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SUMMARY

In order to determine the states of a system having several identical par-
ticles, each with any spin, we have essentially to consider the transformation
of the spin functions of the system, and to treat the problem three principal
methods may be expected. In the present paper we have ireated the problem
by the method of simultaneous reduction of both representations of rotation
and symmetric groups, regarding the spin functions as the bases. The results
of our calculation are given in Table I. By adopting these results it has been
able 10 obtain, for example, the transformation of nuclear spin functions of a
system having identical nuclei with any spatial symmetry.

1. Introduction

In quantum mechanics, for the purpose of determining the states
of a system including several identical particles, we have essentially
to find the transformation of the spin functions of the set in relation
to the problem of . permutation degeneracy and of statistical property
subjected to the particle itself. The problem concerning a set of par-
ticles with spin % %, e,g. many-electron problem, has been dealt with by
the following methods : firstly, the wave method based upon the employ-
ment of explicit wave functions (1); secondly, the method of Dirac’s
character operator (2), which has been extended by Van Vleck (3),
Serber (4), and Corson (5); and finally, a method which makes use of
the representation matrices of the symmetric permutation group given
by Serber (6) and by Yamanouchi (7). :

" In the present paper we have attempted to find the transformation
of spin functions of a system composed of several identical particles,
each having a higher spin. And we have treated cspecially along the
line of the lagt method, performing the simultaneons reduction of both
representations of rotation and symmetric groups regarding the spin
functions as the bases, without having recourse to the construction of
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the representation matrices of the symmetric group. The results of our
calculation are given in Table I,

By adopting these results we can obtain the transformation of nuclear
spin functions of a system including identical nuclel with any spatial
symmetry®. Then, some applications will be possible to the problem
not only of nuclear spin degeneracy, nuclear quadrupole coupling, and
nuclear spin-spin interaction in molecular and crystal systems, but also
of nuclear shell structures.

2. General remarks on the simultaneous reduction of the two

group representations ,

The spin space of a particle with spin s (taking # as unit) is ex-
pressed by the representation D, of a rotation group, diagonalizing the
rotation about the z-axis in a (2s + 1)-dimensional unitary space. The
spin function of a system including f similar particles are made up of
(2s + 1)” independent bases :

UPUP--UP, where N, p, -, v =s,8— 1,-, — 5. (1)

Therefore they make a (2s + 1)’-dimensional vector space R, in which
they are linearly transformed not only by rotations of the space, but
also by permmutations of these identical particles. So we have two
representations of the rotation and the symmetric groups in the space
R at the same time: the former, [D.];, the Kronecker f-th power of
D,, and the latter, 7; of degree . In the reduction of R the follow-
ing theorem is employed : the reduction of either representation can be
carried out simultaneously, since the operations of -these two groups
are commutative with each other. This means, as regards the basis
vectors, that it is possible to divide into a set of rectangles with the
following form : '

’ /
Vll,"‘,Vm Vu,"',Vm’
. R « . HE (2)

.

/ /
Viery =y View

-

Via, =y Vi

Every set of basis vectors belonging to every row in one of the rectangles
appertains together to a certain irreducible representation of a group.
And in the same way it holds between every column in one of the

* The spatial symmetry of the fixed nuclei is expressed by the symmetry group @ (8),
which is a finite or continuous sub-group of the three-dimensional full rotation-reflection
group.
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rectangles and another group representation. Consequently either irre-
ducible representation of the two groups corresponds to one of the
rectangles (10).

According to the above theorem, to each rectangle corresponds an
irreducible representation specified by a certain resultant spin value S
of the rotation group and one of the symmetric group, taking suitable
linear combinations of (1) as the bases. In our case, however, to all
the columns of each rectangle belongs not always an irreducible repre-
sentation of a group, that is to say, the representation of the symmetric
group belonging to a rectangle is not irreducible in general. If the.
representation of the rotation group has been completely reduced, each
rectangle has one-to-one correspondence with each S which is given by
the reduction of the product representation :

(D=2 o(S NDs; 8S=fs—g, (3)

where ¢ = 0,1,2,-, fs, or fs — % for all the possible resultant spin
values 8’s, and ¢(S, f) is the number of times of the appearance of an
irreducible representation Dj.

Now we take
(u(i))s-i-z\(ull))s~—)\

V(s + M s — A

U(O ( 4 )

as the unitary base vector of the spin space of each particle, where
i=1,2,-,fand A=s5,s—1,+,—s. And if we introduce the
contragradient variables 2y and a. to wf? and #§, respectively, the

following invariant formula can be established :

I = J1 (ufPul? — 4P uP)i H (P 1 + uP )™ 0%, (5)

i<j
where i]] means the product with respect to ¢ less than j, subject to

the condition that Z o= g, and
SVaoy (for £ =1i,0ry)
0 (for k#Z,and j),

> being the summation with respect to all %’s, Then it is easily
proved that the basis vector of the repreqenmtlon Ds is given for M =
S,8—1, — 8 by the coefficient of

.’)’;'1S+M .’I?nS“ M

Xy =7 - |
VSIS — M) ‘)
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in the expansion of the invariant formula (5). Thereby we can explicitly
obtain each column in every rectangle (2) except for common numerical
factor.

From the fact that the characters of the representations in R are
invariant for any set of linear combinations, those characters of a trans-
formation AP in the spin space can be calculated by the following two
methods : first, by the bases (2) reduced only for the rotation group,
and secondly, by the basis vectors of the type (1); where 4 means a set
of unitary transformations:

Us: Cs{]s; Us—-1= Cs_lUs—ly Tty U——3= t_sU—sy (7)

on remembering that the representation R.(@) of the rotation (angle @)
about the z-axis with the bases U, Usq, -+, U_; can be given by

P 0
GL‘(S—I)?

Rz(q)) =
0 s

P is a set of permutations which have various cycle structures
(aty, sy -+, @), provided that oy + 20+ -+ + pa,= f (9). Let
Zs(P) be a.set of characters of the representation of the permutations
P belonging to a rectangle specified by a given 8. Then as both results
must be equal, we can find the following identities, namely, for an
integfal value of §:

p
g As(P) (€5 + 651 4 oo 4 £ = 1 (6% 4 gGD% 4 .. 4 £ (8 q)
and for a half-integral value of §:
% XS(P) (CQS + C(gs“z) Ao g—-zS)
= iﬁ (gﬂsa&i + é’(‘ls—ﬂ)mi 4 e - C-—zwi) , (8 b)
=1

respectively, where > is a summation about all possible S = fs— g =0.
8

Thereupon Zs(P) can be obtained as the coefficient of &7 in a polynomial :
p

I — &) (@™o 4 gO&D% 4 oo 1), (9)
fel

if both sides of (8a) and (8b) are multiplied by &7 (1 — &), and &7

X (1 — &) for s = an integer and a half-integer, respectively, and ¢*
is replaced by ¢ for the latter.
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Thus we can calculate Xg(P) about evéry class of the symmetric
group over all possible S. The calculations have been carried out within
the limits of the problem of some part of the nuclear spinsg and of £ =< 6.
It is shown that the results are equal to those found from branching
diagrams. In addition, a character of the unit element is the degree
of dimension of the representation matrix of the symmetric group
belonging to a given S, being just equal to ¢(8, f) in (3).

Finally, the complete reductions of =, are given by resolving cvery
Zs(P) calculated above into simple characters of the symmetric group
(9). The final results of the simultaneous reductions are inserted in
Table I, where in case of s =1, f = 6, and § = 2, the result is given
by the direct sum:

{6} + {5,1} + 2{4,2} + {3,2, 1}

and every {a, -+, @,} means an irreducible representation of the sym-
metric group, above all {f} is always an identical one. In these
illustrations we can find the fact that, if 2s + 1 = f, every irreducible
representation is at least once included in the direct sum.

TABLE I. The results of the simultaneous reduction.

The first row of each sub-table gives the irreducible representations of each symmetric
group &y, and the first column of them means the resultant spins characterizing the
irreducible representations of the rotation group. In case when f =6, %’s give {6},

{5,13%, {4,2}, {4,172}, {3°}, {3, 2,1}, {3,153}, {27}, {2%,1%}, {2, 14}, and {1} with the order
of i. In case when f =5, they give {5}, {4,1}, {3,2}, {3,1°}, {251}, {2,153}, and {1°},
respectively. And in case when f =4, %= {3,1}, 43= {2%}, %, = {2,1%}, and %5 = {19}.
In the following table any column of %; is omitted, whenever iis elements are all zero.
Besides we put the table of s==1/2 only as a reference.

a) s=1/2.
=2 f=3 f=4
Y e I ' % fe l Ya Ae Ks
8§=0 0 1 S=1/2| 0 1 S=0 0 0 1
1 1 0 3/2] 1 0 1 0 1 0
2 1 0 0
F=5 F=6
‘ Y Ae : [ A A A s
S=1/2| © 0 1 S=0 0 0 0 1
3/21 0 1 0 1 0 0 1 0
520 1 0 0 20 1 0 0
} 31 0 0 0
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b
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3. Transformation of nuclear spin functions

As an example of applications of the above results, we can obtain
the transformation of nuclear spin functions of a system including
several identical (relatively) fixed nuclei with a certain spatial sym-
metry, each nucleous having a higher spin. The symmetry group @
expressing the spatial symmetry of nuclear architecture of a molecular
system can be always represented with homomorphic correspondence by
a permutation group P, which is generally a sub-group of a symmetric
group ©,. It is easily proved, however, that the followings correspond
isomorphically to each other:

33 g—@ Eai; 033 O‘.’., Cyz'hn DS, al, aiu, Vd, D‘i, DG,
(10)
T,Te, O ,0h, ete.

Therefore, the irreducible representations of the grovp &; are not
always irreducible for the representations of P, or isomorphically
represented group &, and so by considering the spatial symmetry of
equivalent nuclear system the irreducible representations of &, can be
reduced in general to those of &, If P is homomorphic to &, the
reduction must be carried out in regard to the class elements corres-
ponding to the permutations of equivalent nuclei. And in the case of
B =6,, the reduction is not nccessary. The correspondence of the
irreducible representations of &; to the typical ® is given by the follow-
ing Table II. )

TABLE II

a) @g. b) @3.
=01 |G |G |Cw| D | Dem G=Cw, Dy | Dy
71 Ag 147 1 A | 4y Ayg ):; Xy Ay Ay
A Au | A7 | B | Ba| Bu | =% A r 7,
Xg 112 fng
C) @4.

6=Cuw, Ds, Va | Dan’ T,

%3 Ay g Ay

Yo By+ E Big+ Fr. Ty

A A+ By Ayg+ Bag r

)':4 112-{- s /lgg'{"‘ ]f]u T]

X5 .B] 1)737 ZL_)
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® = Dg:

Xy = “110,

Xo= Byy+ Eyg 4 Eoy, Xg = 2Ayg + Boy + 2E1g + Eoy,

Xg= 24ag + Byu-+ Bou+ Eig -+ 2B, Xs= dog+ 2B1y+ Eou,
Xo= dyg+ Aag + Byu+ Boy+ 3E1y +3E0u,

Xy = dig+ Asg + 2Bou + 239 -+ Eou,

Xy = 2419+ Eig+ Bou, Xg= dog -+ 2B+ Eig+ 2Fou,

X10 = A1g+ Erg + Epu, X113 = Byu.

G=0:

Xy = dyy,

Xo = Ey+ Tyu, Xg= Ag+ Eg+ Tog + Tou,

Xy = Aog + Tyg + Tyu -+ Tou, X5 = Aag + Ao+ Thu,

Xg= Eg+ FEy+ Tig+ Tia+ Tog + Tou, Xy = Ay + Tig -+ Tog + Tou,
Xg= Ayg+ Agu+ Tog, Xo = Aoy + By + Tiu+ Tig,

Xm = Eu.+ qu, X“ - Jlgu.

By making use of the above relations, the transformation of nuclear
spin functions is given in terms of a direct sum of irreducible repre-
sentations 175 of & : the results are generally obtained by the formula :

2128 + 1)? T, 8 I, 1y

where the factor (28 + 1) is the nuclear spin multiplicity corresponding
to a given resultant spin 8, and 7(J, S) are always positive integer,
or the number of times in which each irreducible representation of ®

specified by j appears.
In conclusion, the authors should like to express his deep gratitude
to Professor H. Yukawa for his kind interest and encouragement,
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