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SUMMARY

Pursuing Sidrak’s lines of attack, the steady flow of an incompressible viscous fluid

past an elliptic cylinder has been discussed, on the basis of Oseen’s linearized equations

-of motion, in case when the major-axis of the ellipse is parallel to- the undisturbed -
uniform stream. The exact solution of Oseen’s equations has been first obtained and

then the general expression for the drag experienced by the elliptic cylinder has been

calculated. Also, an expansion formula correct to the second power of Reynolds number

has been derived for the drag coefficient of the cylinder. The expansion formula thus

derived is in complete agreement, to the second approximation, with a similar expansion

formula which has been obtained recently by Tomotika and Aoi.

1. Introduction

The steady flow of an incompressible viscous fluid past an elliptic cylinder at small
Reynolds numbers was studied so far by several writers. In 1924 Harrison (1), solving
Oseen’s equations of motion approximately, calculated a first approximation for the
drag per unit span of an elliptic cylinder whose major-axis is parallel to a steady
uniform flow. In 1937 Meksyn (2) discussed, on the basis of the same Oseen’s equations,
the flow past an elliptic cylinder set obliquely at an arbitrary angle of incidence in
a uniform flow and computed, though only numerically, the drag and lift of the
cylinder. In the next year 1938 Lewis (8) treated the flow of an incompressible viscous
fluid past circular and elliptic cylinders and a flat plate, by using Oseen’s extended
equations of motion due originally to Southwell and Squire. After pointing out that
in Meksyn’s solution the circulation round the obstacle is infinite, Lewis obtained an
improved solution which gives rise to finite circulation. However, no discussions have’
been made on the drag and lift of the elliptic cylinder. Further, Sidrak (4) has lately
discussed the flow of a viscous liquid past an elliptic cylinder, on the basis of Oseen’s
equations, with the intention of obtaining approximate expansion formulae in powers.
of Reynolds number for the drag of an elliptic cylinder as well as of a flat plate,
each placed parallel to the uniform stream. ' On examining his paper carefully it has
been found, however, that he makes several grave errors in the course of his analysis
so that his results are not reliable. i

In a quite recent paper (5), Aoi and one of the present writers (S. T.) have also made,
independently of Sidrak, detailed theoretical discussions based upon Oseen’s equations
of motion on the steady flow of a viscous liquid around an elliptic cylinder or a-flat
plate placed parallel or perpendicularly to a uniform stream, and the drag experienced
by, and the flow patterns around, the obstacle have been discussed in detail by making
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use of the exact solution of Oseen’s equations. Also, approximate expansion formulae
for the drag have been obtained in each case correct to the fourth power of the
Reynolds nimber.

Such expansion formulae should have been obtained as well by pursuing Sidrak’s
lines of attack, if correct analysis would have been developed; and to the discussion
of the matter the present paper is directed.

2. The general solution of Oseen’s equations of motion

We consider an infinitely long elliptic cylinder, with major-and minor-axes of length
2a and 2b respectively, set at right angles to a steady uniform. stream of velocity U
of an incompressible viscous fluid in such a manner that its major-axis is parallel
to the uniform stream. Let (x, ¥) be the rectangular coordinates having the origin
at the centre of the ellipse and the axes of x and y along the major- and minor-axes
respectively. We denote by U-+#, v the components of the fluid velocity at any point,
so that #, v are the velocity of perturbation which become vanishingly small every-
where at a great distance from the cylinder.” If squares of %, v are omitted, we get,
from the Navxer-Stokes equations+of motion, the well-known linearized equation of
Oseen :

-—(u, p) = ;(:@ a@ )p + »v° (w, ), @.1

where p is the pressure, p the density of the fluid, v its kinematic coefficient of vis-
cosity, and V* stands for 6°/0x°+6%*/8y®*. The fluid being assumed to be incom-
pressible, the equation of continuity is

0w  Ov
e = () 2.2
Ox. 0y 2.2)
If:‘We put Ic#U/ 2y, thesé equations are satisfied by

?‘i‘+-—1—@—7z-x,l

% = —

0x 2k0x
4 (2.3)
¢ 10% :
°T Toy " akoy’ j
and
b}
p = pU ¢ 2. 4)
provided that
Vig =0, . 5)
and
V/—QL‘Z-}:_O (2. 6)

We now introduce the elliptic coordinates (&, %) defined as:

2 -+ iy = ccosh(& + i),
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with ¢=V a®—p*. ,
Then, equation (2.5) becomes

0% L 0% _ . @D

and, if we put Z=¢e"**%; in (2.6), the equation for X, becomes

0%, 6‘ / 1
0"
‘Bearing in mind that the flow past the cylinder is symmetrical about the axis of

x and that the perturbation due to the presence of the body must vanish at infinity,
the appropriate general solution of equation (2.7) is given by

— k" (cosh®&—cos®n) 1= 0. (2. 8)

¢ = cUbo§ — cUE%lbne""gcosnn , ’ 2.9
=l

where the b.’s are constants of integration.

Next, in order to solve equation (2. 8) we put X,=F(£)G(y) and separate the variables.
Then we are led to the modified Mathieu equation for F(£) and the Mathieu equation
for G(»), namely:

cgg — (A + EFcfcosh® F = 0, (2.10)
@dﬁ + (A + Eccos®n)G@ = 0. (2.11)
7

Solutions, periodic in % with period 2r, of equation (2. 11) are obtained for a dlscrete
set of characteristic values of A. They fall into the four groups:

ceﬁn( 77) Z a(_n) cos 2rn,
cezqar(n) = Z a$rtPcos(2r + 1) n,

(2.12)
sezns1(n) = Z bGriPsin(2re+ 1) 9,

S€ansa(n) = 2 bt s5in(2r + D7y,

The corresponding pairs of solutions of equation (2.10) which tend to zero when
&—ro0, are

. o ,
Fekﬁn(f) Bt W_Z;((;:) E( l)ra(an)lr(’vl)Kr<'U2) 3 R }

Fek‘_’m-l(f) s Zl:.:l) E ( l)r (;;-‘:})[Ir(vl)Kr-H('U‘.’) - Ir+1(’vl)Kr('vi{)] »



14 S. TOMOTIKA and H. YOSINOBU

\

Gek“n+1(f) "—b—é‘nﬁ;.]ij Z ( l)rb(::ip[l‘r('vl)jfrﬂ‘l('v ) + Ir+l('Ul)Kr<'v )]

Gekonro(§) = S?Z":i) E( 1 bGP (00) Kypaovs) — Traelwn) Ko(we)],

(2. 13)

where vl=%~kce’£, vg=%lcce‘5 and plan, peasts Senst, Semss are all constants inde-
pendent of &

Since, in the present case, the flow is symmetrical about the axis of x, ¥ must be
an even function with respect to». Therefore, the appropriate general solution for
X is given by

7 = Ue kccoshEcosn ? (LmFEKm(f) C€m<7)), (2. 14:)

o =)

where the an's are constants of mtegra‘aon, and

FEK..(§&) =

2n

T Peka(f), 1
‘ : (2. 15)

Feon(d). |

Inserting the above general expressions for ¢ and X into (2.3) and (2.4) we can
readily obtain the expressions for the components #, v of the velocity of perturbation
and the pressure p at any point. Thus we have

FEKL‘?H-](&’)‘ =

2n+1

U w2 .
U = ? [506_5 cosn blcﬁ"& - Z {bn-lc—(” 2k busre - +~)$} COSTL’?}
. . 13 =]

=3

+ v S ghecoshcosy Z U [F EK.,./(£)sinhéce,, (n) cosn
2kch” ot
1
— FEK.,.(§) {coshfce,,,' (m)singy + ékccem( n)(cosh2 — cos2 77)}] ,
(2. 16)
U ~&.s < —(n—2E —(n+2DEY L5
v - ﬁ_, 606 bSln’?) +z§{bn——le had b71+16 fsimny
U Zecoshécos N 7 s
+ — e 50051 | FEK,, (&) coshéce,(n)sing
Qkch” g
+ FEK,,(£)sinhé ce,,/ () cosn}, @2.17)
U 5
p= ‘;] [ (Boefcosn + bre™™) + {b e ("+‘)$}cosnn], (2. 18)

where FEK../(§)=z FEKm(E) cen' ()= dvcem(v) and h'—“(cosh% cos2y).
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3. The boundary conditions

We shall now proceed to determine the constants of integration a»’s and b.’s by
the boundary conditions. Since, however, the conditions at infinity are satisfied auto-
matically by the preceding expressions (2.16) and (2. 17) for the components of the
velocity of perturbation, we have only to consider the conditions at the surface of
the elliptic cylinder.

Assuming that the elliptic cylinder under consideration is defined by &=§,, the
said conditions become

u=—U, v=0 B.1D

at £=¢,.
Making use of the Fourier expansions:

ekccush!';'cns‘/] [FEKM,( E) sinh{‘ Cem( 77) cos 7
1
— FEK,(&) {coshgce,,,’(msinn + ghecen(n)(cosh2E — cos2 7’%
= ‘ZO»'Gm,n(E) cosnny,

grecoshcosn [FEK,,,’ (&) coshé cenn)sinn + FEK,.(&)sinh £ ce,,'(7) cos 77]

= 52: H,, (E)sinnn,

the expressions (2.16) and (2.17) for # and v can be rewritten as:

o ur, _ - d s >
Wy = ;[boc tcosn + bre™ — S buo1e” @ — B e E) cosm;]

el

AR
i (33 C)
+ 27 E E G, (F) cosn , 3.2)
m=0n=0
and
2 APy S ~(n-Dk ~(n*DEY o
Ny = — 9 boe " sing + > {bp1e” P — Bose” i ginngy
=]
+ E—i i Ao, (E)sinny . 8.3)
2kcm=0'z==0 , ’ '

Thus, substituting these expressions into the boundary conditions (3. 1) and equating
the coefficients of cosny and sinny (#=0, 1, 2,...) on both sides of the equations, we
get

bre %o + ]%CE G, o(§) = — cosh2f,, (8.4)

m =0

oo

217;0 N (e = 0, 3. 5)

m=0

(bosinhfo -_ %bge—3§o> -



16 *S. TOMOTIKA and H. YOSINOBU

o

1
(B = Boe™) = - Y auGusle) = — 1, (3.6)
M=)
1 o
—(n—2ky __, —lneDEey . —_n-
(bn—-le bn-(-le ) ke Eﬂamam.n<§0) = 0 ’ <3~ 7)

(n = 37 4, 5:)

os

1 1
(boCOShfo - 5628—“5") - é""lwmzoamllm.l(fo) =0, @3. 8)
—af _]_~_ N o aQ
<61 s 636 O) - e amHm,‘J(fO) =0 ’ <O' 9)
ne=0
(bn-—“le_(':—g)g‘o - bn+le_(ﬂ+27§0> “— %C‘E amHm,n(So): 0 * (3. 10)

M=

Subtracting (3.6) from (3.9) and (3.7) from (3.10), we obtain

o ke, (n=29)
2 7\*m, nQm = (3. 11)
m=0 0 , (7'1, — 3, 4’ 5’..-.)
where
Mnun = Gon,n(E0) — Hon,n( £0) (m —ob 2) (3.12)
men T mynNG0 My NGO/ 3 n o= 1’ 2, 3’ .

and the a»’s can be determined by solving this system of simultaneous linear algebraic
equations. .

If use is made of the a»’s thus determined, the value of b, can be found by the
following equation as given by eliminating b, between (3.5) and (3.8):

£

650
bo = - ch z }‘Jm,lam > (3- 13)

=0

and also the value of 4, can be obtained by (3.4). The remaining b.’s can be deter-
mined successively from either of (3.7) and (3. 10).

4. Transformation of the expressions for Am,.

Before proceeding to the calculation of the drag experienced by the élliptic cylinder
under consideration, we shall now transform the expressions (3. 12) for the Am,»’s into
more convenient forms. To do this, we introduce functions pm,-(¢) defined as:

ki

Pmn(t) = "17; f " ce,,(n) cosnndn . (4. 1)

-7t

Gn, n=20, 1, 2,--+)
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Substituting the series for cen(y) as given by (2. 12) in the right-hand side‘and carrying
out integrations, it is readily found that these functions pm,«(f) can be expressed as
series ‘of the modified Bessel functions®. Thus, we have

i) = F A Lucs) + Lo}, |

. p (4. 2)
Pomst® = 3 @B Ticsrs® + Tuzra @} - )
In what follows we take
t = kecoshéy = ka, , ; 4. 3)
where a==¢ cosh§, is the half-length of the major-axis of the ellipse &=¢&,.
Then, writing for convenience’s sake
%k(;:g, =c¢, eh=r, w=0c¢+r, 4.4
and bearing in mind that
sr=1, t=wgq, (4. 5)

the expressions (3. 12) for the ix,.’s can be transformed, after some calculations, into
the following forms :

xm.n = FEKm/(éo) q)'m,n - FEKm(EO) Ill'm..n s (4' 6)
m=0,1, 2, ;n=1, 2, 3,-)
where
1
¢711,7z = 5 {Gpm. n+1 ((Uq) - Tpm,n»l(a)g)} »
1 o

y/m,n = ‘1{(0~ + 8>qpm,n+2<wq) -+ 2(77: + 1)Upm,n+1((vg) :
4.7

— (86 + 2 + 37)gpm,(0g) —2n — 1)7Pm, n-1{cwq)

+ (3 + TQ)QPm., n-—ﬁ(wq)} .

5. The general expression for the drag on the elliptic eylinder

Next we shall proceed to the discussion on the drag experienced by the elliptic
cylinder under consideration. As is well known, two different methods are commonly
used in calculating the drag on a solid body immersed in a stream of viscous fluid.
Thus, in one method the drag is calculated by summing up the viscous stresses exerted

* Here we make use of the fact that when s is any positive integer, the modified Bessel function
Is(z) can be expressed as:
T
1
Is(x) = o fezcosocos s6d0 .
T

(Cf. G. N. Watson, ‘Theory of Bessel functions, (Cambridge Univ. Press), 2nd ed. (1948), p. 181.)
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hy the;fluid upon the surface of. the obstacle, while in the other, it is calculated by
applying, the theorem of momentum to an infinite mass of fluid surrounding the body.
As shown in a paper (6) by Aoi and one of the present writers (S. T.), when the
analysis is based upon Oseen’s equations, the former direct method gives the general
formula for the drag D per unit span of a cylindrical obstacle in the form:

—_lod, .
D= pr 8nds,~ 5.1)

wherg integration is taken round the circumferential curve s of the cylinder and 8/on
means differentiation along the outward normal # to s.
On the other hand, the latter indirect method gives

D= — ‘on ad)ds , | (5. 2)

where integration is taken round a large closed contour s’ everywhere at a great
distance from the cylinder and 8/0#’ means differentiation along the outward normal
n' to, s

In the case of the elliptic cyhnder &=¢&, under consideration, the formula (5.1)
becomes

0¢
D=— Uf(—~) dn, 5.3
P J N0 et K R
while the formula (5. 2) takes the form:
D——on() dn, (5.4
082" )

provided that a large ellipse confocal with the circumferential curve of the cylinder
is taken as the closed contour s'.

Thus it is easily found that if use is made of the expression (2.9) for ¢, the above
two formulae (5.3) and {(5.4) lead to one and the same result for the drag on the
cylinder, namely :

D = — 27pcU%,, (5.5)

which, by the aid of equation (3.13), can also be written in the form:

U ©
D= 1‘7—0 E A, 10 s (5.6)
i m=0
where R=2al/[v=4ka is the Reynolds number. This gives the general expression for
the drag on the elliptic cylinder placed parallel to the uniform stream.
If we define the drag coefficient Cp as Cpo=D/(pU?- 2a), we have

Op = —~a Z N, 18 - 6.7

M=l
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6. An expansion formula for the drag

Starting from the general expression (5.7) for the drag coefficient of the elliptic
cylinder, we shall derive an expansion formula in powers of the Reynolds number
which may be conveniently used for numerical computations of the values of the drag
coefficient. .

To this end, we have first to determine the a»’s by solving the system of simultaneous
linear algebraic equations (3. 11). Theoretically the solution.of this system of equations
has to be obtained by means of infinite determinants, but for the purposé of deriving
an expansion formula in powers of the Reynolds number R for the drag coefficient
it is necessary and sufficient to find the values of the first few of the a»’s. In fact,
it is readily justified that if we confine ourselves to the derivation of an expansion
formula correct to the order of R?2, it is necessary and sufficient to determine the first
two of the a»’s, namely @, and a,, by solving the following system of three linear
algebraic equations:

No,2o + Aray + Aeoae = 2¢, 1
o3 T i3+ Az zae =0, - 6. 1)
Ao, alto T M,aas T Ao gas =0, /
and in this case the drag coefficient Cp is given by
Op = %a(xo,m + Agica) . (6.2)

Using the series expansions for the modified Bessel functions 7, and K, the expansions
in powers of q<=%kq> have been calculated for the nine Am,»’s in (6.1). If we denote

S = — {r + 10g<§o‘g>} = — {r + 1og<“ : bi%)}, (6. 3)

where y=0.57721 --- is Euler’s constant, the results are as follows:

for brevity

1 o
No,1 = T — é{(ag + 4¢ — 37) + 46351}g‘ + -,

Nojn = %{(1 + ) + QSl}g s fg{(a* + 477 + 37" +6(s* — 74)51}6_]3 + -,

Nos = é{(o‘ + 4r + ) + 4581} ¢+ e,

; 1 ) . ; ) .
Ao, 4 == Zg{(o“ + 9+ 97+ )+ 66"+ 2~ 7'”)S]}Q3 4 o

1
?\4,1 = 5(0‘ - 27) + e 5
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Mo = i{~( f—2 1)+ 28,}(_] 4o,
1
N];g = §'T -+ - s

1 a5 (
)“’4 — §(2 +’T~)(] T e I

Aojg = — (1 + T")l,—i,-' .
q
1 .
Aoz = — =(Be — 47+ 27°) + -+,
6
Ao, 4 = 72*1‘ + e
q

Making use of these expansions, the system of simultaneous linear algebraic equations
(6. 1) has been solved for a, and a,, and substituting the values of @, and a, th_us obtained
into the right-hand side of (6.2)’and bearing in"mind that

and
co=c=qa+b, ecr=cco=a—b, ¢=da -0,

we have calculated an ‘expansion formula for the drag coefficient Cp correct to'the
order of K?. The result is given by

47 1 a+ bV, o+
OD‘ER[Sl-i-a/(a%-b)]l:l_ S: + a/(a+8) {(a >S1 + a &1

_ ba' — 8a’b — 30a"p” — 24ab” — 3b*| B }
12a%(a + b)° f128]"
(6. 4)

This formula differs from the corresponding Sidrak’s formula in the coefficient of R?,
but is in complete agreement with the second approximation of Tomotika and Aoi's
expansion formula (5).

The above expansion formula may be put in a somewhat simpler form. Thus,
denoting ' :

a—2b
E—-a—Fb’ (6. 5)
and
S= 8 +—% = 8 + 11 + o) 6. 6)
Tas T e & -0
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we have
47 1 | o ,1_ . _ .
Cp = RS[ ,(1’+ 9)28{6 +2(e, 2¢ —1)8 .
- i(ﬁ‘* + 12¢® + 18e* + 4¢ _15) Ei] , 6.7)
48 32”7
where

R } E___:a—b(
8(1 + ¢))’ a+ b’

S = %(1 + ) —V{T + log (6. 8)

As the limiting cases of the above formula, we can immediately obtain the expansion
formulae correct to the order of R* for the drag coefficient of a circular cylinder and
of a flat plate placed edgeways along the uniform stream.

(a) The case of a cirvcular cylinder

Putting a=b in (6.4) or ¢=0 in (6.7), we have

4 1/ 1o, B\E
Op = RS[I - S<S o8 16)32}’ 6.9)
where
8=+ L 6
=5 —T—loggR. (6. 10)

This is in accord with the second approximation of Tomotika and Aoi’s expansion
formula (7, 8) for the drag coefficient of the circular cylinder.

(6) The case of a flat plate
Putting =0 in (6.4) or e=1 in (6.7), we obtain the result that

. 5\ B
» RS[l h b(b 5= 12) 32]’ ©. 11)

where

S=1—7—logi:R. (6.12)
This coincides exactly with what has been given by Piercy and Winny (9, 10).
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