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On the Oscillation of Lake Water
Generated by Wind Action

By Toshichiro Takegami

(Received October 10, 1938)

Abstract

In this paper the writer reports mathematical investigations for the oscillation
of lake water produced by wind action. Ifor form of basin he has considered the
circle, the concentric circles, the sector and the fan-shape.

The method adopted may be described as follows:

1. The cylindrical co-ordinate is used.

2. It is assumed that the bottom of the lake is smooth.
It is assumed that the inertia terms and the horizontal convective terms are
negligible.

4. Introducing the differential equation which determines the surface elevation,
and .is analogous to the differential equation for the oscillation of circular
membrane in acoustics, he has solved it under the appropriate conditions.
The equation obtained is
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where ¢ is the surface elevation from the undisturbed surface, 7 and 0 are the radial
and the angular co-ovdinate, c*=g% (% being depth of lake), and 73 and 7y are
respectively the radial and the tangential components of wind action.

Introduction

The oscillation of water in a circular or other geometrically regular
basin generated by Zlke eradicni of almospheric pressure has been in-
vestigated by many authors. Practically the oscillation in a basin is
mainly generated by wind aclion, but except in a rectangular basin,
no investigation of the osillation of water generated by wind acliorn in
a basin has been reported. In this paper, assuming that the bottom
of a lake _is smooth, and that the inertia terms and the horizontal con-
vective terms In the equation of motion may be neglected, we shall
introduce the differential equation which determines the oscillations
generated by wind action when the form of basin is the circle, the
concentric circles, the sector, or the fan-shape, and solve it under the
suitable conditions.
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The Fundamental Equation

Using the cylindrical co-ordinate the equation of motion, the equa-
tion of continuity and the boundary conditions at the surface and the
bottom are expressed by
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Here 7, and 73 are respectively the radial and the tangential component
of wind action, and the other notations have the usual meanings, and
the vertical motion is only statically and not explicitly concerned.

0z, d7,

Tf, in (1) and (2), the inertia terms 2. 5 T etc. and the
7 7‘
. . o, 1 Og,
horizontal convective terms g T etc. may be ncglected (es-
7 7 7 :
pecially, in the circular or the sectorial basin, the neglect of the terms
multiplied by L and —L— seems quite arbitrary), then (1) and (2) become
7 7
@Z',.‘O =y C)."T},,‘[) — 9 ()C‘O ............... (I/).
ot 0z* o7 '
9790 =y Fogp__ & e (29). |
o¢ dz* 700

Now integrate (1), (2/) and (3) with respect to z from —/ to o, and
take into account {4), then we have
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By eliminating .S, and .S, from (1”), (2”) and (3’) we get
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where =g/ and ¢=p¢. This is the required differential equation
in the cylindrical co-ordinate which determines the surface elevation £.
Thus the solution of this equation, under suitable conditions, will give
the rising state of the oscillation of water when the forms of basin
are respectively the circle, the concentric circles, the sector and the
fan-shape. In the following article we shall give the solutions in a simple
case when the wind action is uniform over the whole surface of basin
and also the depth /Z is uniform.

1. Circular basin

As an example, we shall consider a simple case in which a uni-
~ form wind, its direction being x
positive as seen in Ifig. 1., sud-
denly blows over the surface of
a circular basin (its radius being
a). Now in order to solve (5)
under the following initial and
- boundary conditions, i. e.,

Fig. 1.

£=o, %so when 7=o,
c* e = 7,= Tcosl

or

at r=aqa,
we shall separate ¢ into a stationary part £, and a varying part —¢& which
satisfy {={, —{ and respectively the following two sets of equations
and conditions (A) and (B)
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ce—%g?—zo at r=aq,
”
& is finite at »=o.

The general solution of (A) is
: Q:(Ar +£~>cos 0+ C,
>

and the integration constant A, & and C in the right can be deter-
mined from the boundary conditions and the invariableness of water
’ 270
[}

quantity in the basin (S S Lyrdrdo =o>. Thus we have
0

= z 7 cos 0.

2

And the solution of (B), which satisfies the conditions, is

C?,:E 2{/1,15 cos 720 + BB, sin 7;0}‘ /’l( P ) o ().M o >
a a

s==1 22==0
where /, (7 being a positive integer) is the Bessel function of the first
kind, A, are the roots of /,(A)=o which has the infinite number of real

roots, and

)'2 « (P27 a
A= S e X S 4, ()—> cosngudade,
mat (Bg— 7 Ji(As) Jo o &gl a pranay

)"l a (*9n o i
an = ! = > S .,”R 5 Cl(a)sg)_/-‘n )‘ns_" sm 775‘0{1‘127&[{50’
wa” ()“ns - 72‘)./72(&:,:) oJe a
7T, BT ™ tiiiitieiinnaes =2.

Since, in our case, 7 is independent of # and x, A, and 5, reduce

to very simple forms, i. e, .
Aps=0 for n=+1, B.=o for all values of 7,
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And our required solution is

Fig. 2. (a)
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or if 7 varies with the time, from Nomitsu’s extension' of the Duhamel
theorem, we get

2¢ 2\ ) A 7
g=7 >J e cos 0 (‘, )g 7(7) sin
oet L G o Vb)), 10

After carrying out the numerical calculations, we get Figs. 2 (a)
and (b) which give respectively the sum of ¢ and the first harmonic

M (4 7).
@

Fig. 2. (b)
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. a .
of the elevation—¢, at two epochs and ——— —— in the
1.841 ¢ 1.841 ¢
seven Veltlca] sections which pass the centre of basin and have an

angular interval of 15° to cach other, where 1.841 is a root 4, of J/(3)

is taken as the unit of ¢ DBut since the elevations in

=o and .
o8t
the other half sections are symmetrical, in respect to the line 0=o,

to these figures, they need not be given.

2. Concentric Circular Basin

In this case the sets of equation and conditions corresponding to
E
(A) and (B) in the previous article are

20 00 9
7 dr*+} or +00 =0

(A7)

. 0 o
c‘a—c‘:[cosb’ at r=a and =P,
7

1. Proc. Imp. Acad. Tokyo, 11, 359 (1935).
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(B4 &:=¢, and %-’:o when Z=o
s OFs L
C=Ei=0 at r=a and r=10,
or

where @ and & are respectively the inner and the outer radius of the
concentric circle.
The solution of (A’) is obviously

&=

And the solution of (B’), after some calculation, is represented by
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But since in our case &, =-—¢cos ¢,
e

=0 for na=1 and B,,=o for all values of 7,
and by using the recurring formulae of Besscl function, A, may be
reduced to the following simple form :

=1 2 o (L (Y
3 2 - a 2 [
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therefore we have

Ca= Ez;]u cos 0/(](213——7:~>cos (iqsﬁ—).
~ a a

Thus our required solution is
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or if 7 varies with the time, from Nomitsu’s extension of the Duhamel
theorem, we have
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Fig. 3. (a)
S 0
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As an example, we consider a case of ——=3, and after carrying
a

out the numerical calculations, we get Figs. 3 (a) and (b) which give
respectively the sum of ¢, and the first harmonic of the elevation—¢&,,
27

T @ a . 4 . .
at two epochs and ——, in the seven vertical sections
5.205 ¢ 5.205 ¢

which pass the centre of the basin and have an angular interval of

15° to each other, where 5.205 is a root 4, of ]1’( %-) Y=/

.

T . . . .
X K’(X—b—>:o, and ——J/l— is taken as the unit of ¢ DBut since the
pLr ,

@
TFig. 3. (b)
S

-1.0

clevations in the other half sections are in symmetry, in respect to the
line #=o0, to these figures, they need not be given.

3. Sectorial Basin

Consider the sectorial basin surrounded by two lines f=o, §=u
and an arc (its radius being @), and the direction of wind making an angle
0, with the line ¢=o. Then the sets of equations and conditions are
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(A"){ ¢ is finite at r=o
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70 .
: jg(; = — Tsin (a—0,) at Oéa,
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(B")y = 9

c =0 at r=a
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& is finite at 7=0
C‘l__aC_‘J:o at 0=o0 and 0=a,
700

The solution of (A”) is
(=12 {—— cos(f— ) — 2 Sn(@—00) + sin §
G la

3 a

and the solution of (B") is

C E }J ns COS?Z{}‘/-?L (A715’—-“>COS (Ans Lf );
aQ 2

szl =l
where 7=-"2- A,'s are the roots of JJ(2)=o and
A= 2_] z_l L S g aB, 90)/7,(),”—?~> cosngBdfdey.
(/(l s==1me=1 ()"‘-— 72 )/71()‘m) a

Thus the required solution is given by subtracting the above &
from ¢,.

27
As an example, we took up a case where 0,—o and a=-"2 and

- oa

3
carried out the numerical calculation for a term of m=1 and s=1.

Then this term becomes

T ﬁ( )cos . Hcos( —ff—)[ SIS)‘I’/ -

. 2 \2 - —Cos ydy
C Ry )

[C«]mml s=1"— 0. 660 -
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r=A-"" and A, =2.463 is a root of /3'(A)=o.

I ’ y —
-2 _cos ydy and SOI 2 sinydy in the

A
And the definite integrals Sol
ay ay

above expression arc respectively reduced to a well known rapidly con-
vergent series

Fig. 4. (a)
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100

o

120

Fig. 4. (b)
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2{]’%@1) +/5(A) + J3Q0) 4 oo } and 2{]%(2,) +71(A) + J2() + - }

. 27
Calculating &, — (&) s1, at two epochs and ——— -
m=1 2,463 ¢ 2.463 ¢

by these formulae, Figs. 4 (a) and (b) are obtained.

When the wind action 7 varies- with the time, the solution may
be obtained by using, also, Nomitsu’s extension of the Duhamel theo-
rem, i. e., :

® )‘,,‘],l( - )COS 720 v pape 3
e §15 1)
(l[[, ()ns“—‘ 72 )]n(zm) 0700 @

s=lm=1

X COS 726 sin-g‘-”—“f--([ —1)Bddpdr.
a

4. Fan-shaped Basin

In this case it is sufficient that the conditions—¢, and &, are finite
at 7=o0in (A”) and (B")—are respectively replaced with the conditions

5‘-’_(15_1____ ZTcos(0—0,) at »=5 and L”—&:o at 7=20a.
oy dr

Then _ Ta gicos (O—0y)— 2 &= . sin{e—8)+ sind, }
* a 3 a@—0) “
and X
C’_’>J }J —‘—ln.s cos 7501;”()‘“5 )COS (')\ns if )7

s=1lm==1

where 4,,’s are the roots of /.(4)/ ., ().—&—> -] ;<2i>f L)=o0, 2 i mr
@ a a

2 )‘gn

g (Bos— 1) Li(As) — ( s b ~/A)L;( s 4 )
a @

S S (B, SD)Ln( g5 (z )cosugp Bdp de,

YACEA Y (S
and I = @ @

4 7
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Since the numerical calculations of these formulae are very tedious,
we have given only the formal solution without the figures correspond-

A=

ing to those given in the preceding cases.
Now it must be noted that, if the cquations of motion and of
continuity are expressed by another curvilinear co-ordinate such as
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the elliptic cylinder or the parabolic cylinder etc., we may give, in a
form similar to that of the present paper, the differential equation for
¢ in another geometrically regular basin.  Especially since, when the
basin is elliptic, the solution of the differential equation may be applied
to the generating stage of oscillation in Osaka bay, it will be of great
interest. DBut since it is very tedious and difficult to obtain the solu-
tion, we shall leave the matter to expert mathematicians.

In conclusion the writer wishes to express his sincere thanks to
Prof. T. Nomitsu for his kind advice and encouragement during the

study.





