). These problems will be
treated in future.
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