

TITLE:

Biochemical Studies on Pityrol, VI : Distillation of Palmitic Acid

AUTHOR(S):

Shoyama, Seiichi

CITATION:

Shoyama, Seiichi. Biochemical Studies on Pityrol, VI : Distillation of Palmitic Acid. Memoirs of the College of Science, Kyoto Imperial University. Series A 1928, 11(6): 533-542

ISSUE DATE: 1928-11-25

URL: http://hdl.handle.net/2433/256862 RIGHT:

Biochemical Studies on Pityrol, VI. Distillation of Palmitic Acid

By

Seiichi Shoyama

(Received September 12, 1928)

I. PREPARATION OF PALMITIC ACID

Palmitic acid, one of the chief constituents of fatty acids occurs in rice oil, which is easily obtained and in a pure state from Haze tallow. According to Dr. Tsujimoto,¹ the fatty acids of Haze tallow are composed of 84 % palmitic acid, 14 % oleic acid and 2 % Japanic acid, and the tallow was regarded by the writer as a good source in Japan, for the preparation in a pure state, of palmitic acid. The raw material which showed the constants, was saponified with a caustic soda solution, and the mixture of sodium salts of the fatty acids separated from the glycerine solution was treated with sulphuric acid. The free fatty acids-mixture was subjected to distillation under 15 mm. pressure after being dehydrated by the melting process, and the fraction B.p. 215^o-220^o was collected for palmitic acid which shows the following constants:

· .	Haze tallow		
M. p.	49°-53°		
Saponification number	227 - 246		
Acid number	20 - 28		
Ester numer	207 - 218		
Iodine "	8.5-9		
	Palmitic Acid		
В. р.	(215°-220°) 15 mm.		
M. p.	59°		
Iodine number	8.5		

Seiichi Shoyama

The yield was about 60 % of the theory. The purity of the acid was calculated from its iodine number to be about 90 %, assuming the presence of oleic acid to be an impurity.

II. DISTILLATION OF SODIUM PALMITATE

The sodium salt of the acid was prepared by neutralizing the acid with sodium carbonate, and purified by recrystallization from alcohol solution. The sodium content was determined to be Na=9.3% while the theory requires 8.7%.

25 gm. of dry sodium salt were distilled in Fischer's aluminium retort; it appears that gas is evolved up to about 380° and the distillation of tar commenced at 400°, the evolution of tar and gas rapidly increased at about 440° and is finished at about 540°. The yield of tar, coke and gas is 70%, 24% and 6% respectively.

The chemical composition of gas was determined with the following results :

	1
CO	11.8 %
CO2	12.2 "
C ₂ H ₄	1.7 "
$C_nH_{2n+2+}H$	27.4 "

The coke which shows 27.6% of ignition loss, was assumed to be composed of sodium carbonate, containing Na=44.1, with some organic matter as an impurity.

2 kg. of the salt yielded by the operation 1370 grm. of tar which is a yellowish brown oil of green fluorescence and a burning odour, and was separated first by steam distillation into two fractions-volatile and non-volatile parts :

Volatile part	45 %
Non-valatile "	55 ,,

A. VOLATILE PART

The volatile part, having as constants, B.p. $80^{\circ}-270^{\circ}$; $d_4^{2i}=0.748$; iodine-no. 119, was assumed to be a mixture of saturated and unsaturated hydrocarbons of the ratio 60 and 40 by means of conc. sulphuric acid.¹

534

^{1.} Z. f. angew. Chem., 33, 172 (1920).

1. Saturated hydrocarbons

45 grm. of the saturated hydrocarbons which remain without any reaction with conc. sulphuric acid, were fractionated carefuly on metallic sodium six times, and of each distillate the weight, specific gravity, and index of refraction were determined and the results are shown in Table I, II, III. Both the temperature-weight curve and the temperature-mol per cent curve of the fractions shown in Figs. 1 and 2, show the five maxima which indicate the presence of the hydrocarbons of the carbon atom C_3 , C_9 , C_{10} , C_{11} , C_{12} , and C_{13} . The assumption for the occurrence of the hydrocarbons in the distillates was confirmed by comparison of their physical constants and analytical results with those of the pure substances mentioned in the literature.

2. Unsaturated hydrocarbons

The unsaturated hydrocarbons which occur in the volatile oil were separated from the saturated ones by means of liquid sulphur dioxide according to the method suggested by Edeleanu¹, being divided by fractional

	Fraction	Yield	Δt¹	$\frac{\Delta W^2}{\Delta t}$
I	- 122°	0,2		
11	122° - 126°	0.5	4 °	0.125
III	126°-148°	3.0	24°	0.125
1V	148° 152°	1.5	4°	0.375
v	152°171°	2.7	190	0.142
VI	171°—175°	1.8	4°	0.450
VII ,	175°-193°	4.9	180	0.272
VIII	193°—197°	1.7	4°	0.425
\mathbf{IX}	197°-212°	3.5	15°	0.233
x	212°-216°	1.7	4°	0.425
XI	216°-232°	3.6	16,	0,225
хII	232°-236°	2.0	4° -	0.500
хш	2360-2510	1.9	I 5°	0,127
XIV	251°-255°	0.5	4°	0.125
XV	255°-270°	0.3	15°	0.020

Table I

1. Z. angew. Chem., 25, 175 (1919).

F	Fraction	d4° (obs.)	$d_4^{t^o}$	n _D ^{25°} (obs.)	nD	- Cn
I	- I 22°	0.6983		1.3890		
п	1220-1260	0.7075	$0.7185\left(\frac{0^{\circ}}{4^{\circ}}\right)$	1.3924	—	C ₈
ш	126°-148°	0.7150		1.3962		
rv	148°-152°	0.7207	$0.733 \left(\frac{0^{\circ}}{4^{\circ}}\right)$	1.3998		C,
v	1520-1710	1 ^{0.728} 3		1.4024		
VI	171°-175°	0.7333	$0.7303\left(\frac{20^{\circ}}{4^{\circ}}\right)$	1.4062	*1.4136	C10
vп	175°—193°	0.7398		1.4100		
vm	19 3°— 197°	0.7462	$0.7411\left(\frac{20^\circ}{4^\circ}\right)$	1.4132	1.4158	C ₁₁
IX.	197°-212°	0.7510	• •	1.4152		
x	2120-2160	0.7555	$0.7511\left(\frac{20^\circ}{4^\circ}\right)$	1.4181	1.4209	C12
x1	216°-232°	0.7589	•	1.4204		
хп	2320-2360	0.7660	$0.7571\left(\frac{20^\circ}{4^\circ}\right)$	1.4227	-	C18
хџі	236°-251°	0.7707	• • •	1.4251		
xīv	2510-2550	0.7817	$0.7645\left(\frac{20^\circ}{4^\circ}\right)$	1.4315	*1.4358	C14
xv	255°-270°	0.7965	• •			

Table II

Table III

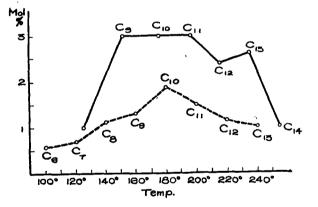
	Fo	ınd	Ca	lc.	
	С%	Н%	С%	Н%	C _n
п	84.11	15.91	84.2	15.8	C ₈
IV	84.38	1 5.3 9	84.4	15.6	C,
VI	84.42	14.87	84.5	15.5	C10
vm	84.33	15.21	84.6	15.4	C11
x	84.35	15.28	84.7	15.3	C12
XII	84.44	14.87	84.8	15.2	C13
xiv	84.73	14.43	84.8	15.2	C14

	Fraction	Yield -	I. V	•	C
	Flaction	I leid	obs.	calc.	C _n
I	70° - 100°	0.5	_		C,
II	100° - 120°	0.7	166.1	259.2	C,
III	1200-1400	1.4	167.3	226.8	C ₈
IV	140°-160°	1.7	145.6	201,6	C۹
v	160° - 180°	2.5	163.1	181.4	C
VI	180° - 200°	2.4	131.6	164.9	C
VП	200°-220°	2. I	126.1	151.2	C ₁
vm	220° - 240°	2.0	109.9	139.6	C,

Table IV

Table V

	Fraction	d ₄ ° ^{25°} (obs.)	d ^{t°} (Beilstein)	n ^{25°} D	n ^t o D	Cn
I	70° - 100°	·	$0.683\left(\frac{20^{\circ}}{4^{\circ}}\right)$	1,4022	_	C ₆
п	100° - 120°	0.736	$0.699\left(\frac{15^{\circ}}{4^{\circ}}\right)$	1.3958		C,
ш	120° - 140°	0.737	$0.723\left(\frac{0^{\circ}}{4^{\circ}}\right)$	1.3966	—	C ₈
ıv	140°-160°	0.751	$0.743\left(\frac{20^{\circ}}{4^{\circ}}\right)$	1.4023	* 1.4286	C ₉
v	160° - 180°	0.762	$0.763\left(\frac{0^{\circ}}{4^{\circ}}\right)$	1.4090	* 1.4301	C10
VI	180° - 200°	0.773	$0.773\left(\frac{15^{\circ}}{15^{\circ}}\right)$	1.4147	*{1.4219 {1.4 3 76	C11
vn	200° - 220°	0.779	$0.773\left(\frac{0^{\circ}}{4^{\circ}}\right)$	1.4193	*{1.4212 {1.4231	C ₁₂
vm	220° -2 40°	0.785	0.844 (1,4215	* 1.4488	C18


fractions 5 times into 8 parts. The occurrence of the hydrocarbons of the carbon atoms C_7 , C_8 , C_9 , C_{10} , O_{11} , C_{12} , C_{13} , was indicated from the analytical results and the determination of physical constants of the fractions as will be seen in Table IV, V, VI. and figure. I. (dotted line)

Seiicht Shoyama

	Fraction	Fo	und	Ca	dc.	
	Flaction	С%	Н%	С%	Н%	- C _n
I	70° - 100°			85.7	14.3	Св
п	100°120°	85.41	t 3 .97	85.7	14.3	C,
m	120'-1400	85.22	13.91	85.7	14.3	C.
IV	140°-160°	85.76	13.92	85.7	14.3	C,
v	160°-180°	84.87	1 3 .86	85.7	14.3	C ₁
VI	180°-200°	85.12	1 3.88	85.7	14.3	. C ₁
VII	200°-220°	84.42	13.71	85.7	14.3	Cu
vπ	220°-240°	84.61	13.99	85.7	14.3	Cıs

Table VI

1. Palmitone, $(C_{15}H_{31})_2CO$

The occurrence of this ketone in the non-volatile part of the tar was previously assumed from the experiment which was carried out by Kraft,¹ and 20 grm. of the ketone were actually isolated from 270 grm. of the tar by treating with ether, and the ketone was confirmed by converting it into its oxime of m.p. $58^{\circ,2}$

2. Kipping: J. Chem. Soc., 57, 985 (1890).

I. Ber. D. Chem. Ges., 15, 1711 (1882).

2. Hydrocarbons

The oily part separated from the ketone, which showed by its iodine number 69 about 85% of unsaturated hydrocarbons, was fractionated under 10-12 mm. pressure.

150 grm. of the non-volatile oil free from the ketone, were divided into 18 fractions by repeating fractional distillation fives times which were confirmed as composed of hydrocarbons by determining the physical constants and chemical properties and also by analysis of the fractions. (Table VII, VIII, IX.) The proportion of saturated and unsaturated hydrocarbons in the non-volatile oil was estimated by means of iodine number of the oil, and the results are shown in Table X. Among these hydrocarbons, unsaturated compouds of the carbon atom C_{15} , C_{19} , C_{20} and C_{30} as will be seen in Table X, composed the main part of the oil and the chief saturated hydrocarbons are $C_{14}H_{30}$, $C_{18}H_{38}$ and $C_{20}H_{42}$.

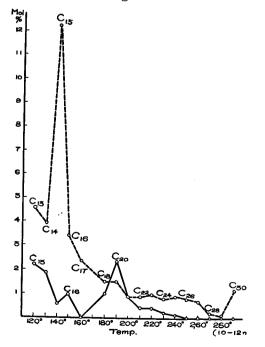
	Fraction	37: 11	[I.	V.	C
	(10-12mm.)	Yield	(obs.)	(calc.)	Cn
I	-120°	12,6	94.4	139.6	C
II	1202-1302	11.5	87.4	129.6	C
ш	130°-1407	27.1	114.8	121,0	C11
IV	140°—150°	7.9	111.0	113.4	C
v	150°-160°	5.5	1 50.8	106.7	C_1
VI	160°-170°	5.1	18.8	100.9	C_{1}
VII	170°—180°	6.7	59.0	96.2	C1
VIII	180°—190°	10.8	42.8	90.7	C2
IX	190°-200°	5.2	46.6	85.8	C ₂
X.	200°-210°	4.0	61.4	82.4	C ₂
xι	210°-220°	4.5	58.2	78.8	C_{2}
хп	220°-230°	3.7	59.0	75.6	C2
хш	230°-240°	3.8	62.0	72.6	C20
XIV	240° <i>-2</i> 50°	2.9	71.0	69.8	C_{20}
xv ·	250°—260°	2.9	69.2	67.2	C 23
XVI	260° - 270°	I,2	57-5	64.8	C 26
XVII	270°-280'	0.7	59.0	62.6	C 24
xvIII	280°-290°	2.0	61.4	60.5	C_3
XIX	290° —3 00°	3.2	53.4	58.5	C_{a_1}

Table VII

Seiichi Shoyama

		1 doic	, 110		
	Fraction (10—12mm.)	d ^{25°} _{4°} (obs.)	d ^{t°} 4° (Beilstein)	n _D ^{25°}	Cn
I	- 120°	0.7837	{0.7977(20°) {0.8445(0°)	1.4203	C ₁₃
II	120° — 130°	0.7825	0.7638(30°)	1.4210	C14
Ш	130° - 140°	0.7853	<u> </u>	1,4226	C15
IV	140° — 150°	0.7974	0.7842(0°)	1.4288	C18
v	150°—160°	0.8118	0.7977(10°)	1.4345	C 17
VI	160°—170°	0.8033	0.7881 (22°)	_	C18
VII	170° — 180°	0.8110		-	$C_{\iota \mathfrak{g}}$
VIII	180°—190°	0.8166	0.7810(0 [~])		C20
IX	190° - 200°	0.8224	-		C21
\mathbf{x}	200° - 210°	0.8307	-	_	C22
XI	210° - 220°	0.8347	-	-	C ₂₃
$\mathbf{X}\mathbf{II}$	220° - 230°	0.8372	_	. –]	C ₂₄
\mathbf{X} III	230°-240°	0.8412	—	—	C28
XIV	240°-250°	0.8433	-	-	C ₂₆
xv	250°-260°	0.8458	- I	—	C27
XVI	260° - 270°	0.8479		-	C ₂₈
XVII	270°-280°	0.8490			C ₂₉
XVIII	280° - 290°	0.8500		-	C30
XIX	290° - 300°	0.8545	—	-	C _{a1}

Table VIII


Table IX

	С%	Н%	O% (by diff)
 [83.85	13.88	2.27
II I	84.30	13.97	1.73
u i	84.66	13.99	1.35
IV	83.20	13.33	3.47
v	82.68	13.53	3.79
VI	81.17	13.33	3.50
vu	79.09	12.80	8.11
VIII	81.89	13.54	4.57
(X.	81.64	12.55	5.81
x	82.57	13.32	4.11
XI	82.52	. 13.22	4.26
XII	82.50	12.95	4.55
XIII	80,69	12.73	6.58
XIV	82.77	13.00	4.23
xv	83.22	13.25	3.53
XVI	83.82	12.83	3.35
x.VII	82.88	12.91	4.21
xvIII	81.43	12.98	5.59
XIX	82.51	12.63	4.86

	Olefine			Paraffine	
		Yield		Yield	
	Cn	(gr.)	Mol%	(gr.)	Mol%
I I	C13	8.5	4.6	4 . I	2,2
II	C14	7.7	3.9	3.8	1.9
III	C15	25.7	12.2	1.4	0.6
IV	C16	7.6	3.4	0.3	0,1
v	C17	5.5	2.3	0.0	0.0
VI	C ₁₈	0.9	0.4	4.2	1.6
VII	C19	4.0	1.5	2.7	. 1.0
VIII	C20	4.4	1.5	6.4	2.3
IX	C21	2.8	0.9	2.4	0. 9
x	C22	2,8	0.9	1.2	0.4
XI	C ₂₃	3.2	1.0	1.3	0.4
XII	C24	2,9	0.8	0.8	0.2
XIII	C25	3.2	0.9	0.6	0.1
XIV	C ₂₆	2.9	0,8	0.0	0,0
xv	C27	2.9	0.7	0.0	0.0
XVI	C ₂₈	I.O	0.2	0.2	0,0
хип	C ²⁹	0.6	0.1	0.1	0.0
xvIII	C30	5.2	I.2	0.0	0.0

Table \mathbf{X}

In conclusion, sodium palmitate, when distilled in Fischer's aluminum retort produces 70% of a theory-yield of tar which is composed of the following constituents.

	acidic oil	trace		
Volatile oil	saturated hydrocarbons	25%		
	acidic oil saturated hydrocarbons unsaturated ,, palmitone	23%		
	palmitone saturated hydrocarbons	3%		
Non-volatile of	oil {saturated hydrocarbons	8,,		
	unsaturated "	47 "		

542