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On the Gravitational Perturbation
for the Dirac Electron

By Hideo Yamamoto

(Received April 25, 1939)

Abstract

We studied, by means of the generalized wave equations in the tensor forms,
a quantum gravitational problem which might be reduced to a perturbation problem
for the stationary state of the Dirac electron.

Introduction

In a previous paper,' we obtained the gencralized wave cquations
for the Dirac electron using the tensor calculus which was familiar to
us in the relativity theory of gravitation. Since there can be no
introduced spin matrix opcrators in the tensor formulations as in the
spinor ones, it scemed difficult to describe the spinning clectron by
the tensor formula. We showed,” however, that the spin momentum
could be introduced in the tensor formulations as operators of infinitesi-
mal rotations of vectors of the wave ficld, and concluded therefore, that
the spinor formulations are not nccessarily required for description of
the spinning clectron.

One of the advantages of our tensor formulation was that the
formulation enabled us to make geometrical consideration for the wave
fields of the electron without use of auxiliary spaces; in the previous
paper, we developed a scheme of world geometry which described the
physical world consisting of space, time and clectron.

By the generalized wave cquations one may study some behavi-
ours of the electron in the gravitational field, for, according to the
rclativity theory of gravitation, one can identify the Riemannian me-
trical tensors with the gravitational potentials.  Some authors,® using
the generalized wave equations in the spinor forms, have already in-
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vestigated these quantum gravitational problems from the standpoint
of the cosmology. A ,

In the present paper, we have studied by means of our tensor for-
mulations .a simple quantum gravitational problem which might be
reduced to the perturbation problem for the stationary state of the
Dirac electron. :

1. Perturbation Theory

Before proceeding to the problem of the electron in the gravita-
tional field, we shall briefly describe the perturbation thecory by means
of the tensor formulations. .

According to our tensor formulations, the gencralized wave equa-
tions for the Dirac electron are given by

——]?_—-]?’fw(Vo oW e =0,
, " (r.1)
L]?;AV(VO + li‘?g)&”” + e Sfj)‘” =0Q.
¢ Ve
where
I

. o L7 :
(é’oxg}\v‘{’go}\gw é’ovgxl'* Ear.lv):

./c'/.)\v =

Zon:  Tundamental tensor of metric,

2

Eazlv:Z:l/~’“_g Eovavy
g determinant of gy,
Lony i coefficient of determinant, ‘
ds: symbol for covariant differentiation,
@ . electro-magnetic four-potential.
In the case of the special relativity where the tensor gs, is given by

—1I

[\
g

-1
Gor— g— —1 (I .=
\ 1
we can reduce, as in the previous paper, the equations (1.1) to the
forms :

PP — L (By— E— o)} G'=o,

‘ (1.3)
PP G Byt Bt cp) B =0,

c

where
. rae 4
[)zm:32‘/§ﬁ-x — ()sy
=1 v (1.4)
Epr=a]",, Ey=iwc"
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],"1:991,_*_2 P ¢x4’ Gl=gf—2 EL g™, (I~5)
We denote by #(#), GX72) the wave functions which belong to the
energy state Z(72). Then we have
Py I () — —IT—([:}. — ()=o) 2y G () =0,
¢ ‘ (1.6,)
2 G (1) + ——(Lay+ F(n) + e@) 27 F (1) =,
¢

Similarly, the conjugate equations for the state Z(7’) arc written

— P, Ty — By — F(n') ~ co) L G () =0,
¢ o «

(l .()1))

—PL, GG+ -L(/:}, + L") + @) L (1) = 0.
¢

Multiplying the first cquation of (1.6,) through by (7,,(»2/) and the
sccond through by /75,(7/), and the first equation of (1.6,,) through by
G(#) and then sccond through by Z(72) and then adding them all,
we goet

Py () F )+ F, (") G (1))
+ (F(r2) — E(2")) (£ G.(n") G () :
AL B (#7) FHoz))=o0. (1.7)

With the help of (1.4), we can bring the first term of (1.7) into

the following divergent form :

2—;/{;—2153] St G () 1(a0) + F0) G (12)
2 i=

of which volume integral for the whole space vanishes.
Hence, we have

(am~ﬁmwﬁyﬁwawmam)
‘ + L F (0" FY(00))do=o. (1.9)
We now write
YOTRDES ” XE (G0 YG ) + () o Goyde (1.0,)
then we have ,
L' n)=o when 72257/, (1.9)
In this way we may define the orthogonality of the ficld functions.
It has been shown in the previous paper,! that the tensor defined by

"y T I T
J= g g g

satisfics the conservation theorem : namecly

. /" =o.
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Using the vectors /% and & defined by (1.5), we have

Ja= Bt BN G+ P H (G PG~ )
which by the relation

E;’l —17‘7!1, Gl:E;n j;:l Gm,'

becomes

L ENG, G+ By ).
4
We thus obtain

L EG, 7;)=SSS/‘.’.,(7¢’,71)1171. (1.10)

4 .
We shall next consider the perturbed wave cquations which may be
given hy the expression '

2= '17( Ly~ E—c@)Ey G'=7.8™(1,G),

(i.11)

P G ——(Eak Byt cp) BV P =1 T™(F,G,),
c

where .S™( %, ¢) and 7™(Z, ¢) mean the systems of functions of /%,
G and 7 is a perturbation parameter which we can assume as a small

quantity.
As the usual perturbation theory, we denote by E, At and G*
unperturbed solutions and put
E=Fi(s) +7e,
Fr=FYn)+ i,
G'= GYn) + 77, (1.12)
into the equations of (1.11). Neglecting the terms 7* and using the
relations of (1.2) for the unperturbed functions, we have

Py gt—t (Fy— L;“(f/z) —cp)ET
¢

=S$"(n)——E7 G'),”
¢

» (rag)

Py + I‘ (E, +Zjl‘(7z) + ) By ot

[4

= 7"(50) — ==L F'Yn),
¢

where $™(z2) and 7™(s2) mean respectively .S™(#(z), G(72)) and 7 "(#(7),
C(n)).

Muliplying the first and the sccond equations (1.18) respectively
through by G.(2") and 7,(7'), and then adding, we find
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o
[
O

])27)1,‘/ ém<']zl)[[,l + j::m(”/>z’l}
— 1 PP Gon() =B+ Fi() + c@) B 7,(0")}

¢
— Py P (1)) + L (5~ () — c@)Ep G (n')}
¢
= Go()$ () + Fu(2) T ()
— & (G2 G 92) + T2 Y EX(52)). (1.14)
c

Since the first term of the Ieft-hand side can be brought to a
divergent form, its volume integral vanishes. In dealing with the
second and the third terms we use the equations of (1.6,). We thus
arrive .at the relation

—I—SH( Fo(n2) = B(0"Y el 2 o) + 2 B Gl
, ‘ = W, 1) — (2, n), (1.15)
in which we denote
(7!, 2)= ”j( G () S (02)+ T ) T (2))dw. (1.16)
When 7/=1, the left-hand side of (1.15) vanishes and we goet

P | O e
¢ ) S“JZ (G 72 G o2) + Fonl92) X))o

which is the first order perturbation encrgy.

We can also determine the perturbation function 24 and #* by a
procedure similar to that of the usual perturbation theory; they are
written

o (Lag)

iy :E FHa YW (5!, 72)
n, (7(2) — Iee ) B!, ') [

7,122 GnY W (7!, 12)
L (72(22) — T5(2")) EG! 27 ¢

(1.18)

2. Wave Equations in the Gravitational Field

According to the relativity theory of gravitation, the line element
for a static gravitational field with the spherical symmetry, is given by
the expression

a’s‘l:——-————l _Iar 7 (A2 P+ (d2f + () + (1 — 29 D) dx"), (2.1)

in which @ is a function of »=1/ () + (@) +(x%)?* and 7 is a para-
meter which we can arbitrarily introduce.
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‘We now assume that the gravitational field is so weak that the
square of 7 may be neglected. In such a case, the metrical tensors
may bec written in the forms

u= g-z n~ ~(1+279), gu=(1—270),"
Pt (= 0), (), |
1/-g-:1 +270. V
which with the help of the quantity Z% defined by (1.4), may also he
expressed by
Guv==gul As—27DES), oV =g"(As+ 270,  (2.3)

=0

[

)

whmo Fue and g** mean the metrical tensors given by (1.2).
In the case when metrical tensors are those given in (2.3), we can
reduce, by procedure similar to that which was used in the previous

paper, our cquations {1.1) to the forms

/- .
4 "‘Z‘”/ ?'32\‘1([7 ot f(

L P e =
(2 .4)
9' W+ e =o,

Ged
[otrt
/ ( o

which, in the case of the statical problem where ¢ =¢@,=¢,=0 and
=¢, can further bhe brought to

‘*’f—“%f Tl 2 (-!— + ——‘j—so)/?;’:s”“

+ -1——/“'; (Fog™ + Ianf?™) + mcdi* =0,

Wk g, +K /, Sp)fi‘/’

/o , .
42 JEr T S+ 2000 M gy =o.
YA

/ w—~1

in which /5. may be given by the expression .
I%=—1(0,0. 72+ 0.0. L7 —0.D. 6 g+ I2F). (2.6)
Using (2.6) and neglecting the higher powers of 7, we find the
relations
T D = — 270y [y ¢
VA '_’/MM./}‘ wi Ih </'m‘

— 7 (p /,, .7 9 wi
where /%%, and R 7.1 mean Lhat they are constructed with gy.'s.

Using these relations, we can bring the equations of (2.5) to the
forms
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LSy e o, peo( s Lo)my g
A

', w=1

— 4L, (27— ) P+ e g0,
7z

2

FARRCEDY

3 s
7 Z.]W)‘amy (]: ‘{""2‘1"99)]{2“/}/

- 4-—7?_—7‘(/) The G+ 21— 27 D) =o.
2

For the sake of convenience, we introduce the following quanti-
ties : '
0= G —7P Ly, OF =17 +7(pf (2.8)
Ol = AL —y DL 6“’__ G+ T PL”, o
which, if the higher powers of 5 are neglected, satisfy the following
relations of orthogonality
N o . S omp
Ui.;Lo'/.v:gir.y OL-!,,U'.-,—-(QPV. (2())
With the ho]p of these quantities, we can easily find the formulas

u.n‘ ‘ m ¢ ——-(I — (p)()k/])k 0 )\9’“

7 W=t

+ 27 4 0/(1) Pl‘uao‘?

where we denote

Similarly

_WZ]«-;A 0'09"—(1—""(1))01)\ ])kz N{L /r
7 w=1
+ 27— Lo 0, B, 0 L .
7

A.pplying these formulas to (2.7), we obtain

200 25 g o Lok L) g
c c

- 4—fz,—7'(l)s BE 07 0% Mt one PP =0,

' ! , > (2.10)

(1= 270)5* Py % //.L(_]L+_‘f_¢)];¢ g
c ¢

/z

Kt "l Aokt (1 — 2y DY ned™ =o.

Tet us now write
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Fm:b‘?;, ¢7+ 2E7kn BL!L /M’ (
G = O™ 9/}%__ 2 I (‘)‘k) S',)M 2.1 I)
ey e fy A
Afrer simple calculations, then, we can bring the equations (2.10)
&
to the forms
PP = (Foy= F= ) P =1.5™,
‘ (
1 2.12)
])l-m Gl + (En“}‘]fj’*" {,¢>E7ln,];‘1:7,]“m’
¢

where
Sm=2 (11/’;"" P Aane (1 — GY)

(]}[(/ mv 7;)3)]‘l+<] 7n=_ ms)(*l]
or: =2 (DP,”” Frt e (7 — GY

-+ _ﬁ;_((pm ]'; (p f: jm + /‘,‘m .8 (1)5 (;l).
z
=2 QPG me B — GY)
+ ___Q [(/_3 Mes + ]3 ne )Gl '*_ (/j) ne v é’?ﬁi)ﬁl]

(2.1 31))
or: =z d)P,”‘ G+ e E7(F— G

w0 Gy, G Ay T, @, ).
7 -

Thus, we can deal with this gravitational problem in the same
way as the perturbation problem developed in the previous scction.

3. The Gravitational Perturbation

In this section, we shall study the Glamtauonal perturabation for
the electron in the central electric field.

Substituting the valucs of (2.x3) for .S and 7™ in the formula
for the perturbation cnergy given by (1.17), we obtain

S‘ gjz (p[ é7npzmiﬁl+ 7—;:7'LP27)1.61+£E7;L( 7?711,}7%_ é?)l Cl'}' ém«ﬁluz‘?‘m Gl)] {ZZI
e . ) ¢

¢ m/‘”‘(F Bt G G )do

SSS (p [( R 7)z7§ L ]3ml v‘)(G7}z[2—‘ 7’m l> (/9 mh B ml‘i)(anol"'z’vnﬁl):][{?’

S S SE ?(7?‘L ﬁ:n + él G"l)n{il
(3.1)

‘We shall first show that the second term of the perturbation energy
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is due to the interaction between the spin of  the electron and the

gravitational force.
It was shown in the previous paper that the operators defined by

=/, g 7] 1 A ~< d d )
> i (F )=/ — P e i BN e e —
Z. ( ) I ()/-'\V ()FP' 5 2 a]’v; ()FU
= a
=2 By e
v o7

could be introduced as the spin operators in the tensor formulations.
The conjugate operator may he defined by

h ~\ . 0 7 () 1 -‘;«..r;': ~ () Al 0
2l 7= 1 9/ = o %‘T/’”" <]'” o — 7 ()F")
=2 By I7° oi .

Since these spin operators arc introduced in the case of the spe-
cial rclativity, we can apply these operators to the unperturbed func-
tions. Accordingly, with the help of these operators, we can express
the second term of (3.1) in the forms

L S g S (ps [ é'rlm(gs + o,x) }f-m + ém( & Oﬁ) Gm + 7”177)L(5.s - oﬁ) 13‘ Tt 77 m( 7+ US) C;m] dw
22

S Sj B GG Ty )

where
oe=2X, =%, (5=1,2,3)
or by the vector notations
_(0_1, 0_‘:’ 0_:3)':6.’ ___(51’ 52’ 53):&
(‘([}IA’ o, (pg>:__( aP , o0 ’ 0P )
dx = dy dz

this becomes

||t Guket o) FuK (e +0) G CR(30) G K (=) 1
27

| § |20(E Gt 7 )i
(3.3

‘Trrom this result we see that, even when the contral particle is
neutral, the central gravitational field interacts with the spin of the
clectron.
‘ As the unperturbed functions for the electron in the central clec-
tric field, we may use the following values which were obtained in the
previous paper :,
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Fei i By v 0, 9= Loy 15 0, 0)

7

e

— [r.L] S _é_,’f. .
G= {(ro ALy (g6, )+ kI(/c,(f,gp)} (3.4)

”
ﬁ"‘—:/——ZL—Y(-—/c; 0, ), G"Z—L—Y(/e; 0, ),
7 7

where . o ) -
P, 7, G=(6 6,6

1 b1 3
r():< > > > )’ L:(Lu, Ly, Ls‘)-

” ” »
¥k 8,¢) or in short ¥{£): spherical harmonics of degree 4.
L : angular momentum operator satisfying the relations :
L=—L, L*Y(k; 0,0)=kk+1)V{k; 0, 0).
% and % are the functions of » which satisfy the equations :

T

dr 7

It can casily be shown that the function ¥{4; 0, ¢), the spherical
harmonics of degree 4, satisfies the following relations :

SSF(/»”; 0, ) V(% 0, ¢)sin d0de
SSLYA s 0, ) LY (% 0, @)sin 0204

. (./50 ’+"En+ ('Sﬁ)zl.

:m
_/:mg S (nLIY(#; 0, )lriL] ¥k 5 0, g)sin dbde

:————/E~——, for =#£
2£8+1
=0 for K==tk (3.6) .
Substituting the values of (3.4) for the unperturbed functions of
(3.1) and evaluating thce angular parts of the integrals with the help

of the relations of (3.6), we obtain

7 Sd)(z{”rxf)/lr Z \ Dy — x5 )ar

v T e )

¢ N S(x{-’+xz‘“')w"/' ¢ j(xﬁ-fn")dr
S AP

S(l)so(x{“r 1) dr i A Aoy

’ &7512'{' x)ar k-1 §<th+ Zze)ﬂ,//"
(3.7)
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a
(3]
w

Thus, if the gravitational potential in the atomic system is known,
the energy of the gravitational perturbation may be determined.

‘We assume, as an example, that the Newtonian law of gravita-
tion holds in the Hydrogen atom, namely

M Ze
{p:_.L’ 7':'/(2 y 90:...-——-..( s
7 4 7

where 47 is the mass of the nucleus and / is the constant of gravita-
tion. Then, neglecting the relativistic correction in the perturbed terms,
we find that the total energy may be given in a rough approximation
by the expression

L fJ] ~ts . I
E=701 =Lt ) or =A< gh >
,); .
where <77'> and < g§i> mean respectively the mean values of »7*
1
and gi.

As the Newtonian force is smaller in the extremendous order of
magnitude than the Coulomb force, it may be impossible to check the
correctness of the above result by experiments on atomic spectra.
THowever, the fact that the energy is in proportion to the mean value
‘\:4 seems to be an interesiing result, because in the classical theory of
the red Sl]lftS‘ the frequency of light is also approximately in propor-

.f

tion to gi.
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