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Memoirs of the College of Science, University of Kyoto, Series A,
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INTRODUCTION OF THE TRANSLATIONAL OPERATOR IN
   FREQUENCY DOMAIN AND TREATMENT OF CERTAIN
             LINEAR DIFFERENTIAL EQUATIONS, I.

                                     BY

                            Tadashi WATANABE

                           (Reeei•ved Decentber 5, 1957)

                                 ABSTRACT

        In this paper, the author describes a method of solving the ordinary linear differen-

    tial eqaation whose coethcients are E-type functions, i. e. $ums of exponential functions
    of independent variable by introducing the translational operator in frequency domain.

    And further, the Maxwell equations in the medium whose material constants are
    E-type functions of time, are reformulated in the frequency domain.

1. Intreduction

    It is weli knowR that the ordinary linear differential equation with constant

coethcients can be easily solved by applying the Laplace transform. Pipes (1) attempted

to solve the ordinary Iinear differential equation whose coethcients are arbitrary func-

tions of indepeBdent variable, by applying the Laplace transform. He tried to obta!n

the solution in the form of power series of parameter. But he derived only a few

initial terms in the series for an example given by him though he obtained the

complete solution in the case when, the origlnal differentia! equation is an ordinary

linear differentia! equation of the first order.

    The author atternpts to obtain the solution of the linear differential equation by

applying the Laplace transform, under the restrictioR that the coeMcients are expressed

by periodic functions* of independent variable, or more generally, expressed by the

sums** of exponentials of independent variab!e. Such a function as the latter is

called E-type function in the following. When the coethcieRts are restricted to E-type

functions, we can introduce the author's translational operator in frequency domain

into the transformed equation and derive, in the frequeBcy domain, the general term

in the series of the solution that has not been derived by Pipes. Furthermore, with-

out the trouble of directly obtaining the solution, various ideas such as impedaRce,

reflection coethcient, etc. in the linear fixed electrical netwerk**,* can be naturally

   * It is assumed that they can be expanded in Fourier series.
  ** The infinite series may be inciuded, if the convergency is assured.
 ***` A linear electrical network whese circuit elements are constant in tima
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extefided to the linear varying eiectrical network*'.

    IR part I, the author considers the method of solving the ordinary 1inear differential

equation whose coeMcients are of E-type, by introducing the translational operator.

And further, the operator is introduced into the Maxwell equations in the medium

where the material constants e (dielectric constant) and !x (magnetic permeability)*'a`

are E-type functions of the time.

    And it is discussed how the propagation of the electromagnetic waves in the

wave guide filled with a material of fixed constants is extended to the case of a

material of varylng constants. .
    In part II, it will be discussed how the various ideas in the linear fixed electrica!

network are extendedi to the lineacr varying electrica} network.

2. Introductien of tke translational operator into the ordinary linear differentiai

   equations with E-type coefueierks

    The E-type function has the form:

                         ai(t) = S '"Sbat A,`,')(at)eifewctt,

                                bl==Ok=-Ni,pt

andi the ordinary linear differential equation with such coeMcients as ai(t) has the

following form :

                           ,X.l, ai, (t)::i:iy(t) =-' x(t)• (2. o

Taking the Lapiace transforms of both sides of (2. 1), we obtain:

                       L(,x:, ai(t) dd-7i.Eiy(t)) =- L.(x(t)) ."•:'*ti•kh

Then, putting Pk,.==P-iletu., it can be reduced to :

        ,X."., t?., ,,...A-i'llNii' t.,.AEi)(a){pktJ.i y(pk,.)- 'i,-.-X.,-ip3e;.""J"' y(j)(o)} = x(p) , (2. 2)

where
                   X.(,;',iwwii2(,X(,1',)',} y`"(o)=={e(J'/--,S--ip},..,•

   * .A linear electrical network whose circuit elements are varying in time. In the present

     paper, the consideration is restricted only to a network whose circuit elements can be
     expressed by E-type functions.
   tw In the dispersive medium, E and p cannot be defined in the time domain, but can be defined

     in the frequency domain (3). They scmetimes depend on the external electric and magnetic
     fields as wel} as on the frequency as parameters. The time variation of E and i- means
     that these parameters are varying in time. The description `'E and ge are E-type functions

     of time" means that the above-mentiened parameters are so varying as to be expressed
     by E-type functions of the tirr}e.
  **thi L and LHi denote respectively Laplace transform and its inverse.
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 Further, putting

                          ft .J IVi) tu n-i-1 ,            X'(P) == X(P)",Ztb.i .]l.li-., ,,.. pu.,,.AÅí" (fy) ,l.., pk",-.('rt'"'"i)y(i)(o), (2. 3)

the expression (2. 2) becomes:

                             '                  n v Ni, ca                 ittk caX,=e i,...puNi,.AE""(`U)Pkt;ati Y(2)k,di) == X'(P)• (2. 4)

    Now, when f(P) is an arbitrary functien of P, the author introduces the operator

T(di.) defined by the following expression, and calls it the translational operator in

frequency domain :

                          T(tu.)f(P) -- f(P-ito.). (2. 5)
Substituting this operator into (2. 4), we obtain :

                n v IVi,at               {X E] X A,(..i' (a) Tk(co.) P't-`} Y( p) - X'(p) , (2. 6)
               i--O at=Ok----Nildi
where

                      n v Ni,di n---i--1       X'(P) = X(P)+X llil] X Af..')(a) X Th(tu.)p,i-(iiv'ti)y(i')(o). (2.7)
                      i--o ca=:o k.-- --Ni,pt j'.=e

When the factor to Y(P) is denoted by S(T, P)i`, the equation becomes:

                          S(T, P) Y(P) == Xt(P), (2. 8)
or with an inverse operator S-i(T, P),

                         Y(P) --- S-i(T, P)X,(P). (2. 8')
Thus, if S-'i(T, P) is found, Y(P) can easily be obtained by (2.8') and then the

solution of the original equation can be derived by taking the inverse Laplace trans-

'form ef Y(P).

    Next, we can easily extend the above discussion to the simuitaneous ordinary

linear differential equations whose coethcients are E-type functions. The simultaneous

differential equations are given as follows: ,i
                    .xorrm, i\.',' ai;im(t) Zlli,t,'ii,;l'iym(t) =xt(t), (2. g)

            a,,,.(t) me Sl] Ni iÅí'j' `M AÅíli ;im) (cr) eile co cat , l == 1, 2, ny •• M. (2. 10)

                     pt =-;e k=,- - Ni,tu; lm

Taking the Laplace transforrns of both sides of (2. 9) and then introducing the trans-

lational operator into the resulting expressions, we obtain the following expression :

           nf ftzm v Ni,di;l7va
          {]at'n' IL" ]X ]X AÅí`;im)(a)Tk(tu.)p"itn-i}Y.(P) -= Xi(P), (2.il)
           m=1 iH-O ec==O k=-Ni,di;lm
                                  '
   *- The notation S(T, P) is used in order to show that it contains the translational operator

     as well as P.
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with
                            4. nlm v IVi,at;em           Xi(P) -Xi(P)-i- :X] Åí = X AÅíi;im)(a)Tk(to.)
                           m=1                                      te= -N                                  ct=o                               i=o                                           i;IM
                             ntm-i-1
                           Å~ =t p"t,n-(i "i' "i)yS,l') (O) , l -= 1, 2, ••• M, (2. 12)
                               J'•--e
where
                   Ylnt(P) =" L(Y,n(t)), Xt(P) ="L(Xi(t)),

                   ys.j'(o) == {djYd'-}-/•t(t)},..,•

If the factor to Y.(P) in (2. il) is represented by Si,.(T, P), we can rewrite (2. 11)

as follows:

                         4r                         ]2!] St.(T, p) Y.(p) -= Xi(p). (2. 13)
                        MLA-1
The equation (2, 13) can be written in a matrix form. Nameiy,

                        [S(T, P)][Y(P)] == [Xi(p)], (2. 13i)
where

                            Y,1(P) Xf(P)
                  [y(p)],.. Y2<IP) , [xt(p)II .., XE(,2b) , (2.iL4)

                            Y.(p) X5,(P)
                            Sil Si2 '''''' Slar

                            S2I S22 '''''' S2ff

                [S(T, P)]=: -••••••••••••••••••••••• . (2.15)*

                            Snt1 Snt2 ''''''SurM

The above equation has the same forrn as (2.8). And to solve the originai simu!ta-

neous equations, (2.9) reduces to obtaining the inverse matrix [S(T, P)]-i of
[S(T, P)]. The circuit equations of the linear varying electrical network are included

in the cases when nt.S{l2. They will be discussed in detail later on.

3. Some properties ef the translational operater

    The translational operator T(to.) has been defined by (2.5) for an arbitrary

function f(P) of P. So, the following expressions (3. 1) and (3. 2) can easily be showR

to be true:

                   Tk(a).)f(P) -= f(P-ifeco.), (3. 1)
                   Tlei(to.)Tk2(tu.)f(p) == Tk2(to.)Tlei(to.)f(P)

                                     == f( P ve i(fei riH le2) toct)

                                     == Tki+k2(to.)f(P), (3. 2)

   * The matrix element Si. is an abbreviated form of St.(T, P).
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        '
where ki and fe2 represent negative or positive integers inc!uding zero.

    From (3. 2) we obtain:

                Tfei(6t}.)Tk2(ca.) = Tk2(cc).)Tk2(to.) = Tlti"k2(ca.). (3. 2')

For two functions fi(P) and f2(P),

           Tki(to.)f,(P) Tk2(ca.)f,(P) == f,(P-ife,tu.)Tki+k2(to.)f,(P)

                                   == fi(P-ifeicoth)f2(P-i(k,+le,)ua.) . (3. 3)

Further, if f(P) is ana!ytic at P, the operator T(tuct) can be explicit!y expressed as

fo!lows :

                 T(co.) -- ,il.ll,(-i)"g/i-`.O-{?-t' d//li -L- exp (-ico.d-dp) .

    Now, we assume that F(T(tocr)) is a function of T(tu.) and does not include P

and that it can be formally expanded into a power series of T(tu.), i.e.

                          F(T(tu.)) =:E C,,T'i(di.). (3. 4)
                                      n
Operating i7(T(co.)) on a function Pf(P), we obtain, by (3.4), the foilowing ex-

presslon :

          F(T(tu.))Pf(P) =- {P(X C,,T't(w.))-in.(XnC.T"(oj.))}f(p) .
                              It n
From the relation

                                           a                   XnC.T"(to.) --- T(to.)                                               F(T(ca.)) ,                    n aT(diat)
we obtain:

         F(T(ca.))pf(p) --- {pF(T(tu.))-ica.T(to.)oT2..)F(T(te.))}f(p) . (3. s)

For the two translational operators T(e).) and T(tup), we can easily show

                   Tk(to.)Tfe'(top)f(p) = Tk'(tu.)f(P-ile'coB)

                                    ='=um' f(P-i(leco.+fe'cop))

                                     = Tk'(wp)Tk(to.)f(P), (3. 6)

i.e. .                       Tic(to.) Tk'(cop) ='` Tk'(tup) Th(ca.), (3. 7)

where both le and k' represent positlve or negative integers including zero.

    Next, aigebraical properties of Tfe(to.) are considered, though they wil! not be

used explickly in later paragraphs.

    When le passes through ail positive and negative integers including zero, with to.

fixed, we obtain an ensemble of Tk(to.). If D)? denotes the above ensemble, we can

show tha't the element Tfe(Åë.) of S)l satisfies the following conditions.
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    When lei, le2 and le3 are positive or negative integers (zero inclusive), the following

four relations are obtalned by (3. 2').

                       Tfei(tu.)Tk2((o.) = Tki+k2(to.) ,

i.e.

                       Tki"ie2(co.)E")Z; (3. 8)
                       Tki(to.)(Tk2(tu.)Tk3(to.))

                    .-.,-- TL•i(ca.)Tle2+k3(tu.) = TIti+k2•Yh3(tu.) ;

                       ( Tki (ca.) Tk2(to.)) Tk3(to.)

                    == Tki+k2(w.)Tk3(to.) == TkiÅÄiv'2"'k3(to.), (3. 9)
so that

              Tki(to.)(Tle2(to.)Tle3(to.)) == (Tki(to.)Tk2(tu.))Tk3(di.) .

And then
                   Te(tu.)Tlt(o).) =-,;]- TJe(o.)TO(tu.) =- Tk(e).) , (3. 10)

i.e. TO(to.) is the unit element belonging to M?.

                  T-k(w.) Tie(tu.) =: Tk(to.)T"-it(to.) = TO(tu.) , (3. 11)

i.e. T'-ie(to.) is the inverse of Th(tuat) and beiongs to D)?.

    From the relations (3. 8) to (3. 11), we understand that Dln is a group and that it

is an Abelian group by (3. 2').

4. Solution of tlte ordinary linear differential eqttation ef the first order with

   E-type coeMcients

    The ordinary linear differential equation of the first order can be generally solved

iR the time domain by introducing an integrating factor. Here it is discussed on an

example, whether the process corresponding to the integrating factor exists or not.

For example, we try to solve the following equation: '
                               [l( +a,(t)J, =- eito', (4. 1)

                          a,(t) =: A8i'+2A{i' cos to,t. (4. 2)

Corresponding to (2. 8), the fol!owing expressions are given :

                           S(T, P) Y(P)-Xt(P), (4. 3)
                   9S,Ts,PlÅé,'t,iils`L';:.".,1asT.(too'"T-i(tuo"•] (4.4)

Substituting the express2on :

                     F(T(w,)) == exp {3(T(di,)-T-i(tu,))}

into (3. 5), the following relation is obtained: "



                    .Y,[.T:,a,':,'i l.. // glliL,;III(8,g'j ]

                                le
we obtain

            Y(P) pt IEr]• Cf,-'CÅí.t'Tk(tue)(P+A6i')-"iTk'(tuo)(P-iw)-i
                  fe)ler
                  -Yy(O) Z] Cknv'Cf,fr'Tk'(cel,)(pÅÄA6i))-'.
                       k,kt
The relaÅíions

                L-'i{Tk(to,)(P+A6i')-iTfe'(wo)(P-iw)-'}

                  .. (eiblot)ke-A8i't S,`e(Agi'+i")t'(eiwot')ktdtx,

                L"i{ Tk(tuo) (p-t-A6i')-i} =: e-A6i't (eiutot)k

can easi!y be shown to be true.

   Taking the inverse Laplace transform of (4. 6), and utilizing the above

we obtain: •
           y(t) "kllt/.,Cf`..-)(eiblo')kewwA6i)tS;e(A6i)Ht-i")t'ci(,,+)(eiwotbkidt!

                -l-N(O) = C,(,-'(eicoot)ke ne A6i'tcÅít) .

                     kfle1
Then, using (4. 5), the above expression becomes:

              y(t) .., um"i(eiblet)e-A8i'tj:e(A6i'+ico)t'u(eitoot')dt'

                   -s-y(o) u-'(eicaet) e-A6i't u(1) .

From the above descriptions, it follows that when a,(t) takes a rnore general

                         ai(t) == li] Aii)eihtoot ,
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      exp {B(T(w,) - T-i(tu,) ) }p

   =: P exp {B(T(te,) - T-'(tuo))}-ituoB(T(too) -l- T-i(to,)) exp {B(T(to,) -T-i(w,))} .

Further, putting B =Ay'/ino and u(T(too)) ==exp{fl.I2i,'(T(ej,)-T-i(cae))}, we can

show from the above relation that the expression (4. 3) becomes:

        {U(T(die))S(T, P) U-i(T(too))}U(T(too)) Y(P) == U(T(too))X'(P) ,

where
                 U(T(tu,))S(T, p) U-i(T(to,)) =-. p+ASi) .

Therefore, we obtain :

              Y(p) :=-=- Um'(T(tu,))(p-}-A6i))"iU(T(to,))X'(p) .

When U(T(too)) and U-'(T(tue)) are expressed in such power series of T(to,) as

                              ... <-t)
)5

.
4(

)6
.

4(

relations,

form

)1n i4f
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the solution of (4. 1) is given in the same form as (4. 7) iR whick, however, U(T(tuo))

defined by the foiiowing expressions is used :

                   G(T(dio)) "= X'Af,i'Tk(too) ,
                   U(T(too)) ww e;p{i.l5g. ST(toO)G(TT)dT}, ] (4' 8)

where the dash in X' means that fe =O is exciuded from the summation.
                 k

5. Derivation of ffill's determinantal equation in the frequency domain

    Hill's determinantal equation has been derived frorn the consideration in the time

domain (2). In this paragraph, the derivation in the frequency domain is considered.

Hil?s equation is given by

                        211ill- + ,, .xentO.A2.2'eiietooty :=-= o ,

                        A;,2' == A.L2,l.• ] (5' 1)

This is transformed into the frequency domain:

                        S(T, P) Y(P) == X!(P), (5. 2)
with  zs(Ts)pl ;,p(2,;.iii, l,g2'.Tk(cae)•} (s. 3)

When
               Y(P) :='=n n-Xco-ea p- (Lt9i-i in coe) + nlil"l eopgi (/2'b-'i-' in coo) (5' 4)

is substituted into (5. 3), we obtain:

            P ( X bn rF X b,',) ÅÄ{ X (itL -{- in coo) b. + X (pe'ÅÄ in tu,) b4}

               tt tt t; tl             -Y EI (P-(pt+in too))M'{bn(pt -t- in too)2+ EI] Ain2' bn-m}

               n ";             -y Åí (P-(lx'ÅÄin to,))-i{b,1(pt'+in ca,)2+ :Iil] AÅí?'bA.".}

               n 7n             -- Py(O) ÅÄy'(O) . (5. 3!)
Dividing botk sides of (5. 3') by P and making P->oo, we obtain:

                           Z] bn+= bA =: )'(O), (5. 5)
                           nn
and when this is substituted, (5. 3') becomes :

              { X (pt -F in coo)b,, + = (Le'-t- in (v,)bA}

                nn              S- X (P pt (ptÅÄin tuo))-i{bn(pt+in too)2-t- = A5.2' bn-";}

                tl )n              -l- ];l,: (P-(xi'+in wo))-i{b,',(pt'-l-ino)o)2-l-• :ll,?, AÅí?)b,'i.m}

             -- yX (O) . (5. 3U)
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 The above expression becomes with p->oo :

                    X(pt+in tuo)bn -f- X(pa'+ in we)b,Åí == y'(O) . (5. 6)
                     nn
 Further, substituting (5. 6) iRto (5.3"), and multip}ying the rest by P-(pt-FincDe) or

 P-(pt'+intu,), and then making P->pt+intoo or P-pt'"inwo respectively, we obtain:

                       bn(Lt+in cOQ)2+=AÅíi2'bn"n --' O, (5. 7)
                                     21;
                       bA(pt'+in coo)2+XAin2'b,1-,. --' O. (5, 7')
                                     Jn
Eliminating b. (or bA) from (5.7) (or (5.7')), we obtain ths equation for determining

 pt (or pt), i.e. Hill's determinanta! equation.

6. Method of series expansion

    If the inverse of S(T,P) in (2.8) or that of [S(T,P)] in (2.13') is obtained,

the solution of the origina! differential equation can easi!y be obtained, but it is

dithcult to obtain the inverse in a compact form except in the case of ordinary dif-

ferential equations of the first order. In such cascs, it is useful to obtain the inverse

S-'(T, p) or [S(T,p)]-i in a series form by expansion, as wil1 be described in the

fo!lowing lines. However, the va!idity of the solution in a series forrn. depends on the

convergency of the series.

    First, we consider the ordinary linear differential equation. Ptttting

                   nv                   li XAgi)(ev)pn -i -- H'(O) (p), (6. 1)
                  i=o pt--o
                   n v Ni, tu                   X X X' A8i'(a) Ti"(ca.)pn-i = H'(')(T, p) , (6. 2) '
                  i--o dit=o ks-Ni,at

(2.6) can be rewritten as follows:

                      {H(O)(p) +HCi)(T, p)}Y( p) - X,(P) . (6, 3)

With the notations :

                       (H(O)(p))-iX'(p) .., X,t(p) ,

                       (H'(e)(p))-!H'(i)(T, p) = h(T, P) ,

(6. 3) is further rewritten :

                      {1+h(T, P)}Y(P) - X"(P) ,

from which we obtain:

                              co                       Y(p) =:-=- Åí(---1)"{lt<T, p)}j'X"(p). (6. 4)
                             2t m- O

    The simultaneous ordinary linear differentiai equations can be treated in a similar

way to the above. Namely, we write:
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           S,.(T, p) = H!O.,(p)+HEptT, p> ,

                  ntnt v           H"E%•(P)=,X..,,/tth,,(8i;k':.i2tze"'"'-i• ) (,.,)

           Hll,)(T, P) la' X X X' AÅíi;im)(a)Tk(tu.)p"t}n-i,J
                    i--o att=O k=t--Nitat;pn

                       HÅíe,> HSO,) ••••••••• HIO,}

                       HEe,) HSO,) ••••••••• HE9,l•
                                                   (6. 6)              [Il(e)(p)II :=-=- ....,...............,......... ,

                        ---t-----l-------t------------
                       H'fuQl H'IBI ''''''''' HfuQju'

                       H{i,) Hli,) ••••••••• Hi},l•

                       HSI) N'EL) ••••-•••• ffSl2•
                                                  (6. 6')            [flCi)(T, P)] -= ..........m-..-••••--- ,

                        -----l---------------t----t--l
                       H5,2•l HSI•} •••••••t• HS],

where HSOA:-'HiO.'(P) and H!iS==H!},}(T,p). Using (6.6) and (6.6'), we obtain:

             [Y(P)] =; { ]{i] (-i)n[h(T, p)]n}[xn(p)],
                     n--Owhere
             [H(o)(p)]-i[H(i)(T, p)] -= [Iz(T, P)],

             [H(O)(P)]-![XX(P)] = [Xii(p)] .

  As a first examp}e, we consider the eqttation :

              S-2tX-+(A8i'+2A`,i' cos tuot) [il/ --FA62'y == eitu', (6. 7)

where it is assumed that A6i), A{i), A82), tu and tuo are all real.

  Transforming it to the representation in the frequency dornain and taking into

account the following expressions :

        ll,I.(e),:;P.-,ag,IIih{ge1,(g).+,,5,ee`1',{i?g,wr91(I-gl(,),}•l ,6.s,

we obtain the (n+1)th term of (6. 4) as foilows:

      p, + ,,IIi,II, iii "+ A6,, { ( T(to,) + T- i ( tu,) ) p, H- A6,ep + As,, }" Xi ( p)

                                                  •     == p, -s- AIi,iliiii 'IFAs2, Sn {Tei (ojo)billz--A- -6/ie- -p-- L-1-ttg2s Te2(toe) p-2 +A6iep ..FA62)

                   Å~ b•• ••• TSn (coo) p2 -y As4p A-.ri4E,;i2s} X'(P) ,

where each of ei,e2,t••, and en can take only 1 or -1 cand Sn means the sum Åíal<en



      p2 -l- Asi)p+A62) @'i i gi { (p-ie,, 2, '. .. , i wo)2 {-• A6i)(p - iei, 2,... , i tue) +A62) } '

where el, 2, 3, ... ,n== el -F e2+ '''''' ÅÄen•

    Substituting (6.9) into (6.4) and taking the inverse Laplace transform

resulting expression, we collect the terrns that have the time factor eiblt, Then,

obtain the follewing expression which may be called the steady state part

solution :

           Ysteady(t) :='"m z/6,2)+ittuillit6b ww w'2

                          oe .                     -}+ eitot .pu1 (-i)"2<l.ii)'i S.B(ei, e2 , ny •• , e.)etEi,2, ''', ntuot , (6. Io)

where
        B(ei, e2 , '`', en) == w{ tu -P ei, 2, ... ,. cae}-'{A82) -i- itu A5i)- ca2}-"

                      Å~ ,#i l' ]2I52) -{-i((t) :l e,,,,(.`O. .l!iEtii3'A' 'gi)i-tuO(),,+,,;,, ..., , a}',')2}• (6• i[•1)

We can easily show that y.t..dy(t) is absolutely convergent, when ]2Ali)/A6i)l<1.*

   As a second example, we consider the fol!owing equation:

                   Slii//+(A82'+A12'e-'cot)y-O (a>O). (6.12)

   Now putting A62) :toZ and A{2'/A82'==rc, h(T, P.) and X"(p) are given as follows:

                    hlT;,;i:[;co,///8{,idtg,?;l,T,//g),,6,,,] '(6•i3)

where we assume that (oL and rc are real.

   By (6.4) we obtain:

                          oo fl        Y(P) ::'• X't(P) ÅÄy(O) X (-1)"(co?. rc)'i(Pg-•naf) ll {(pÅÄlav)2-{- a)Y.}-"

                          n=tl l=O                                                            '                                         .                           oo 7t                    +y'(O) E] (-l)"(tuZ rc)" .IT {(p+la)2+co,2.}di.
                          n=1 l=ttO
Then, defining A.(P) and B.(P) by the following expression:

                 Y(p) -= X"(p)+y(O).Xco..,(-1)"(gttt)'k.(p)

                             + yi (o) .xO.e. , (- 1)n ( `Oii,l!i)"B. ( p) ,
                                                                   (6. 14)
                     .T
and denoting the inverse Laplace transform of A.(P) and Bn(P) by An(t) and Bn(t)

respectively, we obtain :

' ": Reference shouid be m5ae''io Appendix.
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over ail the combinations of ei, s2,•••, and e.. Further, the above expression

modified as foliows :

          AÅíDn n (p-ie. 2, ... ,lwo)X'(P-ieb 2, ..•,l too)
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can be

 (6. 9)

of the

   we
of the
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where A.(t) and Bn(t)

An(t) = Im iei"Lt )Si] e-dikt

                ie =' e

       -ei`e1}t(a-Co}IL)jllt/IIIble-'a;ltt

            i`t,Lt tl
Bn (t) == Im e-..-.
            COI k:`-O

We can also easily show

7. Formuiatien ef

   e and It are E-type

    In the frequency

that the material constants

E-type functioRs of time

the phenomenological

)t(y

era

      T. WATANABE

 =-A y(O) cos a}zt+toxiy'(O) sin coLt

  +J'(O).=O=O,(-1)"(e,',tl}'tL)"An(t)

  'l-y'(O) ,}il.", (-1)" ("tt2,rc)'iB.(t) ,

given by the following expressions :

                r(1 -- f, ) 2

(6. 15)

] (fe A-- 1) IU' (n - Ie --- 1) Z-' (le + 1

                  r(

   t'

iS)2
(r) n- le -yi+k, )

                          fT(fe+i)r'(n-fe).zm'(kÅÄi--ll7,)r(n-leA-•i+i2') ' (6.i6)

                E'i]em-cale'1}i;'k'A'ip//'s'1•i;('hi"A'[1i"ilflEi:i-:}-')iS,-)f'(n-ie"+lme) '

                        X::'" (2evw,.)ii2 n;}rl.

                       that (6. 5) is absolutely convergent*.

                   Maxwell eqilations in the medium whose material constants

                      fllnctions of time

                   domain, we will formulate Maxweil equations in such a medium

                         (dielectric constant E and magnetic permeability lx) are

                        t, by introducing the translationai operator. We can write

                   e!ectromagnetic field equations as foliows, in M.K.S. units:

                                    OB(r, t)                        7xE(r, t)+ ot =O,

                                    OD(r, t)                        VXH(r, et)- ot -" J(r, t), (7. 1)
                        r•D(r, t) == p(r, t),

                        7•B (r, t) - O.

Taldng the Laplace transforms of equations (7. 1), we obtain:

                   7XE(r, P) -l-PB(r, P) =- B(r, O) ,

                   VXH(r, P)-PD(r, P) -a- J(r, P)-D(r, O),
                                                                       (7. 2)
                       7•D(r, P) -' ,o(r, P),

                       7•B(r, p) ta- O.

   * Reference should be made to Appendix.
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The Laplace transforms oÅí the quantities which appear ln (7. 1), are represented by

the corresponding symbols in which t is replaced by P. Thus, for instance,

                          L(E(r, t)) -E(r, P),

                          L(ff(r, t)) =: H(r, P), etc.

B(r, O) and D(r, O) mean limB(r, t) and limD(r, t) respectively. We will derive
                         t->e t->O
connections between D(r, P) and E(r, P), and B(r, P) and H(r, P) by introducing the

material constants and the electric and the magnetic polarization P(r, t) a.nd M(r, t).

From
                      D(r, t) =: seE(r, t) -l-P(r, t),                                                        ] (7. 3)
                      B(r, t) :pt,{H(r, t) rf-M(r, t)},

we obtain, by talcing Laplace transforms :

                      D(r, P) -= e,E(r, P)+P(r, P),                                                        ] (7. 4)
                      B(r, P) =- pt,{ff(r, P)+M<r, P)},

and

                      Mi•:;',!'-S,e.ig.(I',91kk(l',l,',' ] (7•s)*

where "z' e(T, P) and Nm(T, P) are tensors of the second rank and may be called the

electric susceptibility operator and the magnetic susceptibility operator. The iJLcom-

ponents of - z' e(T, P) and tz".(T, P) can be written as fol!ows:

                            y Nid; cte
                   (1.X'.'li,iilllwwlt/l]Ok=iv-i,III.;lll';i'-;ctellfiiill",lcr.,))T.'11`,t,'i))1l (7'6)

                           st =O k---Nij';ann

where i and j represent x, y and z.

    When the mediurn is isotropic, le(T,P) and Z.(T,P) reduce to the simple

scalar operators, whieh we will denote by -xe(T, P) and x,.(T, P), fespectively and we

obtain :

                     gE.r;,'i.i-zo,`,kZe,ffX;IE,X'.9,'J.] (7•7)

    New, putting

                        ;IT.l p,?, l:i,(ec xÅíf,fie,)]i ] (7.s)

    * Here are introduced the relations between P(r, P) and ECr, P), and M(r, P) and H(r, P),
     since E and Ft, and accordingly )f, and x., are generally depencient on the frequency.
     Reference should be made to the footnote to the Introduction.
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                    H.(r, p) - :k,, ii(T, P)b-.ffx(r, P)}

                    H.(r, p) - fi-hfe.-2r.(T, p) o-OyH.(r, p) ,

                                            a                    E.(r, p) = -feF,2Ppt(T, P) syT Hz(r, P) •

                                          o                    E.(r, p) -= feE2ppt(T, p) o-.H.(r, P),

where F(P) is an arbitrary functioR of P.

    For TM waves (H.(r, t) =O)., E.(r, P) is given by

                      Ez(r, P) = Åë,,(x, y)e\V2(T,P)""G(p) ,

where ip.(x, y) is defined by

                          (t{ltii,+oa)2,,-t-kA2)g6.(x, y) -- o

subject to the boundary condition Åë.(x, y)=O at the wall and

and assuming that B(r, O) =O, D(r, O) == O, and p(r, t) == O, J(r, t) :k- O, the equations

(7. 2) become as follows:

                     vxE(r, P) -5Ppt(T, P)H(r, P) '-' O,

                     7xN(r, P)-Pe(T, P)E(r, P) -= O,
                                                                       (7. 9)
                         p•E(r, p) -O,
                         p•H(r, p) == O.

    Next we consider the propagation of the e!ectromagnetic waves in the hoilow

metallic (Perfectly conducting) tube fi1}ed with such a medium that the equations

(7. 9) are valid. When we take the e-axis along the pipe axis and the x, y axes in

a plane perpendicular to the pipe axis, we can express in the frequency c!omain the

propagation modes as follows :

    For the TE waves (E.(r, t) ==O), Ha(r, P) is given by

                      N.(r, p) == ip.(x, y)e;7=(T,P'ZF(P), (7.10)

where Åëtt(x, y) is defined by

                         (oai,+t/S3i,},+le?t)gb.(x, y) == o,

                               adin
subject to the boundary condition                                  =:O at the wall ac nd                               an

                       r2(T, p) =: re.(T, p)-le,2,,                                                      l (7. io')
                       7•2(T, p) - pe(T, p)pxi(T, P) .                                                      '

The other field components are expressed as follows:

                             - rm,.. a

(7. 11)

(7. 12)
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                       r'2(T, p) =r.'2(T, p)-le;t2, l
                                                                      (7. 12x)                       7'2(T, p) == p!z(T, p)pE(T, p). I

The other field compoRents are given by the following expressions :

                                                   '                    H.(r, p) =: feA-2pE(T, P) ljl Ex(r, P), ,

                    H.,(r, P) =: -feA-2Pe-(T, P) a-O.Eg(r, P), l

                    Er(r, P) :== ';-le;t-2rk(T, p) b-O.E.(., p), i . (7'i3)

                    Ept(r, P) =' ;F' le•.'-2r2(T, p) o-OyE.(r, p), "

where G(P) is an arbitrary function of P. From (7.10)-v(Z13), it is evident that

in the frequency domain, the propagation mode takes the same form as that in the

medium of fixed material constants, except that the propagation constant operator

7't(T,P) or "k'(T,P) and the material censtant operator pt(T,P) or e(T,P) include

the translationa! operator.

8. Conelusien

    Summarizing we may say that the descriptioRs in the preceding paragraphs could

be an answer for the foliowing prob!em. How can the method of solvingthe ordlnary

liRear differential equation with constant coeficients be exteRded by the Laplace

traRsform to the case of the ordinary linear differentia! equation with E-type coeMcients?

As shown ln bg2, to solve the ordinary linear differential equations (2.1) and (2.9)

is reduced to obtaining the inverses of S(T, P) and [S(T, P)].

    In the special cases shown in bR4, the inverse of S(T, P) was easiiy obtained in

a compact form, but in the general case it wili be diMcult to obtain the inverse in a

compact form. Then, in such a case, the method of the series expansion shouid be

used. Though in S6 the geometrical series expansion was utilized, it is hoped that

the more powerful expansion method will be devised,
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                          '
                                 Appendix

   It wi!1 be shown that (6.10) and (6.15) are absolute!y convergent. First, the

convergency of (6.10) is examined. By (6.11), we obtain the fo!lowing inequality
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     IB(ei,e,•••,en)i< A62)+z•toe)A,a)-to2 lA6i)i-(ti-i)

                      Å~ IA62) -i- iA6i)(ca -F ei, 2, ... , ,t tuo) - (w+ei, 2, ... ,n too)2I -'i .

We represent the minimum of ito--eb2,...,ntooi for all the vaiues of n, by wm.

   Now putting

                X'l'sciipa-2)i'iZitu,Asbf).:m, Whhgnn cadiij,t/.-'8j )

we obtain:
             i t<i 62)+i(a) ÅÄei, 2, ... ,n too)A5i'- (w+ei, 2, ••• ,n cae)2l -'< iil)- ,

         :• lB(si,e2,•ny•,e.)i<-il}-iA6i>I-".

Since in @nB(si,e2,•••,en) are included 2'i of B(ei,e2,•ny•,en)'s,

                      l @.B(et, e2, ••• , str) l< 'jl5" 1 A.Z,i) "•

Therefore 1(-i)"A{i)"s.B(ei,e2,•••,e,,)eiEi,2,"',ntoeti<-ills- 21iAi6iii)) 'i,

         :• ysteady(t)-A62,--.ie5toA's,,-co, < ;l}t-,tW., 2AA6i,',) ".

From the above inequalities, we see that y,t..dy(t) is absolutely convergent when

12Aii'/AS'1<1 i.e. i2AS'1<iA8i'I, under the assumption that A6i', A62' and tu, are

so taken that m-7F'O.

   Next the convergency of (6.5)' is examined. Putting L""'(X"(p))==x"(t) and

dy(t)==y(t)-x"(t), we consider the convergency of dy(t). We can easily show the

foliowing inequalities :

                  r{Åí/liiijt2}/,) <(x2)k= (2crta.)k (o,>o)

and

                  7(nC(: i'k+' )i,,) `(2:.)"-k,

        "' ic#oe-diktr(fe.i)r(.-fe.i);'((lltl'lll)S,)r(n-fe+i+ti)

           < (i,to.)"St ! ,S, i,! (nnim! fe)!e-ctkt =: (i2`Et,I,-lil)" -jlr/ (1 -t-e-ptt)n .
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                     r(bei)](n-fe)V(fe--i-f,)r(n-k-yi--f,)

                   nl                  )                          (1+e-ptt)n-•i.                    (n -1) !

                   inequalities are estab!ished :

                l(-1)n(tu.i2,rc)2A.(t)l<-iY: ta2itt-"-"a+e"'att)"

                                   av 1 coLrcln                                 +Z[JxT (n-1)! J2T. I (1+e-at)"-i,

               s(-1)n(Ce.r,e,rc)2B. (t) l<,-,1. -.1:, `20",,rc il't(1+e-'at")".

Finally

         1dy(t) I<1y(O)l.IIIii, -jl-IL { Zt-rc- (i+e-'dit)}"

                 +ilnllY(O) ] .]Il), (n-11) !{ t/ll'2frc' (1+e-ctt)}"Mi

                 ÅÄ,hn,i,]y'(O)l,t9.,-jl-T,{g,l-L.rc,(i-Fe-•cot)}"

               <ly(o) 1e tth"C (1+e-di') -iJ-el. I y(o) le tha"C (1+e-tu')

                                  tuz
                 + IY'(O) l e g2nvL."`](1-}-e-tut)

                    tuI
               = (i "(O) i " 8.1 1 J'(O) ] -i- I`Yt(2) l) , '2t'` (i+e-tot) .

Thus it has beeR shown that dy(t) is absolutely convergent and so is also pt(t).
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