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INTRODUCTION OF THE TRANSLATIONAL OPERATOR IN
FREQUENCY DOMAIN AND TREATMENT OF CERTAIN
LINEAR DIFFERENTIAL EQUATIONS, L

BY
Tadashi WATANABE
(Received December 5, 1957)

ABSTRACT

In this paper, the author describes a method of solving the ordinary linear differen-
tial equation whose coefficients are E-type functions, i. e. sums of exponential functions
of independent variable by introducing the translational operator in frequency domain.
And further, the Maxwell equations in the medium whose material constants are
E-type functions of time, are reformulated in the frequency domain,

1. Introduction

It is well known that the ordinary linear differential equation with constant
coefficients can be easily solved by applying the Laplace transform. Pipes (1) attempted
to solve the ordinary linear differential equation whose coefficients are arbitrary func-
tions of independent variable, by applying the Laplace transform. He tried to obtain
the solution in the form of power series of parameter. But he derived only a few
initial terms in the series for an example given by him though he obtained the
complete solution in the case when the original differential equation is an ordinary
linear differential equation of the first order.

The author attempts to obtain the solution of the linear differential equation by
applying the Laplace transform, under the restriction that the coefficients are expressed
by periodic functions™® of independent variable, or more generally, expressed by the
sums™ of exponentials of independent variable. Such a function as the latter is
called E-type function in the following. When the coefficients are restricted to E-type
functions, we can introduce the author’s translational operator in frequency domain
into the transformed equation and derive, in the frequency domain, the general term
in the series of the solution that has not been derived by Pipes. Furthermore, with-
out the trouble of directly obtaining the solution, various ideas such as impedance,
reflection coefficient, etc. in the linear fixed electrical network™* can be naturally

* It is assumed that they can be expanded in Fourier series.
** The infinite series may be included, if the convergency is assured.
#% A linear electrical network whose circuit elements are constant in time.
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extended to the linear varying electrical network™.

In part 1, the author considers the method of solving the ordinary linear differential
equation whose coefficients are of FE-type, by introducing the translational operator.
And further, the operator is introduced into the Maxwell equations in the medium
where the material constants e (dielectric constant) and 2 (magnetic permeability)**
are E~type functions of the time.

And it is discussed how the propagation of the electromagnetic waves in the
wave guide filled with a material of fixed constants is extended to the case of a
material of varying constants.

In part II, it will be discussed how the various ideas in the linear fixed electrical

network are extended to the linear varying electrical network.

2. Introduction of the translational operater into the ordinary linear differential
equations with E-type coeflicients
The E-type function has the form:
v Niya ¢ 1l ot
a;(t) = 2 2 AP(a)e™,
&=0 =~ Ni, 0

and the ordinary linear differential equation with such coefficients as «;(#) has the

following form:

?»l, dvz—i

25 a; (D) s (D) = x(D) . (2.1)

= dt
Taking the Laplace transforms of both sides of (2.1), we obtain:

7 dn—i eateste

L 5 an Tmey®)) = Llxe)

Then, putting pg,,=p—ikw,, it can be reduced to:
Nis

B AP@{E Y =S A 3O = X, 22
30 7=0

{=0 @=0 fo== — N

Ms

where
y(0) = 5 .
Yip =L<y<t>>,} { dt }

* A linear electrical network whose circuit elements are varying in time. In the present
paper, the consideration is restricted only to a network whose circuit elements can be
expressed by E-type functions.

*#* In the dispersive medium, & and x cannot be defined in the time domain, but can be defined
in the frequency domain (8). They sometimes depend on the external electric and magnetic
fields as well as on the frequency as parameters. The time variation of & and p means
that these parameters are varying in time. The description “& and p are E-type functions
of time” means that the above-mentioned parameters are so varying as to be expressed
by E-type functions of the time,

#% F and L-! denote respectively Laplace transform and its inverse.
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Further, putting
. n—i—1 L .
X=X+ 5 5B AP @ ey, @)
i= =0 k=-Ni, & F=
the expression (2.2) becomes :
n

palps! ?ﬁtwA(”(a)p” 2 Y(pra) = X'(p) - (2.8

Now, when f(p) is an arbitrary function of p, the author introduces the operator
T(w,) defined by the following expression, and calls it the translational operator in

frequency domain :

T (@) f(P) = f(p—iny,) . (2.5)
Substituting this operator into (2.4), we obtain:
(55 B AP @THeor Y = X, @6
where
X(p) = X(p)+ f: -“w Ni’;: A () ":2";1 TH(w)p=CGtim™yi (). (2.7)
£=0 iy j=

When the factor to Y(p) is denoted by S(T, p)*, the equation becomes :

S(T, pY(p) = X(p), (2.8)
or with an inverse operator S—*(T, p),

Y(p) = ST, pX(p). (2.8)

Thus, if S~'(T, p) is found, Y(p) can easily be obtained by (2.8) and then the
solution of the original equation can be derived by taking the inverse Laplace trans-
form of Y(p).

Next, we can easily extend the above discussion to the simultaneous ordinary
linear differential equations whose coefficients are E-type functions. The simultaneous

v

differential equations are given as follows:

M My d i
> Z Aiam () —m —,ym(w = %,(t), 2.9
M=l jom dt Im
v Nt a;1m s ot
Gm(®) = 3 31 Agm(a)ethedt =12, M. (2.10)

®=0 f=—Ni,o; Im

Taking the Laplace transforms of both sides of (2.9) and then introducing the trans.-
lational operator into the resulting expressions, we obtain the following expression :

(53 T pgam (@) TH ) V() = Xi(p),  (2.10)

* The notation S(T, p) is used in order to show that it contains the translational operator
as well as p.
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with
M R v Niy gitm
Xi(p) =Xa(p)+ 21 25 23 2 A () TH (o)
m=1 {=0 a=0 k=_Ni;zm
nlm_iﬂl .
X2y PremGTOY0), I=1,2,---M, (2.12)
j=0
where

Youl(p) = L(ym(®),  X(p) = Lx(@®)),
50 = {50},

If the factor to Y,,(p) in (2.11) is represented by S,,(T, p), we can rewrite (2.11)
as follows:

PENCEN AOESIOR (2.13)
The equation (2.13) can be written in a matrix form. Namely,
[S(T, 1LY (»] =[Xi(p], (2.139)
where
Yi(p Xi(»
Y, 2 :
rrepl= 70 1= B (2.14)
V() X5e(p)
Syt Sy e Suur
Szx Szz """ SZM
[S(T, P = | e, . (2.15)%
SNI Sﬂ[z """ Sl[ﬂ[

The above equation has the same form as (2.8). And to solve the original simulta-
neous equations, (2.9) reduces to obtaining the inverse matrix [S(T, p)]~* of
[S(T, p)]. The circuit equations of the linear varying electrical network are included
in the cases when #4,<C2. They will be discussed in detail later on.

3. Some properties of the translational operator
The translational operator 7 (w,) has been defined by (2.5) for an arbitrary
function f(p) of p. So, the following expressions (3.1) and (3. 2) can easily be shown
to be true:
TE(w ) f(p) = f(p—ikoy) , 3.1
Tr(wg) TF2(w,) f(D) = T*2(wy) TF1(wa) f(H)
= flp—i(ky+k)w,)
= Tr**2(w,) f(9), 3.2)

* The matrix element S;,, is an abbreviated form of S,,(T, p).
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where &, and k, represent negative or positive integers including zero.
From (3.2) we obtain:

Tr(@g) Th(wy) = Tre(wy) Thi(wy) = Th*h(w,) . 3.29
For two functions f,;(p) and f,(p),
Tr(we) L) TF2(w,) f2(0) = fi( p—ikwy) T *2(w,) f( )
= f1(p—ikw ) f(p—ilk;+ k) w,) . 3.3

Further, if f(p) is analytic at p, the operator T(w,) can be explicitly expressed as

follows :

Eo y n d'l R
T(og) = 53 (-1 G2 B exp (ioa ) -

n=0 %‘

Now, we assume that F(T(w,)) is a function of T(w,) and does not include p
and that it can be formally expanded into a power series of T(w,), i.e.

F(T(wa)) = 23 CiT" (@) - (CAY)

Operating F(T(w,)) on a function pf(p), we obtain, by (3.4), the following ex-

pression :
F(T(0x))pf(9) = {p(2 CaT"(0a)) —iwg (L nC T (00)) } F(5) .
From the relation
S 0C, T (00) = T(wa) s FCT (@)
we obtain :

FCT(@)7() = {pF(T(00) =i T(02) s FT@) £ . (3.5)

For the two translational operators T(w,) and T(wg), we can easily show
T#(0y) T* (wp) f(p) = T*(we) f(p—ik'wg)

= f(p—i(kwy+kwg))
T% (wg) T*(wa) (D) 3.6

i

ie.
Tk (w,) T* (wg)

I

T#(wp) TH(wa) 3.7

where both £ and %’ represent positive or negative integers including zero.

Next, algebraical properties of T#(w,) are considered, though they will not be
used explicitly in later paragraphs.

When k£ passes through all positive and negative integers including zero, with w,
fixed, we obtain an ensemble of T*(w,). If M denotes the above ensemble, we can
show that the element T*(w,) of I satisfies the following conditions.
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When k,, k, and k; are positive or negative integers (zero inclusive), the following

four relations are obtained by (3.2").

Tk (wg) The(0g) = TH*2(0,) ,

i.e.
Trythz (@) € M ; 3.8)
TH1{wg) (TF2(wy) Trs(wy))
= Th(o) THs(0,) = Th(o,)
(Th1(wq) TR2(w0g)) TFs(w4)
= Trythe () Tra(wy) = Thithe"ks(w,) , (3.9
so that
Tr1(wy) (Tr2(wy) TFs(w)) = (TF1(wy) T*(0q)) TFs(wy) -
And then

T (wg) TH(wg) = THwe) T (wy) = TH(wg) , (3.10)
ie. T°(wy) is the unit element belonging to M.
T=#(0y) THwy) = TH(0g) T™#(w) = T(ws) , (3.11)

i.e. T7%(w,) is the inverse of T*(w,) and belongs to M.
From the relations (3.8) to (3.11), we understand that 9 is a group and that it

is an Abelian group by (3.2".

4. Solution of the ordinary linear differential equation of the first order with
E-type coefficients

The ordinary linear differential equation of the first order can be generally solved
in the time domain by introducing an integrating factor. Here it is discussed on an
example, whether the process corresponding to the integrating factor exists or not.

For example, we try to solve the following equation :

d .
g-ty-—kal(t)y = e’t, 4.1
a,(t) = A§P+2AY cos wyt . (4.2)
Corresponding to (2.8), the following expressions are given :

S(T, pPY(p) = X(p), 4.3
S(T, p) = p+AF +AP(T(w) + T (w,)) s }
X(p) = (p—iw)~'+y(0) .
Substituting the expression :
F(T () = exp {B(T(wy) — T~ (»))}

into (3.5), the following relation is obtained :

(4. 4)
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exp {B(T (wp) — T-"(wo)) }p
= pexp {B(T (w) —T ()} —iweB(T (wy) + T~ (we)) exp {B(T (we) =T *(we))} .
Further, putting §= A{P/iw, and U(T(w,)) = exp {‘?—j}l—) (T () — T‘l(a)o))}, we can
show from the above relation that the expression (4.3) becomes :

{UT (@))S(T, p) U (T(w)) YU(T () Y(p) = U(T(0))X'(p) ,
where
U(T(@))S(T, pYUNT(wy)) = p+ AP

Therefore, we obtain :
Y(p) = U (T () (p-+AF) 7 U(T(00)) X' (D) .
When U(T(wy)) and U-(T(w,)) are expressed in such power series of T(w,) as
UT(w0) = 2 Co T (), }

U=(T(00)) = 2 CiTHwy) *.5)
we obtain
Y(p) = I}:,C;;)C;;)Tk(w@(p+-A31>>“‘T’*'<wo)(zb——z‘w)“‘
—iiy(O) :‘73 COCH THwy) (p+ AL, (4.6)

The relations
L-{T#(00) (p+AP) " T¥(w) (p—iw) '}
= (givot)ke ™ AgPt St e<A<(>1)+i“’>t/(eiwot')k’dt’ ,
0
_A(l)t A
L TH0p) (A1} = 64077 (gintys

can easily be shown to be true.
Taking the inverse Laplace transform of (4.6), and utilizing the above relations,

we obtain :

1 1 : ’
() =3 C;:—)(eiwot)lee”AE) >tgt A st CLP (eivaty d’
% 0
3 piogtVk 5~ ASEE
+3(0) T CE(efont)ke ™40 F oo
Bkt
Then, using (4. 5), the above expression becomes :
. Ayt Iy . ’ .
() = U-(eiont) ¢~ 4o fS o(AG Hiw)t U(eivot")dt’
0

_1¢ i - APt
+y(O) Ut (efwet) e™ 70 " U(1) . 4.7
From the above descriptions, it follows that when «,(¢#) takes a more general form:

a,(t) = %}1 A gitwqt
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the solution of (4.1) is given in the same form as (4.7) in which, however, U(T (w,))
defined by the following expressions is used:
G(T(wy) = 2 AP TH wy) ,
: T GOT } (4.8)
U(T (wy)) = expl{.1 S 0 -T—~dT}- ,

10,

where the dash in ¥/ means that k=0 is excluded from the summation.
F

5. Derivation of Hill’s determinantal equation in the frequency domain
Hill’'s determinantal equation has been derived from the consideration in the time
domain (2). In this paragraph, the derivation in the frequency domain is considered.

Hill’s equation is given by

gi-;{,{_ i‘ A® gikogty = ()
it pime } (5.1)
A;Z) . A_(_2[{ .
This is transformed into the frequency domain :
S(T, pY(p) =X(p), (5.2)
with S(T, p) = p*+ 2 AP TH wy) ,
: } 5
X'(p) = py(0) +°(0) .
When
vipy = $ ol 5 o (5.0
nameo P— (Uinw,)  pfe p— (U Finw,) )
is substituted into (5. 3), we obtain:
b (Dbt 0 +{ 3 (utin )by -+ 33 (i +inw)bi}
+ 3 (p—(ptinw)) Hou(ptinw) + AL by}
+ 2 (p— (W Hinw)) H{o (' +inw)?+ 53 AP b}
= py(0) +y7(0) . (5.3)
Dividing both sides of (5.3") by p and making p->co, we obtain:
;bn‘!‘;b;:y(o): (55>

and when this is substituted, (5.3’) becomes :
{ ; (p+inwy)b,+ ; (W +inw) by}
+ '21 (p—(p+inw)) Yo, (u+inw,)?+ ; AP by}
- ; (p— (' +in wg)) =L i1 wy)? - % AD b}

=3(0). (5.3
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The above expression becomes with p—co:
; (p+inw)b,+ %] (' +inw)by, = y’(0) . (5.6)

Further, substituting (5.6) into (5.3”), and multiplying the rest by p— (u+inw,) or
p— (W +inw,), and then making p—pu+inw, or p—u +inw, respectively, we obtain :

O (u-+inwg)?+ 323 A;,?)bn—-m =0, (5.7
bl +inw)?+ 3 AP, = 0. 6.7

Eliminating b, (or &) from (5.7) (or (5.7")), we obtain the equation for determining

u (or u"), ie. Hill’'s determinantal equation.

6. Method of series expansion

If the inverse of S(T, p) in (2.8) or that of [S(T, p)] in (2.13") is obtained,
the solution of the original differential equation can easily be obtained, but it is
difficult to obtain the inverse in a compact form except in the case of ordinary dif-
ferential equations of the first order. In such cascs, it is useful to obtain the inverse
S-YT, p) or [S(T, p)]~* in a series form by expansion, as will be described in the
following lines. However, the validity of the solution in a series form depends on the

convergency of the series.
First, we consider the ordinary linear differential equation. Putting

3 3 AP @pr-i=HO (), (6.1)
28 S AP@TH - = BT, p), 6.2)

(2.6) can be rewritten as follows :

{HO(p)+HD(T, pYY(p) = X (). (6.3)
With the notations :

(HO(p)) X (p) = X"(p),

(H®(p))tHD(T, p) = k(T, p),
(6. 3) is further rewritten :

{14+1(T, PYY(P) = X"(p),
from \;vhich we obtain :

Y(p) = Z(Ml)”{/KT DIVX(p) . (6. 4)

The simultaneous ordinary linear differential equations can be treated in a similar

way to the above. Namely, we write:
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ST, p) = Hin(0)+HR(T, p),

"y
HQ(p) = 3 35 Agwm (apmm™,
=0 @=0

M v Niayim (6.5
HE(T, p) = 23 3 37 A (@) THog)pmm™,
i=0 @=0 k=—Ni,a;lm
HO® H e HE
HQ H oo H®
CHOT =] i . (6.6)
H® HE -eveeen HY),
HD H%’ ......... H{L
HEP HE e HE
CHO(T, Pl =] i, , (6.6
HE HE o H

where HQ=H®(p) and HP=H (T, p). Using (6.6) and (6.6"), we obtain:

im im

[Y()] = { S (~D" KT, X (D],
where

[HO(®)T[HT, 1= [W(T, p)1,

[HO()T[X(5)] = [X(5)].

As a first example, we consider the equation:

d? d .
T (AP 4240 cos ) T+ APy = it (6.7
where it is assumed that A®, AP, AP, v and o, are all real.

Transforming it to the representation in the frequency domain and taking into

account the following expressions :

X(p) = (p—iw) "+ {py(0) + (AP’ + 24{")y(0) +y (O } , }

BT, §) = AP+ AP p+ AP (T wp) + T~ (0p))p ©®

we obtain the (z+1)th term of (6.4) as follows:

Ail)" _ b n_,
W{(T(a)o>+T 1(”0))W} X'(p
A&l)?l

= i A ST gl A T gy
pansy TEn (")o) [mggﬁ@;} X’([)) ,

where each of ¢, &, --+, and e, can take only 1 or —1 and &, means the sum taken
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over all the combinations of e, ¢,, -, and ¢,. Further, the above expression can be

modified as follows:

Ail)ﬂ

— 1€z, ..., X' (p—iey,,...,
pz-{-Aal)p+A(<)2> (ZJ 18y, 10) X (p—iey,, 10y) (6.9)

@ ; 5
1{(p—te5 1@ AP (P =ity gyene, 10) + AP}’

¥ ;:13

where €,2,3, oo, n=81F8+ +oreer +ep.
Substituting (6.9) into (6.4) and taking the inverse Laplace transform of the
resulting expression, we collect the terms that have the time factor e®!, Then, we

obtain the following expression which may be called the steady state part of the

solution :
ezwt
ysteady<t) A(Z)—i—ZU)A(D"U)
et 31 (=) AP S, B (e, e, e, ) n i (6.10)
where

Bey, &, s en) = 0{wteys, oy n 0} AP Hio AP — 0}

d (w‘l‘eum---,lwo)
X AT o enn 100 AD —(0Fens a2y G 1D

We can easily show that yseaay(f) is absolutely convergent, when |2A4M/AP|<1.*
As a second example, we consider the following equation :

d?y
dr®

Now putting AP =w} and AP /AP =x, I(T, p) and X”(p) are given as follows:

T AP +APe )y =0  (a>0). (6.12)

(T, p) = (k0}/(p*+0])T (i), } (6.13)
X7(p) = (PP (py(0) +5'(0)) '
where we assume that w, and x are real.
By (6.4) we obtain:
Y(p) = X"(p)+y(0) }.J (—D"(0f r3"(ﬁ+%0¢> 17 {(P-f—lw)2+w p
+5(0) 3 (1" (wm"lg {(p+lay+af}™.
Then, defining A, (p) and B, (p) by the following expression :
¥ip) = X/(5) +30 5 (~1*(2E) 4,(p)
+y© 50 (ZE) B, (6.14)

and denoting the inverse Laplace transform of A,(p) and B,(p) by A,(#) and B,(®)

respectively, we obtain :

* Reference should be made to Appendix.
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y(£) = y(0) cos wzt+wz'y’(0) sin wyt
50 5 -07(Z) 4.0

o 5 o () B, (6.15)

where A, () and Bn(z“) are given by the following expressions:

o

A, (5 = Im el é eokt - 7
S PO Gk DI (1) Dkt 14

o)t

__)'cu,).‘ fi 71:11 ok :
¢ (wz)k%%e ”['(kﬂ)['(ndk)r(k+1——?%)F(n*k+1+4;z‘> | (6.16)

Zw,l‘ » | -+ ra

B, (1) = Im<——- 2 g~okt : ;
W i F(k—i—l)‘['(n—k»{-1)I’<k—1~1-——f—c-2n>f'(nvk~i—1+;2~)

,,

We can also easily show that (6.5) is absolutely convergent™®.

7. Formulation of Maxwell equations in the medium whose material constants
¢ and u are E-type functions of time
In the frequency domain, we will formulate Maxwell equations in such a medium
that the material constants (dielectric constant e and magnetic permeability u) are
E-type functions of time ¢, by introducing the translational operator. We can write
the phenomenological electromagnetic field equations as follows, in M. K. S. units:

p<E(r, t)-{—a—B%;Q =0,
pxuce 28D _ 56, @.1)

p-D(x, ) = olx, ),
7Bz, £) =0.

Taking the Laplace transforms of equations (7.1), we obtain:

VXE<1.’ p) ‘l‘ﬁB(l’, [)) = B(l‘, 0) »

VXH(I', j))*[)D(l’, p) = J(I‘, p)"‘DCr, 0) > (7‘ 2)
pDG, p) = olx, p),
V‘B(l‘, p) = 0.

* Reference should be made to Appendix.
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The Laplace transforms of the quantities which appear in (7.1), are represented by
the corresponding symbols in which # is replaced by p. Thus, for instance,

LEG, ) =B, p),
L(H(x, t)) = H(r, p), etc.
B(r, 0) and D(r, 0) mean lirrol B(xr, #) and lirrol D(r, t) respectively. We will derive
t> tr
connections between D(x, p) and E(x, p), and B(x, p) and H(x, p) by introducing the

material constants and the electric and the magnetic polarization P(r, #) and M(x, £).

From
D<r’ t) == €0E<r: t) +P<r: t) 2 } <7 3)
B<rv t) == IUO{H<r: t) ‘:"M(l‘, t)})
we obtain, by taking Laplace transforms:
D(r) ])) = EoE(l’, p) +P(1‘, p) * } (7 4)
B(r, p) = n{BH(, p+M(, p}, '
and
P(l‘, P) = & QG(T: ﬁ) 'E(l‘, ﬁ) ’ } (7 5)7{4
M<r: p) = im(T’ P)‘H<1‘, j)) ’ '

where %.(T, p) and %.(T, ) are tensors of the second rank and may be called the
electric susceptibility operator and the magnetic susceptibility operator. The 7j-com-
ponents of %.(7, p) and %, (T, p) can be written as follows:

v Nijiae
G = 3 T8 @ i) T,
=0 k=-—Nij;te (7 6)
N v Nijsam
(Zm)ij = n%f,’f,’“(ﬁ H LK) Tk(“)w) )

£H
B=0 fp=—Nijsan
where 7 and j represent x, ¥ and =z.

When the medium is isotropic, %.(7, p) and %,,(T, p) reduce to the simple
scalar operators, which we will denote by (T, p) and %,,(7T, p), respectively and we

obtain :
D(x, p) = e{l+2.(T, PIE(, p), } a.m
B(r, p) = po{l+um(T, p)YH(G, p) .
Now, putting
e(T, p) = ee(L+2.(T, p)), } (7.8)
#(T, p) = poQL+am(T, p)),

* Here are introduced the relations between P(x, p) and E(r, p), and M(r, p) and H(r, p),
since & and p, and accordingly x, and x, are generally dependent on the frequency.
Reference should be made to the footnote to the Introduction.
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and assuming that B(x, 0)=0, D{(r, 0)=0, and po(xr, £)=0, I(x, £)=0, the equations
(7.2) become as follows:

P RE@, p)-+pu(T, p)B(, p) =0,

VXH(I‘, P) “—f)€<T7 ﬂ)E<1'» P) = O: (7. 9)
7-E(r, p) =0,
y-H(r, .p) =0.

Next we consider the propagation of the electromagnetic waves in the hollow
metallic (perfectly conducting) tube filled with such a medium that the equations
(7.9) are valid. When we take the z-axis along the pipe axis and the z, ¥y axes in
a plane perpendicular to the pipe axis, we can express in the frequency domain the
propagation modes as follows :

For the TE waves (E,(r, £)=0), H.(x, p) is given by

H:(x, p) = dulx, y)eT=DDZF(p) , (7.10)

where ¢, (x, ¥) is defined by

2 2
(et Lot m)ontn, ) =0,

0¢n

subject to the boundary condition on =0 at the wall and

2 — .2 2
/ <T’ p) fz(T) P) kny % (7. 10,)
(T, p) = pe(T, ppu(T, p).

The other field components are expressed as follows:
Hx, p) = 52T, 9) L Hx, ),

H,(r, p) = Fh2r«(T, p)%Hzcr, 2,
7.1D

By, 9) = — I pu(T, §) g Holr, ).

ByGx, p) = k?pu(T, p) ZH.Cr, ),
where F($) is an arbitrary function of p.
For TM waves (H.(x, t)=0), E.(x, p) is given by
E.(x, p) = 6u(x, 3)eFT0G(p) (7.12)
where ¢,(x, ) is defined by

2 2
(Zet Zotbie)um, ) =0

subject to the boundary condition ¢,(x, ¥)=0 at the wall and
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F2(T, p) = 12(T, p)—kKZ, )
7.12
1"%(T, p) = pu(T, p)pe(T, py. |} (7129

The other field components are given by the following expressions :

H(r, p) = ky-2pe(T, p)a%Ez(r, 5,

A\

Hy(x, p) = ~ki2pe(T, 1) LE:(x, 5, ’

9 (7.13)
Ex<l', ﬁ) == :T 71—27'2"{7‘7 ﬁ) "a‘:éEz(ry ﬁ) H] J N
E,(x, p) = FH274(T, b) (%Ez(r, »,

where G(p) is an arbitrary function of p. From (7.10)~(7.13), it is evident that
in the frequency domain, the propagation mode takes the same form as that in the
medium of fixed material constants, except that the propagation constant operator
72(T, p) or 7:2(T, p) and the material constant operator u(T, p) or (T, p) include

the translational operator.

8. Conclusion

Summarizing we may say that the descriptions in the preceding paragraphs could
be an answer for the following problem. How can the method of solving the ordinary
linear differential equation with constant coefficients be extended by the Laplace
transform to the case of the ordinary linear differential equation with E-type coefficients?
As shown in §2, to solve the ordinary linear differential equations (2.1) and (2.9)
is reduced to obtaining the inverses of S(T, p) and [S(T, )1

In the special cases shown in §4, the inverse of S(T, p) was easily obtained in
a compact form, but in the general case it will be difficult to obtain the inverse in a
compact form. Then, in such a case, the method of the series expansion should be
used. Though in §6 the geometrical series expansion was utilized, it is hoped that

the more powerful expansion method will be devised.
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Appendix
It will be shown that (6.10) and (6.15) are absolutely convergent. First, the

convergency of (6.10) is examined. By (6.11), we obtain the following inequality



308 T. WATANABE

[B(ey, ¢, -, en) | < A(g)_HwA(l) IA(D\ —-n
X‘Af)Z)”:‘ZA(()D(CO"r'Ebz,,,,,n(.l)0>——<(l)+€h2,,”,na)o)zl—l.

We represent the minimum of |@-+ey,...,nw]| for all the values of n, by w,,.

Now putting

oml AP = m, when ©,,==0, }
min. (JA@|, 1w AP[) = m, when o, =20,
we obtain :
. ) ~ 1
IA62>+Z<0)-.—€1,2, eosn a)0>AéD— (0+€,0 . a"o)zl tC ;;’
o1 B
1B(“17627 >€71)1<W1A6D! ",
Since in &,B(e;, €, -+, e,) are included 2" of B(e;, e, =+, 8n)’s,

n

&, Ble, &5, -+ e) | < \A(l)

. ) ZA(I) 7
Therefore I ("’“ Z)"A(ll)"@nB<€1> TR 6;1> e'fn ,nwotl < A(D ’
(t> etwt 1 ZA(D
Jsteady A(Z) e ZCUA(D M a=1 A(l)

From the above inequalities, we see that ygeaay(f) is absolutely convergent when
[2A0/ AP <1 e [2A0|<|AP], under the assumption that A§’, A{® and w, are

so taken that m==0.

Next the convergency of (6.5) is examined. Putting L-*(X”(p))=x"(f) and
dy()=y({)—x"(t), we consider the convergency of 4y(f). We can easily show the

following inequalities :

I f_z
F(IEH“),%) <= (%)k (05> 0)
and
M) |y

ﬂf(n—~k+1+ ) <<§Zo;) ,
‘ﬁ gkt EI(1+”5Z¢7>2 .
I A Y N e T A=y
< <2w1§) 71—' iﬁ 'é'—(’;ﬂ—}}T Tkt = (é%;)n%(l%—e““f)",
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Similarly
4 -'_.j. 92
(ﬁ)ﬂie‘“k’ }[(1‘ x2>]
s ¥ r<k+1>r<n-k)r(k-:q—-;g)r(n—kﬂ—:—-—;E)

o » 1 Lp—at\ =1
<iloer) Gopyr e

Therefore, the following inequalities are established :

COLIC

=17 () Ao 1 <2 | 25 v emany

@ 1
wL (n H!

CL)LI’(
20|

Wk (1+e-at)n-1,

-0 () By 1< 2 (1+emsty”,

Finally

|4y <130 3 || %

m=1

(treen}”

wa:

+21501 & oimil 2

(11—2““‘)}
ly O] zi‘j —%-—{ 5

wrk

e

(!-")

<130 e 2y Oy el 2 |0

ez I<1+e“°“>

Wz

= (s 1+ 2 1001+ 2O [

1—L.e—wi>

Thus it has been shown that 4y(Z) is absolutely convergent and so is also y(#).
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