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On Transcendental Integral and
Transcendental Algebraic Functions and
Algebraic Addition Theorems, Il.

By

Ry6 Yasuda.

(Recedved December 20, 1922.)

Cuarpter III.

ALGEBRAIC ADDITION THEOREMS FOR ANALYTIC
FUNCTIONS OF MANY INDEPENDENT
VARIABLES.

INTRODUCTION.

Definition. Let Z)) =81 B2 eenees , 2,) be an analytic function
1, 1 2 n, Y
of 2, % +eeeen, 3, defined all over the Gauss space. Let
_fb -:—f(311+312, 221+322, ............ y an'l'zrng),
Ju=f (311+Z12, ------ y ottt 8oy By ST Big1zy veeens , 3n1+3n2),
quf<211+z12v ------ y Bt T8 go Zazy Sopnit Hiptzy eeenn ’ Zn1+3n2))
(=1, 2, weoun. , %)

When among these (274 1) functions, there exists a relation

(1) F(fits Sfis Sotr venrreres s Juzs Jo) =0,

where F is an irreducible polynominal of fi;, fig) ceereeere s Juz» Joo Whose
coefficients are independent of 24 (i=1I, 2, ...... ,#; 7=1, 2) and which
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contains all the f’s expricitly, the function f((z;)) is said to have an
algebraic addition theorem.

Our object is to find the form of analytic functions which have this
property. The main result is:

Theorem. In order that an analytic function f((2;), defined all over
the Gauss space, may have an algebraic addition theovem, it is necessary
and sufficient that f((z;)) should be an algebraic fuuction of

2 Do Dr
(21t ay) (eata) "o (entar) i
DPry 1 Pr 7 T Zp
(.2’77‘,_1+[ + @rpag+ I) s (Z rk+dr/c) & , € % k+l, ............
0% gfereens % .
e 1 R T 7T ST Brapry W, V)t , Where p’s ave tntegers,
positive or negative, the coefficients as well as a;, as, ...... y Ay Oy e ,
o, w®, WP, (=1, 2, ...... ) ave independent of the wariables, and
Aritl, Argdz, ereenens , a1 (=0, 1, ..., , B—1; r,=0) are or are not

2ero simultancously.
1. Lemma 1. Let a function ¢(2) be analytic in the whole Gauss
Dlane. For any two arguments z, 2, if there exists a rvelation

(2) Ge(21), ¢(2), &1+ 8)=0

where G(u, v, w) is an irveducible polynominal of u and v and is analytic
with vespect to w in the whole plane, then ¢(2) is either
) an algebraic function of z; or

i) an algebraic function of ex; or

iif) an algebraic function of P(z, w, w,).

In virtue of (2), the analytic function ¢(z) has only a finite number
of branch points in any finite part of the plane. Accordingly 2z and
2 (sy+2,=constant) may describe certain closed circuits, by which .
¢(2;) returns to its initial element while ¢(z) changes into any other
element. As (2) always holds for continuations and G is a polinominal
of ¢(z), the number of all branches of ¢(z,) is finite, i.e. ¢(2) is a
Jinitely many-valued function of z. Let these branches be ¢,(z), ¢i2),

e , ¢(2). Eliminating these values from
G(e2), ¢(2), 51+2)=0, (=1, 2, wvu...... , 7)
and ’
Si(pi(a), @), e » 9ul21))=S(¢(=))
where S; is any symmetric polinominal of ¢;, ¢, ......... , ¢., we have

G (Si(p(2)), o(25), 21+ 2) =0,
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where G, is of the same character as G. Again, eliminating ¢y(2),
0{2), ceeriinn , ©u(2,) from

Gi(Sle(2), ¢dz), at+a)=o0
Sy (Pi(22)y PoFe)s weeeennn s oul22))=SH9(2,))s

where S, is any symumetric polinominal (identical to or different from
S) of ¢i(zy), @(2), eevnennn , ¢a(2,), we have

(3) GASp(2), Sie(z), =tz)=0,

where G, is of the same character as G and G;. In G, Si(¢(2)) and
Si(¢(2)) are evidently uniform functions of 5. Putting S;=S5,=.5, we have

G S(g(2r)), S(p(z), 2+25)=o0.

This is an extension of the assumption of Weierstras’s theorem' and the
same result follows by a similar proof. Put

and

(¢ =1 @—@5)..... (p—@n)=¢"+ SVt S 4 ... + .5,

Then SS9, (=1, 2, ...... , #), is a symmetric polinominal of ¢;, ¢, ......
¢,. Put S=S® in (3), and we have the result that S® is a rational
function of z, or of ¢, or of p(z, w, w,) and P'(z, w, w,). Again,
putting S;=S% and 5,=SY, (4=£/), in (3), it follows easily that S
and S are of the same character, i.e. they are rational functions of
2, or of ew, or of Pz, w, w,) and p'(z, w;, ®,) simultaneously. Hence
@(2) is
i) an algebraic function of z; or

ii) an algebraic function of e*; or

iif) an algebraic function of (g, @y, ®,).

2. Lemma 2. Let D(2) be a finite domain of 2 and Ez, 2') be a
Jleld suck that =z is any point in D while 2’ is any finite point in the
whole Gauss plane. I ¢(z, 2') be a function whick satisfies the conditions :

i) regular at any point in E,

iy entive function at most of a finite order p in & for any fixed

value 2z in D,
it} wniformly increasing function of &' jfor all z in D}

1 Osgood:—Lehrbuch der Funktionentheorie I. Zweite Auflage, p. 492.
2 If, for any prescribed positive value ¢, there corresponds a value R such that

pte
{o(z &) |Le”  for |#|NR and for all » in D, ofz, #/) is said to be uniformly increasing
Sunction of # for all z in D.
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s !
_0_¢_(%,S_z)_ is an entive function, at most, of the pt* ovder in &' for
4

the same value of 2, where s is any positive inleger.
Let

(4) ¢z h=af2)tafz)+taf)e +......... +a,(2)e" 4+ i,

where «,(8), (=0, I, ...... ) are regular functions of 2z in D, and z=a
be any point in D. Then since @,(z) is regular in D, it may be ex-
pressed as a power series of (#—a) in the vicinity of s=a so that we
have

(s) n(8) =P+ Pralz—a) +ooon +Bpn(z—a)™Foenn.

for |z—a| LR, where B,,, (m=0, 1, 2, ...... ), are constants, and the
domain represented by |#—a|LR is entirely in D. Let M be the
maximum value of |¢(z, 2)| for |z2—a|4LR and |&/|LR'. Then M is
finite so far as &’ is finite, and we have evidently

M.
](zn(z)lé-RT in |e—alLR, (n=o0, 1, 2, ...... )-
For any positive value e, there corresponds a finite positive value &V
such that

/n / I
| 6(2)2 4 B s(2)H . | LM_”(I I ) _w

R e
for n)NV, in which |#|=7'< R and |z—a|LR.

Consequently, (4) is a uniformly convergent series of 5 in the domain
represented by |z—a|ZLR, for any arbitrarily assigned value of 2’ such
as |#/|<R'. As R, is however, arbitrary, (4) is a uniformly convergent
series of #z in the domain such that |z—a|LR, for any arbitrarily as-
signed value of 2. Moreover a,(z) is a regular function of z in D, and
accordingly ¢(2, 2/) is termwise differentiable with respect to z.

) L8g) _ 0m(@) |\ Ouz) oy g 03 ey .
0z 0s° 0s° 0s°

But we have from (5)

M 1 _ M

nm £ * it
I‘B I - Rln Rm RmR/n

)

so that
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{#dsgngg) L8(5=1)eret | Bus] + (5 D52 Brsillz—a] + oo
3
M s!
U (I_L)s“
I3
51 MR

TR R
where |g—a|=r<R. Hence, we have by (6)

4t ) 2| )

n=0

| MR <& 7™
L_S__ M
= (R—r)”‘% R

_ s\ MRKR'
(R— 7,)z+l(R/_ 7,/) :

| 2]

Put |s'| =#'=R'—0c where ¢ is a certain positive constant.
Then

| 0°¢(s, &) [é sV M +a)R

| 07 | (R—r)to

Since ¢(z, &) is, by assumption, a uniformly increasing entire function
of the p* order in 2/ for all z in D, for any positive value e, there is
1

+
a corresponding value G such that 47 < & Efor all 7 \G and for all
2z in D. Accordingly, for any fixed value of # in [, we have

o’e(z, &) |
0s°

Lrrest R/ +o) _ s! R +a) ,Z’+=<I = )P+8 4 €7IP+5’
< (R—»yt'e  (R—rytle =

where ¢ is so chosen as to satisfy

s R (7,+o_)—éey/p-{—s(rﬁ/—e__(I+%>]5+E>‘

(R—r)ytlo

1 Let M{R’) be the maximum value of | g(z,2/) | for | #/|= R, z being an arbitrarily fixed

rte
value in D. Then, as g(3, #/) is uniformly increasing, we have M(K/)<e®  for R/XNG
and for all z in D. Since ¢(z, #/) is, however, a holomorphic function of 2/ for any arbi-

Dte
trarily assigned value of 5, we have M=M(R’), so that M<¢>R’ for all &G and for
all 5 in D.
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By taking R/'=7»'40 sufficiently great, we may take ¢ and € as small
as we please. Hence the proposition is true.
Lemma 3. Let
Vs )= ACED)

o2, 2')
where ¢,(2, 2') aud ¢,(z, ') are functions whick satisfy the conditions i), ii),
and iii) in lemma 2, and are of the ovders p, and p, in &' vespectively.
8 /
Theern i()(z,_zi (s any positive integer), is of the order at most equal
38
to the greater of py and ps.

Supposing the greater of g, and 2, be p, ¥(2, &) is a meromorphic
function, at most, of the % order in 2’ for any assigned value of 2 in
D.

op; _  Og,
0w _ s s
0z @
By lemma 2, 9, and g% are entire functions, at most, of the p#
z z

order in 2/, and accordingly is a mermorphic function, at most,

of the p* order in 2z/. We may easily prove, by mathematical induction,

0¥z 2) . ) . . ot §
that or is a meromorphic function, at most, of the p* order in

&, for any arbitrarily assigned value of z in D, where s is any positive
integer.

3. We proceed now to prove the theorem. First, we prove that
the condition is sufficient.

. . 21 2 Pr
Let f{(#;)) be an algebraic function of (&1+a,) (e +ay) -..(sn+an)
2 Pry Ol Zr,
+1

............... , (37‘k_1+l+lz7’1c._1+1) ,.,,.,,,,,,,_,,,_.,___,,(Zrk+ai‘k) s €

2y
............... , e 5, 0(8ret 1 e By, OF, 0§), ..., where
P’s are integers, positive or negative, the coefficients as well as a;, a,,
 eerernees , 0, o, o (i=1, 2, ...... ), are independent of
the variables, and a, 41, @, 42, +eeeeeee V@ (=0, 1, e , B—1; #,=0),
are or are not zero simultaneously.

We denote 2;, Za, «eo-.. s By DY Iy Zr1s Brgas ceeeeenns s 2, by I
and so on. Then the number p of all I'’s thus obtained is evidently
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less than or equal to »#. Put

Dy Py ?,
(Zn +eop+ dl) (321 + 255+ (Z'g) ......... (3,11 + .3'1.2-3 + [l,.l) r‘Efl
Pr,_4+1 5’1 o
ki~ [—
(Zrk_‘_*,u + 3,-k_1+12 + ark~1+1) e, (Z,.kl + Z,‘kg + (l,‘k =5
(7) ea(grk_!.u + 3,.k+1-2) .................................... (Zrlc-l—ll + ZTIH—I“)) = é_—k+1
[ eetemretescsasteteiatriacatanansceactterstentateeresstrraan
ea(zr8_1+11 8 419) s (20 + 5p)— £
6’0((37.8_*_11 -+ 3,v8+12) ........... Careseresaann (3r8+‘1 + Z"s+l2)’ (l)il)’ (U§1)> :E +1
4. First, suppose that ay=a,=.........=a, =0. As fj, (=1, 2,
......... , 73 J=1,2), is an algebraic function of (z;-+2) " ecerrerene.
i1 Pi Piyq Py
X (zi_n + 3',,;_12) Sij (Zi+11 + Z;+12) ,,,,,,,,, (Zrll + 3,12) l, 52, 53, ..... RRRREEY 5 Ep, we

may eliminate 2, 25 from these two equations for j=1, 2 and the first
equation in (7) and we have

(8) DS Siar E1s Gay cenveennn , §)=0, (1=1, 2, ce.u..... , #1), where
@, is an irreducible polynominal of £, fiz &1 &o ceverenn. , €5, and contains
JSu for & explicitly.  For, if it be reducible, we take one of the irre-
ducible factors, which contains at least one of fi;, /i and £, explicitly
and consider it as @, ; if it does not contain one of f;, /i and &, say
§,, explicitly, fi; and fi; would be independent of each other which is
impossible by (8).

Secondly, we suppose that ¢;2x0. Then we have, by the assumption,

a0, (=1, 2, ...... , ). As fy (I=1, 2, ... s 7y J=1, 2), is an

. . Py Piq P

algebraic function of (&;+2p+a,) «eeeeens (i1t Bimpe+ @i y) © (24t @) ‘
p;+ Py

X (Zpm + Zupret Qogs) .........(zr11+z,.12+a,1) R £, we may

eliminate 25 and g, from these two equations for =1, 2 and the first
equation in (7) and we have

[
) ol fun b — B & 8)=0, (=1, 2, s
(2t 2n+a;) s,
#), where ¢, ia an irreducible polynominal of £, ., 44, ——ﬂigl——p—,
(2aton+a;) ‘

oy verrireneinenes , §, and contains the first four arguments explicitly.
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Eliminating ———+——, (/=1, 2, ... , 7), from (9) and the first
(gintzpta)”
equation in (7), we have
(IO) (01 (ﬁl: ﬁg, ......... N j;lg, E], 52, ......... ) 5p)=o
where @, is an irreducible polynominal of the arguments and contains
S G=1, 2, ... , 71y 7=1, 2), and & explicitly. The same reasoning
holds for 13, ...... , L3, and we have

(11) (Diéo, (=1, 2, ...... , &),

where @, is of the form (9) or (10).

As fy, U=r+1, i , Vip1; J=1, 2), is an_algebraic function
B -
of &, &5 vevvennnn v Sty Shpar vereeenns , &, and
e(l(Zrk+11 + grk'l'l?) ......... (3’5_11 + Zi_lg)zij(3i+11 -+ 31;_'_12) ...... (Zrk-l-ll + 2rk+12)
b
Azﬂ AZ

may eliminate ¢ and ¢7°% from these two equations for j=1, 2

Az, 6A3i2= L,A(Zix'*‘ziz):f:

and ¢ £rv, where

A= a(Zrk.‘_u + Z,.k_{_u) ...... (Z,;__n + Z,i_12>(31;+11 + zi+l2) ..... (3,,k+11 -+ 3rk+12)

and we have

(12) ¢k+1(_fih ﬁ-l: elr 52: ------ » Ek, Ek—i—l’ 5k+2’ ...... , Ep =0,

(Z=7’k+ I, eevecenen , 7’k+1),

where @, is an irreducible polynominal of the arguments and contains
JSit» Sz Expn explicitly. The same reasoning holds for lyis, ...... , 1
and we have

(13) ¢7, (_f,;'ly _]2'2, El, Eg, ............ ) fp)_—"o,
(f=k+1, ...... , S5 j==any oune of #,_y+1, ......, 75),

where @, is, as @4y, an irreducible polynomial of the arguments and
contains fj, /5, § explicitly.
Let

(p(u), #(v), @t+2v))=0
be an algebraic addition-theorem of fp-function. Then we have

(14) W(P(Bgn), kD(Bziz), E@+1)=O
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where ¢ is any one of 7,41, .....ocvveu. s Zetr and
B=(2 1t 2, 1) (25—nyF Zim10) (Bigns + Ziqaz)eve s (z,.s+11 + zrsﬂg),
E= 60((3,8_,_11 + 3,.84_‘2) ............ (,2‘,,8+11 + ZT8+11)).
As Sy, (G=r+1, cneenen » Yy J=1, 2), is an algebraic function of
Ei Eoy eeennnnn s oy Copsy vevennens , € and P((3r3+11+3r8+12) ...... (8i—11 + 2i—12)
X zﬁ(zi+11+zi_,_12)......(z,.8+11+z,.8+12)), we may eliminate p(Bz;) and p(Bzy)

from these two equations for y=1, 2 and (14), and we have
(IS) (ps+1(f;'1) ﬁZ; El: """ ’ Es; Es+19 ES+2) """ » Ep)zo;
(G=r+1, .. A

where @, is an irreducible polynominal of the arguments and contains
féls .ﬁé’l; Es-}-l eXpliCitly.

The same reasoning holds for Il_ﬁ, ......... , 1, and we have
(16) @, (fiu i Ev Enr vvvnvennenn. , §)=0,
(=s+1, ... , 2; /=any one of 7, 1+ 1, ccuua. s 70)s

where @, is, as @, an irreducible polynominal of the arguments and
contains f;, /5, & explicitly.

As fi=f (a4 21 ceeeennne , Zm+2y) 1s an algebraic function of
&L 6 e, , & we have

(17) ¢p+1(ﬁ)) El) 52, ......... y Ep)=O
where @,,, is an irreducible polynominal of the arguments £, &, &,
......... , &, and contains all of them explicitly.

5. Eliminating &, &, ......... , €, from p+1 equations in (11), (13),
(16) and (17), we have

where ¥ is an irreducible polynominal of the arguments. If one of
Ju and f; be not contained in ¥, then the other will not be also.
This may be shown as in the preceeding article.

The case where ¥, contains none of f;; and £, (=any one of 7+ 1,

......... » #3), will occur when and only when & may be also eliminated
by the process of elimination of §, &, ......... s Sty Sigty wevennans , & from
D=0, coerrnn.n y @, 4=0, D,,1==0, ..couven. , @py1=0 (without using @,=0).

In this case we first eliminate &, from @,=o0 and @,,=0 and then
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eliminate the other §’s. Thus we have, at least, one irreducible factor
of the resultant, which contains f;, and f3, (#==any one of »,_;+1,
eveeneas , 7,), explicitly. Xet one of them be ¥, and we have,

(19) ¥,=o.

If there is at least one I” such that all /; which correspond to it
are contained in neither 7, nor ¥, then we have, by repeating the
same reasoning,

(z0) ¥,=o0, (i=1, 2, .coeuu.n. , 75 94D),

where 7, (i=1, 2, ......... , q), is irreducible. Hence, there corresponds,
to each I, at least one ¥; which contains some of the f’s corresponding
to that 7.

6. For suitably chosen constants y S s Ay all diffevent from
zero,

is an vveducible polynomial of all f's whick are contained at least in
one of Uy, ¥y wnnenn.. s U, and contains all of them explicitly.

For, let one of the f’s, say fi;, be contained in either or both of
¥, and ¥, and suppose that ¥, and ¥, are polpnomials of the % and
w degrees in fy; respectively. Then we may assume, without loss of
generality, that »z Nm,. We now assume that there are infinitely many

values of #in the vicinity of g=o0 for which ¥+ 4%, is reducible, i.e.

Ui p¥= M i+ ... + MY N fiT + wevvanene + M)
where m and ' are zero or positive integers such that mz+7'=um,,
and A4, ......... y My Ny eennnnnn. , N, are polynomials of /’s except
Ju, contained in ¥, ¥, Let those values of ¢ be gy, t5, ..o.o.... , Ui

......... . Then limp;=0. To each g, there correspond 7#{ o) and
m' (Do) such that m+m'=m,, and the number of combinations of
(m, m') is finite while the number of the values of g, is infinite. Ac-
cordingly there are infinitely many values of g, which correspond to
one and the same combination (#, »’). Considering the limit of these
values of g, for 7=o00, we have

WIE(MM l,l”b—{--.. ..... . +M))(Nmr 1{"’"}‘ ......... +M)

As ¥, is, however, irreducible, one of = and #, say m, is equal to
m,, and IV, is an absolute constant. Hence there is at most only a finite
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number of g's in the vicinity of p=o0, for which ¥+ u¥, is reducible,
ie. ¥ +p¥,becomes irreducible for infinitely many values of g, There
exists at most only a finite number of values of g, for which ¥, 4+ p ¥,
does not contain explicitly at least one of the f’s contained in ¥, ¥,
Consequently, there are infinitely many values of g, such that ¥, +p¥,
is irreducible and contains all the f’s explicitly, which are contained in
¥,, ¥, By repeating the same reasoning, we have the proposition.
7. Put

Tt Aot '+lq§P‘le.

Then X; is an irreducible polynomial of all the f’s contained in ¥,
Uy veiennnn , ¥, and contains all of them explicitly. Accordingly X;
contains some of the f’s explicitly, which correspond to any one of
Iy Iy o, y 1

(21) Xy=o.

Suppose that f; and f;; be contained in X; and that z; be any other
variable corresponding to the same I, as 2 (/><7). X, contains fj; and
/52 when and only when 7} is some one of I3, Iy, ......... , I}, and @,
has the form as (10). If X does not contain f; and f;;, we substitute
S and fj instead of f;; and f;; respectively. By all possible such sub-

stitutions, we obtain X, X;, ..eenenn. , X, where IZr(r,—7) coveennn. ,
X (Fep1—75)eenrenns . All the f’s are now contained in Xj, X, ......, X}
(22) X;=0, (i=1, 2, coeveunis , ).
By the same reasoning as in the preceding article, there are (/—1) con-
stants ff, Mg, ceeeeenn , ty, all different from zero, such that
XXt ceiniinins + X
is irreducible and contains all the f’'s explicitly.
Let
){1—*—/12)(24— ......... +/1LA’LEF(_/.11) ,/{l'Za /élx """"" ’ f'n2) f;]):-‘O
Then F is an irreducible polynominal of fii, fias Sory ceevveces , Juzs and fy
whose coefficients are independent of 2y, 2ia, Za1y ceeerenns s Zne and contains

all the s explicitly. Hence f((2;)) has an algebraic addition-theorem.
8. We now proceed to prove that the condition is necessary. Since
f((z)) is, by assumption, analytic function of 2;, &y, +eeeerren , 2y defined
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all over the Gauss space, we may choose a set of fixed points z;=a,,

(=1, 2, ..uvut , #; j=1, 2) such that
Jo=S(2aF 2 corernvniennan. s Emt ) and
Ji=S (Gt &y ceenes s ZiF Bi1a, Bigy BrpttF Biazy eveeer s i )
(=1, 2, w.... , 1 f=1, 2),
are analytic in the vicinity of z;=a,; and satisfy the equation
(1) F(firs Sr20 Sotr eevvvenen s Suzs Jo) =0;

that is to say, since f((;)) is generally a many-valued function, (1) will
be satisfied by certain branches of f, and of f;;, where the branches,
being suitably chosen, are regular functions of 2,’s in the vicinity of
gy=ay. As f((2;)) is an analytic function defined all over the Gauss
space, we may easily prove, from (1), that #((z;)) has only a finite number
of branch points in any finite part of the plane, with respect to any one
of the independent variables, the other ones being considered as arbitrary
constants. Moreover, for any assigned values of 2, &g, «.e.een. y Zpzy WE
may select closed circuits in the planes of 2, and 2, respectively, along
which the functions are continuated, such that all /’s except /i, return
to their initial elements while fj; changes into any other element.
Proceeding in the same way as in the proof of lemma 1, we may prove
that the number of all branches of f;, considered as a function of 2y
only, is finite; that is, f((2;)) is a finitely many-valued function of 2.

Similarly for 2z, 23 -ceveueen , 2o Consequently, f((z;) is a finitely many-
valued function of 2z, 2, ......... ) Bpe
For arbitrarily assigned values of z;, (=2, 3, «........ , 725 J=1, 2),

we may write f,=¢(21), fu=¢(2) and F=G(¢(zy), ¢(2w), 2u+22)=0,
where ¢(z) is an analytic function of z in the whole Gauss plane, and
G(#, v, w) is an irreducible polynominal of # and v and is analytic with
respect to ww in the whole Gauss plane. Then, by lemma 1 in §1,
J((2)) is an algebraic function of 2z, or of €*, or, of (2, @, @,) where
the coefficients as well as a, w;, @, are generally functions of 2, z,
......... , @ We may, however, assume that f((s)) is an algebraic
function of p(z,, ,, w,). For, if the invariants g, g, satisfy the condition
that A\=gj—27¢i=0, then f((z)) is an algebraic function of ¢*:; if
L:=g3=0, then f((z,)) is an algebraic function of ;. The same reasoning
holds for 2,, 25, ceveeenns , 2o Accordingly f((2)) is an algebraic function
of (e, o, @) and is, at the same time, an algebraic function of

80(2"2) ‘QI) 'Ql)
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9. We assume that at least one of w; and o, is dependent of 2,
and that at least one of £, and &, is dependent of 2z, For simplicity,
we use the notations z, 2’ instead of 2, 2z, respectively and consider
Zygy vevrennraens , Zn as parameters. In the vicinity of the origin suitably
chosen, each branch of f(z, #/) is expansible as follows.

(23) f(z 2)=afe)+a(d)et oeeennnn. +ae)g i,
(24) =4 )+ A(2)d +.oneennl +A(2)"F i
where 2,02') and A4.(2), (r=0, I, «eceenus ), are regular in the vicinity of

the origin. From what has been proved (§8), it follows that f(z, 2/)
may also satisfy the irreducible equations

(25) {ém w ()P " (5 @), ) F eerereens + émo(z’)} Fa )
+ {bo,,,o(z’)som"(z, (), O)) + verereene T boo(z’)} —o,
(bmmm('g’) = ) ’
(26) {B,mn(g){pn"(z’, 25, L)+ e Bno(z)} F o ) e,
+ {B%(z) B, B(2), D) F oo + Boo(g)} =0,(Bu () =1),

where 4(2'y's and B(z)'s are functions of 2/ and & respectively. Here
we remark that the relation between z and 2’ is quite reciprocal, If
a proposition is made concerning z, 2/, the same may be directly derived
only by interchanging the corresponding functions. Hence, to simplify
this relation, we use for the corresponding elements the letters a, A4;
b, B; m, n.

Substitute the power series in (23) and

.........

L.,-F ) JC g2 A
z* 20 28

instead of f(z, &) and p(s, wy(&’), wy2")) in (25) respectively, and equate
the coefficient of each power of 2z to zero. Then an infinite number of
linear homogeneous equations among &(¢’)’s, whose coefficients are poly-
nomials of gy(#'), g4(2’) and a/(2'), (r=o0, 1, 2, ......... ), are obtained.
Eliminating &(#'Ys from these equations, we have algebraic relations
among gy(2'), g(¢") and a(z)’s. Again eliminating gy(2’) or g4(2/), we
may express gy(2') and gy(&") as algebraic functions of a finite number
of a(z)'s. This process may be effected without fail. The only ex-
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ceptional case to be considered is that in which gy(2/) and gy(2/) are
eliminated always at the same time. In this case, one of gy(s') and
g«(2") and accordingly one of w,(2’) and wy(z") may be assigned arbitrarily
and the other may be determined so as to satisfy (25). Let 0{"(2’) and
0(2") be two values of (&), and w{"(2) and w;®(2’) be their corre-
sponding values of w,(g") respectively. Now we have two equations of
the form (23), which will be satisfied by the same value of f(z, 2').
Hence there exists, between p(z, 0{°(2’), wi™(2")) and (s, 0F(s"), 0P(2")),
an algebraic relation and accordingly @{P(z), wi"(¢'), 0®(s), wF(s") are
connected by

{ PP =gV + ra

PP =g O+ P

where p, ¢, 7, ¢/, ¢/, ¥, are integers and p350, p'=x0. As oP(d) is
arbitrary, let

oP()=kw ()
where £ is real but irrational. We have
(ple— q)wiV (") =rw{(e").

Consequently f(z, &) would have an infinitesimal period, which is cer-
tainly impossible unless it is a constant. The invariants gy(2’) and gy(2)
are, therefore, algebraic functions of a finite number of a,(¢), (r=o0, 1,
2, ceiinan, ). Since all a(2'), (r=0, 1, .c.u..... ), behave regularly in the
vicinity of the origin, gy(¢') and gy(¢’) behave algebraically in the same
region. By imeans of linear homogeneous equations of &(z')’s, (6 (2')=1),
whose coefficients are polynominals of gy(2"), gi(2’) and a(z')’s, &(¢')'s
are also algebraic in the same region. Thus, if f(z, 2/) be regular in
the wvicinity of the origin, then all functions g2"), g4(2') and &(2)'s behave
algebraically itn the same region.

A similar reasoning holds for Gy(z), Gy(2) and B(z)’s.

10. As f(g, 5') and B(g)’s are algebraic in the vicinity of the origin,
the same is true, by (26), of (2, Gy(2), Gy(2)). Hence, all branches

of p(2', GAs), Q(z))—% are regular functions of z and & in the
z

vicinity of the origin which is suitably chosen. Introduce the functions
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&&= —/p(e)ds'+ C, (Hm({(z’) —-_[7) :o),
2l=0 Z

)= S EEHC (i o) ),

2h=0 g

Then all branches of a(2/, Gy(2), Gy(z)) are regular in the same field of
variations. Moreover

0‘(3’, 62(3), G3(Z))=3"_"_(I - mgl(z) + ﬂ_Qz(z) )

Y o

%o m8(2)+nlyz) + “2(m .Ql(z;—i— nQy2))

is a uniformly increasing entire function of the 2" order in 2 for all
z in the vicinity of the origin. Similarly, the same is true of

D(z, 2 )=0"(2, Gy(2), Gy(2)){ Bina)p (& ,G2), G2))+F eevvennnnnn B.(#)},
where (=0, I, cevrveiirenn , 1),
(27) Banf2)e"(d, GL2), &)t oerveren.n. Buf2)

is the coefficient of f(z, 2’) in (26). Hence, the numerator and the
denominator af each branch of &(z, &)jc™(z, GA2), Gi2)) are regular
functions of z and 2 in the assigned field and are uniformly increasing
entire functions of the 2™ order in & for all z in the vicinity of the
origin. Hence by lemma 3, §2, the same is true of the derivatives of
D(z, &) o™iz, G2), G{2)) with respect to 2. Substitute the power series
in (23) instead f(z, &) in (26). Then, differentiating both members of
the equation »~times with respect to 2z and assigning zero for 2, we have

a2, (#=0, 1,2, ccouu.... ), as a transcendental algebraic function, at most,
of the 2™ order. Since g«(2'), g(¢’) are algebraic functions of a finite
number of @,(2"), »=0, 1, 2, .coevvrnen.. ) (§9), they are also transcendental

algebrvaic functions, at most, of the 2" ovder. Similarly for 6(&'Ys
G ()=1). '
The same reasoning holds for Gy(2), Gy(z) and B(z)'s (B,, (2)=1).
We may further conclude that, by
1
4, {1=2() + 2y

) e @)y
Fei e e R T EN (e e

LI oo(#)=ga(¥)=o0, ¥}(#’) will be indeterminate. But in this case, we have ()
=wy()=oo, Le. wi(#’) and wy(?’) are indepzandent of ¢/, which is against the assumption (}9).
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A& and #(")=L(") are transcendental algebraic functions, at most, of
the 2™ order.
11. Let a, #, be a canonic fundamental system of the solutions

of
e p
(28) C(C—I)d; +(2{—1) ﬂ'i: +%u=o.

Then they may be expressed as follows. In the vicinity of £=o,

‘ I 1
wo=r{1, 5, 1)
2

<
=

I 1 I 1

0 __ .

”é )—E(_) 0 I’ C) + F(_" ) I; :)log51
2 2 2 2

in the vicinity of ¢=1,

. I I
ul”:F(—z—, > I, 1—C>

ap=r (L Lo =)+ AL, L 1, 1=z leg(1=¢);
2 2 €

2 2

in the vicinity of {=o00,

(e el b))

I 1 I 1 . .
where F(—, —, 1, ,1') and & (—, -, 1, 25) are holomorphic functions
2 2 2 2 X

of # in the vicinity of z=o0, and F(—I—, i, I,O)=I. In the vicinity
2 2

of any other point {=a, % and %, are integral power series of ({—a).
Since #,, #, are a fundamental system of the solutions, we may assume

that #,(a)>50, #,(«)=0, while ~dﬁa',2£g)—i;0. Then all solutions of (28) are
(1

expressible by linear combinations of #, and #,.
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Now, { is a modular function of 7 which is a ratio of two linearly
independent solutions of (28), so that there is a doubly periodic function
(e, @(2"), @y(2")) whose periods are solution of (28), the ratio being
equal to . Hence, we may put

(20) [ @(2")=Au{L()} + Bu{L(2))},
\ @y(s")= Cu{2(z)} + D{e(=)},
where A, B, C, D are constants such that the imaginary part of
Cuy+ Du,

is always positive and 4D —B(>c0. We have, accordingly,
Au,+ Bu,

()= @y(2") = Cuy {L(=")} + Dun{L(2')} .
a(d)  Au{")}+ Buf{5(s)}
Let

(o — !
£4=)= 602 {m (=) +n@y<' )}

&(8)= 1402 {m@l(g’)-ll- nd,(g)}° ’

where the summations exclude the simultaneous zero values of 72 and
7 in the expression of m,(&')+ndyz'). Then, as

gzs :i (==& — &5
gi—27g8 27 (=0 &—278d

we have

g2 W () =g«
and

&)= g4(5),

where y(¢/) is a certain function of 2.

Consequently, we may assume, without contradiction, that

a,(Nr(==w"),

&Y (&)= o).
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12, By (29), we see that if a circuit in the £-plane does not contain
any one of the points o, 1 and oo, w, and @, return to their initial
values after a complete rotation along the circuit. If the circuit contains,
at least, one of the points o, 1 and oo, then at least one of w; and w,
will change its value. As ¢ is, however, a modular function of ¢ for
group fg: (*f’ i)z(cl)’ (I)) mod 2, @ and &, will change into 1 (#@,+ s@;)
and +(p@,+¢®,) respectively,! where p, ¢, #, s are integers such that
p=1(mod 2), g=o(mod 2), »=0o(mod 2), s=1(mod 2) and ps—gr=1.
As ps—gr=1, &, and g, return to their initial values after a complete
rotation of { along the circuit. Moreover (/) is a transcendental
algebraic function of &'. Hence, gy(&’) and g(2"), as functions of 2', are
Sinitely many-valued functions of 2 except in the vicinity of the singular
poinis.

~—plane As gy(2") and gy(¢’) are, how-
y ever, transcendental algebraic func-
) tions of 2/ (§10), they are finitely

many-valued functions. Accord-
ingly the same is true of y(s')
except in the vicinity of the singular
points of g4(2/) and gy(2').

Since there exists a unique
correspondency between the sub-
domain I of the z-plane and the
total £-plane, and since there corre-
3-plane spond 7= —1,0 and 0o to {=00, I
and o respectively (Fig. 2),

0

-

rag'

l
-~
2
-~

T(z’):ai(fi has a finite value
E)l(z,) . .

from —1 and o, at any finite point

Z where (5)>0, 1, 0. Also

ol
Fig. 2.

N

1 If may be considersd generally that @, and @, will change into @;(D=)lr@y+hsw and
and ®,(1)=)pmy Mg respectively, where (5’ g.)z(é’ ?) mod 2, and ps—gr=1. But by the
theory of automorphic functions, there corres’pond :_—’_o, {=1 and {=o0 to 1=o00, t=0 and
t=—1 respectively, Hence in the vicinity of (=1, ®y=AF+B 1+ Flog(1—L)), Wy=CF,
(311), the constants 4, B, C being suitably chosen. Accordingly }p=1I, 1g=0, =1, s0 that
¢=0 and }pAs=2Zs=1. We have, however, ps—gr=ps=1, and therefore 32=1 or h==1.
Consequently, we have ®,(0=%(r@;+s®y) and @) =k=(pivy+g®q)-

Similarly .the proposition is true in the vicinity of {=o0 and {=co.
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@,(2'), @(2') can not be zero simultaneously; for otherwise by (29).
@,= By, and @,=Du, in the vicinity of the common zero point and

accordingly T=—-a)l=£ would be a constant. Thus none of &; and

@y
@, becomes 0 or o0 at any 2z’ where {(2/)><0, 1, 00. Moreover, @)
and @,(¢') are, by (29), algebraic in the vicinity of any finite point where
¢(#)>x0, 1, 0, and so also for gx(2') and Fy(s'). As g42') and gy(z)
are, however, transcendental algebraic functions, y(¢") is also algebraic
in the vicinity of any finite point where £(2)2<o0, 1, oo.

13. We assume that there is, at least, one finite point where
&(e)=o0. Let one of them be 2=a. As &(¢') is a transcendcntal
algebraic function, we may assign a neighborhood of #’=a, such that
no other singular point of £(z') and no other point which satisfies {(2’)
=0, 1, or o0 is found in it. In this domain, &,(¢") is algebraic except
at &=a. We have therefore

1 i

(30) 4?2(2")=ao—i—zzl(z"—a)l Foorernens +ai(z’—a)7+ .........

where 4 is an integer. But in the vicinity of {(a)=0, @(¢') and @2")
take the forms (§11)

B.()=AF {L(=)),
B.()=DF{L('2)} + F {£(#)}-{C+ Dlogl(s))}.

Accordingly

(2 )=60 !
£4) z (m@(2') +nad2") )
is continuous at z’=a and take the value

1
it

Zoa)= 60 ';;T 2

This means that, in the expansion (30), the terms of negative powers
can not occur. Thus, g.¢’) is algebraic at 2=a. The same may be
said at any finite point, if one exists, where {(¢’)=0, 1, or co. Hence
£4#") is algebraic at any finite point. Moreover, the number of values
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corresponding to any finite 2’ can not exceed that of (&), i.e. a certain
integer. Consequently, g(&') is a trauscendental algebraic function.

Similarly for g&') and y()= 4 A2/ gd2) -
14. Let there be a finite point, say ’==4, such that ¢(#)=o0. Then
we have, as before (§13), in the vicinity of &/ =a,

@(s) = AF(% % I, C(z))
6)2(3’)=DF1(—;—, —;—, 5 ¢ (5’)>

(C—I—Dlog({(.z’))) <% %, I, C(z’)),

and limg(s") —%94— *L‘ , where the summation is excluded m=o0. As
“=a

&y(2') is algebraic in the vicinity of &'=a, g4 _ 6o —~hasa zero

S22 g y ~ ’ g? A‘

of a finite order (that is, it is not of an infinitesmal oxder) at & = a.
But {log(¢(¢’))}* has an infinity of an infinitesimal order at #/=a and

I

lim {log (c@’»}" {g (% —1”—4}&@.

This is a contradition, and there exists no finite point which satisfies
¢(¢")=o. Similarly for ¢(z)=1 and ¢(#) = oe. Accordingly, {(s')
acquives none of the values {=o, | and o0 in any finite part of the plane.
Consequently g,(2'), g4(¢') are finite for all finite values of 2"

Similarly, let Gy(s), Gy2), K¥(2), I(2), #(2), £(s) be the corre-
sponding functions to £.(&), £«(2'), ¥*(&"), (&), &,(¢'), ®(<') respectively.
Then they have the same properties as the corresponding functions.!

15. Suppose that there is a finite point &/==a where y(a)=o0. Let
D be a small region in the z-plane such that all branches of I1{z), K*(¢)
and B(z)s are regular in it and that AQ(2)+ 8 (), (4, p=o0, X1, *2,
......... ), are different from those points in a small region containing
Z'=a in it. Then all the branches of (s, Gy2), Gy(2)) are regular in
the field of variation such that s is any point in D, while &’ is any point
in the vicinity of &/=q«. Similarly for

1 See foot note in §10.
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(27) Bu(2)P"(&, Gy2), Gy(2)+ . ueren... +By(z), (i=o0, 1, ...... , 72),

and its succesive differential quotients with respect to 2/, where (27)
is the coefficient of f(z, &/) in (26). As the derivatives of (27) with
respect to 2’ do not all vanish identically for #/=a, there is a certain
rational number s (zero being included) such that at least one of the
limiting values of (&' —a)¥ (2, &) for limit /=« is algebraic in D. Also,
as 7(¢') and #(¢')'s are determinate for limit &/=a, we bave, by

bmm (") ml m””( Z/ , (2, wz(z’)>+ ......... + &2
r (& (&)

( Z’ . a)ms

%;_ m"(;fg,—), w,(&"), wy(s’ ))+ .........

+8(e)=0,  (bum (¢)=1),

% {(g' e g/)}m bt

lim[p( (’g,), ("), wz(z’)) as an algebraic function of z in D. From
=qa 7’ P24

what has been proved in §§12 and 14, it follows that none of @,(3')
and @y(¢’') vanishes or becomes infinity for all finite values of 2’ and
that the ratio @,(2')/@,(2") has always a positive imaginary part. Hence
the same is necessarily the case for @,(2) and ®@,(@), where @ @) and
@) are the limiting values of the certain branches of @,(2') and @,(2)
for 2’=a, which correspond to one and the same branch of £(&/). As

lim&o(%, @,(&'), 3)(2")) is algebraic, we may suppose that those which
2'=a T g

correspond to the above assigned branch of £(2') are f(a(s, a), @), @,(a)),

(=1, ceereees , n), where, considering that # is an arbitrarily assigned
value, as, @) is a point in the fundamental parallelogram. Therefore
alz, a)ZEaz, a) (mod @,(a), @(a)) for i>j, (5, /=1, 2, .evuernne , 7). For

any prescribed positive value ¢, there is a corresponding positive value ¢
such that

Z

(%)

|@,(s") —@(a)| <o

=p,(5") +qBy&) + az, =)

and

|8.()~aa)| <o

laf(s, &) —afs, a)| <o
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for all values of 2/, which satisfy 0< |2’ —a| <e, where a2, a) is certain
one of oz, a), o2, a), ......... , a4z, @) and p, ¢ are certain integers.
Determine ¢ so small that 2o is less than all |a(e, a)—as, @)|, (¢, /=1,
......... , 1y 1257 ). Suppose &'=42;, &’=2} be two distinct points in the
region o< |s ~a| <e, such that in the equations

L =p@ () + q.@(2) + a; (2, )
r(z)
and
) CAR XX CORN N 9
7(22)

at least one of the inequalities p2%p,, ¢i=x¢s, 73z holds. Then as
2

':
(&)
point &'=z; on the straight line joining 2’'=g; and & =z}, for which

takes every value in the vicinity of infinity, there is at least one

g
7(20)

=p10:(#) + q18(50) + ;. (3, 2)=2i0() + ¢iB(%) + (&, ),

where at least one of the inequalities %2}, ¢i=<gi, 7157, holds. Hence

we have
(31) po(s0)+ gdo(z) =y (2, ) —w (2, %),

— !
where, in virtue of T(zg)z—(f—z%:\greal, w (2, )3z, %) of jif
[ONE: b

I~
There exist infinitely many points such as 2'=g for which the relation
(31) holds. But the number of all possible combinations of 1, 2, ...... ,

n, such as (/, f), (Ji=xr) is nsz—n@ and accordingly there is
2

at least one combination, say (7, /), for which the relation (31) holds

for infinitely many values of 2/, which converge to #=a. In (31),

consider the limit 2’=a. The right number converges to a finite value

@ya s .
@ (, @)—a; (3, @). Therefore, as —5{((?) has a positive imaginary part,
1 :

none of p and g becomes infinity for limit &’=q, and accordingly, there
are infinitely many values of & which converge to &/=a and for which
(31) holds for the same values of p, ¢, 7; ann 7. In the limit '=a,
we have

28,(a)+ qd(a)=w (2, )~ (2 a), (/7<)

ie. (s, a)y=a;(z, @) (mod &(a), ®,a)), (/*</);
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which is a contradiction. Similarly for all branches of £(¢/). Hence,
7(&") never acquires the value zero

16. Let G be the aggregate of all branch points of at least one
of (/) and ¢(¢'). Then there are four cases to be considered.

i) G contains no point.

ii) G contains at least two points which are not branch points of
S (2, 2) where 2z is an arbtrary constant.

iii) all points in G, with one exception at most, are branch points
of flz, 2) for any assigned value of 2, and are infinite in number.

iv) all points in G, with one exception at most, are branch points
of f(z, &) for any assigned value of &, but are finite in number.

We now investigate these cases successively.

i) As G contains no branch point of y(¢) and of C(z) they are
mermorphic functions of 2. (&) acquires, however, none of the values
¢=o0,1 and oo for finite values of 2/, and hence by Picard’s theorem,'

is an

it is a constant. As 7(2/) has no zero point at finiteness, )
(e
entire function. As ¢(2) is a constant, so is gZg’). Therefore

! &7 g is, as g4(2’), an entire function, at most, of the 2™ order.

1) N edd

We now substitute % ( =, @y, & )for Pz, 7(2)@y, r(2)@,) in (25).
(&) \n&)’

Then, as &(¢')'s are transcendental algebraic functions, at most of the

2™ order (§10) and f{2, &) is, by (26), a transcendental algebraic function

of the 2™ order in & for any assigned value of z, , @y, wz) is,

( (@)

by (25), a transcendental algebraic function, at most, of the 2™ order

in 2’ for any assigned value of z(=<0). _TI'_) being, however, an entire
(=
function, 50(—— @y, wz) is a mermorphic function at most of the 2™

(=)’
order in g for any assigned value of z(=c0). But 5’->< s @, cT)Z),

(e2<0), is of the 2™ order in @) Accordingly for any prescribed
72
positive value ¢, there is a corresponding vulue R such that

U Borel: Legons sur les fonctions mermorphes, p. 66.
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L& for all [#' [ DR

IT(ZO

Hence, is a polynomial of the form ¢z’ +3, where « and 3 are

constants. We conclude, therefore, that of both y(') and (2 have no
orancl point, then (') is a constant and

N —
(@) = a~u+ﬂ
17. ii) As G contains at least two points which are not branch
points of f(z, &), let one of them be 2'=a. Suppose that ("), #{*(e"),
(), @ (), @), ¥(¢) become ¢P(¢), uD(), uP(), @7(e),
@P(&"), yY¥(&) respectively after a single description of a closed circuit
round the branch point 2’=«. Then, we have two equations of the
form (25), which correspond to (') and £®(¢') respectively. As
#'=a is, by assumption, not a branch point of f(z, 2), f(2, £’) has the
same values in both equations. Eliminating Az, 5’) from them, we have
an algebraic relation between p(z, w,(2"), wy(2)) and (e, 0P(2"), ©{P(2")),
and accordingly o, wi®, o, o are connected by

200 = g0’ + 7,0
(32)

a G
5207 = g0 + 0P

where p;, ¢;, 7, ({=1, 2), are certain integers and p,, g, are different
from zero.

First, we assnme that y(¢’) has no infinity point at finiteness. As
@y(2') and @,(¢") are always finite and different from zero at finiteness
(88 12 and 14), ©,(2’) and w,(2') vanish or become infinity simultaneously
according as y(2’) vanishes or become infinity. y(z’) has, however, no
zero point (§15) and no infinity point (by assumption), so that we have,
at Z=a, oP(@)=0P(@) and oP(e)=0(a), which are both finite.
Accordingly, we have, in (32), y=¢,=0. For, if =50, then T((l)—‘pl t];

ie. t(a) is a real quantity, which is evidently impossible. Slmllarly for
¢,. Consequently, p,=¢, and p,=v,, and we have, therefore,

T%l?(zl)asl)(zl) — r(ﬁ)(zl)a?)(zl)

T;l)(gr>agl)(3/) — 7(2)(3’)5)527(2’),
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or

a(z) _ @2 ()

ai(7) e

We have, however, by (29)

@y(5")=Au, {¢(2)} + Bu,{¢(¢)}
a4y = Cud (&)} + D),
where A, B, C, D are constants such that the imaginary part of

Coty+ Dty
Aus+ B,

Hence.

is always positive and 4D~ B(=<o0.

Cui™(") + DuiP(&') _ Cu () + DuiP(2")
AuP() + Bt () Au(&) + BuP(e)

or
432 _ u()
uP(s) uP(s)’

or precisely,

(33) w{l®(@)}u{l®()} =w{C()}u{l()}-

Suppose that (A—1) be the multiplicity of the branch point '=a.

L=yt o (s’ —a)* + ... +a —a)%+ ......... , (a>0)
(34) u(O)=ay+ & (& — tg) + ... +a(f—a) + . , (a2<0)
w(Q)= o(C—a) Foenne... F+o— ) F.eeennnn. , (6,>%0).

Let o=cos—2;-+1/ -1 sin%[— and g be the least integer such that

@,2<0 and g0 (mod 4). Substituting (34) in (33), we have
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w
Comparing the coefficient of (¢’ —a)*, we have

ﬂoéﬂ“p, = ﬂﬁx"pf’“»

which is impossible unless 6*=1. Consequently £(2’) can not have any
branch point at finiteness, so that it is a constant as before (§16). Ac-
cordingly @,, @,, &,, &3 are all constants.

Similarly we may prove that &=« can not be a branch point of
7(¢"), and accordingly that it can not be a point of G. We conclude,
therefore, that any point of G, which is not a branch point of f(z, 2) for

any constant value of z, must be an infinity point of ().
18. Let #’=a be any one of such points and transfer the origin

to that point. In virtue of (1), we may easily prove that, for suitably

assigned value of z, 2, «..... s Bimty Bigty eeense , %ny f((2,)) is a transcend-
ental algebraical function of 2;. Hence, in the vicinity of the new origin,

each branch of f(z, 2/ +a) is expensible as follows.

LA s,

where A(>0) and p(\o) are integers. We have also

@6) {Bun (D)F (s Qu(2)s Q=)+ oot B )55 +8)F oo
+ {Emo(g)g‘.)”'u(g/’ ‘QI(Z)l ‘Ql(z)) Foeeee +—ECO(3)} =O,(§n,n,n’(3); [)’
and
(25 (o (& + )5, @,(37+a), @& @)+ ceevre b+ )}
X (8 &+ a)+ euienns

+ {bo,,,o(z' +2)p" (2, W (&' +a), 0 s +a)) +.enenn
+ b2+ @)} =0, (bmmm(z’ +a)=1).

As g(Z+a), gy(¢’+a) and 6’ +a)’s are algebraic in the vicinity of

the new origin (§10), we may determine a positive integer v, (v=o0

(mod 2)) such that all the branches of g,(2'+a), g(z' +4a) and &z’ +a)’s
1

are uniform functions of xz=#'" in the assigned region, having the new
origin as a regular of a non-essential singular point. Hence all branches
of (2, gf# +a), g7 +a)) are regular functions of 2 and x in that
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region and are successively differentiable with respect to x; and so also
for all the coefficients of the powers of f(z, #’+4a) in (25). Supposing
that « be the order of infinity of y(¢/ +4) at /=0, the coefficient of
2 (=1, 2, coevennne ), in the expansion of (2, g2/ +a), gi(¢' +a)) in
power series of # has a zero at least of the (2/+2)u™ order at 2'=o.
Accordingly, all the derivatives of (s, g,(¢'+a), gi(¢ +a)) with respect
to x are polynomials of ¢ for x=0; and so also for all the coefficients
of the powers of f(z, 2/4+a) in (25). Substitute the fractional power
series in (24) for f(z, &' +a) in (25). Then, differentiating successively
both the members with respect to » and assigning zero for x, we have

A2, (==t ceueennn. , 0, 1,25 veininns ) as an algebraic function of z.
Accordingly Gy(2), Gy(2), K*2) and B(z)’s are all algebraic functions
(59). |

We proved that in the region where {(¢/) is algebraic—even if
£(2') acquires some of the values 0,1 and oo—g(2') is also algebraic
(§13), and that in the region where Z(#') is algebraic, £(¢’) can not
acquire any one of the values 0, 1 and oo (§14). By the same reasoning,
K?*(2) can not acquire any one of the values o, I and oo in the whole
Gauss plane (including the point at infinity), which is impossible unless
K*(z) is a constant. Accordingly Gyz) and Ggz) are constants and
I’(z)sﬁ/@(z) | G(2) is an ordinary algebraic function.

As there are at least two points in &, which are not branch points
of (2, &+a) for any assigned values of z, let &/’=4(=<0) be any one
of them different from the new origin. Then it must be, by §17, an
infinity point of 7(z'+a) and accordingly f(z, a+4) is, by (25), an
ordinary algebraic function of 2. But I{z) and B(z)’s are also Con-
sequently 83(7%)-, 9, !72> is, by (26), an ordinary algebraic function
of z. This is evidently impossible, and hence #4e case ii) can never occur.

19. iii) In this case, G contains infinitely many points which are
branch points of f(z, &’) for any assigned value of 2. Let G’ be the
aggregate of those points. As all independent variables except z,=2'
are considered as parameters, (1) reduces to the form

Fy(p(2), ¢(h), z1+325)=0,

where ¢(¢')=f(z, &) and Fy(u, v, w) is an irreducible polynominal of
# and 7, and is analytic with respect to w in the whole Gauss plane
(88). Considering z+2;=c be a constant, let the discriminant of £,
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with respect to ¢(z) be Fy¢(z:), ¢). Then F,=o0 at any point in G"
where G”' is an aggregate of infinitely many points, each point z; of
which corresponds to a certain point &/ of G’ by the relation &+ 2,=¢
and inversely. As £, is a polynominal of ¢,(2;), we may easily prove
that all the points in G’ may be divided into a finite number of systems
such that any two points in one and the same system are congruent
(mod £y(2), £,(z)), while any two points in any two different systems
are incongruent (mod %,(2), 2,(2)). As G contains infinitely many points,
there is at least one system which contains infinitely many points. This
is, however, impossible unless there exist two integers g, g(p=g=o0 being
excluded) such that p &,(2)+¢@2(z)=constant. Put p2,(2) +¢2,(2)=2
(=
Ti%gg— has
always a positive imaginary part, where #/, ¢/ are integers which are
relative prime and satisfy p¢’ —p'g=1. Then we may take £; and £2i(z)
instead of £(2) and £,(z) in (26) without effecting any change on G,(2),
Gy2), I'(¢) and B(g)'s. If there be any system which contains infinitely
many incongruent points (mod £;), we have also £j(¢)=constant. Hence
both £ and £y(z) are constants, i.e. both £,(2) and £,(2) are independent
of 2z, which is against the assumption (§9). Accordingly all points in
G may be divided into a finite number of systems of congruent points
(mod £)).

Considering 2z as a parameter, f{(z, 2/) has a constant period &:

and determine £2y(2) such that 2i(¢")=p'2\(2)+¢'2,(2) and

and so has af?), (=0, 1, 2, ......... ), in (23). Accordingly so also for
- 2my/ ~1
&), &), (&), ¢(&) and &(2')'s in (24). Put e A =x. Then

these functions are transcendental algebraic functions of #. From what
has been proved, it follows that 7 has, as a function of x, at most only
a finite number of branch points, and accordingly it reduces, by theorem
8 in Chap. IL,' to an ordinary algebraic function of . By the same
reasoning as in §18, £(2') reduces to a constant and accordingly £,(2'),
Zs(#') are also constants. Similarly as in §16, we have, for each branch

of (&),

, [tee

z for all || A\R,

1 T([Z')

where ¢ is any prescribed positive value and R is a corresponding value

1 My first paper; these Memoirs, vol. VI, no. 3.
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to &.  Accordingly y(2’) must be an ordinary algebraic function, which
has a period £. This is evidently impossible and we conclude that case
iii) can never occur.

20. iv). In this case, G contains only a finite number of points,
so that the number of branch points of £(#/) is finite. Accordingly, by
the same reasoning as in §19, £(2'), £42'), £4(¢’) are constants, and y(2')
is an ordinary algebraic function. Also 7(¢) has no zero point at

finiteness (§15) and may be, therefore, expressed by an irreducible
equation

C(33) T+ L+ +1=0,

where ¢ is a positive integer and 7(2), 73(&'), ......... , Zi—i(¢") are poly-
nomials of z.

Similarly, the foregoing reasoning (§§15-20) holds for I{z) and
K*(z), and we may conclude that K*z) is a constant while I{2) is an
ordinary algebraic function which has no zero point at ﬁniteness

All the derivatives of p(¢/, 2,(2), 2,(2)=- F( )2 ( Ok 2, !22),

I _
(#'2<0), with respect to ¢ are algebraic functions of &’ and p(T), a2, !Jz)
S

where # is considered as a parameter after differentiation. Similarly for

(27) Bunf2)9 (2, GA2), G2+ crvvnn. + Bif2), (=0, 1, cevernnn. , 1),

which is the coefficient of f(z, '), in (26). Substitute the power series
(23) instead of f(z, #) in (26). Then differentiating with respect to z
and assigning the value zero for z, we have ay(¢’), (=0, 1, 2, ...... .. ),
as algebraic functions of z and p(2’, £,(0), £,(0)). Similarly for y(z') and
8(¢')'s (bmm, (5")=1). By eliminating f(z, &) from (25) and (26), we have

o, w2, 2,(0), 2,(o)), p(e', 2y(2), 2,(2)), k"( e ) » B &2))=O’

where @ is a polynomial of &/, (<, 2,(0), .Qz(o)), p(2', 24(2), 2,2)) and

8:)(—'(2:;)—, @y, (7)2) whose coefficients are functions of z. @ contains
g

( @)’ , @y, Ebg) explicitly. For otherwise, at least one of the values
7

of Az, #') which are determined by (26) would satisfy (25) for any value



280 Ryé Yasuda— On Transcendental Integral and Transcendental

of 50<—‘L @, 6)2), and accordingly there would be an algebraic rela-

tion between p(z, y(2')@,, 7(2")@,) and p(z, 7("@P, (< )@) for any values

D
sz has
o

a positive imaginary part. But this is evidently impossible. There are

of z and z/, where &P, @ are arbitrary constants such that

infinitely many values of & whose limiting value is zero and for which
I{z)/I{o) is a rational number. Let 5=z, be any one of them. Then,

we may assume that the function @ for z=g2, contains @y, B
y (H,) 2

explicitly.  For otherwise, @ does not contain lp( e ),wl, _)

explicitly for infinitely many values of z whose limiting value is zero:
and so also for all values of = in the vicinity of z=yo, which is impossible.
For z=2, £,(0), £,0), £(2,), 2,2, are connected by the relations (32)
and hence between f(2’, £(0), £,(0)) and (&', £,(2,), £(z0)), there exists
an algebraic relation. Accordingly @=0 reduces to

@(Z,, B, 2(0), 2(0)), (-2 L w2>> o.

@y, &')2) is not an ordinary algebraic function, @; contains

A L
’ P( 7(#)
(e, 2(0), £,0)) explicitly. Accordingly [p( ) , @y, &‘)2) must be a

transcendental algebraic function of the 2™ order in 2/, so that for each
branch of y(2’), there exist infinitely many values of 2/, say z;, (=T,

2, ceeeneen hm z;=00), for which lim T('gf) =1. Therefore, 7,(¢') isa
= 2

polynomial of the t™ degree, and 7(2") has at least one infinitely point.
Let 5’=a be one of them, and transfer the origin to that point. Then
we have, as before (§18), (25) and (26) where B(s)’s, (B (2)=1), are
algebraic functions of z. If & contains at least one point, say #/'=4,
which is different from the new origin and is a branch point of f(¢, &'+ a)
for any assigned value of z, the discriminant D(B(2), (&, 2i(2), £,(2))
of (26) will vanish identically for 2’=4 and for all values of z, where
P is a polynomial of (s, £y(z), £,(¢)) and E(z)’s. Accordingly,

[P])os=0 shows that (&, £,(2), 2,(2)) or 5:( @) , 2, ‘Qz) is an alge-

braic function of z, which is impossible. Next, if there be a point of
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G, which is different from the new origin and is not a branch point of
Az, 2 +a), then it must be an infinity point of y(z'+2) (§17). But
similarly, as in §18, we may prove that y(s'+ ) has at most only one

infinity point at finiteness. Consequently in all cases, y(¢'+a) has no
I

(& +a)
has at most only one singular point—the branch point at the new origin

branch point, except the new origin at most, that is to say,

—in the finite part of the #’-plane. Hence, in the vicinity of the new

origin, all the branches of may be expressed in the form

I
(& +a)

I

W=ys(ao+a.y+azy2+ ......... +ag . ), (#6350),

where y is a #* root of 2 and s is a certain positive integer. Then the
above expression is regular for all finite values of py, so that it is a
I .

is, however, an

(&' +a) 1
algebraic function of 2/, it can not be an entire function of y=5"* i.e.

polynomial or an entire function of y. As

it is a polynomial of y. Moreover, as — 1 has no zero point ex-
1 +a)

cept the new origin at finiteness, we have

I

- =g, ¥=u ’Ts,
(&' +a) g

!
As lim sz)—=l referring to the old origin, we have s=¢ ie.
f=n 8

I
(& +a)
clude that case iv) can never occur.

=az’. Moreover, we have {(2/)=constant, and hence we con-

21. In short, all the cases except the first one are inadmissible, and

we have necessarily (/)= and £(¢') constant. Similarly by

I
(l/Z/ + ﬂl

repeating the same reasoning, we have I(s)=

and K*(z)= con-
stant.
. . . -8 —pF
Now we transfer the origin to the point (—«-, ——7) and (25)
a [74

becomes
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a

xfm’( —ﬁ, z’-—ﬁ:—)-l- .........

o a

(25)" {mrm,,,t,(z)so @) &o( s —,‘7’;;)+ ......... +Zm,0(g/)}

{&m, (&) ( —;7, —%2,-) Forrnanen + &2 )) =0,

(Zm,m,m,(z’ )= 1),

where &'s are algebraic functions of 2/ (§18). The equation (25)” may,
therefore, by written in the form

[/ o a

(36) P(s, 2, o), fo—L ) EE

+P(&o<zz’ —%—, %), f(z—-ﬁ—, 2 -—‘H—,))=O,

where £y, B, eeevneen. , £, are polynomials of o and /1 We may determine
the field of variation £{z, #’) of # and 2’ such that for any values of z
and & in Az, &), f and P’s are continuous. First, we assume that there
exist three integers p, ¢, 7(p>x0), which satisfy the relation.

(37) p2=g Bt r®e
a /4

Substitute 2’ +p£z', (=0, I, 2, veerrrnrnnn. ), for & in (36). Then, as
ag

f(z———‘i— ‘8, ;;n)—f(z‘—i z’—%) ((26)) and

ez G 3)=H
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o &Y
we have Po({p,f)(z +p 7.;2)+ ......... +ZF(p, f)=o0.

Considering limit 7=00, we have necessarily

Po<3a(zz’, % %) f(z—JB_, g_ﬂ))g

a

Secondly we suppose that there are no integers which satisfy (37). Then,

we may find integers gy, @, 7, (=1, 2, ccvvuins ), such that
2 2 =g; w‘+r 2 t+e;
a

where limits;=o. For 2, & in E(s, #/), we have

——e)— lim / .Z'——/i 2 —Ei—e)

=0

T=>

lxmf( ‘8 ’_%.in

=f(g._£, o= )
a o
Accordingly, substituting PR 1 el L L TR W S ™
as a'z a'z

(36), we have similarly

P(o(e, B, B, pa=B, 28 ))=o

a

/
Hence, in both cases, /1 (z—i, ¥4 ———‘[i,-) is an algebraic function of
o a

p(22') where the periods as well as the coefficients are independent of
z and Z. If @ or @, be a function of some of z; (=3, 4, cvevuunns ) 7),
then, we repeat the same reasoning as before and accordingly, referring
to the initial origin, we have generally

P p((z+ a2+ @p)encnnnnn (z,+a,), 4, p), f((2)))=0,

where the periods 4, pand a,, a,, ......... , @, are absolute constants and
the coefficients are independent of &, 2, .oveeee. y B
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22, Consider 2y, ((=r+1, ......... , 3 j=1, 2), as parameters and
put zy=z,=2; (=1, 2, ......... , #). Then we have f,=fn=f;, (=1,
2, eerenes , 7), and (1) becomes

(I)’ F(fi, f-z, ......... > ‘f;‘, f;_*_u, f;'-l-l‘Z’ ......... ) .f;bZ) _/:)):0.

Supposing that @,250, we assign suitably chosen values to z;, (f=2, 3,

......... , 7), such that I (=3, ceoevern, 7), is rational while
T

285+ U,

" is real and irrational. In (1), £ is a doubly periodic function
Gty

of 2z, whose periods are

2 #
(28, + @) eue...... (22,+a,) (2 ay)......... (22, +4a,)
Jo (=2, 3, cvevenns , #), is a doubly periodic function of 2 whose periods
are
2
2(22’2 + a) ......... (221,;_1 + 41—1)(35 + ai)<25i+1 + a’H—l) ......... (23,« -+ (lr)
and
I .
2(232 + a2) ......... (23,;_1 + fli_l)(zi+ (l,i)(zzi_’_l =+ a[+1) ......... (237« + al.)
JSoand fy, (G=r+1, .ol , #; j=1, 2), are doubly periodic functions
of 2, whose periods are
A and ¢ .
2(22,+ @) euen. (22,+a,) 2(22,+ @) eeunnnns (22,4 a,)

Each period of any one of all f’s except f; is in a commensurable ratio
to the corresponding one of f; and those f’s are therefore algebraic
functions of ;. Hence, in virtue of (1), f, must also be an algebraic
function of /; and the relation (37) subsists among the periods of £ and

of f,. This is, however, impossible, since——z—zz—-i-—{'}!L is irrational. Con-
2yt a,
sequently, we have a,=o0. Similarly qy=a,=......... =a,=0.
As f((z,)) is a doubly periodic function of z;, (=1, 2, ......... ) 7),

we have
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{7 4 - i — 6 >
ggj)(gl, ...... 818 pyeesees Z,.) o gé’)—(z‘l ...... B 18 41eenees 3,«) E3s
and

AD={(gV—27( g = (81 ve oty aipreeenr 2, ) G — 272,

where ¢, and g, are absolute constants. If f{(2;)) be a simply periodic
function of z;, A¥=o0, or gf—275¢=0 and accordingly f((z)) is a

simply periodic fuuction of #2......... z,, i.e. it is an algebraic fnnction

Kayy...... & - : ;
of ¢ 7172 ", where K is a certain constant different from zero.

23. We have hitherto discussed this problem under the assumption
that at least one of @, and w, is depsndent of &’ and that at least one
of & and &, is dependent of z (§9). We now assume that at least one
of w; and w, is dependent of &’ while both £, and £, are independent
of 2. As £, and @, are independent 5, we may conclude, from (23)
and (26), that all a(z/)'s are algebraic functions of (s, £, £,)
and accordingly the same is true of &(¢')’s, (bmmm(z’)—:—l), g2, 52"
and £(¢). Thus, ¢(2') is an algebraic function of (s, £y, £), of &7,
or of &/, and in all cases, it must be a constant.! We have accordingly
(&)= W(§§16-20). But 7(2/)=¥Z,/g(#) is an algebraic func-
tion of (2, £,, £,) and we have consequently @'=0, i.e., y(#)=constant
or @ =8=c0. If &=8,=00, Az &) and 42)'s will be algebraic
functions of 2’ for any assigned value of 2z, and so will

Bz, (&), wfe))=(as +B R+ ), By @)

This is however impossible, and y(2/) must be a constant, i.e., both w(¢)
and wy(s') are independent of 2. Hence, i one of the conditions

i) both w(s') and wfz') are independent of 7,

it) both 9,(2) and 2yz) are independent of
subsists, then the other will follow necessarily.

24. From §§22 and 23, we may conclude that if f{(z;)) be an al-
gebraic function of z, it can neither be an algebraic function of
P25, 0y, wy), (7357), nor an algebraic function of ¢*¥, w;, w,, or @ being
dependent of z;. For suitably chosen functions &/(¢') and (z), if f(z, &)
be an algebraic function of @/(¢/)(z+a) and be, at the same time, an
algebraic function of a(¢)(#’+ «’), in each of which the coefficients are

1 As (/) acquires none of the value o, 1 and oo, it can not be an algebraic function

of (#, Q, Q). By the same reasoning as in the proof that A2(z) is constant (318), {(¥')

. . ’
can not be an algebraic function of 2/ or of erKz.
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independent of z and 2/, then a(2) and o'(2’) must be algebraic functions
of # and of &’ respectively and «/(z')(z+a) is an algebraic function of
a(2)(s' +a’) whose coefficients are independent of z and 2.

Qu(ua)(& +aN{@(# )z +a)) + onvnen. +0(d(2)(& +a')=o,

where Qg vevvvnnes , O, are polynomials of a(z)(#' +a’) whose coefficients
are independent of 2 and &’. If ¢/(¢/) has a zero point at finiteness, it
must be a zero point of Q@ a(z)(z’+4’)) which depends on z unless it

is #/=—a'. Similarly, if &(¢) has an infinity point at finiteness, it must
also be the point #=—a'. By the same reasoning, we may prove that
if @/(2') has a branch point at finiteness, it must also be the point &= —a’.

ra
Hence we may easily conclude that o/(¢')=A(¢ +4a’)? where A is a

constant different from zero and p, ' are integers, positive or negative;
and accordingly f{z, #) is an algebraic function of (z+a)(s' +a')".

. . . Py P2
In general, f{(2,)) is an algebraic function of (2, +a) (&+@) -......
pT - ., .
X (&,+a,) where 2y, fs cvereenns , £, are integers, positive or negative,
and @, @, .eeeeenn. , @, are constants.
. . . » 2,
Consequently f{((2;)) is an algebraic function of (g +a;) (z,+ @) *.......
2, »
7 rk_1+1 NTE
Y G % L voer (Bt @) T e welgnta) "
[£ 227 [ 2y 0% tleeeens 2y
.2 % — 1 1
SE U , e 1 N CHTTI Bry ey o, &P, ...... ,

where p's are integers, positive or negative, and the coefficients, as well
as @y, Ay eeveenne. s @y By evereenes , 0, O, &P, (=1, 2, ccooeuuen ), are in-
dependent of the variables.

25. We now prove that if one of a4y, a; «evvene.n , @, be zero, then
all the others will be also. For the sake of brevity, we first consider
that »=2. Suppose that @ >co while 2,=0, and eliminate 2; and s,

G=1, 2, ceeurenn. , #), from
ﬁ15f(311 + 2y ceienes vos Bisat+ Bz Zity Big1e T i ceereeness Snt +3n2)»

Jo=feut 2z coennnnn y Fpnt Eigey Bin Bigut Bigaz eeeeens vor Emt Zm)

and
entea=2, (=1, 2, .cconn. , 7).

This may be done as in §4, and we have
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(38) ¢ fu S (Lt a)Z®, Zyy vuvennn. y Zn)=0, (1=2, cvervennn , ),
since fay, /2 and £y (4=3, veureenn. , n; j=1, 2), are algebraic functions
Dy Py Py

of (Zl+a1)zz?7, (Zl+a1)z§ and (Zl+al)Zz‘T1 respectively.  We have
however for i=1

Py

(39) Spl(flb iz (Z1+2a1)22p—1, YA , Zn)=0.

7y

We may eliminate, as in §§5-7, (Z+ al)Zf_l, Dy veerenren , Z, from (38)
P2 .
and fi=Ff(Zi+a) 2, Zgy o venvennns , Zy), we have

(40) Wl(fén S f;,l, ......... , j;..z, ﬁ,):o,

where ¥ is an irreducible polynomial of the arguments and contains

S, fn explicitly.
Eliminating f; from (1) and (40), we have

(41) @;(f-ll! .fi‘ly f22’ /(-51) ......... ) ﬁt2y _f(-)) :O,

which does not contain f;; explicitly. For otherwise, considering 2,
as a variable and 2y, 25, Z5, Zst, cereeeres , 2.2 as constants, all f’s in &,
except f3; are constants while f5, is a variable. This is however impossible
by (41). As ¥;is a function of fi;, fis, Jagy eeereerse ,Jazs o and does not
contain fy, /3 and &'s explicitly, (41) shows that we may eliminate
2y Ly veenennns , Zn from @;=0, (i=1, 3, .c..uuuue , #), and

el
So=F (Lt a)Z, Zyy eeeennnnn , Z,). This is however impossible since
@iy (=3, ceereunns , n), are functions of (#—1) independent variables
. yz

(Zl+az1)Z;’T s Ly veneenens , Z, while ¢, contains another variable Z, which
is independent of the former ones. Accordingly if #,=0, we have also
a,=0. We may similarly prove that if /{(z,)) be an algebraic function

Dy Dy P,
1 . -
of (z14ay) (82+a) wevverenninn. (zr1+a,1) ) @iy @gy veeneenn , @, are or are
not zero simultaneously., Similarly for @ g1y Br4zy weveseres y @y Bt
......... A S

Consequently f((2,)) is an algebraic function of (z,+ czl)pl(z2 + az)z.,:z ..........
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Py Pp 41 Pr
1 k=1 &
X (5 F @) Mevieniineniinnss (3t @, 11) ............(zrk-{—a,k) g
By, dlerenedy G2y flesssss?y
) 241 s—1 s o
e s eeveseeeny € , {;a(z,.s+1.........z,8+l, &P, @P), cevinnin

where p's are integers, positive or negative, the coefficients as well as a,
By cevvineny By Uy e, 6, OF, 0, (F=1, 2, .........), ave independent
of the variables and Brigty Crppas eeveeeeeny (=0, 1, eereree, B—1;
#,=0), are or are not zero Simultancously.
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