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1. General description

When there is a thin conducting screen with a concentric circular

aperture in the circular wave guide
(see Fig. 1), the screen behaves like
a shunt reactance inserted in the
transmission line. We shall discuss
the behaviour of such a screen in
the present paper.

Now, the symmetrical B-type
wave is taken to be incident waves
in the circular wave guide of inner

Fig. 1.

radius £, i. e, we assume that the incident waves are given, in M.

K. 8. units, by
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% Read at the meeting of Electric Waves Branch of the Physical Society of Japan

(Oct. 1949).
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where J’s are cylinder functions of the first kind and N = &/R,
Moo= Euf B ,oeeee , (&1, &y Egyee being the roots of Ju(x)= 0), while
bl =B — Ay with o equm = 17,

In compliance with the mth mode of incident waves and with the
axial symmetry of this transmission system, I, waves are supposed
to be excited and therefore I, depends upon » alone in the aperture.
Hence, we can assume in the aperture, which is situated atz = 0, that

&) =), (2)
z=0 )
while on the screen outside the aperture, we have
B.=0.

Therefore we obtain the following equations at z = 0; namely, on the

incident waves side of the screen (z<0),
B =+ 3008, (3)

and, beyond the screen (¢ > 0),

Er(+) o Z;an(dr) B, (4 )
k2353

Now, making use of the orthogonality of Ji(hw), @, are expressed
in terms of Y(r) by (3) and (4). Particularly, when n = m,

A ¥
m( V= - - m = + 3 e 5 .
o /mhm ( m Ly > ’ ( )
and when o % m,
A
1) = -
l?’n 7,;]L,, ( 6 )
A
(Ln(+) == Zq)n. ; (7 )
Ta Ln
where
r ) .
Tn s So (r]} (}\.n?‘)>.7' dr R Pr= S »\l,\<7-) J1(7\'n7')7' dr .
0

Next, Ho'*” and Hy* are expressed in terms of (5), (6) and (7) as
follows (in the following, field quantities represent the values at z = 0) :
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and
p
H ) = — eow‘ Y YGG, o)’ dr” (9)
iy
with

G<T, > ’)') = i.‘)l {Jlo\‘n?',) J1<7\‘n7’>} / 7’91 ]Ln .

Since the screen is thin, it has been assumed in the above that the
relation B, = E, holds in the region 0 < < o, where p is the
radius of the aperture. :

Similarly, we have the relation Hy" = H," only in the region
0=<r <X p. Then, we obtain, in the interval 0 < r < o,

i

i'fl (7\7)1,"') —_

p
S Y)Y GG, v d’ . (10)
./\‘m 4

Multiplying both sides with yr(»), and intergrating from O to o, we
have

SZMX"'T) r S S Y)Y GG ) () de'vdre 11

If the solution Yr{r) of the integral equation (10) be found, we can
compute @,'” and @,"*’, and obtain the field quantities exactly. But
it is very difficult to find the exact solution Y(r) and its numerical
integration is also troublesome (1). Mayer (2) has calculated the proper
frequency of the nosed-in cavity, by a method somewhat similar to
ours.  Hansen (3) has also treated the similar problem about the cy-
lindrical cavity, his expression corresponding to our expression (10)
being however somewhat different from ours. It is because of the
fact that we deal with the progressive and reflected waves in the guide,
while Hansen considered the stationary waves in the cavity.
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2. Behavior of a small aperture

For arbitrary magnitude of p, it is difficult to solve (10) either
analytically or numerically. We shall therefore discuss the case of
p<2mw/k. In such a case, it will be seen: by analogy in the electro-
static case that y(r) will have a singularity like 1/4/p"—+° in the
neighbourhood of the periphery of the aperture, and due to the axial
symmetry, We have

¥(0) = 0.

Hence it will be justified to put
W)= brfy/ =7,

where b is the unknown constant to be determined by (11).
Substituting this into (11), we obtain

A /Z} nhn (12)

a
o 2

with

= Si(a) dr .

= 801/p“~ [

Hence, if follows that

i a®,
=TT Oy, 2 . . (13)
P .)\‘m, z/n,”] 7 n’hn’ )

The convergency of series in (12) and (13) will be discussed later.

Now, we assume that the mode of the incident waves is m = 1
and other modes in both reflected waves and transmitted waves are
cut off. Then, we obtain the reflection coefficient @ and the trans-
mission coefficient a:**’ by the expressions :

) — Mo a,” iﬁﬁi
@ L+ 2]1,17'1 P 1 V1l nnlrnlm
=1 /{1 + i(— —4)}, (14)
/ BJ)
A A ,
wr=i{ =)/ fre{-2) an)
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respectively, where

A = a®| Tk, B =12/ h/Tn,
N=
he'y hg'yoeeee being positive numbers and connected with he, g, -
a8 ho= — ihy, ho= — ihy , -+ .

Comparing (14) and (14") with the case of transmission line, it will
be seen that they correspond to the reflection and transmission coeffi-
cients in the transmission line with the shunt reactance ¢X, inserted
as shown in Fig. 2, where z, is its characteristic impedance.

From the comparison, we get

i Zo

— A/B = 2X,/z = 2&,,

and so the relative impedance is

t,— — A/28, (1) l

or the corresponding relative susceptance
is
np= 2B/A. (15"

As A and B are both positive, it follows that &,< 0. Therefore,
it is found that the small circular aperture behaves like a capacitive
reactance.

3. Detailed calculations
We shall estimate the series in the denominators of (12) and (13).
The expression @, is expressed by Sonine’s first integral (4), by putting
= —3u=1:
L —

» =03%%‘> =0’ ﬁefg(hnm = 0°71(M0),
where

J1(@) = V'w /2 Jx) = sinzg/a® — cosz/= .

(=]

Since k= —(£,/B) and 7,=%R*{J. (&)}, the following

approximate formulas are obtained, when &,— oo,

hp~ — an/R » ’ (16)

and

Ji(&) ~ M/vr?;? cos(f,[ - ;71- — iw) an

n
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Therefore, we get

2001 {J <a:n.p/zs>}'~‘ _imeR
T,zlln R2 /Ln !jl (&71) 5712

(18)

Since &,~ nmr (When n— ©0),

b4 4
oy Wkl
e g A
Tnlin TN

From this consideration, it has been proved that the denominator of
(13) converges as the series > 1/n°.

When we approximate (14) by the sum of finite number of terms,
the order of magnitude of the remainder can be estimated by use of

the relation >, 1/n° = #°/6, as shown in the following table :
=]

o i 1/a" S Jl/n
n=ng nzl

91 " 064 1.0
3 0.39 1.25
4 0.28 1.36
5 0.24 1.40
6 0.22 1.42
7 0.20 1.44
8 0.18 1.46
9 0.17 1.47

10 0.16 1.48

‘Next, we shall compute the %, of (15"), which becomes

(19)

1 B_X {.Msn o/ DV [ 1 (j1 (& L@}
1™ 4 h ‘

T4 J1(En) }/ /hl Jl(fl)

We substitute (16)~ (18) into the above expression, and remembering
that o/R <1, we replace the denominator {ji(&10/R)}® in the ex-
pression (19) for %7, by {%(& o/R)}". Then, we obtain

1 QT’/L R s
5771)* S ’1 71‘]1(5 )} (

sin ém _cos &zcv)g (20)

5
o &

where o/ R =a. To the right-hand side we have added a term with
n = 1, but this term can give only negligibly small contribution.
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Since &,~ nw, We may Wwrite

S=

Il

Splitting § up into three parts Si, Sy and S as

o o
. sin®nma 1 lsin“nmz
ASI = 1 ) s
(n'r-) ot () '
n
o 4 o
. sinnmry COsSNma: 1 {sinnme cosnmy
Sip = 3 3 = 3 ’
) (nrr)* (7o) n
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o0 co

cos"nrra 1 cos"nma
S = | EIC R 2 5 s
(nm ) (ra) n
=1 =l

and modifying them a little, we get

o o
S = 1 2 1 2 cos 2nmrw
B s e K
Amra) nt nt !
=] n=l

g 1 sin 2n7re
11 = & B
Aarar)® E T ’
n=]
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bln - 2 z n* + E : l ’
() n m j
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Using Bernoulli’s polynomials

cos8 2n'n-aJ

Bunla) = (= 1" 2(2m) 2

sin2nma

2m+1(-7> = ( 1)711.”12(27” + 1) 2 (2 ) 2mel?
we obtain

3 1 k; 2
bI:@(mi—‘ 2{1}2'*‘ w),

i (sm & cos 5@)2 _ Z (Qianz cosmra;)“’
(&) & (nra)® e )
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1 3, .3
Su - é}(d)? 2’1} -+ 6.%)

111—- (%'""17)

‘Since @ < 1, the predominating terms in S; and St are both of the
order of 1/a%, and that in S is of the order of 1/x. Hence,

1 1 1

S = 2 Sus S s _——

62", 2

Therefore, we get S = 1/(3x%) and consequently

1 Sl L2 1
2’71)'* 2§1 {zﬂ(&)};}

If we let 2, and A, represent the guide wave-length and the cut off
wave-length of the incident waves Fy respectively, i.e., hi= 2w/,
and &= 27w R/X,, the above expression can be written as follows:

L 31MEDN T
Iy Ao l2 @t

Since J1(&1)=1/2,

RN
KL W

Thus, it is clearly seen that 7, tends to infinite as 1/2".
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