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  INTRODUCTION OF THE TRANSLATIONAL OPERATOR IN
    FREQUENCY DOMAIN AND TREATMENT OF CERTAIN
             LINEAR DIFFERENTIAL EQUATIONS, II.

                                     BY

            • Tadaski WATANABE
                           (Received Deceinber 5, 1957)

                                  ABSTRACT

        In this paper, by introducing the translational operator in frequency domain defined
     in part !, the theory of the linear fixed electrical network is extended to the linear
     network containing Åëircuit elements which are expressed by E-type functions of time
     described in part I,

        Also the treatment of transmission lines with the above-mentioned network
     inserted is disÅëussed and especially the extensions of refiection coeMcient and trans-

     mission coeMcieRt are described.

1. Introduction

    As to the linear varying electrical network whose elements might not necessarily

be of E-type, only special cases were discussed by severai authors, e,g. J. R. Carson

(1), J. Neufeld (2) and L. A. Pipes (3).

    In this country, M. Akiyama (4, 5, 6) and Z. Kiyasu (11) dlscussed the theory

of the !inear periodically varying electrical network.

    ReceRtly, L. A. Zadeh (7, 8, 9, 10) established the general theory of the IiRear

varying electrical network by introducing the system function. But in order to
derive system functions, we generally have to solve higher order linear differentiai

equations with the coeMcients which are functions of time. And further it seems
generaily difucult to know how the impedance and the admittance, i.e. the system

functions are constructed by circuit elements.

   IR the present paper the author deals with principally the linear varying network

which incl"des real circuit elements* varying periodica!ly in time. The consideration

can be extended, with a little modification, to the case of the linear varying network

whose circuit elements can be expressed by E-type functions**.

 2. Linearc fixed eleetrical netwerk

   We shal! begin with a review of the linear fixed electrical network.

   * They are restricted tQ the functions which can be expanded in Faurier series.
  ** Reference should be made to part L
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    If the degrees of freedom of the Retworl< under consideration be N, we can

express the circuit equations of the network in the time domain as Åíollows:

                           N-                          ,E.Il,Zj'kik(t) == ej•(t), . ,

                           2,•, == DLik+Rjk-i-S,•kB, (2. 1)

                            D== g,,i :st,

where ik(t) is the mesh current flowing along the le-th mesh and e]•(t) the algebyaic

sum of e.m.f. 2nvoived iR the ith mesh.

    The positive sense of the current ik(t) is seiected uniquely over all meshes, e.g.

clockwise, while the poskive sense of ej(t) is taken so as to increase Åíhe mesh

curreRt ij•(t). '
                           Kj'i'J Nkky'

                                                         ik(t)

                  ii(t)

                Jf Nii,.+M N--")ll---' ,Nhk.•+M '

ti(t)
-M

ilt(t)

                                    Fig. 1

    Next we coRsider the coRstructions of Lj•h, Rj•k and Sdk. When dij=k, -Lile is

the sum of all self-inductive coedicients -2i•h.'s involved in the branch common to

the i-th and the fe-th meshes. When the i-th and the le-th meshes include coupling by

mutual induction, we rep!ace the coupling part by the equivalent circuit as shown in

Fig. 1, where M is the mutua} inductive coeracient, and then we take the sum described

above, Thus:

                                L,•k -- X2ih.. (2. 2)
                                      K
    Similarly Rdk and Sv-k are obtained by taking sums of all resistances -pik"s and

all elastive coethcients -aJ•fe,'s respectively, iRcluded in 'the branch corrirnon to the
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ith and She le-th meshes and changing the signs,

    Namely:

                           Rjk =X pv'kpt (7' =lr fe), (2. 3)
                                 "
                           S,•h =- Xo,• i,, (1' -A)fe). (2. 4)
                                 v
                                            '
' When the inductive coeMcients, resistances and elastive coethcients which belong

to the ith mesh but not to the ether meshes are represented by 2j•j•.'s, ptipa's aRd
ati,'s respectively, the expressions Lti, 1?ji• and Si•i are given as follows:

                           Li,• -:XZj,-.-Zii=lii., (2. 2,)
                                 KIK
                           Rj,• =: =Si ,o,•ju - =N iX Xi p,•i., (2. 3')
                                 pa l pa
                           Sji =:Xaj]',-X'Xajiv, (2. 4')
                                 vtv
where the dash in =' indicates that terms for which l=j are exc!uded from the
                   t
summation. As will easi!y be seen, we have

                      Lj•k == Lki, 1?jk la- Riw-, Sj•k -":;- Ski,

so that we obtain:

                      ZJ'k == Zk)' (reciprocity relation). (2. 5)

    Also we can express (2.1) in a rnatrix form:

                            '                             [Z ][i(t)] == [e(t)], (2. lx)
where

                  e,(t) ii(t) 4n li2 •••aiN
                  e2(t) i2(t) Z2i Z22 •••Z2N
        [e(t)]-= I , [i(t)]-- ': , [Z]=- •••••••••••••ny••••••• .
                    --                    - - ------t-til----------                  eN(t) icr(t) ZNi Z'.rv2'''ZtyN
    Taking the Laplace transform of (2.1'), we obtain:

                           [Z(P)][I(P)] =- [Ei(P)], (2. 1!/)

where [Z(P)] is [Z] with D replaced by P, [I(P)] the Lap}ace transform of [i(t)],

and [E'(P)] the Laplace transform of [e(t)] added with the terms which include the
initiai va!ues of currents [i(t)] and charges [e(t)], where q,-(t) ex=S'i,•(t') dt'.

3. Circuit equations of linear varying network whose elements are expressed by
   real periodie functions of time"i`

   We assume that Z]•k., pj•k}L and o]-k, are periodic functioRs of time with the periods

cOjkx, ctijie-k and cojh,, respectlvely:

   * Read in part before the joint rr)eetings of Kansai branches of three Electrical Societies,
     Oct., 18, 1952 and Oct., 17, 1953 (12, 13).
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                           RJ'kK == ..X.co-. Z;."k). eiiZ"'jleKt ,

                                  ooi                           Pii"p =' .t.?l.llico p;7,P et'i"ikpt ,
                                                                       (3. 1)
                                          '
                                  coi                           aikv• == n=?l .. o;-nk)v et7iOjkJt.

    Since the circuit constants are real, the following relations are obtained:

                                N                                7,;.}i,). -- 1;x.k?) ,

                                A'-'                                p;.za .:=-=- p;.MZ), (3. 2)

                                N                                a;Ii', '= a;•F,"},

where the quantities with -.•- represent the complex conjugates of the corresponding

quantities. In this case, the circuit equations in the time domain are the same as
(2.1), except that DLjk and S]•fe -b should both be kept unchanged in order.

    Next, considering that Li•k, Rj•k and Sj•k are constructed by AJ'kK, pJ'kpt and ai'kv

as shown in (3.1) respectively*i, we take the Laplace transforms of (2.1) in which,

however, L]'k, Rjk and Sjk are constructed by linear varying circu!t elements given

by (3.1).

    Then we obtain:

         X, :l,]" [;i] {P2S+',"'..(lk(P-indij•k.)-Ii(P-indi)'k.) o";k)}

             -t- :ii] {`o;•'k'L(fk(P- intuJ-k") - lj (P- in to]•kpt) o"Slt) }

             +:li] {a;•"k',(P-intoJ'k,) -'i(Ik(P-into]•k,)-lj•(p-intujie,) 6j'k)}] (3. 3)

           == EY•(P),
         E,{(p) - Ej(p)+:III] {L,•k(o) ik(o)-p-is,:fe(p) qk(o)}** ,
                         k
where
         E,•(p) == L(ej(t)), Ji(p) -- L(i,•(t)),

          qj(t) -= i'ii(t') dt'• 6fk ::th" {2 E'J• t't,, lefeil

        SJ'k(P) =P{:IP X. a;li'v(P-intui'kv)-i} (1' =l= k,), (3' 4)

         S,:i•(p) = p{\ :ll,] a;•?•e(P-incaj']',)H'-\' ]illl X. a;•X (P-indiJ'iy)-i} •

    When we can solve Ik(P)'s from the fundamental equations (3.3), ii,(t)'s can be

obtained as inverse Lapiace transforms of Ik(P)'s.

    Further, since it is diMcu}t to make (3. 3) in this form correspond to (2. 1"), we

must intyoduce the translational operator iR frequeRcy domain into (3. 3).

   * The processes of the constructions are the same as in g2.
  ** LJk(e)==Ljk(t)l,..,.
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  As described in part I, when f(P) is a fttRctioR of P, the translationai operator

is defined as follows:

                  T(ca) f(p) =- f(p-iw). (3. s)
  Using the operator, we can rewrite (3. 3) and (3. 4) as fol!ows:

            :ll] \, []II] {Pl;•?.IT"(cojk.)(Jk(p)-li(p) o",<lt)}

               --f- ]ll] {p;•nk). Tn(co,•k.) (Ik(p) - l,• (p) o",(k) }

               g-X, {aSek),T't(cejk,) Ili- (Ik(P)-li•(P) O;•k)}

              :=-:- E,'•(p), (3. 6)
         s;.,( p) ==;- p{ \l ];,l] aSrk"IT't (tujiev) Ili'} (i' :l" le) ' i l (3. 7)

        SS-,•(p) =- p{>l] :ii,] ti;?}',T'i(tuj'J'v)-]?l]'\ ]l; a;•X T"(toii,)} i • i

  Now, when LJ•k(T,P), RJ'k(T,P) and SJ'k(T,P) are defined by the following

expresslons:

       ftl.:1;l;ipm:-l/k\ljWFI,1tu.i'f,Kj,},:`,tlltLtAXJ('1/;.,/1.(g.':lj,6ji:,1,,.,,

       S,•k(T, p) = {:ll] ]ll] ti;t,>,T"(ca,•k,)}-{\' Xl ];ll a;•X Tn(topt,)} o",•h, J

the equations (3. 6) and (3. 7) becomes as follows:

        :li] (PLjh(T, P) ÅÄRjle(T, P)+Sik(T, p) -]li-) I,(p) - E,((p) ,

                  s,ti,(p) = ps]'le(T, p) [llr •

  Equation (3.6') is further rewritten:

                 X Z,•le(T, P) Ik(P) =: E,((p) ,
                 k
with

          Zjk(T, p) ; pLjk(T, P)+Rjk(T, p)+S,•k(T, p) [li- .

  (3.6") is expressed in a matrix form:

                [Z( T, p)][I(p)] == [Et( p)],
where

           v(p)]--[Ii/i))J [E/(p)]=-[l/t,iPpp))]•

 (3. 6t)

 (3. 7x)

(3. 6")

 (3. 9)

(3. 6,tt)



               (pC,•k(T,p)+G,-k(T,p)+1-'jh(T,p) )Ek(p)

            l,'•(p) =- l,•(p)+\{C,•k(O) eie(O)-rj'k(T, P) Iis- iph(O)} ,"*

             Åële(t) == S' ele(t') dt' .

    Patting
                                                          1               Yi,(T, p) -= pCj,(T, p)ÅÄGjk(T, P) -Y1-'tik(T, P) zis-

and defining the generalized admittance operator by the following matrix:

                                   Yll Y12••••••YiN ***
                                   Y21 Y22••••ny•Y2N
                      [Y(T, P)] = ••••••••••••••• ,
                                     ----------i----
                                   YAr) '''''''''YNI"r

    * The matrix element Zt. is an abbreviation of Zt.,(T, P).
   ** Cik(O)--C,•k(t) 1,..-,.

  *** IYt,. is an abbreviation of Yt.(T, 1)).
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                                    ZI! Z12 ••••••ZIN :sc
                                    Z121 Z22 ••••••Z2N
                      [Z( T, P)] == •••••••••••••••••• .

                                    ZNi ZN2••••••ZN.lv•

    Representing the inverse matrix of [Z(T, P)] by [Y(T, P)], we obtain:

                                                                    '                         [l(P)] -= [Y(T, P)][E'(P)]. (3. 10)
    We wil! ca!I [Z(T, P)] and [Y(T, P)] generalized impedance operator matrix and

genera!ized admittance operator matrix respectiveiy. From (3.10), we see that it

reduces to the discovery of the inverse matrix [Y(T, P)], to obtain ih(t)'s.

    We can easily show that Kirchhoff's !aws, the principle of superposition, Thevenin-

Ho's theorem and the duaHty of network are va!id in the varylng network.

    Next we derive the nodal equations of the linear varying network by setting the

following correspondence:

                    inductance (L) > capacitance (C)
                    resistance (R) > conductance (G)
                    elastance (S) > reciprocal inductance (1-')

       - mesh current > nodal voltage
                    mesh voltage > nodal ettrrent

                    mesh --> node.
    From the above duality reiations, the nodai equations corresponding to (3. 6') are

obtained :

            \, wwS =J;•(P), (3.ii)
where
                                                    1

(3. 12)
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'we calt rewrite (3. 11) as fol!ows:

                         [Y(T, P)][E(P)]- [I'(P)], (3. 11t)
which corresponds to (3. 6'").

    We will call (3. 6"') and (3. 11') generalized mesh equations and generalized nodal

equations respectively.

    From (3.6'"), (3.9), (3.21') and (3.12), we can see that in our treatment, the

circuk equations of !inear fixe(L network are Baturally extended to the }inear varying

network where the elements are expressed by periodic functions of time.

    In Kiyasu's theory, impedances are expressed by infinite dimensional matrices and

so it seems to the author that the author's method utilizing the translational operator

ls more convenlent.

    The procedure described can evidently be extended to the case when ZJ'k., p]'fe"

and a]'k, are varying with the fo!lowing angttlar frequencies:

                       o;.k>,co;kit,•••••-••••••,tuS-i,'. for ljk.,

                       to;-kh,co;-ZL,••••••••••••,w•"ki..' for p]'igpt, (3.13)
                       a)Si',, co;-2k',, ••••••-•••••, (oS•"k', fer ajh,.

And when tui),, di;•IL and ÅëS.ilt), are complex quantities, the above process can be

adapted by making the following modification. Namely, in order that the circuit

elements may be expressed by real functions, (3. 1) are modified as follows*:

                             ee . .e N                                                        ,)                  Ri'kK ` : A;•?,'. --,pu.,2;•n,', e"t`"jrkxt --ii,li.?,2;.z,.n) ei'tCOjfkKt

                             oo ' oo INyi                 S)jkpt == P;+2h+,],EI..],,o;",'. et'i`Ojletwt {-.X.-,p;.Frv et"COjk"t ,                                                                       (3. Ii)

                             av . oo r-y                  aJ'iev -- aS•:3+,ll.lllaS•nk), etn"1'kvt --,ll.ll,a;.x.3o etncodkvt .

    The relations (3. 2) remain to be valid. From (3. 1'), it is evident that (3. 8) and

(3. 7) have only to be modified as follows. Namely, while the traRslational operators

behind the factors, 2;."h'k, ,o;.ttk and a;fkE', (n>O) are left unchanged, the operators

behind Z;.p,n), p;rk.n' and a;.nv' (n>O) are replaced by the following operators:

                           ---.- "Nt .-V-                        T(cojk,), T(cojhP, T(cojk,)

respectively, with the power indices ef the translational operator remaiRing unchanged.

   Similar exteRsions are possible for the nodal equations.

   * Here is considered the case when l==mmnxl in (3.13) and teS•ik).., coS•ik)p and coS•ik)v are

     represented by oikK, toJ'k:L and cvJ'kv respectively. It is easy to extend the discussion to
     the case when l, m and n are all greater than unity.
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4. Linear varying network whose eireuit elements vary periedically with one

   eommon period

    The case shown in the tit!e corresponds to conditions that

                        T(tofk.) == T(coj!ktp) = T(cojxikt/,) (4. i)

for all (1', fe, rc), (7", le', pt) and (T', fe", y).

    Now putting

                         COjFkK X':' COjtic/tL :A' di1't/ktlv :L' CDe,

we obtain:

                                   oo                      [Z(T, P)] :=-L h'i [Z(n)(P)] Tn(tu,). (4. 2)
                                  n=-co
[Z(';)(p)ll is given as follows:
                                Z17r)(2b) ZS7S)(P)•••Z:lk)(P)

                                ZS,,i)(P) ZS:)(P)•iiZSZfti)(1))

                    [z(n)(p)] = .............................. , (4. 3)
                                  ---t----------- ny --1-- ny --------
                                ZSI,til(P) Z'sc.;i(P)i••ZS3,!i3,.(P)

where
                Z;.n,)(p) =: ,zbl;.n,) s- ,o iz,) -yp-io t,)',

                   pl;•n,) --- p{>ii] 7L;•n,).- (]l]' :ll] Zj•i.) 6fk} ,

                                                                       (4. 4)
                    iOS'17,' = llll P"k';,-(\' ]iiP P?'i,',) 6jie ,

                 p-ia;.n,)' ;--` (p-intu,)-'{\ oSt,).- ()III]' ]El] o;•',Xe) 6pt,} •

    We can also write (4. 2) as follows:

                                  co                     [Z2;i,gl!f,'].Inv'ttt,.,:cT,Z'1(-Z.;1[3Y"'("]'] (4's)

   In the treatment described above is included the case of the network of which

oniy one circuit eiement is varying and the others are fixed. Aecording as the varying

element is an inductor or a capacitor, we obtain, using (4.2) or (4.5), the circuit

equation which does not include tuo expiicitly excepting in T(toe).

    This is often convenient for application, e.g. when the method of series expansion

is used. If the only varying element is a resistor, the same circuit equation is obtained

by use of either expression.

5. Transmissien lines with linear periodically varying network insertedS

    The followiRg discussion stil} hoids when the linear periodically varying network

is replaced by the E-type circuit element.

   * Read in part before the joint meeting of Kansai branches of three Electrical Societies, OÅët.

     17, !954 (14).
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    We consider how the reflection coethcient and the transmission coeMcient are

genera!ized, in case when the linear periodically varying network is inserted in the

transmission lines such as Lecher lines, coaxia! cable, wave guide, etc.

    The traRsmission lines are assumed to be fixed. Since neither charge nor current

exists in the inserted network before the arrival of the incident waves, the following

are sttbstituted into (3. 6"'):

                         gii.8),IMgj(P) E,t.1/T.Il3il)

and eliminating l3(p), l,(p),•••I.v(p) from the resu!ting equatioRs, we can easily

obtain :

                   [gl(,;,'] :=-= [:-;i,Egl ;l Z-li,(;j ,Pi] [fl:;l]• (s• i)

    When, as shown in Fig. 2, the semi-inftnite transmissioR line$ (I) are connected

to the terminals (1, i') of the inserted network and the load ZL(P) to the terminals

(2, 2'), we wlll derive the refiection coeMcient in the transmission lines (I).

       '

                12
                1, 21
                                    Fig. 2

    Now we take the xi-axis along the transmission lines (I), with the positive sense

directed toward terminals (1, 1'). We represent the current and the voltage at the

point xi (in the frequency domain) by 1(xi, P) and E(xi, P) respectively and assume

that the incident waves have the time factor eiott in the time-domain representation.

Then, iR the case ef constant current source the incident current and voltage are

given by:

                .i,(li,'E.X;;S,'.nv.-.mhaj,ii;',XL`So,g,;P;,Onc,tu,?,-)'t,.,-,,,] (s•2)

where ?'i(P) and Z6i)(P) are the propagatioR constant and the surge impedance of

the transmission lines (I) in the frequency domain respectively. These expressions

mean that the incident waves arrive at the inserted network at t= to, if to>O.

    Next, the reflected current and voltage can be given by:

            .i,(;,'[iij,Pi-:-rmeV2(ll]ga,(32T,,•,9,).iisgii';gP,.il,Ii9),,1i,}s-,.,-,,.] (s-3)
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    Applying the continuity conditions of the current and voltage at xipm-O, i.e. at the

terminais (1, 1'), to (5• 2) and (5. 3), we obtain;

.h,,, A(T' P) ==  {Z6i'(P) -YZ(T' P)}-i{Z6i'(P)'Z(T' P)}' ) (s.4)

          2(T, p) -L- 7,,(T, p)-2,,(T, p){Z.(p) -i-2,,(T, p)}-i2,,(T, p) . i

    As ZL(P), the semi-infinite transmission lines (II) are connecÅíed to the terminals

(2, 2') and we take the x2-axis along these lines, with the positive sense away from

the terminals (2, 2') and the origin set at the terminals (2, 2').

    Representing the propagation constant and the surge impedance of the transmission

!ines (II) in the frequency domain by r2(P) and Zg2)(P) respectively, we consider

the transmission coethcient in the transrnission lines (II). Now the transmitted current

and voltage are assumed to be given by:

                       l(t)(x,, p) =-: epmV2(1))X21,(p),                      E("(x2, P) --- Z82>(p) e-v2(p)x21,(p). ] (5•5)

    The following expressions are substituted into (5.1):

                  Ji(P) ::'-- {1+A(T, p)}{I,e-'Pto(p-itu)-i},

                 Ei(P) ::H= Z6i'(P){1-A(T, p)}{J, e-Pto(p-itu)-i} ,

                 E,(p) :- -Z62)(p) 1,(p) ,

where A(T, P) means A(T, P) which is obtained by putting

                               ZL(P) -= Z62)(p)

in (5. 4).

    Then
                                              '
                      I2(P) "= B(T, P) I,{e-Pte(p-itu) --i} ,

where

            B(T, P) ::-:=-- -{Z82)(P) --l-Z,,(T, p)}-iZ,,(T, P){1-yA(T, P)} . (5. 6)

    Substituting (5. 6) into (5. 5), we obtain:

             I(')(x,, P) == e-'72(P)X2B(T, p) I,{e-Pto(p-ico)-i}, )
                                                                       (5. 7)            E(`'(x2, P) = Z62)(P) e-Y2(P)X2B(T, P) I,{e-Pto(p-ito)-i} . S

    We wiii call A(T, P) and B(T, P) defiRed by (5.4) and (5.6) respective!y the

generalized refiection coeMcient operator and transmission coethcient operator for the

constant current source.

    For Åíhe constant voltage source, we can also defiRe the generalized refiection

ceefficient operator and transmission coeMcient operator which are represented by

A'(T, P) and B'(T, P) respectively, related with A(T, P) and B(T, P) such that:
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                    A'(T, p) =- Z5i)(p) A(T, p) Z6i)(p)-', }
                    B'(T, P) - Z82)(p) B(T, p) zs2)(p)-i. I (5• 8)

   When A'(T, P) and B'(T, P) are used, the expressions of the current and voltage

in the frequency demain for the constant voltage source are given by the following;

   On the side of the terminals (1, 1');

     Eil[:l] ;i '//i Z{8`L'yl"(p') i`wwe','Jiip";iiit[7T'1'SllAE',IT,ipPtil,E12-`i,J .'-Oii", nv'W'-"i'' ] (s•g)

and on the side of the terminals (2, 2');

           6;[:f.;;i:'feCllS,e)-,b9J.Yi(;,":1(,Ts,el,EÅí`,.--;-tl(,ean'tu)-"'}•] (s.io)

   As seen from (5. 8), when the transmission lines (I) and (II) are non-dispersive

i.e. Z(i)(p) and Z(2'(p) do not include P, A'(T,P) and B'(T,P) coincide with

A(T, p) and B(T, P) respectively.

   The author is sure that such a prob!em as has been described in this section,•

cannot be easily treated by other methods.

6. Some examples

   (D As an example of the linear varying network described in bR4, we wil!
consider the circuit shown in Fig. 3, which acts as a varying low pass filter.

                         RR
1

,1

ii(t)

i2(t)
2

s(t)

The

where

and

2'

                   S(t) =:if(e)+2cr(i) cos (coet)

                          Fig. 3

circuit equations are given as follows:

               [gl[;l] =- [zll zli] [fl2p,i]•

                     qi(O) == q2(O) meO,

                                                   1   Zii(T, P) == Z22(T, P) = R+{a(O)ÅÄa(i)(T(tuo)-Y T-i(tuo))} [zF ,

                                                  1   Zi2(T, P) = Z2i(T, P) =-{aCO)-Fa(i'(T(coo)+T--'(wo))}[zr.

}

(6. 1)

(6. 2)
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   From (6.1) we obtain:

   -li- (E,(p) -"E,(p)) = R-li- <I,(p) :,--I,(p)),

  -}- (E,(p) -E,(p)) = {R+2{a(O)+o(')(T(o,) A- T"-i(uto))} S-}-l;- (li(p) -l2(P)) ,

and Eurther by these equations,

                         11        1        -l; (fi(P)+l2(P)) = xr -2 (E,(p)+E,(p)) ,

        -21rm (-Xi(p)-I2(p)) == il-pe-fi(T(tue)-T-"(wo)) (6. 3)

                         xpÅÄ. 1..-,es( T(too)- T-'(tuo)) -ll- (Ei(P) -E2(P)) ,

        2a(i)                    Rwhere B= iRto, and r"=2ace)'

   Solving (6. 3) for l,(P) and f,(P), we obtain:

                       [;;:;i] =:[;ISI:] [kE;i]• (6• 4)

where
        Yn(T, P) =" Y22(T, P) = 21i} {1-1"'PU--i(T(we))p-}-1.-i U(T(tuo)>} ,

a.d Yi2(T' P) == Y2t(T' P) :: 21? {1umPU-i(T(We))p{-1',"-rm! U(T(CPo))}' (6.s)

       U(T(too)) -- exp {iiiiii' (T(coo) - T-'(co,))} .

   Now, assuming that
                             ei (l) : A, eitut ,

                             e2(t) = A, eiwt ,

and taking into account the considierations in bR4, part I, we obtain ii(t) and i2(t) by

converting (6. 4) to the representation in the time domain as follows:

                      [ilE,'l] =- [;ll2,`i Y,,]i[,t]] [Zl(,l),]• (6•6)

wltere

                       ilj,(j,' I'li2,[,t':$ [l:op,[`,]il) ,,. ,,

and

            v(t) = e-itu' ddt {u'-'(eituot) e-'$- Si e(""ibl)t'u(eitoot,) dtt} ,

   It seems worth noticing that the steady state so!ution can be obtained if, for the
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lower limit of integration in op(t), zero is replaced by ---oo correspoRding to T>O,

while ff-oo is taken when r<O.
    (ii) As an example of bg5, we consider the non-dispersive transmission lines 2n

which the varying condenser is inserted.

    The elastive coethcient of the cendenser is assumed to vary sinusoida}ly with

angular freqgency e)o, so that it can be expressed as follows:

                   S(t) - So+2dS cos (wotÅÄ• q) ,
O1'

                   S(t) == a(O) -i-a(i) eiwot+a(-i) e-iwot ,

where
                     So =A' a(O), dSeiq = o(i), dS e-iop == a(-i).

s(t)

                                   Fig. 4

    Now, the x-axis is taken along the transrnission lines and the origin set at the

position of the inserting terminals, the right-hand side of the terminals beiBg positive

and the left-hand side negative.

    Next the surge impedance and the propagation constant in the frequency domain
ac re represented by Zo and -r(P) respectively.

    We assume that for the constant voltage souyce the waves are incident from the

negative side and they are given by the following expressions:

                   g(,i]x] gi :m zo,fa(ll:,{s,;",2os,e,Esdi2;.bii,,. ]

    Then the cgrrents and the vo!tages for x<O and x>O are given as follows:

    for x<O,

            g(,:l;),:iO,{il(;-'.gerP]g$j.(.Tj3.),};glltE-(.3,J,SW2Ibl-•.,,,] (6•s)

and for x>O,

               ET((:1;'):EisX(ll;B(pl(xTti•2ie,3"IQ,Sft;(Z)'Dll•L')'-i},) (6'9'

where A'(T, P) and B'(T, P) are given by the following expressions:

          A'(T, p) = {2Z(T, p) z,-i+1}-i,

          B'(T, p) - 1-A'(T, p) =- {1+2Z(T, p) Zo"i}-'{2Z(T, P) Zo-i}, (6. Io)

          z(T, p) == {a(o)+(aa)T(tuo) +a(-'i)T-i(o)o))} [ii- •
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   NTow, if we assume that these transmission lines are lossless Lecher iines or

coaxial cabies with induction coethcient per unit length l and capacity per unit iength

c, the expressions for A'(T, p) and B'(T, P) become as follows:

                A'(T, p) "== PUff"i(T(toe))p+1.-! U(T(tue)) , l

                B'(T' P) =:1-PU-i(T(too))p+1.-, u(T(.,)), i (6'11)

where
              U(T(coo)) == exp {tz/zZ-.J (a(i)T(to,) -oC-i)T-'(ca,))} ,

                  2Zo
              -- ."..               Lnd -                  a(e)

   Substituting (6.11) in (6.8) and taking the inverse Laplace transforms of the

resulting expressions, we obtain the foliowing expressions for i(x, t) and e(x, t) which

denote the inverse Lapiace transforms of l(x, p) and E(x, P) respectively•

                1ww   Putting v"-i==y lc , we get, for x<O,

                      9'E.Xj t`i 'l. ;:m`2E(,mal tR) 1"li?1';, })},] (6' i2'

where
                              (t- to--i- <O) , )
         P(x, t) --- O

                              (t-t,---l?- >O) , S         P(x, t) == eitoC(t-te)-i'-}

                              (t- t, -l-- -i;- < O) ,
         R(x, t) =:O

         R(X, t) = St {U-i(eituo(t*• "to)) e-{;" Si"e("+ito)t'U(eitoo(t'rt"te)) dt'}

                              (t-to+f>O)

with t*=t-teNy-i;, and for x>O,

      e(x, t) ==O (t-to-i<O),

      i(x, t) == O (t-t,--li-<O),

      l.IX.l tt] :. Ez",-,E,)Å~[eiwt"- [It {u-'(eible(ti"'te)) • (6..i3)

                                Å~ e- t"* S:'" e(""itu) t'U(eitoo(t'"te)) dt'}]

                      (t- to- -:l- > o) ,
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where t':ge xx:- t-to--X-.

                   v
    The steady state solution can be obtained by the same procedure as stated in (i).

7. Conclusion

    By introducing the translational operator, the circuit equations of the linear fixed

network can be more naturally extended to the cases of the linear varying networl<

than by other authors' theories.

    Further, the ideas such as impedance, admittance, refiection coeMcient and trans-

mission coeMcient can also be generalized by the present author's method. The present

theory can exp!icitly give the irnpedance and the admittance in terms of the circuit

elements. Particularly, as described in bq5, we can easily perferm the treatment of

the cases when the linear varying network is inserted in the transmission iines. Such

cases have never been treated by other authors.

    As described in part I, in order to obtain the solution of the circuit equations, we

must generally rely on the method of series expansion.

    However, according to this method, the transient parts of the soiutions sometimes

take compiex forms and so it seems necessary to obtain the transient parts iR tractab!e

forms by means of a more ingeneous method. Since it is important to consider in

detail the transient parts which are associated with the stability, we should make

researches on this aspect of the subject. The author hopes to carry out the researches

in future.

    Finally the author wishes to thank Professor S. Tomotika and Professor I.

Takahashi for their powerful guidance and persistent encouragement.
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