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A Study of the Effect of a Local Wind upon the
Sea-Surface and on the Development of the
Internal Boundary Wave

By Toshichiro Takegami

{Received December 31, 1935)

Abstract

In the present paper,® from a simple theoretical calculation, the writer first in-
vestigates the elevation or depression of the sea-surface and the variation of the total
flow of the current generated by a #rawvelling local gale of large scale (such as a cyclone),
and secondly the behaviour of the generation of the internal long wave of great height.

Introduction

The motion of sea-water produced by a wind action has been in-
vestigated by Prof. T. Nomitsu,” Dr. K. Hidaka® and recently by Mr.
G. Nishimura.* In this paper the writer will study the elevation or
depression of the sea-surface generated by a local gale of large scale
and of the development of the internal boundary wave (the elevation
or depression of the internal surface discontinuous regarding the density).

In Chap. I. we give the fundamental equations and the conditions
which are adequate for the present problem. In Chap. II. their solu-
tions will be given, and moreover to give a concrete explanation of
the solutions, we will calculate the following special cases: (1). The
region, in which the wind-velocity is uniform, #ravels with a velocity
V on the unbounded ocean of uniform depth. (2). The ocean is bounded
by a coast and (a) a wind region travels towards the coast from the
sea, (b) it travels towards the sea from the coast.

Specially, case (a) of (2) may be one of the causes of the abnor-
mally high water (e. g. at Muroto Sept. 21, 1934) produced by a strong
typhoon.

In Chap. III. we will give details of the mechanisms of the develop-
ment of the internal boundary waves by taking a simple example as
wind regiomn.

1. An outline of this paper was read at the Annual Meeting of Physico-Mathematical
Society of Japan in April 1935. 2. These Memoirs, A, 17, 249 (1934). 3 Geophy.
Mag. Cent, Meteo. Obs. Tokyo. 7, No. 3-4, 1933, 4. HITRHFERFREME 0 ORI 1
3). .
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But, here, it must be noticed that the present problems are all
treated in two dimensions (vertical and horizontal directions) without
consideration of the effect of the earth’s rotation, and the assumed
boundary conditions are that no friction exists at the bottom or at the
boundary surface.

I. Fundamental Equations and Conditions

Take the a-axis on the undisturbed sea-surface and the z-axis ver-
tically upwards. ILet us denote

g acceleration of the gravity

p: density of the sea water (assumed to be unity);

. depth of ocean;

t: time;

#: velocity of the current in x-direction ;

¢ coefficient of the eddy viscosity (assumed to be constant every-

where) ;

¢: elevation or depression from the undisturbed surface;

7: wind traction (assumed to exist in a region of breath 2/ only).

If the small terms may be neglected the Navier equation of motion
and the equation of continuity may be written as follows.
' O _  Ou N4

dt "‘/J: 022 - & dx L eMevresserse st et enrasetene ( I ),
(1]
——d--j udz= L0, (2).
ox J_, ot
The surface and bottom conditions are assumed to ‘be
7 Out =7 .at z=o
0z
G [ e (3)
w L
y7 =0 at z=—4
0z

where 7=f(x, {) within the wind region 2/, 7’=o0 outside the region.
Now integrate (1) with respect to z from —/7 to o, and take into
account eq. (3), then we have

9.5 ot
Y R PP /
ot i ox ("),

0

where S -—-g udz represents the total flow perpendicular to the vertical
. I

section of unit width due to the drift- and slope-current.
By using the total flow .S, the equation of continuity (2) may be
written as
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as : ,
F— S e (27).
Eliminate ¢ from (1’) and (2’), then we have
AR Ry 0T
e .
o £ dx* + Ox ‘ (4)

This is a fundamental equation for the present problem. The initial
and boundary conditions are as follows.

S=o0 and 95 =7 ( 48 =o) when #=o0
ot o

Ox (5
S is continuous at the ends of the wind region
and when the ocean is bounded by a coast
S=o0 at the coast (x=0).  .iiiiiiiiiiiiiinnn (6).
Now, if the solution §' of eq. (4) satisfying conditions (5) and (6)
can be obtained, substitute it into (2’); then ¢ may be obtained by in-
tegrating it and using the condition that £=o0 when f=o.
Conversely, if .S is eliminated from (1’) and (2), the fundamental
equation for ¢ may be obtained as-

i 9 < o ) a7
BT g/ - T e seeesesrecessisransae 4
or o %) o (4)

and the initial and boundary conditions corresponding to (5) and (6)
will be

{=o and 3—5——‘0 when f=o0

I N e (5),
g/z(——gl—'—— ——i‘l—> =17 at the end of wind region

Oox Ox

where ¢ and & express the elevations corresponding to the regions
where 7 exists and does not exist respectively. When the ocean is
bounded by a coast, the condition on the coast is

o ZC_ =7 at the coast (#=0) = .ecoverrernnes (6").
X

Now, referring to eq. (1’) it must be here noticed that, as long as
we use eg. (1), the solutions, which satisfy the condition such that the
current z is nil on the coast and is continuous at the place where 7

changes abruptly, cannot generally be obtained. But if we use eq. (4)
or (4') instead of (1), without considering current #, we may obtain

solutions appropriate mathematically and also physically, except for the
current z in the neighbourhood of the coast. Thus the coast condition

9 =7, but not z=o0 or 9
ox x

should be put S=o0 or g/ =0 as as-

sumed by some authors.
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Since eq. (4) and (4’) are obtained from the assumption of no bot-
tom-friction and consequently contain no damping terms, the solution
will afford only a quasi-steady state but cannot afford a steady state.

For practical purposes, the solution in the case of a bottom-friction

. . : . . 0
is more desirable. If we assume the bottom condition as ng—=/ez~4,
: 2

then corresponding to (1) we get

"i — T fu— g ai ........................... (),
and corresponding to (4)
(VY du %S or ‘
- £ =0/ + e m,
PRy o oF ()

is obtained, where z and £ means the boitom velocity and the pro-
portional constant respectively. If we assume suitably 7_L as a function
of .S, we may obtain an approximate solution of .§. For instance, in
the case of an infinitely long canal, as z may be put to be proport1ona1
to .S approximately, (4”) becomes ' :
%f + 2/ (‘)é :g/z dx“ + (33%; ............... (4.

The rigorous solution of (4/”) is very troublesome, and we will develop
our discussion only with eq. (4) in this paper.

II. Solutions

Case. 1. Unbounded Ocean
Solve eq. (4) using the condmon (5), then we have

S'= —-—-—j a’r& zz’ag 7 (4, 7) cos ac(t—t)cos e(d—x)dAh ...... (7)),
T 0
and from (2/)
= Sldrrdar 7 4, 7) sin ac(t—7) sin a(A—x)dA ...(8),
. 0 0 -

T

-

where ¢=1" ol g/ - From these it may be seen that the mode of the
motion pr oduced propagates with the long wave velocity towards right
and left from the origin. :

Now, especially, from the consideration of the followmg wind region
for which

T'(x, H)=const. for —I<x~TVt<l -

I=o0 for x—VE>7 and x— Vi< —1
and 7=o all over the sea-surface after #>4;

} during o<.zf<z‘1w
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we will give a concrete example of the effect of the bounded wind
region travelling with constant velocity.
For 4 >¢>0, eqs. (7) and (8) give
2TV J sina(x— Vz‘)sma[ dut T S'“’ sina(x—{—d)sinalda
(=17

()

o , wle+ V) Jdy a
T sdeesnat L (o)
nlc—V) o
__ 2T S sina(x— V¥)sinal do— T g“"sina(x—{— ¢t)sin al g,
n(c*—T177%) o nc(c—i— ) Jy a
7 Sw sina(x — ¢f)sinal /
—~ B eeeeerereeeeenn. ,
me(c—V) o ¢ (@)
and for >4
A J‘” sina(x — V#,—ct—1,)sinal J
— - 31473
71'(5"‘ V) o a
_ T j‘” sina{x— VH + ct—t)sinal 7z
alc+ V) o ~
i T j ® sinofx + ft> sinal dy—— T § * sinax chl) sinal
alc—T1")J, s  wle=1)J, a’
....................................... (10),
_ T j’“’ sina{x — PVt —ct—1)sinal p
_ = (74
ne(ce— 1) o«
T V sina(x — V# +ct —4)sinal du
mele+ V) o’ ’
T g sina(x + cf)sinal do— 7 5’“’ sin a(x — ct)sinal
3 S da
Crele— 1 ) o *rxcle— V) Jy o’
....................................... (10").
Now, carrying out the integration of egs. (9) and (¢’) from a well-
known formula G SIMarsmoy 5% gu= T4 for 0<a<b, and =-T-p
) 0 X 2 2
for o< < a), we have the following results for .S and ¢ :
1st term of .S and ¢ = (x V¥) and (x V%)
&=
for — (< x—Tt<,
” ” = —:j—;z;{g;‘l a'nd _-7_1—;7-17_1
1 e
for x—Vi>I, x—TVi< -1
2nd term of these:——»—T——-(x—i—cz,‘) and ~————-T——-—(x+ct)
2(c+ 1) 2e(c+ 1)

for —/<x+cf<!,
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- =7 J and 7
20c+ V) 2¢e(c+ V)

for x—ct> x—ct<—1¢

T T
e - t e d e - l
2(c—T) (r—et) an 26(c— V) (=)
Sor —I<x—ct<]],
» » = FT / and +7

2(c—V) 2¢(c—T1)
for x—ct>1, x—ct< —|,

respectively.

From these formulae we know that the ist term expresses the
forced wave (due to the wind action) to be propagated with a velocity
V" towards the positive direction of x (travelling direction of the wind

Fig. 1a.

PR SN
——— S S
e e el N TS CTTTT
=
pTp——— Voo — N
— - _
PRRE * S
€mm 2 Bt SR >



A Study of the Effect of a Local Wind etc. 115

region), and the 2nd and 3rd terms express the increase of the waves
of free wave velocity c¢=1" ;&Z— towards the positive and the negative
direction respectively. The general features of ¢ and .S are shown in'
Figs. 1a and 1bh.

Of course, in the region of a cyclone the wind directions on both
sides of the direction in which its centre is travelling are generally
opposite to one another, but if we consider only one side, the case
seems to belong to the present one.

After the wind traction has become nil (practically, after the force
of a cyclone has become very small) .S and ¢ are given by (10) and
(10") respectively, but here to avoid redundancy we give no concrete
explanation for this.

The formulae (g), (¢’) and Figs. 1a and 1b show that the nearer
the travelling velocity 17 approaches to the free wave velocity ¢ the
larger ¢ and .S become with time, and the height of the front part of
the wave is greater than that of the rear part. But even if I is equal
to ¢ they cannot grow infinite instantly', as at a first sight. When ¥~
is equal to ¢, from the theory of differential equation the formulae cor-
responding to (g), (9/), (10) and (10') will become as follows.

For o<¢<4,

o=_T 5‘” tcosa(x—qcz,‘)sinal dat T j“’ sina(x+ ct)sinal da

0

2

7 Jy o 2nc o
T j sma(x-—ff)smal 7, ST ("),
27TC Yy a’
® . . WL — i
c= Ve j’ tcosalx - chysinal dat T" j sina(x ff)smal du
e Jy a 27" Vo o
® o i ' '
T.) S sina(x + ff)sm'lz da e ("),
2mc Yy as :

and for >4,
o7 Sw zflcosa(x—:cz‘)sinal dat

0 o 2re

T S sina(x +J€i)smal do
T 0

L [Sndatd=adlind g, o

o

2nC Yy a.

Tj‘” z‘lcosa(x-cz.‘)sinala,_ 7 jw sina{x+cf)sinal Ja

a S 3
0 o 2me”

nc 0 o

1. Moreover, when the friction is considered at the bottom, { and § cannot become in-
finitely large even after a very long time and even if 77 approaches ¢. This point has been
shown recently by Prof. T. Nomitsu from a simple calculation, These Memoirs, A, 18, 211

(1935).
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-

TO jw sina(x+cz‘—: 2ct)sinal do - e, (r0’).
27e” Vg a

These formulae (9”), (9"’), (10”) and (10"”’) show that ¢ and .S increase
with time from zero, and that, in order to grow very large, 7" must
continue for a fairly long time, namely the modes of the development
are similar to the resonance phenomena in Acaustic.!

Case 2. Ocean bounded by a Straight Coast

Take the wx-axis such that its origin lies on a coast and x is meas-
ured from the coast seawards. Solve eq. (4) under the conditions (s)
(in this case supposing that the wind blows towards the coast, then

d,f‘ =—7") and (6), then we have

(5) becomes

— [t ® »
S=—z ga’rS daX T'sinaxsinadcosac(t—7)dd ...(11),
T 0 0

0

i3 0 <]
g=-2 Sa’rg a’aS T cosaxsinadsinac(t—o)dA  ...(12).

T vy 0 0
Now, especially, we shall consider the same wind region as in the

preceding case except the wind direction is opposite.

(@). The case of the wind region travelling from the seca
towards the coast

‘We shall take the case where a wind region of width 2/ suddenly
generates at x=a over the sea and advances towards the coast. More-
over, it seems to be appropriate to take the distance  as equal to the
width of the continental shelf, because the action of the wind with
regard to the surface elevation is generally large in shallow water only.

To calculate ¢ and S for this case, it is convenient to divide the

wind traction 7" into the following two cases. Namely, let z‘1=~—ap—_~ be

the time elapéing till the front portion of the wind region reaches the
coast after having generated at x=a¢. Then during o</<4, the ex~
istence domain of 7 is a— Vt<i<a-+2/—T71.

2/

Silﬁilarly if L—4= be the time elapsing till the whole of this

region is ashore, then for during #£,>¢>#, the existence domain of 7
will be o<<A<2/— V{#—4#).

I. Detailed discussions concerning a similar problem will be found in Chap. IIIL..
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42 -V . 27 e V(r—z‘l) .
Now put S T'sinaddd=T(r), and f 7sin addi=T7),
a—-Vr [1]

and denote the elevations due to the action 7} as & for £</ and as
&, for £>4, then

» 13

L= S cos axa’aS Zisinac(f—7)dr
e Yo 0
- ——;g-—z— Swgcosa(a: +2/— Vt)—cosala— T/’l‘)}ﬁgsf—xda
(=177 &
—;(_c_i—fﬁ Y” {cos @+ 2+ ct)—cosala + ci)}Md
- ————-—Z—j—-——wj «{cos e+ 27—ct)—cosala— czf)}————cos Y da,
me(c— 1)
C= —?-j “cos axa’a} Zisinac(t—r)dr=—=2 r — g cosac(t— f‘) COSAY
T Vg ( — T ) o
*H;i‘—?)—ﬁ {cosa(a +ct)+ cosa( 2+ ct—t,)—cosala + 20+ cz‘)}
SO o~ z gw{cosa(a— ct)+ cosal2—ct—ty)

o me(c— V) Jg

—cosa{a+ 2/~ cz‘)}—EQ—S—;@—da.
2

Next also denote the elevations due to the action 7 as & for 4 <
1<ty and as ¢ for £>4;, then

Co=—2 Smcos axdar Tysinac(t—t)dr
e vy Vi
_ —2TS°°{ }cosox 27
= cosac(t—1t)—1 da— X
wc® Jy aclt=2) i a(cf~ )
S“ cosal2/+ a— Vf)cosax da-t T S cosa(2+ Ct., f—1,)cos ax da
0 o e+ V) o
T Sw cosa2l—ct—t)cosax da,
ne(c—V) Jy a
Ci=—2 jmcdsaxday?]?zsin ac({—7)dr
TC Yy
=2 Z: j {cos ac(t—t)—cosac(t—t, )}h_*cosax do
e a
27 j cosac(t— fZ) cosax ;. T «
n(c -7 o nc(c— V)
[ cosa(zl—{- C{ f—1)cosax dat T S cosa(ol-ctﬁ t)cosax da,
Jo & aclc+ 1) o



118

Toshichiro Takegami

by making suitable combinations of &;, &, & and &, the required eleva-

tion becomes
=
=0+
=6+

Now, put x=o0 in the

variation of the surface elevation at the coast.

different cases according to

for o</
fOl' f1<i<7‘2 }
for >4, ‘

above formulae, then we have the time
But there may be several
the relative magnitude of the free wave

velocity (¢) and the travelling velocity () of the wind region, i. e.,

(@) <

and the cases of -2 <&
|28 ¢

cern for the last cases.

Now, integrate them by referring to a well known formula (g

T

a+2l<_[z_’

@ a
LA
¢ |4

+ 2/
b < 2T
O C

e
But as generally I7<¢, we will not con-
«©

cos 5:ct I

B

Jo X

o for &>O), then we have the following results.
2

For the case ~—(—"-.<_‘f__‘*‘_2_1_< a
4 ¢ V
{=o for < -2
¢
Z{ct—a) @ gt 2l
T e for <4<
¢ (=T o ; -
2T/ (l+21 @
T de—1y f << L ",
¢ de—71) T rra (13)
o+ 21— V1) o g o)
= for <t
‘ le—7) TS T
+ 27
—° for £ 20<4
¢ or 42 )
and for the case ~-< % <. @*2!
c T P
¢=o for <%
¢
Z{ct—a) a “
= for & <cpe @
T He-7) o SIS
7t a a2l
C_' C‘: for ——I7<?/L< T e (IS""),
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c= Z(a+20—T1%) for 2%t 2/ <i< a+2!
de—V) ¢ 14
_ ' a+ 2/
E=o0 ‘ for £> -
and as the extreme case if '=¢
¢=o for 1<%
¢
&= { ct for - <t< at2!
¢ ¢ ¢

{=o for z‘>~—————a+21..

¢

Now, we will give the more detailed interpretations about the de-
velopment of the wave, We may obtain the following diagrams which
express the relation between ¢ and V7, and that between 7 and the time
(z‘o) to attain the maximum wave height.

Fig. 2a
[74n
[& \ .
4 : Flg. Zb
! ‘t./a
3 { <
|
2 1 °
> |
o
! l 2
1 | 8
0 l’l 17 2 % :
37 ] 1
2 i
1 !
! '
f 1
) ! 1
! i
2t
s ! T T ¥
1
i
4 1
I
i
5 i
- Referring to these, we know that if I'< oy ¢, & increases with
atz2
. @
I approaching to ¢, but when V> n ¢, ¢ takes a constant value
a+t 2

Na+21 .. . .
Tatel) (this is a maximum value due to a resonance effect) and

o

increases no more even if 17 approaches to ¢ still more, and untill
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< -—(Z—~——c, %, remains at a constant value atal but for V>———{i—-—-c,

a+2/ . ¢ a2
%, decreases inversely proportional to 77 and if F7 is equal to ¢ it
becomes —Z— Thus for an initially motionless sea, ¢ can not increase
infinitely (unless the width of the continental shelf @ is very large), as
generally considered, even if 177 is equal to ¢. If we don’t consider the
initial condition and treat the problem as quasisteady, there may exist
a solution of ¢ which gives an infinite value for 7=, yet it must corre-
spond to the case where the width of the continental shelf ¢ is infinite-
ly large or 7, is infinitely great. But, as such assumption is very far
from the actuality, it may be said that the height of wave at the real
coast can not be so large even by the resonance effect.

(0). The case in which the region travels from the coast seawards

We shall consider the case of the region having the width 2/
beginning to advance from the coast seawards and dying away when
its tail end reaches a point at a distance ¢ from the coast (# is taken
as the breadth of the continental shelf).

As in the preceding case it is convenient to divide the wind action

7" into the following two parts. Let z‘,,=——21§ be the time elapsing be-

fore the whole region appears over the sea-surface after its front has

reached the coast, and let z‘z—z‘,:—;}; be the time elapsing between

the region’s first appearance over the sea-surface and its almost total
loss of action. ‘ - '
Then the existence domain of the wind traction 7 is obviously
0<AL VY for 0<t<ty, and V{t—#)<A< PVt for 4, <t<t.
Ve 1 :
Now put S Tsinaddi=7((r), and y ’ Tsinaddi=Tyr),
0 Ple—y)
and let the elevations due to the action 77 be & for /<4, and &, for
£>4, then )
p w C e [ o . .
Clz—z—g cosaxa’ag Tlsinac(t—r)dr:——iyj‘—,j‘ (cosact “I)COS(ZLL da
. TC Vg 0 7TC“> 0 o
2T r’ (cosalt—cosact)cosax .
(=17 : '
® % .
ngig cosox(z’a§ 7isinac(t—7)dr

TC Yy 0

0 [24
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L aT& {cosact —cosac(t — L‘I)}cosaxq, n 27

<2 .3 vy X
7 o w{c*— 1)
j ® cos acz‘qcosax e 7 _ j ® cosa(cz‘—c—ﬁ Vt)cosax da
0 a aclc— 1) Jy &
_ T j ® cosa(ct —c+ Vi)cosax a
ne(c—1) & '

Also let the elevations duc to the action 73 be & for £,< t< £y and
C( for j>l‘w then

2 ‘. 27
S cos axa’aj Zisinac(t —v)dtr = — ————— X
e Jy alc*— V™)

S «{cos aVi—cosal’{¢—#4)+ cosac(t—4) COS,,{M dao+ z
0 J a’ 71'6(6 — l/)
j cosa(ct—c— P1)cosax dut 7 j cosa(ci-c-i; Vt)cosax , 3
0 & me(e+ V) J, o
e=-2 chos axda Vszsin ac(t—t)dr=— _L X
T oaeJ, Je, a(c*— V)
V J cosac(t _f‘) cosax , VA S {cos Ao+ 20— ci=F)
0 o mele+ V)
T cosax r
—cosal2/—ct—t)—cosala—ct—1, da— X
( ) ( ")J o zelc—V)

g{cosa(a—l—ﬂﬂ—af L‘)~cosa(ol+ct f—1)—cosala+ ci— z‘)}—wda.
a

0

By making suitable combinations of & G & and g, we can get

=4 for <4
=Gt for 4<C i<t } ............ (14).
=0+ for >4,
Thcn time relation of the surface elevation at the coast may be given by
|43 2/
S S— for z‘<——-
¢= e+ V) ©
727 2/ a2/
= for — <z‘< e
¢ e+ 1) T !
Ta+20—ct—1,) @ , a+t 21 ( )
= 2 for L4 <<t Na+ 2f
¢ e+ 1) A |14 | ( )
=0 for t>(~L+L> 421
¢ or >+ — fat2) )
.................................... (147).
As the maximum height of the elevation at the coast is given by
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preceding case (a). Namely 2 £his case the so-called resonance effect
does not occur ot all, and the elevation of the water surface at the
coast is smaller than that of the case (a) if the other conditions are the
same. And the ratio of the elevations for the above two cases is given
a+ 2/

+V .. @ @ (a+20(c+V) .. a @
by ST g L 8T D by ——~—— 2 §f — <{—
Y e—rv U e < 7 2¢ T V<
a+t 2/

¢
J. Proudman, in the investigations about the effect of the travelling
pressure disturbance over the sea, has obtained the theoretical result
that the ratio of the wave heights in the above two cases is given by
c+V '
C—
the present investigation (about the effect of the travelling local gale)

this form holds only when L < @t 2!
¢ ¢

, and this form holds for the all possible value of V. But in

<—£;7 as above stated.

Now, we will give the numerical explanation about the result now
obtained. We have known already that ¢ takes the form (13’) or (13”)
a+ 2/

P
coast of the Japanese island (for an example) the widths of the con-

according to —;_— being greater or smaller than But along the

tinental shelves ¢ are generally 20 km~35km and the length of the

wind region may be considered to be about 40 km~60 km, therefore

atal (it may be called the critical value of resonance from its phy-

sical meaning) takes the value of 2~4.

Put a=30km, 2/=350km, wind velocity W =30 m/sec and k=

a2/
a

som, then ==2.7, 7'=0.00250.00129+(30°10%) c.g.s.==30 C.G.S.

and F=gh=510%.g.s. or c=8o km/hour. If V< 68 or V< 3okm/
2

”—"“-‘ﬁ"—T—CYn,
(=)
) R —
4

i.e.,, V is over

hour the surface clevation in the case (a) is given by {=

and ¢ increases with 17; but when I exceeds
2.7
30 km/hour, then from (13") the elevation takes a constant value 42cm

and increases no more even if /7 becomes equal to ¢. In the case (b),
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¢ is given by —2 _ com. Supposing V—*—-—C—, then ¢ is 17cm and
(I +£> 27
¢

L of that of the case (a).

it is about
2.5

III. Internal Waves of Meteorological Origin

The sea occasionary consists of two horizontal layers, whose den-
sities are different from one another but may be considercd uniform
within each layer. On the boundary surface of these two layers the
phenomena of the so-called internal wave of great height arc often
observed. These peculiar phenomena were first observed by Dr. Hel-
land-Hansen and Dr. Nansen, namely, during the North Polar expedition
from May to July, 1894. They observed that, at a depth 200-300 m
in the sea, the density was discontinuous, and that the transition layer
was rising and falling to the extent of about 20-30 metres. After then
‘W. J. Sandstrom endeavoured to explain experimentally the mechanism
of this peculiar phenomenon. Tig. 4 shows the vertical section of the
water-tank used for the experiment, in which the upper layer is light
water and the lower one is heavy water, and is coloured to make the
boundary surface distinct. By letting a strong, narrow air-current sud-
denly act locally, at a certain place on the surface of the light water-
layer, this layer was put in motion in the direction of the air-current,
and the underlying heavier water at this place and behind it, was lifted
to form a great wave, while in front of it the heavier water layer was
depressed. If the air-current continues to act on the surface at the
same spot for some time, the wave in the underlying heavier water
will remain permanent, altering its shape gradually untill new condition
of stable equilibrium is attained. If the spot at which the air-current
acts on the water-surface moves forward (in the direction of the air-
current), the wave will follow in the same direction.

If the air-current suddenly stops, the wave will continue its course
as a boundary-wave, untill it reaches the wall of the vessel, or if we

think of the sea, untill it reaches the side-slope of the sea-basin. Here
it will be partly broken and reflected, and will again pass across the
basin, till it reaches the other side.

In the same manner a sudden storm or wind on a sea affects the
water strata and may produce a boundary wave of great height. This
explanation is an outline of Sandstrom’s experiment, and the present
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Fig. 3 writer will proceed from

a theoretical standpoint

w with his discussion of

ol these phenomena, and

especially of the aspect

of the development and

the propagation of waves

produced by a sudden
storm or wind.

Now before pro-

-Boundary-¥ave formed by Locol Alr-Current (cf.Sandstroa) CCOdil’lg’ with our discus-

sion, we shall make the

following assumptions, namely that the ocean consists of two layers

whose densities are different through uniform in each layer, that there

is no friction at the bottom and on the boundary surface, and that the
problem may be considered as of two dimensions.

Now let us denote the density, the thickness, the surface elevation
and the current velocity of x-direction in the upper and the lower strata
by (o1, p), (o 722), (€0 &) and (z4, 2) respectively, then by neglecting
the small terms, the equation of motion and the equation of continuity
become

P dd?? =y, ad,:h — 2p gi‘ for upper layer ...(13),
Oz, % 0 o,
s (;; =p a::l:z —gp; af; —glos—py) di for the lower
I USROS (16),
a (0 0 a¢, ,
_—a—xﬁ‘g—lzl‘[)lul 2:——‘01( dé; — OCL‘“ ) ............ (x7),
0 S"“'hl dcq
I, 22525{31: e T O 8).
0 J— (24 7) Toor (8)

The conditions at the upper surface, at the intermediate surface and
at the bottom are respectively

M_dziz T for z=o0
0z

I 0%1 =0, My ()2[2 =0 fOl‘ Zz_’]ll ..-(19),
Oz 0z

2l = for o= —(h+ /)
0z

and the initial condition is
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U, =2s=0 when £=0  ..eieeeennn. (20).

Now integrating (15) and (16) with regard to z in the intervals
. 0
(o, —/y) and (—/o,—(%; + /5)) respectively and putting .S IES P %y 7,

NVl

and SZES:Z: o )pg u, dz, then we have
_%Z_L_T_é‘ollll gi‘ .............................. (15",
_%j_g__ . gix —elos—piYis g‘iz ............ (167),
?{i _ ( gg th ) ........................ (17,
C;;S;Z =—py (z;; et er et ee i, (18).

At first, let us assume that 7'is independent of £, then eliminating
&, &, and S, from the above equations, we g'et

3
95, —c(1+¢) off, +¢(x —.75) S‘—

g a7

=0 ...(21),

where g=-1, p=Lr, P=gin.
/3 02

Solve (21) under the initial conditions .S;=.S,=¢=¢=o0 at #=o0
or their equivalents
9.5, -7 iAW — AV A

=c" when £=o

Sy=
O T o ox?

Since egs. (15') to (18’) are obviously ‘‘ additive ” with respect to Zin
the meaning defined by Prof. T. Nomitsu, we can easily get the solu-
tion by his theorem' when 7 is variable with £ Then we have
Sl—*c—_b—)aj a’rS das 7 cosac,(t—1)cos a(A— x)dA
Q

77(51"‘ Ca ~

st )S fsz d"r Tcosacft—r)cosad—x)dr ...(23),
0

7(61_67

where ¢f=g¢(/+ 3), C»—'M,

oo ley+ 12)
Ctz___fl(f-—:“‘;)_j a’z‘S az’aSa° T'sinac,(t—17)sina(A—x)a?
apic¥(ci—c3) o dew
t o0 el
_eld—c) Sa,’z-S zz’aS Tsinacy(t—r)sina(A—x)dA .(24),
e E—a) )y Yy o

I. Proc. Imp. Acad. Tokyo, 11, 359 (1935).
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2__ 2 ©w D
2:_.€£6_0__6‘~2_ (_Io,_..__i__)gtdrg a,’ag Tsinac,(¢—7)sina(A— x)d2
moli—e3) \ & g /g Yo

-0

,M(L_J_.)Stdz-rda(m Tsinacy(f—7)sina(d— x)dA
[ 0

moci—ci) \ & P Y w

.......................................... (29),

pl— =) S‘d,S

S m(z’agw 7 cosa(A—x) %
70:6%(c1— ¢3)

0 —-®

{cosac{t—1)—cosac{f—1T)}dd  .cooviinnnn (26).

Egs. (24) and (25) will give, respectively, the elevations of the

upper surface and of the lower intermediate surface. They contain two

waves propagating with the external wave velocity ¢ and the internal
wave velocity c..

Now, in order to obtain a concrete example, we shall consider the

same wind region as that of Chap. II, namely 7=const for —/<x—
Vt<! and 7=o0 for x—V¢>/ and x—V¢(<—/. Then

L=

S‘m
0

_{, .

0

C=

.

;—d { 27 S"’ sina(x—aVz‘)sinal du— 2T

;

X
ro(ci—ci)c? ____Vi 0 a ) . _r
cq €y
sina(x— f,t) sinal_, T S“’ sina(x + ilz‘) sinal da}
o - R a
i Cl.
a—c { 27 S” sina{x— V#)sinal oL
o (3 —¢3) L 7, o i L 124
a €
sina{x— fzt) sinal_, T r sino{x + fgi) sinal a’a} (27)
o -  Jg o«
C2
S <;_~_1_“>{ 27 g“." sinad(x— Vt)sinal
ap(ci—e) \ &8 a /Ll _ T, @ L
a :
7 S"" sina{x— flzf) sinal_, T 0 g” sin a(x+ fll‘) sin a/ a’a}
1 _£ 0 o 14 V: 0 o
o a
. ci—ct (_E___i__){ 27 S‘” sina{x— V¥)sinal da
ao(ci—c3) \ ¢ P P o
G .
7 j“’ sin a(x—c.t)sinal gy L S“’ sina(x + fgz‘) sinal da}
[ d, a - VJ, a
Cs : Ca

2 2

.................................... (27)..
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Now, if, for instance, we put p,=1.0275, p2—p;=0.0003, /=100 m,
/y=200m and g=09.8 m/sec, we get c; =450 m/sec and c;=0.68 m/sec.

2 3

== 35,1077, Cf‘j =3.107%, - =3.10"

Pt i c
may be neglected in comparison with unity. Moreover the first two
terms become large when V7 approaches to ¢ very closely, but since
here ¢ is 450 m/sec and the value of V/, even if it is estimated very
highly, is about 30 m/sec, in this deep sea V" cannot actually approach
to ¢, and consequently the first three terms of &, (two free waves of
the velocity ¢, and the forced wave of the velocity 77) are very small.
Iowever, as ¢, is proportional to (pz—pl)’l’", the terms containing ¢, in
denominators are very large compared with the other terms. There-
fore, neglecting the small terms, the main features of the internal waves
may be given by the following forms.

1

Therefore are very small and

__T i 1 j“ sina{x — cof)sinal dat I «
mpscs Vs a* 1+ 7
: Co Ca
S“‘ sin a(x+fgt)sinal dom 2 S“’ sina(x — ~l"/'l)sinal du
0 4 I — = dy a
e
............................................. (28").
This formula is similar to (¢/), therefore it may be written as follows :—
1st term= ~———L————(x—~czz‘) for —I<x—cot <]
2(ea— V)esp
" =-——:—EZ—Z for x—cot>7and x—ef << —/
2(ca— V)eqpy
T
and term=———2_ (x+cf) for —I<x+cit<i
2(ea+ V)egon
" ::———é—-—T—l for x+ct>7and x+cif << —1
2(6‘2‘{" V)(;glol
ard ternl::—q-l-;——(x-— V)  for —I<x—Vt<!]
(3= V‘)Px
" =———0-—i—]:—1 for x—Vt>landx — Vi< —/
(E=Tp
.......................................... (28).

The above formulae are expressed diagramatically in Fig. 4a, 4b
and 4c, where the three cases V=0 and V=¢, are given, but among
these the cases V<¢ and V=0 seem to correspond to those of the
Sandstrom experiment. However, since the travelling velocity of the
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Fig. 4a.
=2.Ca _....T_..._._._)
G,
i S
W / /?\é‘/%
Fig. 4b
Geov — T s
3
R Y
HEEAN e -

wind region is generally greater than the internal wave velocity ¢, the

circumstances are not generally like those of the Sandstrom experiment.

Now let us discuss the results of (28’) in detail. The maximum

height of the wave is given by &= 77 - . wherec, *( e 02— p ‘)/ll/l">
(C" V )] 1 (lzl+/l”)

and it is about 1 m/sec for a deep sea such as here consxdered. And

since the time that the wave height becomes to maximum is given by

ly= ZZV and it is related to the travelling velocity I like that of &,
Ca—

to discuss the development of the large wave heights we must, in ad-
dition to the values 7" and /, take into account the effect of the value
vV for them.

" For the above purpose, in Fig. sa and sb we shall give the relations
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/ .
of to & or %4, where ¢ — and ® _ are taken as the ordinate
Cs 77/ c 2l/c,
and as the abscissa. Now if, as a very usual example, we take

Ca
=20km, ¢=0.68 m/sec, wind velocity 7=z20m/sec and use 7=

! =4om and %4==106 hours.

2
2

0.0025 pu V7, then we get

Fig. s5a and sh.
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By referring to the above two figures we obtain the following re-
sults, namely that the waves usually observed (about 40 metres in height)
correspond to the neighbourhood I7=o, that, for the generation of such
a large wave of about 200 m height, the wind velocity and the area
of the wind region must be, of course, very large, but also it is neces-
sary that the wind region travelling with a velocity nearly equal to ¢,
continues to act for a long time and consequently the so-called resonance
phenomena occurs, and on the other hand that, if the travelling velocity
of the wind region is much larger than ¢;, the wave cannot become
large even if the wind velocity and the width of the region are great.

From the above discussion it has become clear that large internal
waves can be produced only under suitable conditions as above stated,
even under the effect of a local gale of large scale.

‘We shall next touch the effect of the pressure disturbance for the
development of the internal wave briefly, It is clear that the formulae
giving the elevations of the upper surface and of the lower boundary
surface under the effect of the travelling atmospheric pressure distur-
barce are



130 1. Takegami, A Study of the Effect of a Local Wind etc.

¢ — : ) —_
g =" S {T(x——clt +o—Tr)—r(lx+ at—e+ T ?)}a’z‘,
0 : i
v 2 e —_
C‘z:—"—‘&g {7’(x+ ot =+ Vr)—ple—cf+ ¢, — Vr)}dr,
€1 Yo

where 7 is %i« and ;’: is the atmospheric pressure measured by the
water column.

Now it must be noticed that, since the akove ¢ and ¢ contain no
terms inversely progportional to py—py, the weves connol le develefed
greatly by pressure disturbance as by the wind actien, and also that,
since the wave velocity is in all cases the external free wave velocity
and is not the internal one, in such a deep sea as that under consider-
ation the so-called resonance plhenomena die to the travelling pressure
disturbance can scarcely occur 1 practice.

Therefore the great internal wave cannot develop from the pressure
disturbance, even if the travelling effect is considered. The above results
have been deduced from the most idealized case, but we infer the
general features about the development of the internal boundary waves
of the large height from then.

In conclusion the author wishes to express his sincere thanks to
Prof. T. Nomitsu for his kind advices and encouragement during the
study. '





