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1. Introduction

The hodograph method is very useful for the exact treatment of the
two-dimensional stationary flow of a compressible fluid. Difficulties occur
however when we deal by this method with flows of practical interest,
such as the continuous flow past an obstacle and the flow through a nozzle.
This is mainly due to the fact that in such cases of flows the series solu-
tion constructed in the hodograph plane converges only in a certain
restricted region of the field of flow, and therefore the process of analytic
continuation of the solution to the remaining region is necessary in order
to cover the whole field of flow. This problem of analytic continuation
is in general very difficult and seems to have been left unsolved. |

In the present paper the writer gives a method for obtaining such
an analytic continuation for the fundamental solution which has a
branch-point of the prescribed order in the hodograph plane. As an
illustrative example, the flow past a circular cylinder is treated in
detail by this method.

The writer wishes to express his cordial thanks to Prof. 8. Tomotika
and Mr. K. Munakata for their continued interest and valuable advices
threughout the present work.

* This work has been done in 1947 and a preliminary report in Japanese has been
published in stenciled form (1). Publication in English has been unwillingly delayed
however for various reasons. Recently the writer has become aware of the interesting
papers by S. Bergman (2), M. J. Lighthill (8), T. M. Cherry (4), and S. Goldstein, M. J.
Lighthill, and J. W: Craggs (5), where the same problem of analytic continuation has
been treated. Their methods are quite different from that used in the present paper.
It is found however that for the special case of flow past a circular cylinder, the
result of the present paper is in eXact agreement with those obtained in (4) and (5).
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2. Fundamental equation

As is well known, the two-dimensional steady irrotational flow of
8 non-viscous compressible fluid, whose pressure is a function of the
density alone, is governed in the hodograph plane by the equation:

@ Ve + ¢( + )V + (& — ) Ve=0, (1)

where v is the stream function, ¢, € the magnitude and the angle of
inclination of the velocity vector respectively, and ¢ is the speed of
sound at any point. If we assume, as usual, the adiabatic law for the
pressure-density relation, ¢ is given as a function of ¢ in the form:

-

where ¢, ¢. are respectively the velocity magnitude and the speed of
sound at a certain standard point suitably chosen in the field of flow,
M the Mach number at the standard point, and 7 the ratio of the
two specific heats of the fluid. For the case of flow past an obstacle,
the point in the undisturbed stream at infinity may be conveniently
chosen as the standard point. Further, in our future work, we take
for convenience the velocity magnitude ¢. at the standard point as
the unit of wvelocity, so that ¢ = 1 there.  Inserting (2) in (1), the
fundamental equation for the case of adiabatic flow becomes

&

92(1 - Nﬂ(lg)‘l’qq + g (1 +

1.5
V= 0,(3)
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with

) -1
N2 = J.[g o -+ ]j-’) = ¢7*° max
(r 1 ) g e

where ¢may is the maximum velocity attainable in the field of flow.
As is well known, the equation (3) has a system of particular
solutions of the form:

¥ = AP (NG, w = qe® , (4)

?

where u and A, are arbitrary constants, and F®(N°¢") is a hyper-
geometric function defined as
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FON?) = 3 KON ), )
n=0
with |
) = I(p + 1) Iay + n) (b + n) [ )
YT+ DI+ D a) D)) (5)
SR _ s+ D
W= pm e W= T 00Ty

It is evident that the hypergeometric series (5) is convergent for
N*¢*<1, i e, for ¢ < Guax.

3. Fundamental solutions

The limiting case M —0 (i. e, N— 0) is evidently the case of
an incompressible fluid, and in this case the fundamental equation (3)
degenerates into the Laplace equation.  Then, as can easily be seen;
the solution :

Vo= {(1 — w7+ (1 - w)%}

»

(where § means imaginary part) represents the flow of incompressible
fluid past a circular cylinder without circulation. Whilst the solution :

‘;'/'0:: 3(1 - w\i

expresses the flow of an incompressible fluid through a converging
and diverging nozzle. Thus, it will be of fundamental importance to
generalize the solution of the type:

Yo =(1—w) (A: a real constant) (6)

g0 as to allow for compressibility.
To this end, we first expand (6) for |w| = ¢ <1 into the series:

Fatw) = Y (2= o, (7)
where
AN I'G+1) .
(m) T T+ DI —m + 1) (T2)

Then, following usual procedure, we replace each w™ in this series
by the corresponding solution (4) for a compressible fluid. It is clear
that the resulting series:
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\,V,\(q, 6) = E m( ><_ w)m[l(m (qus) (8)

m=0

is also a solution of the fundamental equation (3) so far as it is con-
vergent.  The constants 4,’s are now to be determined so that the
solution (8) should possess a singularity of similar character to that of
the starting function (6) at the same point w =1 (¢ =1, § = 0) in
the hodograph plane. It is evident here that the character of the
said singularity depends upon the remainder after the first m terms
of the series (8) for large m. Now, the asymptotic behaviour for
large m of the hypergeometric function occurring in (8) has recently
been investigated by Z. Hasimoto in his doctoral thesis (6). According
0 him, it is wvalid for large m and N°¢°<a~™® (subsonic) that

e

o a N 2 o m““l“_‘ (9\
F(‘m)(N-q_) —~ 77-2(1 - N..Q..)_gy-—-l) w'm» , /

where
1 —
1 — &’ N°¢*\# 2 [(n+ a\®, o a5t T+ 1

| = 1— N¢g)® ==

7 <1—N~q~>"” 1+7;<1+a>( N a =y
(9a)

Therefore, replacing each FY?(N%¢") in (8) by its asymptotic form,
we obtain an asymptotic expression of the solution (g, 6) in the
vicinity of the singular point in the form:

e g\, (M
(g, B) ~ 731 — N2g?yO-D E Am< )(-— ©w)” + (regular term).
m

m=0

This form suggests that the appropriate values of the constants in (8)
would be

A= ™", w1 = [w]p . . o (10)
Then,

A
[ S
ylq, 6) ~ 5751 — 1\7292)2”"’)<1 — {—[«w) + (regular term). (11)*
o

This ¥\(¢, €) has apparently the singularity of the required order at
the prescribed point w = 1, and it degenerates into (6) when N tends

% It may be interesting to note that the asymptotic form (11) is identical with
the approXimate solution given recently by I. Imai (7).
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to zero. (A,— 1, FO(N°¢")— 1, when N-»>0.) Thus, we have
shown that the series (8) with the constants A4,’s given by (10) may
be taken as the fundamental solution for compressible fluid How, namely :

N A m pmd¢ A7 2 w q i
w0 =Y (M orreaee, f=2-Le, a
Koyur! m w1 w1

with
T (Ng) = S0 ()" (12a)
=0

It will be seen that (12) is convergent for ¢ < 1.

4. A new form for the fundamental solution

Now, the physical fleld of flow extends usually beyond the range
of convergence of the series solution given above, and consequently
it is necessary to find the analytic continuation of the gaid series in
order to cover the whole field of flow. It is this problem that e
are concerned with in the following.

We first change the order of summation in the double series (12),
and rewrite it in the form:

Yy, 6) = %(1\72(12)" 8D, (18)
with
N AN, m q w0 .
AO =N, g=Le (132)
me=e m @1

In the next place, we proceed to sum up the series (13a) for fu({).
Taking into account that £,(¢) is an analytic function of ¢ = {(q/ws)e",
we introduce the expression (13) for (g, 8) into the fundamental
equation (3), and equating the coefficient of each power of N° to zero,
we obtain the following recurrence equation for f,(¢):

1

SYE. N |
Jo(&) m(r — l)l

_ gd%fn_j(g) + (27 — Dn — 1) f0u1(£)

— @7 + m — e c"ﬂfn_l(g;mza} o)

Now, we have obviously

FoO) =1 =07, (15)
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and we can prove by means of the recurrence equation (14) that f.(¢)
should have the form :

12

Fll) = €7 3 P — M+ SRR, (19)

where «§’s are definite constants satisfying tho following recurrence
2] ¥y
formula :
1 1

w A—n A+ A=+
@ 200 — yaX + 1) {( n N T )

—2r =N+ 7 — Do — 1) + 2 — }a;’ﬁ D

N - o METET -
T {T(n 1) — (n+ Jw}a, o oD (17)
with
(L(g)—— 1, (rj0)=0 (j:ily Dy )’

and k{0 s are the coefficients defined by (5). While, ¢§’’s are con-
stants of integration to be determined by the condition that (186) should
coincide with (13a). Numely; expanding f.({) given by (16) in
ascending power series of ¢ and comparing the result with (13a),
we get

n
N+ .
67(1?) — Un—mﬂ(k?(:}.}m)—l E ( J >a§n)' (18)
n M
Je=-n
<f)n = 2’ 3, ......... , 71’)

This relation holds for n = m, but it does not involve any singularity
for 0<n<m. Hence, remembering that ¢’ is independent of =,
we can infer the value of ¢y’ by putting formally n = 0 in (18),

namely

IW(X -+ 1) 1.’((1»,") F<bm)

c(,\): (_ 1)m+l .
" Iim + DI+ m + 1D I(ap — m) by — m)

(19)

That this is true can be shown by mathematical induction, with the
aid of the recurrence formula (17), though the details of the analysis
are omitted here.

Inserting in (13) the expression (16) for f,(¢), and bearing in mind
the relation:
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(Nz’qz)n é«-m — (N.‘Z(UIQE)m(NSqL’)n—m

(where ¢ means conjugate complex of ), we obtain a new expression
for yn(q, 8) in the form:

¥alg, 6) = ¥3(q, ) + X\(q, 6), (20)
where
¥i(g, 6) = Z;)(Nswl”'f)” Saf? (1 — oM, {20a)
= J=~n
I(q, 0) = 30 D (N wPt" F ™ (N°¢), (20b)

m=

with the constants e and &’ given by (17) and (19) respectively.
It should be noticed here that Zi(q, 8) is independently a solution of
the fundamental equation and is regular at the point ¢ =1, 6 = 0,
as can be shown without difficulty. Consequently, ¥i(q, 6) given by
(20a) must also be a solution which behaves like yr(q, 8) in the neigh-
bourhood of the singular point ¢ = 1, 6 = 0, and degenerates as well
into (6) when N— 0, i. e, ¥i(g, ) may also be taken as a fundamental
solution. required.

5. Formulae for the analytic continuation

Now, the new series for yn(q, 8) obtained above proves to be still
convergent outside the circle ¢ = 1 of convergence of the original series
(12).* Hence, we can extend the solution yn(g, 8) originally defined
by the series (12) in the domain ¢ <1 over to the region ¢ > 1 by
the expression (20).

Further, we can obtain from (20) the analytic continuation of (12)
in a form of hypergeometric-trigonometric series similar to (12) in the
following way. First, we expand ¥3x(q, 6) as given by (19a) in
descending power series of {:

¥ilg, 0) = 2 (V)" 7 (E),

where

% This form (20a) of the fundamental solution is especially fitted for the purpose
of practical calculation. . In fact, by carrying out numerical calculations in the case
of flow past a cylindrical body the writer has found that a single series of this type
can describe the whole field of flow near the surface of the cylinder, and there is no
need of analytic continuation even when the flow becomes partly ultrasonic.
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720 = Y (Mg =y,

m=0

Then, interchanging the order of summation, we are led to the result:
* N A A-m TY(A—m) a8 o
¥ilg, ) = )| (= O IO (). (21)
m=0

It can be shown that this series is convergent in the domain 1<Cq<gumax.
Eqgs. (12), (20) and (20b), together with (21) just obtained, give finally
the required formulae for the analytic continuation in the form:

N o rmawe, @<e<D

¥alg, @) ="
A NP ~
2 (m)(_ o e (Nﬂ‘]-) + AA(Q, 0), (1<q<T G x)

Mm=0

S
s
T >

)(— O FP(NGE) — Dle, 0,  (0<q< 1)

()= ermpo-maeg, (1< 0 < )
m S0
(23)
* where
%ala, 6) = 3 e WPailD" I ™ (3Fg?). (24)
¥alq, 8) and ¥3¥(q, ) are connected by the relation :
¥alg, ) = (g, 0) + %lq, 0). (25)

It may be added here that Zi(q, #) can be shown to be convergent in
the whole domain 0 <C ¢ < quax provided that M <1.

6. Flow past a circular cylinder

As an illustrative example, we now apply the results obtained above
to the case of flow past a circular cylinder without circulation. In
this case, the solution for incompressible flow is, as mentioned pre-
viously, given by
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Vo= F{ = w) i+ (1 — wi}. (26)

The corresponding solution for compressible fow may be put in the
form:

Y= St A+ A ), (27)

where Y%, etc. are given by (23) and Ai, 4, are constants to be
determined by the boundary condition. The fundamental solutions
¥, ete. are used here instead of e, etc., because of the symmetry
of flow about the axis € = 0. In the following, we take only the
first two terms in (27). Then the constant 4: is determined to be
equal to 1 by the condition that the cylinder should be blunt-nosed
at the stagnation points. Hence,

vr= S {yx+ i}, (28)

After some calculations, we obtain finally the result that

_ E{ (2m — ! (ﬂ.)m + 9(m -+ l)csy%)sz(wlq)m}

2" Im m — 2) N\ w

X F™(N?¢%)|sinm8, (g<<1)
¥ = ( q )éf@(Nz *co 0 i (2m + 3)(2m)! [ ¢ )'é_m (29)
Y\ y v_ Nl 4
w; 17¢08, mso2"’“‘m!(')n+ 1)\
X FCE™ (N e os 9 (¢>1)
where we have used an obvious relation :
67(1?_]) <)\, + 1>C1n . (30)

It will be seen that this result is in exact agreement with those
obtained by T. M. Cherry (4) and 8. Goldstein, M. J. Lighthill, and
J. W. Craggs (5). Cherry bas carried out numerical computation of
the flow-field corresponding to (29). According to him, the solution
(29) represents in the physical plane the flow past a nearly circular
cylinder which has two axes of symmetry, one parallel and the other
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perpendicular to the direction of the undisturbed stream. The shape
of the cylinder gradually deforms as the Mach number of the stream
is increased, and the deformation becomes so conspicuous at high Mach
numbers that no definite conclusion can be obtained as to the state of
flow past a cylinder of exactly circular shape.

If, however, we take at least the first three or four terms in (27),
we can get certainly a closer approximation to the shape of the
boundary, and it may become possible to discuss more completely the
state of affairs in the field of flow at high Mach numbers. The results
of calculations developed in this direction will be published in the
near future.
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