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ABSTRACT

In this paper, by introducing the translational operator in frequency domain defined
in part I, the theory of the linear fixed electrical network is extended to the linear
network containing circuit elements which are expressed by E-type functions of time
described in part I

Also the treatment of transmission lines with the above-mentioned network
inserted is discussed and especially the extensions of reflection coefficient and trans-

mission coefficient are described.

1. Introduction

As to the linear varying electrical network whose elements might not necessarily
be of E-type, only special cases were discussed by several authors, e.g. J. R. Carson
(1), J. Neufeld (2) and L. A. Pipes (3).

In this country, M. Akiyvama (4, 5, 6) and Z. Kiyasu (11) discussed the theory
of the linear periodically varying electrical network.

Recently, L. A. Zadeh (7, 8, 9, 10) established the general theory of the linear
varying electrical network by introducing the system function. But in order to
derive system functions, we generally have to solve higher order linear differential
equations with the coefficients which are functions of time. And further it seems
generally difficult to know how the impedance and the admittance, i.e. the system
functions are constructed by circuit elements.

In the present paper the author deals with principally th2 linear varying network
which includes real circuit elements* varying periodically in time. The consideration
can be extended, with a little modification, to the case of the linear varying network

whose circuit elements can be expressed by E-type functions™*

2. Linear fixed electrical network

We shall begin with a review of the linear fixed electrical network.

* They are restricted to the functions which can be expanded in Fourier series.
** Reference should be made to part L
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If the degrees of freedom of the network under consideration be N, we can
express the circuit equations of the network in the time domain as follows:

N .
DZuin®) = e, )
Z]k = DL]k"{"R]kTS]k D » (2' 1)
d 1
D= 5=

where 7,(f) is the mesh current flowing along the k-th mesh and e¢;(#) the algebraic
sum of e.m.f. involved in the j-th mesh.
The positive sense of the current ¢,(#) is selected uniquely over all meshes, e.g.

clockwise, while the positive sense of ¢;(#) is taken so as to increase the mesh
current 7; ().

A‘j}'v Aes
in(6)
(6
haame PR
M
Njj+ M W
‘j Elk“)
(8
Fig. 1

Next we consider the constructions of Lj,, Rj, and S;,. When j==k —Lj; is
the sum of all self-inductive coefficients —A4jp’s involved in the branch common to
the j-th and the k-th meshes. When the j-th and the k-th meshes include coupling by
mutual induction, we replace the coupling part by the equivalent circuit as shown in
Fig. 1, where M is the mutual inductive coefficient, and then we take the sum described
above. Thus:

Lj, = Z“] Ajke » 2.2)

Similarly Rj, and S;, are obtained by taking sums of all resistances —pj.'s and

all elastive coefficients —ojp,’s respectively, included in the branch common to the
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j-th and the k-th meshes and changing the signs.
Namely:

Rjp, = 4:_3 Oy (j==k), 2.3)
Sin=Slom, (B @4
When the inductive coefficients, resistances and elastive coefficients which belong

to the j-th mesh but not to the other meshes are represented by 4;;.'s, pjju’s and
67;,'s respectively, the expressions Lj;j, Kj; and S;; are given as follows:

Ljj =25 )‘ﬁx—%}, 25 At s (2.2
Rjs =23 pjju—};’ 30w, (2.3)
Sij =21 <fjfr¥’ 3iajn, (2.4)

where the dash in X7 indicates that terms for which /=; are excluded from the
I
summation. As will easily be seen, we have
Ljr = Lpj, Rjp = Rpj, Sjr= Sk,

so that we obtain:
Ziw = Zu; (reciprocity relation). (2.5)

Also we can express (2.1) in a matrix form:

[ZIE@®] = [e®], @1
where
IAQ) 1, (2) Zn le "'Zuv
e, () i, (1) — Zy Ly Loy
[e®1=| : , L®l=| s [Z] = oo
ex (£) i (8) Zwy ZwvZyy

Taking the Laplace transform of (2.1%), we obtain:

LZ»HII(p)T=[E(H], 2.17)
where [Z(p)] is [Z] with D replaced by », [I(»)] the Laplace transform of [1(£)7],
and [E’(p)] the Laplace transform of [¢(#)] added with the terms which include the
initial values of currents [(#)] and charges [¢(#)], where q]'(D’-:Stij(f/) dt’.

3. Circuit equations of linear varying network whose elements are expressed by
real periodic functions of time*

We assume that Ajp, ojrn and ojg, are periodic functions of time with the periods
Wjge, Wirp and wjp,, respectively:

# Read in part before the joint meetings of Kansai branches of three Electrical Societies,
Oct., 18, 1952 and Oct., 17, 1953 (12, 13).
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o .
L N e it
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Piep = 25 Pjiu
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Tk, 3.1

inew
A Iy M@yt
Jiky n=>:_|°° ajkve JkJ

Since the circuit constants are real, the following relations are obtained:

—

[ — l(—n)

‘ikx jke ?
—~—
o= o5 3.2)
—— .
=

where the quantities with —~— represent the complex conjugates of the corresponding
quantities. In this case, the circuit equations in the time domain are the same as
(2.1), except that DLj;, and S,-k%— should both be kept unchanged in order.

Next, considering that Ljp, Rjp and S; are constructed by Ajre, 0jzp and djpy
as shown in (3.1) respectively*, we take the Laplace transforms of (2.1) in which,
however, Lj., Rjr and Sj, are constructed by linear varying circuit elements given
by (3.1).

Then we obtain:

2;3 AP (= inwjr) = 1;(p—inwjnd 67}
+§ {05, Te(p—inwjm) —Ii(p—inwjr) 65}
+2 {ofp, (p—inwjr,) ' (I(p—inwjn) —1;(p—inwjr,) 0ie)}] G
= Ej(p),
Ej(p) = E;(p) -Fgl {L;1(0) ix(0) — p~1Six(5) qr(0) }**,
where
E;j(p) = Lei(®)), Ii(p) = LGB,
[ o 0 (j == k) )
~t=Sz~t’dt', of-:{ ,
q;(®) i@ ik 1 (=R,
Sik(p) = DS o(p—inwp) ™t (=B, @D
Sii(p) = Do (p—inw;z) " —23 33 2 o (p—inwin) ™'} .
v u M 7 v w7

When we can solve Ip(p)'s from the fundamental equations (3. 3), 7,(¢)’s can be

obtained as inverse Laplace transforms of Ir(p)’s.

Further, since it is difficult to make (3.3) in this form correspond to (2.17), we
must introduce the translational operator in frequency domain into (3. 3).

* The processes of the constructions are the same as in § 2.
¥ Lin(0)=La(D | s=0-
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As described in part I, when f(p) is a function of p, the translational operator
is defined as follows:
T(w) f(p) = f(p—iw). (3.5)
Using the operator, we can rewrite (3.3) and (3.4) as follows:
% 2 AR T (05w T( ) = 1;(P) 07e)}
A3 {05, T™(05) () = 1;(0) 670}
M

+ R T o) 5 Q) ~T(p) 34

= Ei(p), (3.6)
4 Sy Ny ) 1 .
Sie(h) = ﬁ{ };, 2 o0, T (0jm) }7} (j=kk), }
(3.7
SH(p) = M Do T (win) — 3 B8 i i)} 5 -

Now, when L;j(T, p), Rin(T, p) and Sjx(T, p) are defined by the following

expressions:

Lig(T, p) = {Z 2 AT (k) — {2’ DG T @ind} Ojes |

Rix(T, p) = {%" ; ;ZLT’I(CUJ'/EM)}”{;, % %: p}’}; T*(wj)} Bir, (3.8)
Sie(T, p) = {2 2305, T wjm)}— {ZIY 4? 23055 T™(@jn)} G,

v

the equations (3.6) and (3.7) becomes as follows:

S (BLi(T, )+ Ru(T, ) +S5(T, 1) ) 1) = EYCH), (3.6
Sh() = (T, 1) 5 3.7
Equation (3.6") is further rewritten:
; Zie(T, p) I(p) = Ei(p), (3.6
with
Zi(T, £) = BLirCT, D)+ Rin(T, )+ (T, ) 5 - (3.9)
(3.6”) is expressed in a matrix form:
Lz(T, pILI(p] = LE(p], - (3.67)
where
L(p) E{ ()
L{p) E; (p)
[Kpl=| @ |, [E®ml=] i |

Ly(p) E4 (D)
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[ZCT, )] =] cevvvervvrvrsennn

Representing the inverse matrix of [Z(T, p)] by [Y(T, p)], we obtain:

LICp)] = LY(T, pYILE(p)]. (3.10)

We will call [Z(T, p)] and [Y(T, p)7] generalized impedance operator matrix and
generalized admittance operator matrix respectively. From (3.10), we see that it
reduces to the discovery of the inverse matrix [ Y (T, p)7, to obtain 7x(#)’s.

We can easily show that Kirchhoff’s laws, the principle of superposition, Thévenin-
Ho’s theorem and the duality of network are valid in the varying network.

Next we derive the nodal equations of the linear varying network by setting the

following correspondence:

inductance (L) —> capacitance (C)
resistance (R) —— conductance (G)
elastance (S) —— reciprocal inductance (I™)
mesh current —> nodal voltage

mesh voltage —> nodal current

mesh -—> node.

From the above duality relations, the nodal equations corresponding to (3.6”) are

obtained :
S 0C#(T, 24T, )+ T T 05 ) Bu) = INp), (3.11)
where
I8) = Lo+ 5 {Cx(0) () ~T5u(T, ) 3 $u(OD} , **
o) = [ty ar.
Putting

Yiu(T, 8) = pCn(T, )+ Cin(T, )+ I'n(T, 1) (3.12)
and defining the generalized admittance operator by the following matrix:
Y, Yo Y,y ] e
[Y(T, p)T = oeeveeemeeees ,

* The matrix element Z,;, is an abbreviation of Z,,,(T, p).
wE le:(o)zcik(t)lt=o'
w3k Y, 1s an abbreviation of Y;,,(T, p).
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we can rewrite (3.11) as follows:
LY(T, HIEH] =F(n], ' (3.11)

which corresponds to (3. 6"7).

We will call (3.6”) and (3.11”) generalized mesh equations and generalized nodal
equations respectively.

From (3.6, (3.9), (3.11") and (3.12), we can see that in our treatment, the
circuit equations of linear fixed network are naturally extended to the linear varying
network where the elements are expressed by periodic functions of time.

In Kiyasw’s theory, impedances are expressed by infinite dimensional matrices and
so it seems fo the author that the author’s method utilizing the translational operator
is more convenient.

The procedure described can evidently be extended to the case when ZAjre, 0jen

and ojg, are varying with the following angular frequencies:

(1> (€2 S 2> .

C()ij ’ COij ’ s Cl)ij for A]kK 3
(1> (2 e (m) .

wjkp, y wjkp.’ ’ wjku for Ojkp (3 13)
(1> (€2 n) .

58y » D58 y W5E, for ojp,.

And when ‘”ﬁi’ w}m and w;’}e’v are complex quantities, the above process can be

adapted by making the following modification. Namely, in order that the circuit

elements may be expressed by real functions, (3.1) are modified as follows¥*:

ks inew ;b o /Vt
Rite = K30 M eMnd £33 45w ¢ sd, )
o . PR /Vz‘ ,
Oikn = 05+ 23 O T + 3 05 ekt | (3.1)
< Hws ot e ;\'t/
Oipy = U;gfﬂ—’l};la‘j’ae @ik +1§10};;”e Wipmt

The relations (3.2) remain to be valid. From (3.17), it is evident that (3.8) and
(3.7) have only to be modified as follows. Namely, while the translational operators
behind the factors, l;.”hffc, p;.;;:b and ai.’,?v (n>0) are left unchanged, the operators

behind z;.;;w, p;.;;:’ and aj‘.;;" (n>>0) are replaced by the following operators:

T(oipe) s, T (i), T (@i

respectively, with the power indices of the translational operator remaining unchanged.
Similar extensions are possible for the nodal equations.

* Here is considered the case when /=m=n=1 in (3.13) and w?&, wi& and “’g'lk)v are

represented by wjpe, wjr and wjpy respectively. It is easy to extend the discussion to
the case when /, m and # are all greater than unity.
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4. Linear varying mnetwork whose circuit elements vary periodically with one

common period

The case shown in the title corresponds to conditions that
T(@ipe) = T(wjwn) = T(wjrmr) 4. 1)

for all (4, k, &), (j,, K, @) and (j7, k7, v).
Now putting
Wjke = Oj/Kp = WK = Oy,
we obtain:
[Z(T, 1)1 = 3 [Z(0)1T"(@y). @2
[Z™(p)] is given as follows:
Zp(py Z@ (D) ZH(b)
Zp(p) ZR (D) ZR ()
ARIC ) N h I , (4.3)

AHCINACICIRINA 1G]

where
Z@ (D) = pAP+o5p + 70,

DA = P A — (2 2 Aa) Ok

ke
- , 4.4
o = o~ S 305 o, @b
Py = (p—inwo) {3 oG, — (B 2 0fi) dsk} -
We can also write (4.2) as follows:
[Z(T, p]= 2 T"(e)lZ"(h)], } (4.5)

ZW(p) = ZW(p+inw) .

jh
In the treatment described above is included the case of the network of which
only one circuit element is varying and the others are fixed. According as the varying
element is an inductor or a capacitor, we obtain, using (4.2) or (4.5), the circuit
equation which does not include w, explicitly excepting in T (w,).
This is often convenient for application, e.g. when the method of series expansion
is used. If the only varying element is a resistor, the same circuit equation is obtained

by use of either expression.

5. Transmission lines with linear periodically varying network inserted*

The following discussion still holds when the linear periodically varying network

is replaced by the E-type circuit element.

* Read in part before the joint meeting of Kansai branches of three Electrical Societies, Oct.
17, 1954 (14).
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We consider how the reflection coefficient and the transmission coefficient are
generalized, in case when the linear periodically varying network is inserted in the
transmission lines such as Lecher lines, coaxial cable, wave guide, etc.

The transmission lines are assumed to be fixed. Since neither charge nor current
exists in the inserted network before the arrival of the incident waves, the following

are substituted into (3.6):

Ej(p) = E;(p) <j:1,2>,}
Ei(p) =0 (G=k1,2),

and eliminating L,(p), L,(p), - Iy(p) from the resulting equations, we can easily
obtain:

)=l 22 ol L) @D

When, as shown in Fig. 2, the semi-infinite transmission lines (I) are connected
to the terminals (1, 1) of the inserted network and the load Zr(p) to the terminals
(2, 2, we will derive the reflection coefficient in the transmission lines (I).

1 O—— 0 2
Z(T, p)

1 O] O

Fig. 2

Now we take the x,-axis along the transmission lines (I), with the positive sense
directed toward terminals (1, 17). We represent the current and the voltage at the
point %, (in the frequency domain) by I(x;, p) and E(x,, p) respectively and assume
that the incident waves have the time factor ei®! in the time-domain representation.
Then, in the case of constant current source the incident current and voltage are
given by:

[(x;, p) = e A (I, e Po( p—in) 7'}, } 5.2)
E®(xy, p) = ZF(p) e P "y empto( p—iw) ™'},

where 7,(p) and Z{(p) are the propagation constant and the surge impedance of
the transmission lines (I) in the frequency domain respectively. These expressions
mean that the incident waves arrive at the inserted network at f={,, if £, >0.

Next, the reflected current and voltage can be given by:

Iy, p) = P HAT, p){L e ?o(p—iw)~'}, }

B (x, p) = —ZP(p) P HACT, )T eto(p—iw) ). ©9
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Applying the continuity conditions of the current and voltage at x,=0, i.e. at the
terminals (1, 1), to (6.2) and (5. 3), we obtain:

A(T, p) = {ZP (D) +Z(T, Py HZP () —Z(T, O},

where 5.4

Z(T, p) = Zu(T, p)~Z:(T, pIAZL($)+Z (T, pI}Z2u(T, p) -
As Zp(p), the semi-infinite transmission lines (II) are connected to the terminals
(2, 2" and we take the x,-axis along these lines, with the positive sense away from
the terminals (2, 2°) and the origin set at the terminals (2, 2°).
Representing the propagation constant and the surge impedance of the transmission
lines (II) in the frequency domain by 7,(p) and Z{?(p) respectively, we consider
the transmission coefficient in the transmission lines (II). Now the transmitted current

and voltage are assumed to be given by:

IO (x,, p) = e 2% L(p), } (5.5
(s, ) = Z9(5) e P=L(p) )
The following expressions are substituted into (5.1):
L(p) = {1+ AT, p)H{IL e~ ?o(p—iw)~'},
E(p) = ZP(p){1-AT, p)HIL e #o(p—iv)~'},
E,(p) =—Z@(p) L(p),
where A(T, p) means A(T, p) which is obtained by putting
Z(p) = ZP (D)
in (5.4).
Then
L(p) = B(T, p) I{e ?*o(p—iw)~'},
where
B(T, p) =—{Z@ () +Zu(T, P} Zoi(T, p){1--A(T, p)} . (5.6)
Substituting (5.6) into (5.5), we obtain:
IOy, p) = e %B(T, p) I{je ?o(p—iw)~'}, ) .7

E®(x,, p) = Z@(p) eV %B(T, p) Lie-?h(p—iw)~'} . J

We will call A(T, p) and B(T, p) defined by (5.4) and (5.6) respectively the
generalized reflection coefficient operator and transmission coefficient operator for the
constant current source.

For the constant voltage source, we can also define the generalized reflection
coefficient operator and transmission coefficient operator which are represented by
A’(T, p) and B'(T, p) respectively, related with A(T, p) and B(T, p) such that:
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AT, p) = ZP(p) ACT, p) Z(p)™, ) 5.8
B(T, p) = Z&(p) B(T, p) Z@(p)~". | ‘

When A'(T, p) and B'(T, p) are used, the expressions of the current and voltage

in the frequency domain for the constant voltage source are given by the following:
On the side of the terminals (1, 19);

Ly p) = ZEH ()~ He P 514 i A(T, p)} EoePo(p—iw) ™'}, } .9)
E(xy, p) = {eT P M1 i MA(T, p)IEfe#o(p—in)~'}, )

and on the side of the terminals (2, 2);

L(xe, p) = Z§P(p) 7" e 2P %B/(T, p) EofePo(p—iw) ™'},

Ey(%, p) = e P %B/(T, p) Eo{e ?0(p—iw)~'}. } ©-10

As seen from (5.8), when the transmission lines (I) and (II) are non-dispersive
ie. ZY(p) and Z¥(p) do not include p, A/(T, p) and B'(T, p) coincide with
A(T, p) and B(T, p) respectively.

The author is sure that such a problem as has been described in this section, .
cannot be easily treated by other methods.

6. Some examples

(i) As an example of the linear varying network described in $4, we will

consider the circuit shown in Fig. 3, which acts as a varying low pass filter.

R R
| — A" NNANANNe e AANANA—— 2
25(¢)
T S
(6
1/ 2/

SO =cO+20M cos (wet)
Fig. 3

The circuit equations are given as follows:
[Eluo ] _ [zn Zm] [Lcﬁ)} 6.1
EZ(?) ZZI ZZZ I2<p>

7:(0) = ¢,(0) =0,

where

and

Z(T, p) = Zo(T, p)=R+{a<°>+a<1><T<wo>+T-l@@)}%—, } (
6.2)

Zo(T, p) = Zu(T, p) = —{o® +0O(T(w)+ T~ ()} ;)1- .



322 T, WATANABE
From (6.1) we obtain:
5 B(D+E(0) = R+ L) +L($)),

3 BD—E(5)) = {R+2{+6(Two) + T @)} 3 14 T ~L(H)

and further by these equations,

1 11 ,
3 W +L) = 7 5 B9 +E(5),

%A TP —L(P)) = %pe-‘ﬂ(?‘(mo)'—T—l(wo)) (6.3)
X T T o) L (B(p) ~Ey(P))
25D
where B:i;wo and = s
Solving (6.3) for I,(p) and L(p), we obtain:
[BP] [T o] [B2] 6.0
L(» Yo Yol LE(pY
where
1 . 1
YulT, §) = Yu(T, ) = g {1+5U(T@)) 57 U@},
YolT, 1) = YulT, ) = g {1=pU-(T@)) 5 UT@D} L 6.5)
and .

UCT (@) = exp{ g (T(@) =T (0}

Now, assuming that
e (t) = A, et
e, (1) = A, eiot,
and taking into account the considerations in $4, part I, we obtain 7,(f) and #,(¢) by
converting (6.4) to the representation in the time domain as follows:

bl b el

Pult) = 9u(®) = 55 AL+n(D), }

where

1 6.7
() = 3 () = 5 A—2(®),

and

d tolaiod

L
p(t) = e-ivt 7 {U—l(eiwot) e T Soe

U (gi@o?’) dt’} .

It seems worth noticing that the steady state solution can be obtained if, for the
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lower limit of integration in z(#), zero is replaced by —eco corresponding to v >0,
while oo is taken when 7<_0.

(ii) As an example of §5, we consider the non-dispersive transmission lines in
which the varying condenser is inserted.

The elastive coefficient of the condenser is assumed to vary sinusoidally with
angular frequency ,, so that it can be expressed as follows: 4

S(t) = S,+24S cos (wt +¢) ,
or
S() = ot -+ giogt 4 g(=1) g—iwgt
where
o = 00, ASei? = ¢, ASe~i? = o1,

—_— | S®

Fig. 4

Now, the x-axis is taken along the transmission lines and the origin set at the
position of the inserting terminals, the right-hand side of the terminals being positive
and the left-hand side negative.

Next the surge impedance and the propagation constant in the frequency domain
are represented by Z; and y(p) respectively.

We assume that for the constant voltage source the waves are incident from the
negative side and they are given by the following expressions:

E(x, p) = Eye™ ¥ *{e=0to( p—iw) '}, }
I9(x, p) = Zg By e~"®*{o=Pho( p—iw) =} .

Then the currents and the voltages for x< 0 and x>0 are given as follows:
for <0,

E(x, p) = Eo{le‘“’”"-e“”"A’CT, e Po(p—iw)~'}, } 6.8)
Ix, p) = Zo E{e " "+ 7A/(T, p)}{eo(p—iw) ™'},
and for x>0,
B ) = B 0B (T pleseCpeio) ™, ) ©.9
I(x, p) = Z3 E, " ®*B'(T, p){e~#o(p—iw)~'},

where A’(T, p) and B/(T, p) are given by the following expressions:

AT, p) = (22(T, p) Z3'+1)",
B(T, $) = 1= A(T, p) = {1+22(T, p) Z} 22T, D Z'd s | (6. 109

Z(T, p) = {a(°>+(a<1>T(wo) RRCANEE et (wo))} %—
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Now, if we assume that these transmission lines are lossless Lecher lines or
coaxial cables with induction coefficient per unit length / and capacity per unit length
¢, the expressions for A’(T, p) and B'(T, p) become as follows:

AT, p) = pUNT (@) == U(T (@), ?

P+ e [ (6.11)

B(T, p) = 1=pU (T (we)) 77—= U(T (@)

P*L’“l
where
U(T(wy)) = exp {—.~2A—~ (e T (wy) —o“UT“‘(a)o))} ,
[YADN
_2Z,
PON
Substituting (6.11) in (6.8) and taking the inverse Laplace transforms of the

resulting expressions, we obtain the following expressions for i(x, ) and e(x, ) which
denote the inverse Laplace transforms of I(x, p) and E(x, p) respectively.

Putting v~'=+"Ic , we get, for x<0,

e(x, ) = E{P(x, ) —R(x, )}, } 6.12)
i(x, £) = Zg 'Ey{P(x, £) +R(x, D}, '
where
Plx, ) =0 (t fo_m.<0) }
P(x, ) = eie(Ct-t—~3) (t to__m>0)
R ) =0 (52 <0),
Rx, ) = % {U—l(eiwoctﬂs-i-to)> e ,r SZ e(-+zw)t U(euoo(t ) dt’}
(t~—t0+—v’i> 0)
with t*=t~t0+%, and for x>0,
e(x, 1) =0 <t~to—%<0>,
i(x, 1) =0 (t”to—%<0),
(% 1) = E, } it/ d —~1( piwglt/F vt >
ix, t) = Z;'E, X[e G {U (oot H0%) (6.13)

¥

s
- Loy .
xe 7 g TV (giegtritey) dt’}]
o

iz,
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where ¥ = ¢ to——:fv .

The steady state solution can be obtained by the same procedure as stated in (i).

7. Conclusion

By introducing the translational operator, the circuit equations of the linear fixed
network can be more naturally extended to the cases of the linear varying network
than by other authors’ theories.

Further, the ideas such as impedance, admittance, reflection coefficient and trans-
mission coefficient can also be generalized by the present author’s method. The present
theory can explicitly give the impedance and the admittance in terms of the circuit
elements. Particularly, as described in $5, we can easily perform the treatment of
the cases when the linear varying network is inserted in the transmission lines. Such
cases have never been treated by other authors.

As described in part I, in order to obtain the solution of the circuit equations, we
must generally rely on the method of series expansion.

However, according to this method, the transient parts of the solutions sometimes
take complex forms and so it seems necessary to obtain the transient parts in tractable
forms by means of a more ingeneous method. Since it is important to consider in
detail the transient parts which are associated with the stability, we should make
researches on this aspect of the subject. The author hopes to carry out the researches

in future.

Finally the author wishes to thank Professor S. Tomotika and Professor I.

Takahashi for their powerful guidance and persistent encouragement.
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