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On Characteristic Equations of Analytic 
Functions of Many Independent 

Variables. 

Ryo Yasuda. 

(Received December 20, 1922.) 

· In my previous paper,1 I investigated the property of an analytic 
function /(z1, z2, ••••••••• , Zn) of n independent variables Z1, z2, ......... , Zn 

which has an algebraic addition-theorem : 

(1) F(/11, ./12, ./2i, ............ , .fn2, .fo)=o, 

where Fis an irreducible polynomial of / 11, / 12 , ......... , fn2, .lo, containing 
all of them explicitly, and 

.f./==.f (zu + Z12, ...... • .. , Zi-11 + Zi-u, Zij, Zi+ll + Zi+12, • •• ..... •, Zn1 + Zn2), 

(i=I, 2, ......... , n; j= I, 2) 

We now define a characteristic equation of an analytic function 
/(z1, z2, ............ , Zn) of n independent variables Zi, z2, ............ , Zn as 
follows:-

(2) G(.fu, ./12, ./21, ............ , .fn2, .fo)=o, 

1 These memoirs, vol. VI, p. 251. 
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where G is an irreducible polynomial of / 11, / 12, ........ .f,,2, .fo, containing, 
all of them explicitly, and 

(i= I, 2, .••..•.•. , 1Z; j= I, 2) 

Then, in the case of single independent variable, any analytic function 
which has an algebraic addition-theorem has also a characteristic equation, 
and conversely.1 The following is an outline of the proof given by M. 
Falk. 

I. An analytic function which has an addition-theorem has also a 

characteristic equation. 
Let 

(3) F (J(_u), f (v), f (u+v)) =o 

be an algebraic addition-theorem of an analytic function f(z). Then the 
equation (3) holds for certain branches of f(z), i.e. 

(4) F(J,,(u), J;(v), h(u+v))=o, 

where f;,, Ji and ./2 represent certain branches off. By analytic continu­
ations along suitably chosen paths in the u- and v- planes, we may obtain, 

from (4), 

F(J,,(u'), J;(v'), fiu' +v'))=o, 

where f,, is a branch off. Put u'=v'= u+v . Then 
2 

1 M. Falk: Ueber die Haupteigenschaften der-jenigen analytischen Funktionen eines 
Arguments, welche Additionstheoreme besitzen. (Nova Acta Regloe Societatis Scientiarum 

Upsaliensis. Ser. IV., Vol. 1, N. SJ. 
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Eliminating fiu +v) from (4) and (5), we have 

where G(/4, fj, /,,) is an irreducible polynomial of /4,, fj and fz. Thus we 
have a characteristic equation 

Q.E.D. 

II. An analytic function which has a characteristic equation has 
also an addition-theorem. 

Let 

be a characteristic equation of an analytic function f(z). 
(i) Supposethatz=O be a regular point off(z). Letu,v,u',v' 

be any four values of z such that u+v=u' +v'. Then, by eliminating 

f( u;v )=f( u':v') from (7) and 

we have 

H(f(u), f(v), f(u'), f(v'))=o, 

where H is an irreducible polynomial of its arguments f's. As z=o 
is a regular point, limf(v')=b is finite and determinate, so that we may 
write down H in the form 

H(f(u), f(v), f(u'), f(v'))-==F(f(u), f(v), f(u')) 

+Fi(f(u), f(v), f(u')), (f(v')-b)+ ........... . 

+Fr(f(u), f(v), fi.u')), (f(v')-bY=o, 
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where F's are polynomials of f(u), f(v), f(u') and v' is a point in the 
vicinity of v' =O. As His irreducible, F(f (u), f (v), f(u')$o. In the 
limit v' =o, we have u' =u +v and accordingly 

F(f(u), f(v), f(u+v))=o. Q.E.D. 

(ii) Suppose that z=o be a singular point offiz). It may be easily 
proved that there is a value z=a of z such that fiz) is regular in the 
vicinity of z=a and z= 2a. 
Put u=zl +a, v~v' +a, 

and 

Then the new origin is a regular point of g(u'), and we have, by (7), 

( ( 
u' +v' )) G g(u'), g(v'), g 

2 
=o, 

since (u' + a)+(v' + a) _ u' + v' ---+a. Accordingly, by (i), 
2 2 

F(g(u'), g(v'), g(u' +v'))=o, 

or as g(u')=f(u'+a) flu), g(v')=f(v), and g(u'+v')==fiu+v-a), 

( 8) F(f(u), f(v), f(u+v-a))=o, 

since v=2a is a regular point of f(v), by putting v=2a and then by 
replacing u by u+v-a, we have 

(10) F(f(u+v-a), f(2a), f(u +v))=o, 

wheref(u+v-a) will represent by analytic continuation as in §1, the 
same branch off as that in (9) and accordingly they are identical. 
Eliminating f(u+v-a) from (9) and (10), we have 

Fi(f(u), f(v), f(u+v))=o. Q.E.D. 

Now, what is the case of many independent variables? This is our 
present question, and the answer is as follows :-
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Theorem. In order that an analytic function f(z1, z2, ......... , zn) ef 
n independent variables Zi, z2, ••••••••• , z,. lzas a characteristic equation, 
it is necessary and sufficient that f (z1, z2, •••••••••••• , Zn) zs an algebraic 
function ef 

P1 P2 Pr 

(z1+a1) (z2 +a2) ............... (z,1+a,) 1, ............ , 
P',-1+1 Pr, 

(s,. +1 + a,. +1) (z. + a,. ) , s-1 s-1 •· • • • • • • • ••• ••· •·• 1 s s 

a1(z,+1+a,+1) ............ (z, +a,. ) 
s s s+l s+l e ............... , 

............... , where the coefficients aud a 1, a2, ............... , a,.t+i' ......... , 

are constants (zero being z'ucluded), pi, Pz, ......... , p,. are integers positive 
8 

or negative (zero being excluded), and a1, ......... , at_,, llJ/), ulP, ........ . 
. llJ:1) 

are constants (sero being excluded and ~• . .. . . . .. . being not real). 
W1 

As (zi1 + ai) + (za + ai) zit+ S;z + ai, we may assume, without loss 
2 2 

of generality, that all a's are zero and may thus prove the second part 
of the theorem analogously as in §§3-7 of my paper, loc. cit. For the 
first part of the theorem, the analogous proof to §§1-2, §§8-21 and 
§§23-24 of the same paper may hold ; but since 

(zi1 + ai) + (zi2 + ai) 
2 

Zii + Ziz + a;, as before, it is unnecessary that all 
2 

, a.,-,+1Cz,+1 + a,. +1) ............ (z,. +a,. ) ) 
a , , i i+l i+l ( •- + t- I S l , t-S, S I, •••..•.•• , , 

d • h(( + ) ( + ) 'i-t+l) Ci-H-1)) ( ·-t ) an 111 o· z,i+1 a,;+1 ......... z,.i+1 a,i+1 ' <tJ1 ' Wz ' t- ' ...... ' 

Pr.+1 Pri+l 

are zero and that all a's in (z,.i+1 +a,i+1) .. ~ ............... (z,.i+t +a,H1) , 

(i=o, I, ............ , s-1; r0=o), are or are not zero simultaneously. 
Accordingly, an analytic fimction ef many independent variables wlticlz 
has an algebraic addition-theorem has also a characteristic equation, but 
the converse does not !told. 




