TITLE:

On Characteristic Equations of Analytic Functions of Many Independent Variables

AUTHOR(S):
Yasuda, Ryo

CITATION:
Yasuda, Ryo. On Characteristic Equations of Analytic Functions of Many Independent Variables. Memoirs of the College of Science, Kyoto Imperial University 1923, 6(6): 289-293

ISSUE DATE:
1923-03-31
URL:
http://hdl.handle.net/2433/256640
RIGHT:

On Characteristic Equations of Analytic Functions of Many Independent Variables.

By
Ryô Yasuda.
(Received December 20, 1922.)

- In my previous paper, ${ }^{1}$ I investigated the property of an analytic function $f\left(z_{1}, z_{2}, \ldots \ldots \ldots, z_{n}\right)$ of n independent variables $z_{1}, z_{2}, \ldots \ldots \ldots, z_{n}$ which has an algebraic addition-theorem:
(1) $F\left(f_{11}, f_{12}, f_{21}, \ldots \ldots \ldots \ldots, f_{n 2}, f_{0}\right)=0$,
where F is an irreducible polynomial of $f_{11}, f_{12}, \ldots \ldots . ., f_{n 3}, f_{0}$, containing all of them explicitly, and

$$
\begin{aligned}
& f_{i j} \equiv f\left(z_{11}+z_{12}, \ldots \ldots \ldots, z_{i-11}+z_{i-12}, z_{i j}, z_{i+11}+z_{i+12}, \ldots \ldots \ldots, z_{n 1}+z_{n 2}\right), \\
& f_{0} \equiv f\left(z_{11}+z_{12}, \ldots \ldots \ldots, z_{n 1}+z_{n 2}\right) .
\end{aligned}
$$

We now define a characteristic equation of an analytic function $f\left(z_{1}, z_{2}, \ldots \ldots \ldots, z_{n}\right)$ of n independent variables $z_{1}, z_{2}, \ldots \ldots \ldots ., z_{n}$ as follows :-
(2) $G\left(f_{11}, f_{12}, f_{21}, \ldots \ldots \ldots . ., f_{n 2}, f_{0}\right)=0$,
where G is an irreducible polynomial of $f_{11}, f_{12}, \ldots \ldots \ldots f_{u}, f_{0}$, containing, all of them explicitly, and
$f_{i j} \equiv f\left(\frac{z_{11}+z_{12}}{2}, \ldots \ldots \ldots, \frac{z_{i-11}+z_{i-12}}{2}, z_{i j}, \frac{z_{i+11}+z_{i+12}}{2}, \ldots \ldots \ldots, \frac{z_{n 1}+z_{n 2}}{2}\right)$,

$$
(i=1,2, \ldots \ldots \ldots, n ; j=1,2)
$$

$f_{0} \equiv f\left(\frac{z_{11}+z_{12}}{2}, \ldots \ldots \ldots \ldots \ldots, \frac{z_{n 1}+z_{n 2}}{2}\right)$.

Then, in the case of single independent variable, any analytic function which has an algebraic addition-theorem has also a characteristic equation, and conversely. ${ }^{1}$ The following is an outline of the proof given by M. Falk.
I. An analytic function which has an addition-theorem has also a characteristic equation.

Let
(3) $F(f(u), f(v), f(u+v))=0$
be an algebraic addition-theorem of an analytic function $f(z)$. Then the equation (3) holds for certain branches of $f(z)$, i.e.
(4) $F\left(f_{i}(u), f_{j}(v), f_{k}(u+v)\right)=0$,
where f_{i}, f_{j} and f_{k} represent certain branches of f. By analytic continuations along suitably chosen paths in the u - and v-planes, we may obtain, from (4),

$$
F\left(f_{l}\left(u^{\prime}\right), f_{l}\left(v^{\prime}\right), f_{k}\left(u^{\prime}+v^{\prime}\right)\right)=0,
$$

where f_{l} is a branch of f. Put $u^{\prime}=v^{\prime}=\frac{u+v}{2}$. Then
(5) $F\left(f_{l}\left(\frac{u+v}{2}\right), f_{l}\left(\frac{u+v}{2}\right), f_{k}(u+v)\right)=0$.

[^0]Eliminating $f_{k}(u+v)$ from (4) and (5), we have
(6) $G\left(f_{i}(u), f_{j}(v), f_{i}\left(\frac{u+v}{2}\right)\right)=0$,
where $G\left(f_{i}, f_{j}, f_{i}\right)$ is an irreducible polynomial of f_{i}, f_{j} and f_{i}. Thus we have a characteristic equation

$$
G\left(f(u), f(v), f\left(\frac{u+v}{2}\right)\right)=0 . \quad \text { Q.E.D. }
$$

II. An analytic function which has a characteristic equation has also an addition-theorem.

Let
(7) $G\left(f(u), f(v), f\left(\frac{u+v}{2}\right)\right)=0$
be a characteristic equation of an analytic function $f(z)$.
(i) Suppose that $z=0$ be a regular point of $f(z)$. Let $u, v, u^{\prime}, v^{\prime}$ be any four values of z such that $u+v=u^{\prime}+v^{\prime}$. Then, by eliminating $f\left(\frac{u+v}{2}\right) \equiv f\left(\frac{u^{\prime}+v^{\prime}}{2}\right)$ from (7) and
(8) $G\left(f\left(u^{\prime}\right), f\left(v^{\prime}\right), f\left(\frac{u^{\prime}+v^{\prime}}{2}\right)\right)=0$,
we have

$$
H\left(f(u), f(v), f\left(u^{\prime}\right), f\left(v^{\prime}\right)\right)=0,
$$

where H is an irreducible polynomial of its arguments f 's. As $z=0$ is a regular point, $\lim f\left(v^{\prime}\right)=b$ is finite and determinate, so that we may write down H in the form

$$
\begin{aligned}
& H\left(f(u), f(z), f\left(u^{\prime}\right), f\left(v^{\prime}\right)\right) \equiv F\left(f(u), f(v), f\left(u^{\prime}\right)\right) \\
&+F_{1}\left(f(u), f(v), f\left(u^{\prime}\right)\right),\left(f\left(v^{\prime}\right)-b\right)+\ldots \\
&+F_{r}\left(f(u), f(v), f\left(u^{\prime}\right)\right),\left(f\left(v^{\prime}\right)-b\right)^{r}=0
\end{aligned}
$$

where F^{\prime} s are polynomials of $f(u), f(z), f\left(u^{\prime}\right)$ and v^{\prime} is a point in the vicinity of $v^{\prime}=0$. As H is irreducible, $F\left(f(u), f(v), f\left(u^{\prime}\right) \equiv 0\right.$. In the limit $v^{\prime}=0$, we have $u^{\prime}=u+v$ and accordingly

$$
F(f(u), f(v), f(u+v))=0 . \quad \text { Q.E.D. }
$$

(ii) Suppose that $z=0$ be a singular point of $f(z)$. It may be easily proved that there is a value $z=\alpha$ of z such that $f(z)$ is regular in the vicinity of $z=a$ and $z=2 a$.
Put $\quad u=u^{\prime}+a, v \doteq v^{\prime}+a$, and

$$
f(u) \equiv f\left(u^{\prime}+a\right) \equiv g\left(u^{\prime}\right), \quad f(v) \equiv g\left(v^{\prime}\right) .
$$

Then the new origin is a regular point of $g\left(u^{\prime}\right)$, and we have, by (7),

$$
G\left(g\left(u^{\prime}\right), g\left(v^{\prime}\right), g\left(\frac{u^{\prime}+v^{\prime}}{2}\right)\right)=0
$$

since $\frac{\left(u^{\prime}+a\right)+\left(v^{\prime}+a\right)}{2}=\frac{u^{\prime}+v^{\prime}}{2}+a$. Accordingly, by (i),

$$
F\left(g\left(u^{\prime}\right), g\left(v^{\prime}\right), g\left(u^{\prime}+v^{\prime}\right)\right)=0
$$

or as $\quad g\left(u^{\prime}\right) \equiv f\left(u^{\prime}+a\right) \equiv f(u), g\left(v^{\prime}\right) \equiv f(v)$, and $g\left(u^{\prime}+v^{\prime}\right) \equiv f(u+v-a)$,
(8) $F(f(u), f(v), f(u+v-a))=0$,
since $v=2 a$ is a regular point of $f(v)$, by putting $v=2 a$ and then by replacing u by $u+v-a$, we have
(10) $F(f(u+v-a), f(2 a), f(u+v))=0$,
where $f(u+v-a)$ will represent by analytic continuation as in $\S \mathrm{I}$, the same branch of f as that in (9) and accordingly they are identical. Eliminating $f(u+v-a)$ from (9) and (10), we have

$$
F_{1}(f(u), f(v), f(u+v))=0 . \quad \text { Q.E.D. }
$$

Now, what is the case of many independent variables? This is our present question, and the answer is as follows:-

Theorem. In order that an analytic function $f\left(z_{1}, z_{2}, \ldots \ldots . ., z_{n}\right)$ of n independent variables $z_{1}, z_{2}, \ldots \ldots . . ., z_{n}$ has a characteristic equation, it is necessary and sufficient that $f\left(z_{1}, z_{2}, \ldots \ldots \ldots \ldots, z_{n}\right)$ is an algebraic function of

$$
\begin{aligned}
& \left(z_{1}+a_{1}\right)^{p_{1}}\left(z_{2}+a_{2}\right)^{p_{2}} \ldots \ldots \ldots \ldots .\left(z_{r_{1}}+a_{r_{1}}\right)^{p_{r_{2}}}, \ldots \ldots \ldots \ldots, \\
& \left(z_{r_{s-1}+1}+a_{r_{s-1}+1}\right)^{p_{r_{s-1}}+1} \ldots \ldots \ldots \ldots .\left(z_{r_{s}}+a_{r_{s}}\right)^{p_{r_{s}}}, \\
& e^{a_{1}\left(z_{r_{s}+1}+a_{r_{s}+1}\right) \ldots \ldots \ldots\left(z_{r_{s+1}}+a_{r_{s+1}}\right)} \quad \ldots \ldots \ldots \ldots \ldots, \\
& e^{a_{t-s}\left(z_{r_{t-1}+1}+a_{r_{t-1}+1}\right) \ldots \ldots \ldots\left(z_{r_{t}}+a_{r_{t}}\right)}, \\
& f\left(\left(z_{r_{t}+1}+a_{r_{t}+1}\right) \ldots \ldots \ldots \ldots\left(z_{r_{t+1}}+a_{r_{t+1}}\right), \quad \omega_{1}^{(1)}, \quad \omega_{2}^{(1)}\right),
\end{aligned}
$$

..............., where the coefficients aud a_{1}, a_{2}, $a_{r_{t+1}}, \ldots \ldots \ldots$, are constants (zero being iucluded), $p_{1}, p_{2}, \ldots \ldots . ., p_{r_{s}}$ are integers positive or negative (zero being excluded), and $\alpha_{1}, \ldots \ldots . ., \alpha_{t-s}, \omega_{1}^{(1)}, \grave{\omega}_{2}^{(1)}$, are constants (zero being excluded and $\frac{\omega_{2}^{(1)}}{\omega_{1}^{(1)}}, \ldots . . .$. being not real).

As $\frac{\left(z_{i 1}+\alpha_{i}\right)+\left(z_{i 2}+\alpha_{i}\right)}{2}=\frac{z_{i 1}+z_{i 2}}{2}+\alpha_{i}$, we may assume, without loss of generality, that all a 's are zero and may thus prove the second part of the theorem analogously as in $\$ \delta 3-7$ of my paper, loc. cit. For the first part of the theorem, the analogous proof to $\S \S I-2$, $\S \S 8-21$ and $\$ \S 23-24$ of the same paper may hold ; but since $\frac{\left(z_{i 1}+a_{i}\right)+\left(z_{i 2}+a_{i}\right)}{2}=\frac{z_{i 1}+z_{i 2}}{2}+a_{i}$, as before, it is unnecessary that all $a^{\prime} \mathrm{s} e^{\alpha_{i-s+1}\left(z_{r_{i}+1}+a_{r_{i}+1}\right) \ldots \ldots \ldots . .\left(z_{r_{i+1}}+a_{r_{i+1}}\right)},(i=s, s+1, \ldots \ldots \ldots, t-1)$, and in $\wp\left(\left(z_{r_{i}+1}+a_{r_{i}+1}\right) \ldots \ldots \ldots\left(z_{r_{i+1}}+a_{r_{i+1}}\right), \omega_{1}^{i-t+1)}, \omega_{2}^{(i-t+1}\right),(i=t, \ldots \ldots)$, are zero and that all a 's in $\left(z_{r_{i}+1}+a_{r_{i}+1}\right)_{\ldots}^{p_{r_{i}+1}} \ldots \ldots \ldots \ldots\left(z_{r_{i+1}}+a_{r_{i+1}}\right)^{p r_{i+1}}$, $\left(i=0, \mathrm{I}, \ldots \ldots \ldots \ldots, s-\mathrm{I} ; r_{0}=0\right)$, are or are not zero simultaneously. Accordingly, an analytic function of many independent variables which has an algebraic addition-theorem has also a characteristic equation, but the converse does not hold.

[^0]: 1 M. Falk: Ueber die Haupteigenschaften der-jenigen analytischen Funktionen eines Arguments, welche Additionstheoreme besitzen. (Nova Acta Regloe Societatis Scientiarum Upsaliensis. Ser. IV., Vol. 1, N. 8).

