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                            SUMMARY
Pursuing Sidrak's lines of attack,' the 'steadY fiow of an incomptessible v!sicous fiuid

past an elliptic cyliRder has been discussed, on the basis of 0seen's linearized equations
•of motion, in case when the major-axis of the eiiipse is paraliel to-the undisturbed
uniform stream. The exact solution of Oseen's•equations has been first gbtained and
then the general expression for the drag experienced by the eiiiptic cylinder has been
calcuiated. Also, an expansion forrnu]a correct to the second power of Reynolds number
has been derived for the dragcoefficient of the cylinder. Theexpansion forrnuia thus
derived is in complete agreement, to ,the .second approximation, with a sirnilar expansion

formula which has been obtained rec6ntly by Tomotika and Aoi.

1. Introduetion

   The steady fiow of an incompressible viscotts fiuid past an elllptic cylinder at smal!
Reynolds numbers was studied so far by several writers. In 1924 Harrison (1), solving
Oseen's equations of motion approximately, ca!cUlated a first approx!mation for the
drag per unit span of an elliptic cylinder whose major-axis is ?ara;lel ,to a steady
uniform fiow. In 1937 Meksyn (2) discussed, on the basis of the same Oseen's equations.
the flow past an elliptic cylinder set 6bliquely at an arbitrary angle of incidence in
a uniform fiow and computed, 'though only numerically, the drag and lift of the
cYlinder. In the next year 1938 Lewis (3) treated the fiow of an incompressible viscous
fluid past circular and elliptic cylinders and a flat p!ate, by using Oseen's extended

equations of motion due or!ginally to Southwell and Squire. After pointing out that
in Meksyn's solution the circulation round the obstacle is infinite, Lewis obtained an
improved soiution which gives rise to finite circulation. However, Ro discussions hav'e'
been made on the drag and 11ft of the eiliptic cylinder. Further, Sidrak (4) has lately
discussed the fiow of a viscous liquid past aR elliPtic cylinder, on the basis of Oseen's
equations, with the intention of obtaining approximate expanslon formu!ae in ,power,s
of Reynolds number for the drag of an elliptic cylinder as wel! as of a flat plate. .
each p!aced para!lel to the uniform stream. ' On examining his paper carefully it has
been found, however, that he makes several grave errors in the course of his analysis
so that his results are not reliable.
   In a quite recent paper (5), Aoi and one of the present writers (S. T.) have also made,
independentiy of Sidrak, detailed theoretical discussions based upon Oseen's equations
of motion on the steady fiow of•a viscous liquid around an e!!iptic cy!inder or a-fiat
p!ate placed paralle! or perpendlcu!arly to a uniform stream, and the drag experienced
by, and the fiow patterns aroundi, the obstacle have been discussed in detai! by making '
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                               ttt
use of the exact solution of Oseen's equations. Also, approximate expansion forrnulae
for the drag have been obtained in each case correct to the fourth power of the
ReYsnuOc! hdSexn' btiaMnljs2•ori forlrluiae 'stiouid have b6eA obtainea as weii by'bursuing sidrak's

lines of attack", if correct analysis would have been developed ; and to the discussion
of the matter the present paper is directed.

2. The general solutioR of Oseen'g equations of motion
   We consider an infinitely lon'g elliptic cylinder, w!th thajo' r-and minor-axes of length

2a and 2b respectively, set at right angles to a steady uniform. stream of velocity U
of an incompress;ble viscous fluid in such a manner that its maior-axis is parallel
to the unlform stream. Let (x, y) be the rectangu!ar coordinates having the origln
at the centre of the ellipse and' the axes of x and y along the major- and minor-axes
respectively. We denote by U+u,' v the components ot -the,fluld velQcity at any point,
so that tt, v are the velocity of perturbation which- become vanishingly small every-
where at a'great distance from the cylinder. If squares of•u, v are omitted, we get,
for sOeegnEhe NaVl'er'StOkes equatibns"'of motion, the well-knoxxtn linearized equation of

                    u'51.r (2e, v)=" m-pii'(zjl.:, amaOgx)p + vv'(u, v), (2. i)

where p is the pressure, p the density of the fluid,v its klnematic coethcient of vis-
cosity, aRd V2 stands for 6216x2+6""1by2. The fluid being assumed to be incom-
pressible, the equation of continuity is

                                  tt                               l"lllii.1,Ltr,'i]i') :.o.• ' (f2•2)

                                           '
              '   If we put k= U12v, these equations are gatisfied by

                          t''L;y,,xÅë;11k/ll,llf,-Z•] (23)

and
                                        aÅë
                                 P" PUbli.., .(2. 4)
pfovided that
                                                                        '                                        '                                  v2Åë ='e, (2. 5)
and
                                      '                                .oz                              V-Z-2k bli ==. Q• i (2. e>)
                                 '          '
   We now introduce the elliptic coordinates <8,' tp) defined as :

                '                           x' + iy -- ccosh(} + iop) ,
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with c==via2-b2.
   Then, equation (2. 5) becomes'

                             o02gÅë,, + g2,Åë.- in- o, (2. 7>

and, if we put Z==ekXZi in (2. 6), the equation for Zi becomes

                   ""                  Oo-eZ.-r + Oa-opX..i - k2cL'(cosh2g-cos2n)X: == O. .,' •(2• 8)

  'Bearing in mind that the fiow past the cyiinder is symmetrical about the axis of
x and that the perturbation due to the presence of the body must vanish at infinity,
the apprepriate general solution of equation (2. 7) is given by

                                     oe                                                   '                      Åë-- cUboe -m- cUZ:bnem"6cosgeop, .. (2. g)

                                    ntu1
where the bn's are constants of integration.
   Next, in order to solve equation (2. 8) we put Zi== F(8)G(lf) and separate the variables.

The'n we are led to the modified Mathieu equatlon for F(e) and the Mathieu equation
for G(v), namely:

                        n                       d-F                         ,- (X + k2c2coshL'g)T=: O, .(2. 10)                       de '
                                          tt
                       di"opG,+(x+kle,2cos2b)GL-o. ' (2.ii)

                                                               '   Solutions, periodic Sn T, wlth period 2n, of equation (2. !1) are obtalned for a discret6

set of characteristic values of k. They fall into the four groups:

                                oe                       ce2n(ny) -- IE] a(is'r") cos2rn ,

                                rme
                                co                     ce2n+i( n) = = a(;)ril) cos (27• + 1) n ,
                                rsue                                                                  (2. I2)
                                op                     se-"nÅÄi(op) -- =b(rtP+"ii)sin(27•.+ 1) op ,

                               rme .                              '                       '                                eo                     se2n+-n(op) -m :I] b(!.;':S.)sin(27' + 2) op

                               rmO
                                 'The corresponding pairs of solutions of equation (2.10) which tend to zero when

erv> oo, are '
       Fek-"n(8)= .Pis:•#) .Zoo.,(-1)'a(3':'lr(vi)K7r(v2), )

      Fek2.+i(8) : ,,ili'l,,"•.".i,, S (-1)'a(!•."+'l)[I.(vi)K,+i(v2) - I.+i(vi)Kr(vp)] ,

                         r==e
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      Gek2n+i(g) = ' ,,.l2'i.o'h".",, S (im 1)rb(;::l'[l.(vi)Jf..i(v2) + 1..i(vi)K.(v2)].,' IX'

                         rca-o
      GekL•n+2(g) = : ,,.I2'i.i;.i.2,,, Z (- 1)'b(L7•1•::}'Ur(vi)K.+2(v2) - I'.+2(t'i)Kr(ve)] ,

                    " rptO
                                                                   (2. 13)

where vi===-irlecelag, v2 =Sk'ce8 and pu'!et, put2n+:, ,s'2n+i', s'gn+2 -are all constants inde-

pendent of gA.
'an2]}"eCneiiiinnctPig.Pr.'?•Sh"t,8,aS,e6ttA8'S9WTXS.S,YfM.,r'",S:XZCaa,Sb,8,"/i•gth,e,a,XS2,glg6i.,l.".StfBe,

                               '                                                                   '                                  ee                    x .., uekcco•shgcosn l:I] a.FEK.(g) ce.("), (2. 14)
                                 pn=#O
where Vne am's are constants of integration, and

                        FE.s2n(g?..ii)Z..Fe'fn"(8)' .1,,•L• (.,.l6)

                      FEK2n+i(8) =" ,t/13i.,Fek2nn(g)•J '

   Inserting the above geReral expressions for Åë and.Z lnto (2.3) and (2.4) we can
readily obtain the expressiQns for the components zt, v of the velocity ef perturbation
and the pressure p at any point. Thus we have
   '                                '                              '2e --. 2ilt2 [boe-e cosop +. bie-2g - S.i{b.-iem(es-2Jig - b..ie-(""2)g} cosnop]

                         '
                    '                    co •/•    + 2Llcllh,ekcco'"hsecosn Z a,. [FEK,.'(e) sinhs ce,. (op) cosop

                   otiwwo •.
                   - FEK,.(g) [cosh}ce,.'( op)sin op -l- S kcce.( op)(cosh2g - cos2 op)l] ,

                                                                  ("9. 16)

v=-
Stllil2[ ,,ill           6oe-sesinn +IX {bnmie-(rt-")} - bn+ie-C""e)g}sinn"]

                    ca    + 2Llill ,2e'"CCOShseC"S"Za. [FEK,.'(g) coshgce.,(op)sin op .

                   ?ltate
                                + FEK.(8)sinh8 ce,.'( op) cos eq] ,                                                                  (2. 17)

jp = Sl17b/T' [- (6ee-gcos77 + bie-2#) -t- ;t.,{b,,-ie-("-g)e - b,,.ieL(""2)8}cosn77], (.g,. is)

where FEKon'(e)=Sl}FEKm(e), ceen'(if)==Åícem(op) and h2=='li'(cosh2e-cos2v).



              I)RAG ON ELLIPTIC CYLINDER-IN VISCOUS LIQVID 15

3. The boundary conditgons

  We shall now proceed to determine the constaitts of inte'gration am's and bn's by
the boundary conditions. Since, however, the conditions at infinity are satisfied auto-
matically by the preceding expressions (2.16) and (2.17) for the corRponents of the
velocity of perturbatioh, we have on!y to consider the coriditions' at the surface of
the elliptic cylinder.

  Assuming that tke el!iptic cy!inder under consideration is defined by e==8e, the
                                                      .said coRditions become

                            2e ---U, v=:O (3. l)
at e=8o•
  MakEng use of the Fourier expansioRs :

    ekccoshecos" [FEK,.t( g) sinh8 ce7n( n) COS op

              --- FEK.(.8) (cosh}ge.'(op)sinop + ilkcce.(n)(cosh28 - cos`9Jop)]]

              ce           == Z G,n,n( 8) cosnn ,
             flJ=O
    ekceesliecosn [FEK,.'(g) c6shg ce.( op) sin op 4 FEK,.(g) sinhg ce,.'( b) cos n]

                                       '
              oo           -pm = llm, •n(8)sinnop ,
             nml
the expressions (2.16) and (2. 17) for u and v can be rewritten as:

       lb22e == -[tl[bee-gcosop + bie--"g - ;,:.i<bn-ie'('2-2)e - b.+ie-(""2)st}cosnop]

                 +2\c S: (tfnGm,n( S,)COSnop, (3. 2)

                      7nmenstO
and
       h2v =: - wwU2 [boe-esin" + S...i{b,IthiemC'2-S)e - 6n+ie-C""S)e}sintan]

                       ee ee                '+ 2il.,' ZZamHm,n(e)sinnny.• (3. 3)
                      7tttaOnmO '
   Thus, substituting these expressions into the boundary conditions (3. 1) and equating
.the coeMcients of cosnv and sinnv <n--O, 1, 2,...> on.both sides of the eqwations, we
get

                          oo               b,e-2ee + icZ a.G.,,<g) =7.- cosh2g,, (3. 4)

                         7itmO
               (bosinhg, - S- b2e-:go) - 21,cS a.G.,,i(s,) -- o, (3• s)

                                       7nmO
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Subtracting

           - on•     (bi - -b,.3e-"gO) - fe Z (tmp. Gfn,2(8o) -- - 1 ,

                     ett -= O

                                co   (b.--ie-("-2)eo - b..iein('i'L')gO) - ti.e Y" a,.Gm,n(eo) -- e ;

                               7nete
                                   (n = 3, 4, 5,•••)

                            oo   (bocosheo - l-lbL,e-3ee) - 2mbikc,II,lll.,amiimii(eo) "= O,

                    co   (bi -- bse-"go) - )l.lc Z a.•Elm,--(}o) -rm O ,

                   eitwne

                                ee   (b.-ie-C';-2)ge -- bn+ie-(ft"2)eo) - kwwle Z amHm,n(8o) -rm O .

                                enne
                                   (n == 3, 4, 5,•••)

(3.6) from (3.9) and <3. 7) from (3. Ie), we obtain

          '         tt          ee tkc, (n == 9`,)
         ,.Kdglj..e)L,"enam =: 1o, (n == 3, 4, 5,'"')

(3. 6)

(3. 7)

(3. 8)

(3. 9)

(3. 10)

(3. 11)

where

               x.,. -- G.,.(so) - H.,.(se), ('hZ l:l 91 ll g'l.I.) (3• i2)

and the am's can be determiRed by solving this system of simultaneous Iinear algebraic
equations.
  If use is made of the am's thus determined, the value of bo can be found by the
following equation as g!ven by eliminating b2 between (3. 5) and (3. 8) :

                                     ce                          bo ==-.,,,eJIO,Z)ttn,i(t,n, (3. 13)

                                    71tmO
and also the valtte ofbi can be obtained by (3.4). The remaining b.'s caR be deter-
mined successiveiy from either of (3. 7) and (3. Ie).

4. .Transformation of,the expressions for lm,n

  Before proceeding to the calculation of the drag experienced by the elliptic cyiinder
under coksideration, we shall now transform the expressions (3. 12) for the Zm,n's into
more convenient forms. To do th!s, we introduce functions pam,r.(t) defined as:

                                ec                     p.,.(t) :#fe'cos"ce.(n)cosnhdop.' (4.o

                               me
                                            (m, n == O, 1, 2,•••)
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Svibstitu'ting the series for cem(v) asi given by (2. 12) in the right-hand side and carristing"

out integrations, it is teadily f6und that these functions pam,n(t) can be expressted as
series 'of'the modified Besse! functions'sc. Thus, vize' haVe'

                  p....,.(t) mi ;;iO":va,a•(ib..:'){f.-2r(t) + Ist+2r(t)}, 1

                                                         )•                p2m+i,n(t) ": IIIOO..g, .a(tt..'r"+"i.i){1ri-,2r-i(t) 'l- ln+2r+i(t)} • J

  In what follows we take

                            t=: kccosh8o = ka,

where a=:ccoshSo is the ha!f-length of the major-axis of the ellipse 6Å}ee.
  Then, writing for convenience's sake

                                            '                 -i}kc --g, eeo --6, e-eo ==T, (ti --a+T,

                              '                                                       '
and bearing in mind that

                            crT :1, t== (ti9,

the expressions (3. 12) for the 2m,Ys can be transformed, after some
the following forms :

                  Xm,n =" FEKnti(eo) ptm,n - FEK7)t<go) ?LUon,,n ,

                                   (m == O, 1, 2,•••; n== 1, 2, 3,•••)

where
       Åë7n,n == tl (ffz)"t,N+i((vg) - reiptn,n-i((og)l ,

       SP",.,. = pm iI(a2 + 3)gpm,n+2((tig) + 2(n -F 1)opnz,n+i((vg)

                   - (3a2 + 2 + 3TL')gp,.,.((vg) -2(n m l)7"P,n,n-i((09)

5. The general expressien

  Next we shall proceed to
cy!lnder under consideration.
used in calculating the drag

+ (3 + 7"L')gP?n,n-2(`e9)) '

(4. 2)

(4. 3)'

(4. 4)

         (4. 5)

calculations,• into

for the drag on the elliptic cyliRder

 the discussion on the drag experienced
 As
en a solid body immersed in a

<4. 6)

(4. 7)

                                                            by the elliptic
                             is we!1 known, two dlfferent methods are commonly
                                                    stream of viscous fi"id.
Thus, in one method the drag is calcuiated by summing up the v!scous stresses exerted

   re•' Here we make use of the fact that when s is any positive {nteger, the modified Bessel function

ls(x) can be expressed as :

                                   ec                           is(a:) = ii}l# fexcosocos sede .

                                  -rmc.:
(Cf. G. N. Watson, `Theory of Besseg junctions,' (Cambriage Univ. Press), 2nd ed. (1948), p. 181.)
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by-.thei,fluid upen,the surtace of, the obstaÅël.e, wh.ile in the other, it is ca!cqlated by
applyS:ngi,the theQrem of momentum to an infinite m.ass of fiuid surrounding s.he. body.
  As shown in a paper (6) by• Ao!. and one ef t•he presept w, riter•s tS. T.), when. the
analysis is based upon Oseen's equations, the former direct method gives the general
formula for the drag D per unit span of a .cylindtical obstacle in the form :

                         'D ==-pUf eeÅë.ds; ' (5. 1)

                                                   '                                                                 'wlter,p integration is taken rounq tke cirggmferential curve s of the cylinder qnd OIOn
means differentiation along the outward normal n to s.
  On the other hand, the latter. indirect rnethod gives

                                                               '                         D == in pu J 8:Yi, cls' , ' ' ' ' ' (s. 2)

                                                  '
where integration is taken round a large closed contour s' everywhere at a great
distance from the cylinder and alan' means differentiation a!ong the outward normal
nr to st.

    t' '"/  In the case of the elliptic cy!inder $=:eo under conslderation, the formula (5.1>
becomes
                                     ?r.                          D=- pUf(tbldl)g.g,d op' (5' 3)

                                   e
while the formula (5. 2) takes the form :

                                     2pt                          D"" - iOUf (glÅëig)g...cl op, (5' 4)

                                   u
provided that a large ellipse confocal with the circttmferential curve of the cy!inder
is taken as the closed contour s'.
 ' Thus it is easi!y found that if use is made of the expression (2.9) for di,the above
two forrnulae (5. 3) and (5.4) lead to one and the same result for the drag on the
cylinder, namely :

                            D== um 27r,ocU2bo, (5. 5)

which, by the aid of equation (3. I3), can also be written in the form :

                                     ec                          D=: Z`Ol..U2aZ x.,ia,., (s• e))

                                     vtrmo

where R==2aU!y = 4ha is the Reynolds number. This gives the general ey. pression for
the drag on the elliptic cylinder placed parallel to the uniform stream.
  If we define the drag coeeacient CD as CDurD!(pU2•2a), we have

                                     oo                           a. -- 2f6Z x.,,a.. (or. 7)
                                    7ii va O
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6. An expansion formula for the drag
  Starting from the general expression (5.7) f6r the drag coeMc!ent of the'elliptic

cylinder, we shall derive an expansion formula in powers of the Reynolds number
which may be conveniently used for numerical computations of the values of, the drag

  To this end, we have first to determine the a?n's by solving the system of simultaneous
linear algebraic equations (3. 11). Theoretical!y the solution,of thi$ systepa. of•equations

has to be obtained by means of infinite determinants, but for the purpos6 of deriving
an expansion formula in powers of the Reynolds number R for the drag coeMcient
it is necessary and suracieRt to find thevalues of the. first•few of the am's. In fact,
it is readily justified that if we confine ourselves to the derivation of an expansion
formula correct to the order of R2, it is necessary and suthcient to determine the first
two of the am's, namely ao and ai, by so!ving the following system of three linear
algebraic equations:

                                                      '                       Xo,2Cto + Xl.2al + X2,2a2 ac 29 "

                       'Xo,3ao• +.pti,3ai'+ Nti,3a2 ---- O, 7 (6. l)

                       ,Xo,aao + pt1,4pt1 + pt'h,:a2 ==10, /

and in this case the drag coe,Mcient CD is given by

                        aD -pt- 9Sa(xo,iao+x:,iai). (e). 2)

   Using the series expansions for the modified Bessel functions I, and K, , the expansions
in powers of q(== -lirkc.) have been caiculated for the nine lm,n's in (6. !). If we denote

for brevity

              s, d - (r + iog (-2i oy)i = - (r + iog (" f, biitll,)], (e,. 3)

where r :O.57721 -•• is Euler's constant, the results are as follows:

    )Lo,i -- T- lll(ff3 + 46 - 3T) -t- 4oaSi]g2 + ,

    Xo,2 : ;l(1 + T2) + ]D:JSi]g -'- EIil(a` + 4T2 + 3T") +6(a" - T`)Silg3 + ••• ,

    )L,,, == g((a + 4r + Ta) + 4as,l ,?2 + ••• ,

    Xo,i=: l:Ii((62 + 9 + 9T2 + 7') + e)(a2 + 2- 72) Silgz3 + •• ;

    )Li,i =: - 21 (a - .9.T) + ••• ,
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Xi,2 == i(-(a2
-2-T

2) + 2Sil9 + ''' ,

ttl;S
  1 r 2nvT+ ''' ,

)Ll,•t
  1
'-'--' gg2 ".7•R)' g -i!} ••,- ;.

Åí
  .h.>L,

x 2,3
  '

= :' ' (-1 + T'i) I! '+ ''' s

           g

--
 - f, (3a -

4r- + .9.,Tu,) + ....,

.---+;T2--

 ''t

"-x

  .Making use of these expan,sions, th.e system of sim• ulta,n.eous linear algebraic equations

(6. 1) has been solved for ae and ai , and substituting the va!ues of ao and az thgs obtained

into the right-hand side of (6.2)•,and bearing in"'mind that

 " k2c2
9-  =" 4 ==

  c2R2
Eg/Zi4tt-, R =4ka,

and

      g,ca :ce  :a+b, cT == ce:Tgo im- a trr be c2 -- a2 - b2)

we have
order of

ca!culated an 'expansio' n

1?a. The result is given
formula
by

for the'}drag c6ethcierit CD correct to''the

q. ==
47r

R[S, + a,!(a +
b)][i pm- s, + i

a/(a+b)
((g,:,

 ' '

b)1/ s,, + aL' i". b2 s,

5al - 8a3b - 30aL'b2 - 24ab a - 3b`l

l2a2(a + b)2

   il'as'

 (e). 4>

This formu!a differs from the corresponding Sidrak's formula
but is in complete agreement with the second approximation
expansion forrnula (5).
  The above expansion formu!a may be put in a" somewhat
denoting

                                  a-b
                              e M- a+ b'

'   onl f the coeMcient
Tomotika and

simpler forrn.

of R2.
Aoi's

Thus.

(e). s>

and

)te+(1S+Si=
a

b+a
+Si-has (c). e)>
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we haye
o. = iTs [IY-

(1
+l e)2sIS2 + S(e" h 2e '-'

1.)S

- 4wwls(e` + 12e3 + l8eL' + 4e - l5)lli2,"'] ,
(e), 7)

where
s= Sa + e) - (r +       R.,> .,

logs(1 + e)j, e =' a-b
at.b'

(6.- 8)

   As the iimiting cases of the above forrnula, we can immediately obtaln the expansion
formulae correct to the order of R2 for the drag coeMci,ent of a circular cylinder and
of a flat plate p!aced edgeways along the uniform stream.

  (a) The case of a circular cylinder

  Putt2ng ar-b in (6. 4) or e=O in (6. 7), we have

     4T0D=.5zt' 1[ - k(s2 - tls + ft,) <i.:1 ,
(e). g)

where

    1b'=i-r-    1loggR. (e). Io)

This is in accord with the second approximation of Tomotika and
formula (7, 8) for the drag coeMcient of the circular cylinder.

  (b) The case ofafiat Plate .
  Putting b==O ln (6.4) or s==1 in (6.7), we obtain the result that

Aoi's expansion

     47ra.--
     RS

[, ww g, (.2 - s- s,)gr]•
(6. 11)

where

S -nv 1 - r - log }tR. (6. 12)

This coincides exactly with what has been given by Piercy and Winny (9, le).
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