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                                       BY

                       S. TOMOTIKA and K. FUJIKAWA

                            (Received fanuary 10, 1954)

                                    SUMMARY

          Assuming the existence of a vortex-pair behind an elliptic cylinder rnoving
       with a constant velocity through an unlimited mass ef an incompressible inviscid
       fluid in a direction perpendicular to the axis of the cylinder as well as to the
       rnajor-axis of its cross-section, the drag experienced by the cylinder is discussed.

          To this end, the complex velocity potential for the flow around the elliptic
       cylinder is first ebtained in terms of elliptic coordinates, and the drag acting
       on the cylinder is then computed in two different way$ : namely, (i) by directly
       summing up the fiuid pressures acting on the surface of the body, and (ii) by
       applying the theorem of mofnentum to an infinite mass of fiuid surrounding
       the cylinder.
          As we should have expected, one and the same expression for the drag on
       the cylinder is obtained, irrespective of the method of computation.

1. Introduction

    It is well known that when a cylinder with arbitrary cross-sectional shape is

moving, with an appropr2ate velecity, through a fiuid, two er more discrete vortices

are created in its wake and in consequence the pressure distribution over the surface

of the body differs greatly, especially in the rear part of the body, from that com-

puted on the basis of the theory of centinuous fiow of an incompressible inviscid

fiuid.

    Assuming two symmetrically disposed vortices of equa! strength rc, with circu-

lations in the senses indicated, at two points A and B in the wake of a circular

cylinder as shown in Fig. 1, F6ppl (1) and Bickley (2) computed independently the

drag acting on a circular cylinder. The former calculated the drag by applying the

theerem of rnomentum to an unlimited mass of fluid surroundiRg the body, while the

latter obtained the drag by directly summing up the fluid pressures over the surface

of the cylinder.

    According to Bickley, the drag X experienced by a circular cylinder is expressed

in the form:
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                    x =2rcp{uA.ge, sin 2r+vA(1 - g;.)cos 2r} ,

where uA,vA are the x- and y-components of the velocity of vortex

of the cylinder, c the distance of vortlces A and B from the centre O

2r the angle AOB and p the den$ity of the fiuid concemed.
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                               Fig. 1.

    If we introduce the rectangular components ef the velocities of image vortices C

and D at the inverse points of A and B with respect to the circuiar cy}inder

respectively (Fig. 1), which are connected with ecA and vA as:

                       uc =L- -- g,2 (uA cos 2r -p vA sin 2r), ''il .

                                                       i
                       vc ='::' --g-i- (uA sin 2r-vA cos 2r), ll•,• (i• 2)

                                                        l
                       UD ='=" UC, VD ='L h' VC, ,'

the expression (1.1) for X becomes

                              X=•=- 2tg ,o(vA -- vc), (1. 3)
which, on taking accounÅí of the obvious relatiens :

                      vA == -dd- -l (c sin r), vc=: ÅíI-t(-g// sin r), (i. 4)

can nitimate!y be written ln the form :

                        X== 2rcpSlt{(c --- -g-2-)sin r}. (i. s)

    It is to be noted here that F6ppl's formu}a for the drag on a circular cylinder

differs from the above Bick}ey's formula (1.5). Namely, using the sarne notations

as above, F6ppl's formula takes the form:
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                            X::'-m 3rv,o -i- -t {(c- -g-2- )sin r}. (1. 6)

    The cause of the discrepancy between F6ppl's and Bickley's formulae was

discussed by Sugawara and the senior writer in l938 (3). In computing the drag

experienced by a circular cylinder accempanied by a vortex-pair in its wake, both

the direct method as used by Bickley ef summing up the fiuid pressures acting on

the surface of the body and the indirect method as employed by F6ppl of applying

the theorem'of rnomentum to an infinite mass ef fluid surrouRding the cylinder were

employed.* Thus, it has been shown there that Bickley's formula is correct, but

Fdppl's one is erroneous.

    The corresponding problern for the case of an elliptic cylinder was treated by

Sanuki and Arakawa in 1931 by applying the theorem of mornentttm (4). However,

the expression for the drag on a circular cylinder as deduced, as a limiting form,

from their formula for the drag on an elliptic cylinder is Reither iR accord with

F6ppl's formula nor with Bickley's. In effect, in the same notations as above, their

formula gives the following Åíormula;

                             X-= rc,o -i--i {(c-g2)sin r} (1. 7)

for the drag experienced by a circular cylinder.

    The ob3ect ef the present paper is to compute the drag acting on an elliptic

cylinder moving, with a constant ve}ocity U, through an unlimited mass of an

incompressible invlscid fiuid in a direction perpendicular to the axis of the cy}inder

as well as to the major-axis of its cross-section, by assuming the existence of a

vortex-pair behind the cy}inder.

    For the computation of the drag on the body, two different methods are both

employed as in our old paper (3) cited before: name}y, the drag is calcu!ated (i)

by using the direct method of summing llp the fluid pressures acting on the surface

of the cylinder, and (ii) by applying the theorem of momentum to an infinite mass

of fiuid surrounding the body. Thus, as we should have expected, one and the same

expression for the drag is obtained, whlch gives, as its limitlng case, the correct

Bickley's formula for the drag on a dircular cylinder. The sources of error in

Sanuki and Arakawa's fermula are indicated.

   * Recently it has been found out that in our paper (3) cited above, there are sofne errors
in tbe cour$e of analysis developed on the basis of the theorem of momentum, but fortunately
the final result there given needs no alteration. For drawing our attention to these errors, we
should like to express our cordial thanks to Dr. K. Tamada. The correct anaiysis will be given
briefiy in Appendix of the present paper.
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      I. CALCULATION OF THE DRAG BY SUMMING UP THE FLUID PRESSURES
                      ACTING ON AN ELLIPT!C CYLINDER

2. The eomplex velocity potential

   In the first place, we shal! caiculate the drag experienced by an elliptic cylinder

by directly summing up the fiuid pressures acting on the surface of the body.

Adopting the ttsual artifice, we shal! consider a stationary elliptic cyliRder placed in

a uniform stream of veiocity U flowing in the positive direction of the x-axis. We

consider the case where the major-axis of the eilipse lies on the y-axis, the origin of

the coordinate-axes being taken at the centre of the ellipse.

    Now, it is convenient to introduce the elliptic coordinates (6, T) connected with

the rectangular coordinates (x,y) as:

o, X+iYz:.CcSsiinnhhS{-iop)' lf (2.D
                         (O<g"<oo, -n<op<n) J

y

AD
U

---------- l x
o

BGrs

                              Fig. 2.
      '
We assume that the elliptic cylinder under consideration is defined by 6==g,. Since

the two vortices A and B, of strength rc with circulaÅíions in the senses as indicated

in Fig. 2, are symrrietrica!!y situated with respect to the x-axis, we can define their

pDsitions (xA,3,A) and (xB,.yB) as (g"o, rpe) and (8o, -opo) respectively. Thus, we

have

                         gil..lflB,=.C..S3'2h,5,eg2g,Zel,. I (2.2)
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    The complex velocity potential w for the flow around the elliptic cylinder consists

Of tWo parts: one part, w, say, is the complex velocity petential for the continuous

uniform stream past the cylinder, while the other, zv, say•, is the complex velocity

potential for the vortex motion. The former can be expressed as:

                            w,= Cfcegi cosh (c -- #,), (2. 3)
and, after several calculations, the latter can be determined as (6):

                     zv2 -=,:, iog g.OgRE#S ii gggR [E: iii f•S • (2• 4)

where ce denotes the conjugate complex of qo.

    Thus, the required complex velocity potential zv becomes

              zv =-=- ucegi cosh(c-&) {- ,k,iog gggk [E ww-- gl}gggg [E {I,g-S-, (2• s)

or

               w-= -ll- uc(es+e2#ig) -i- ,/r, iog [s2zi:l[zksii:Iig-i • (z 6)

Separatlng the real and imaginary parts on both sides, we have the veloclty potential

Åë and the stream function di in the forms:

     Åë=uce#icosh(qc-#,)cosT+i.{tan-i6-6-,--E--(-g,-tr'-tth-,S-o,-.rd-,e-K•)-(-//.-il-l:-gttl//--6-op.-]-oli--.---tt-->

                          --tan"i,,,h(,.Sgn,.?)(gO,-,,S')(2i,n--(,YI09-::,L-//g(.o,..o>}, (2.7)

    di xe Ucegi sinh (6-&) sin op

       +4"-siogi,Cg,SX(`i•anwwf,eiIig.Og((l41,iZ,ol}'i,Cg,S},z(//t:'iwuL-:-E-i--,2-,/g••-l-l-ig-l-E-Z--il'i-,1-g,-l--l•-• (2•s)

3. The velocities of the vortices

    Making use of eiÅíher of the above expressions for the velocity potential Åë and

the stream function Åë, the fiuid velocity at any point not coinciding with elther of

the vortices can easily be obtained. Thus, if we denote the velocity components

perpendicular to and along an ellipse e=#'const by ve and v, respectively, we have

                             1 aÅë                                             1 one                         "e == z-z b'z' "n ==" rv Lli b"2,ri--, (3' 1)

where h==' cyicosh2 6'-sin2Z •

    In order to obtain the velocity of a vortex, e.g. the vortex (-rc) at A, itself,

however, we must first subtract from ip the stream function diA due to this vertex

alone. Thus, the veloclty components [ve]A, [v,]A of the vortex (merc) at A (8o, ope)

can be obtained by differentiating ip-ÅëA by g" and T respectively, and we have
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  [VE]ATnd- c,/6'6','h'2 i//-/--gi.•ti•2iia[UC ee'i sinh (cte- gi) cos mpe /;,

                                                                     ;
  [,,].,,.,,,gl-,tÅí11!-110leSlll,:;9Str"S"2i'.'/O,nv,:PS.,2,'7,'Ie'IIiS"lcn'mm/)'25112i'i,IE,N,'cosh2Sil]{l-'c'Ops2T,}]•1/(,.,)

      ff-4/'//{6-,-s//fflj,-va2-,.(ir,-o-i•i-••--isi-•2L-i-E•6--,-tt--//i-(n-sh---t-2--gg•--i//-•-.5----E).--,--2:,-6rf-,.,,t,i-?-,hw,-2,g".ggi2ii,}]• ••,/

On account of the symmetry, the velocity components [v#]B, [v,]B of the vertex (rc)

at B (eo, -'tio> are giveR by

                       [Vg]B ww- [Vg]A, [vn]B =:-:- -[v,]A. (3. 3)

    For later use the rectangular components of velocities of the vortices will also be

calculated. It can readily be seen that the rectangular components of velocity uA,vA

of the vortex (-rc) at A are connected with [ve]A, [vn]A as:

                et'A =" -IC-r, COSh g"e COS Te[Vg]A - -ICT, Sinh 6o Sin ope[Vn]A, i.

                VA "= '//is sinh closin Tg[vg]A -y' -•zC-2, cosh 6, cos op,[v,]A, (3' 4)

where lio==-ci/Uo-s'h"i' Zt'' e' J-- tth'i' l'o'Z Or, remembering the obvious relations that

                       [vij]A =- h, //tk-t-e, [v,]A=h, g-dete, (3. s)

the expressions for uA,vA can be put in the forins:

                           uA "`' dd•l (c sinh g", cos T/o) ,

                                                                       (3. 6)
                           VA == i't (C COsh $e sin rp,). , -

Substituting the values of [vg]A,[v,]A as given by (3.2) into the right-hand sides

of (3.4), we have, after several calculations,

 ZtA --' cosh 2g-,}.{ cos 2mp,[Ue#'i{Sinh(2g"o ww cf i) ny sinh g"i cos 2ri,} 'i

                                                                     i                  --if//{COgh.,(,2go(g,i'),C,)OSP,g6,o,-,,ei)sinno-S-9siS,h.-;-Q,- i

                    mu ,i.hS't?,rpe...,) Si"h (2#onv,e.i,)hSS"eh,"2.i.S,o.g• s2iop",h k co.s..?..op.o}], : (3. 7)

                                                                     l, VA "= cosh 2Cg-O,SH.7.7cQos 2o7,[-2Uegi cosh 6i sin ?7e l

                                                                     i     -y Il/Z sin2 ve {,,,h 2(,fi,-Z) nv ,., 2op, iO,?• .hh(2(8i' ,--gi?s -i- e'6grtwwS2'//,e't,h., tfi."OiL,'re2ttE}] ' .i

'
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Ofi account of the symmetry, the rectangular components of velocity uB, vB ef the

vortex (rc) at B are given by

                            ZtB an-' UA, VB =-= -VA. (3. 8)

4. Calculation of the foree acting en the cylinder

    We next proceed to the calculation of the drag experlenced by the e}liptic

cylinder (6==e,) under consideration by directly summing up the fiuid pressures

acting on the cylinder. The pressttre distribtttion over the suriace of the cylinder

can be calculated by the well-known pressure equation, namely :

                            P =' F(t) - --i- pg2 - ,o teÅë-z• (4• 1)

    If we denote the x- and y-components of the force acting on the cylinder by X

and Y respectively, we have (7)

                      X- i, Y=r -isiP d2

                            == -i-- i,o bC) (llW-.)2dz -t- ipitd-t si t-v d2, (4. 2)

where iv denotes the conjugate complex of tu, and both the two integra!s are taken,

in the counter-clockwise sense, once round the circumference of the cylinder.

    After some calculations, tlie first term on the rigkt-hand side of (4.2), which

we denote simply by Fq, can be evaluated as:

  Fq =-E--iosi({W-)2dz

    ="- 2rcLo• c-osh 2Cg.O,Smt-77-gut 7t7-s[-2 Uegi cosh 6i sin •pfe

      "''l)l"/rsi"2ope{,,,h2(s,-},)=',.,2•e,;9gSwwih.'lgl2ii('L'gmendumnv/:i'//'i'%'6",'hv2S'}?ll,:'6','//'s"2'i'i}]• (4•3)

Comparing this with the expression for vA as given by (3. 7), vvTe have

                                F, m-= 2tcp vA, <4. 4)
which, with the he!p of (3.6), may also be written as:

                         Fa == 2rc,oczSltT (cosh go sin 7i,)• (4. s)

    Next, the second terrn on the right-hand side of (4.2), which we denote simp!y

by FG,, can be evaluated as:

                       F,b -- i,o 8It S ivd2 =ip -i-t- si z-v,d2

                         == -2rcpczill/ (eSJi-ge cosh 6, sin ne), (4• 6)
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where z-v2 is the conjugate complex of w, which is given by (2.4) and denotes the

complex velocity potential for the vortex rnotion. In terms of the veiocity components

uA,vA of the vortex (-ig) at A, the value of F,b can also be expressed in the form:

             F{b = E6'2g't'h' 9'2e-/,il68.0-//,l!,-6S-rp-, {(esA sin 2ve - vA cos 2vo) - vA env2#o} . (4. 7)

                                               '
    Thus, making use of the values of F. and Fd, as given by (4.5) and (4.6)

respectively, xve have, by (4.2),

                      Xy.in-. o2ig.pce#xzi.lt{sinh (c".o- g"i) sin ope}, l (4. s)

    Further, if we use the values of Fa acnd Ei, as given by (4.4) and (4.7)

respectively, the drag X can also be expressed in the form:

  X=: 6J.ne,rrhr22'}:aPt\,'/it'nv,i'."g"i'h6 [uA cosh 6i sin 2To-- vA{sinh (2g"o-g"i) -sinh 6, cos 2rp,}] , (4. g)

and when the values of uA and vA as given by (3.7) are substituted, this becomes

ultimately

       x=--1/liLoeeicosh6,cosrp,g,g,,-l-,(-gf-:.g-I--.i/:ll-silg-,lfo,IE-s-?//,h,-gl:-I's-6"-3,g-g•-g-i-I-t-i631•• (4•io)

It will be seen that in case when the vortices lie on a curve',: defined by-

                       sinT,=;--•Vgso,itla-g-."sle-//P,21'i-/t.}3-g--;-)-, (4.ii)

the cylinder does net experience any drag.

           II. ApPLIcATION OF THE THEOREM OF MOMi ENL TUM TO TI-IE

                        CALCULATION OF T}IE DRAG

5. The forees acting on the eylinder

    We next proceed to the calculation of the drag experienced by the elliptic

cylinder (e=-gi) under consideration, by applying this time the theorem of momentum

to an infinite mass of fiuid surrounding the cylinder as in the papers by FOppl (1)

and by Sanuki and Arakawa (4). •

   We take the coordinate-axes (x, y) as shown in Fig. 2 and we assume that the

cylinder is meving with a constant velocity U in an unlimited perfect fluid in the

   "' This is the equation for the locus of equiiibrium positions of the vortices (5), and is
easily obtained by eliminating tc from the following two equations :

                           [vg]A == O, [vn]A = O•
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negative direction of the x-axis. Then, with the same notatioR as before, the cornplex

velocity potential w for the fiow around the elliptic cylinder (6:=gi) under consider-

ation is given by

                               zv =-- w, + w.., (5. 1)
where

                     w,::-t S- Uc(e2grg+e-g), (s. 2)

                     zv2=-,#,iogES/ii----,e{:f'i-ii[Sl}IISi-illg.ii/gi-• (s.3)

   Now, as shown iR Fig. 3, we take an elliptic contour C, just round the elliptic

cylinder under consideration, a contour C2 round the cut connecting the two points

A, B and a large circular contour C3 enclosing the whole system, and we assume

thcat these three contours are connected by some straight lines as shown in the figure•

C3

3

C,
A

.

o
C2a:

E

                                  Fig. 3.

    If, as beÅíore, we denote the x- and y-a ornponents of the resultant force acting

en the cylinder by X and Y respectively, then by applying the theorem of momentum

to the fluid in the region S enclosed by the three contours Ci, C2, C3, we have

              X=- -2Slt/ SSstoudX dy-sic,puvn ds-fc,P cos (n, x)ds, . (s. 4)

              Y-um-- ly d-dtSSs,ov dx dy -- si c,pv vn ds '- si c,P cos (n, y)ds, (s. s)

where n denotes the outward normal to the contour C3, ds is the line-element along

the contour C3 reckoned pesitive in the counter-cleckwise sense, and vn is the velecity

component normal to the element ds.
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    Since, however, it is obvious on account of the symmetry that Y,'-=O, it suMces

to consider the drag X only.

    Remembering that u==aÅë/Ox and applying Green's theorem, we can transform
the surface integral SSs,oecdxdpt into a iine integral taken, in the counter-clockwise

sense, aiong the closed contour enclosing the region S, which consists of the three

contours Ci,C2,C3 and some straight iines connecting them (Fig. 3). We then have

           SS$pu dx dy =SIs,o g.!lipx dx dy =(si .,+ Sg c,+ fc,) ,o ip cos (n, x) ds. (s. 6)

Thus, rnaking use of the pressure equation (4. 1), the drag X is expressed as:

          X ::: HEIt/ {( sic,-t- sic,) ,oip cos (n, x)ds}

             -F(t)fc,cos (n, x)ds+-S---p si c,e2 cos (n, x) ds-pfc,uv. ds . (s, 7)

    However, the integral sic,cos(n, x)ds evidently vanishes, and it can easily be

shown that both the iast two integrals tend to zere as the large circu!ar contour C3

recedes away to infinity. Also, it is found that the velocity potentia! Åëi--SXwi)

contributes nothing to the first two integrals in the brackets, Thus, we finally obtain

                                      dl                                  X =- -d-t-, (5. 8)
where

                       l= nv {( sic, suY .C"c,) ,oÅë2 cos (n, x)ds}, (s. g)

where ip2 denotes the ve!ocity. potential for the vortex motion alone.

6. Evaluation ef the drag

    Our next problem is to evaluate the two line integrals in (5.9). After simple

calcuiaÅíions the first integral becemes

                S'.,prP2cos (n, x)dsw-r -,o6 cosh 4!SC.[ip2]g! cos Ttdmp, (6. 1)

where [Åë2]ei denotes the valtte of the function Åë2 on the surface ef the elliptic

cylinder g =k' 6, .

    After various calculations we find however that

              SC.[(P2]Gi COS 77CI07 ='=-' 2)Åé !C.[zu2]gi cos o7dT/ =---- -2rce#i'go sin i7,. (6. 2)

Therefore we have

                   si c,,oÅë2 cos (n, x)ds=L- 2rcpcegrgo cosh 6, sin rp,. (6. 3)
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    On the other hand, the remaining second integrca} can easily be evaluated by

noticing that the value ef Åë, on the right-hand side of the cut AB exceeds the value

of Åë2 on the left-haRd side by the cyclic constant tc. Thus, denoting Åíhe y-coeydinate

of the point A by .vA, we have

                   'f                      pip, cos (n, x)ds =-k -2rc ,oyA
                     C2
                                   xx'- -2rcpc cosh g", sin Ti,. (6. 4)
    Hence, we get finally

                         f--' 2rc,oceyC-isinh (g",-#,) sin T,, (6. 5)

and the expression for the drag X experienced by the elliptic cylinder (c"u r.=gi) under

consideration becomes

                       X==2rc,ocegizid-t {sinh (g"o-6,) sin Tio}. (6. 6)

It will be seen that, as we should have expected, this formula is in perfect agree-

ment with the previous one which has been obtained by directly summing up the
fiuid pressures acting on the elliptic cylinder (gfi-rmgi)•

                            III. A LIMITING CASE

7. The drag on a circulaT cylinder

    As an addeRdum, we shall lastly derive from the preceding result the expresslen

for the drag on a circBlar cylinder accompanied by two symmetricaliy dispesed

vortices ln its wake. We denote the radius of the clrcular cylinder byaand the

distance of the vortices from the axis of the cyHnder by ro. Then, making, in

(4.8) or (6.6), c to tend to zero and both gfio,& to infinity at the same time in

$uch a manRer that ce#o an{i ceiji become equal to 2rg and 2a respectively, we obtain

the expression for the drag on the circular cylinder. Thus, we have

                         X== 2rc,o d-dt {(re -- -a7f)sin opo} .

It is readily found that except for the difference in notation, this is in perfect

agreement with the correct formu!a (1.5) for the drag on a circular cylinder.
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                                 Appendix

     NOTE ON THE INFLUENCE OF VORTICES UPON THE DRAG OF A CIRCULAR
                     CYLINDER MOVING THROUGI{ A FLUID

   In a paper (3) published as eariy as 1938, Sugawara and the senior writer

calculated the drag experienced by a circular cylinder moving, with a constant

velocity, through an incompressible perfect fiuid, assuming the existence of two

symmetrically disposed vortices in its wake. Two different methods of calculating

the drag were employed. In one methed the drag was obtained by summing up
the pressures exerted by the fiuid upon the surface of the circular cylinder, while in

the other it was calculated by applying the theorem of momentum to an infinlte

mass of fiuid surrottnding the cy!inder.

    Recently Dr. K. Tamada has kindly drawn our attention to some errors in our

paper cited above which are found in the course of analysis developed on the basiS

of the theorem ef momentum, though fortunately the fina} result there given needs

no alteration. The correct analysis wili now be given.

1. We assume that a circular cylinder of radius a is moving with constacnt velocity

U through an incompressib}e inviscid fiuid in the negative direction of the x-axis,

and we also assume that the cylinder is accompanied by two sy•mmetrically disposed

vortices with strength rc in its wake.

    Referring to Fig. i in our 1938 paper, the complex velocity potential tv for the

fiow outside the cylinder is given by*

                       w--- u-//2- -•- ,#, iog //fwwh f.ftl ((l-gg-),, (i)

where gA(=uncei7) and 2B(=:ce-iY) are the complex coordinates of the vortices A and

B in the fiuid, while xc and gD are the complex coordinates of the corresponding

image vortices C and D in the circular cylinder, i. e. 2c::r- (a2/c)eiV and xD == (a2/c)e-iY.

    We take a closed contour simi}ar to that as shown in Fig. 3 in the preceding

 pages, wiÅíh only one difference that an elliptic contour C, there is now replaced by

 a circulay contour Ci of radius a. Thus, we take a c!osed contour X which consists

 of a circular contour C, of radius a coinclding with the circu}ar cylinder under

 consideration, a contour C2 round the cut connecting the two points A, B and a

 large circular contour C, ef radius R enclosing the whole system, and some straight

 lines connecting these three contours.

     Then, iÅí we denote the drag experienced by the circular cylinder by X, we

    * It will be noted that the velocity potential (b is here defined as v=:grad th, while in our

 X938 paper we defiped it a$ v=-grad o,
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have, by applying the theorem of momentum to the fluid in the region S enclosed

by the above-mentioned closed contour .X,

              Xxx - tzd-tSSspu dx dy-fc,,ouvn ds-si c,P cos (n, x)ds, (2)

where n denotes the outward normal to the contour C3, ds is the }ine-element along

the contour C3 reckoned positive in the counter-clockwise sense, and v. is the velocity

component normal to the element ds.

    Remembering that u=aÅë/0x and applying Green's theorem, we can transform
the surface integral SSspudxdy into a line integral taken, in the cottnter-clockwlse

sense, along the closed contour X. Thus, we have

           jSs,ott dx dy= SSsp g-Åë-x dx dy ==(si c,+ si c,ÅÄ si c,),oip cos (n, x) ds. (3)

                   X== -- d-dt{(sic,-t- si"c,+sic,) ,nÅë cos (n, x)ds}

                       -fc,ou Vn dSHsi c,P cos (n, x) ds. (4)

It can easily be shown that the integral sic,puv.ds tends to zero as the large circular

contour C3 recedes away to infinity. Also, since U is assumed to be constant, it is

found that the velocity potential Åëi==SJI(Ua2/2) contributes nothing to the three

integrals in the brackets as well as to the last integral. Thus, making use of the
pressure equation (4. 1) and remernbering that sic,cos (n, x)ds==O and that the integrai

f   q2cos (n, x)ds vanishes as C3 recedes away to infinity, we obtain
  C3

         X ='A ww d-d--i {( Y c, + Sfc, -y si .,) pÅë, cos (n, x) ds} {- pSf.-ao-Åë-t2 cos e• Rdff, <s)

                        Åë, -- st [ÅíI, iog [gigftl (,gww- ggi]

                          =- 2". s• bog :f -rm gS ((giggl]• (6)

    We shall now evaiuate the four integrals in (5). First, from our 1938 paper,

we find that

                 (sic, H- sic,) tOÅë2 Cos (n, x) ds == -2rc,o (c- f2)sinr. (7)

The remaining two integrals can be evaluated as follews. On the circular contour

C3 we have z:==Reie and therefore rernembering that 2A=ceiV, 2B:-`ceweiY, 2c--(a2)ei7,

and aD == (a2/c)e"i7 we have
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                  log (2 -- zA) =.- }eg Rli- ie - -Iili- ei(V-e) +O (iillir2) ,

                  log (g-2B) =' =- log R-F iB - -RC- e-i(Y""e) -F O (ilir2) ,

                  log (x-gc) ---- !og R•-} itj- -i-R2 ei(V mae) +o(tl-2) ,

                  iog (2 - xD) ::-=- iog R+ ie - Silill e-i(v't'e) -t- o (fli?) .

Thus, we have
                Åë, --- tt.-- (c- IZI2) ft {sino'+O) +sin(r-e)} +o (ft--,)

                  ua-• -ll- (c--g2) -S•}--sinrcos o+o(]ili2), (8)

ancl hence we have,* when R->oQ,

                      SC.Åë2 cos O• Rde :=-L jc (c -- -"c--2- )sin r. ( g )

This gives immediately

                   pSl.Oaipt2 cos e•Rda :=-L rc,ft t-d--t• {(c- -G,-?)sin r}. ao)

Also, we have
                    tE c,•oÅë2 cos (n, x) ds :L- Sl aoip2 cos e•R de

                                   =-L rcp(c- -[l:2' )sin r. (11)

Thus, we get finaily

                         x=== 2rc,o ud--t- {(c- •-",---":)sin r}. a2)

2. The drag X can also be evaluated in an alternative manner as fo!lows. If use

is made of the pressure equaÅíion (4.1) in (4), we have

         X== - 211t{(gc,s- sic,) ,oÅëcos (n, x)ds}

            ve F(t) si c,cos (n, x) ds -y -tl--p si c, q2 cos (n, x) ds- ,o Sc,uvn ds• (13)

The integral sic,cos(n,x)ds evidently vanishes, and it can easily be shown that

beth the lasÅí two integrals tend to zero as the large circular conteur C3 recedes away

to infinity. Thus, since, as mentioned before, the velocity potential Åë, contribuÅíes

nothing to the first two integrals in the brackets, we obtain

                    X:" - wwddndt {( si c, -F S, c,)pip2 cos (n, x) ds}, a4)

   * In our 1938 paper we have erroneously rnentioned that Iladi2cose.Rde evidently vanishes

when R-> crcE.
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 therefore, by (7), we get ultimately

                       X-- 2rc,o z$lt {(c- -[I:21 )sin r}. (is)
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