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On Transcendental Integral and 

Transcendental Algebraic Functions and 

Algebraic Addition Theorems, I. 

BY 

Ryo Yasuda. 

(Received June 28, 1922.) 

Our main problem is the study of the analytic functions of many 
independent variables, which have algebraic addition theorems. For that 
purpose we shall first discuss some properties of transcendental integral 
and transcendental algebraic functions, which are of fundamental impor
tance for our later investigations. 

CHAPTER I. 

TRANSCENDENT AL INTEGRAL FUNCTIONS OF 
TRANSFINITE ORDERS. 

INTRODUCTION. 

Suppose that F(,'J) be a transcendental integral function and JW(r) 
be the maximum value of its modulus for J zJ =r. Then there exist two 

finite numbers a, f) such that e""-<llf(r)<er~, or log log lll(r) 1s a 
log r 

number in the interval ( a, /3). In the case that /3 is limited for all values 

of r, we define, following Prof. Borel,1 that when lim log log 11l(r) 
r~cy:, log r 

is determinate, F(z) is said to be a regularly increasing function (la 

1 Borel, Lerom sur !es j,mctions entieres, p. 107. 
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fonction i croissance reguliere), and in the other case, an irregularly 
£ncrcasillg· function (la fonction a croissance irreguliere ). The upper limit 

p of log log i/I(r) for limit r= oo is called the order of F(z). In this 
log r 

case the order of infinitude of the moduli of the zero points of F(z) is 
determinate and is generally equal to the inverse of its order; and 

conversely. 
vVe may exdend this conception to the case where p is transfinite. 
Definition. Let log2 =log log, ......... , logi,=log log ..... .log; p: any 

positive integer. When lim logp-iild'(r)_ = oo and lim logPM(r) = o is 
,-~,, lo err ' ,·-~"' lo err ' 

b b 

finite, we say that the order of F(z) is w
1
'-:

2
p (e.g. the orders of / 

e"2 
and e are w and w•2 respectively). We define also that F(r:) i:, 

regularly or irregularly increasing according as lim logJJili(r) 
,.~,, logr 

is or 

is not determinate. 
In the following, we deal with only those transcendental integral 

functions whose orders are less than !2=<rl''. 

I. Let F(z) be an entire function whose zero points are the 
origin (of multiplicity J.) and r:=a,, a2, •••••• , a,,, Suppose that 

oo I 

1\L..r2L ...... LrnL ...... , where r,,= [a,,!, and consider the series ~-
1

_:x 
n=l n 

oo I 

where a is a certain positive number. If ~~ be divergent for any 
n=-1 1 n 

oo I 

positive value of rL (however great), then we consider~~' and so on. 
n"""'1 en 

Definition. Let e; be an inverse function of log1;i:-. If a positive 
integer p 1(~2) and a positive value (zero being included) p' be such 

that, for any prescribed positive value c (however 
oo I 1 

small), ~ - _p1-s · 
n=l C1 n 

f'-2 

1s divergent while 1s convergent, then the exponent c!f con-

00 I 

instead of ~ p'-c 
n=l C1~,1 

P'--2 

where C is any positive 
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.,,ergmcy of the moduli of the zero poillts of F(z) is said to be wP'-:2
{". 

This definition is an extension of that for p' = 2. 1 

00 

Lemma. lf a series ~ lf,. whose terms are positfr1e and deereasillg 
n=l 

be c01mergent, tlzen lim nu,,= o. 2 

?/='l:, 

Theorem I. Let tl.c :::ero points of a transcmdcntal integral function 

F(z) be ai, a2, •••••• , a,,, ...... and o<rnL.rn+i (n= I, 2, •..... ) where 
P'-2 

rn = I a,. j • lf the exponent of convergency of r1 , r2 , ••••• • r,,, .. .... be w • p', 
log_p, 1 u 

the upper limit of ·- when n is ilfjinite will be equal to {I'. 
logr,,. 

If lim logn =00 we consider 
n=:r.i Iogrn ' 

lim log:/I__ and so on. 
n~"' logrn 

-.- logp _ 11z 
that hm 1 =p1 is finite while 

"~"' logr,. 

- log"" 2 u 
lim ri- =oo. 
n-,, logrn 

Suppose 

Then for 

any prescribed positive value e, there is a corresponding positive number 

N such that 

for 

Accordingly there is a positive value o such that 

or 

so that 

logp1_i(1z1+0
) / + 

------~P1 e for 
logr,, 

for 

oo I co 
~-1.;:a~~-p,-+a-
?t=~Y 1l n= .. N' rn 

e 
.Pt-2 

But 
oo I oo 
~ ~ is convergent and accordingly so also for ~---
01~1 1l n-1 1"p, +s 

Therefore, we have 

t Borel, foe. cit., p. 18. 

2 Borel, foe. cit., p'. r 7. 

en 
ft-2 
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which is valid for any positive value of e, so that 

Next, we consider the convergent series 

foregoing lemma, we have 

r 
en 
p'-2 

lim -- ;,H =O, from which it 
n-co r 

e" 
P'-2 

for n~N(e), 

By the 

follows that 

where JV(e) is a certain positive value which depends on e. Therefore 

(2) 

\Ve now suppose that p1 >P'· As 

and 

logPi_2 1t 

lim 
logp11t 

lim 
logPt-3n 

=o, ... , logp,_ 1it 
=O, 

n=oo n="JJ 

we have 

which 1s contrary to the assumption that 

Hence 

(3) 
so that we have by (I) 

(I)' 
As, by (2) and (3), 

lim 
n-,o 

logp,n 

logp1_11t 

logp,_1n 
1 <p'+e ogr,. by (2), 
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we have Pi< p' + e, which holds for any positive value of e; so that 

By (1)' and (4), we have fii=p, proving the proposition. 

Similarly, supposing that 1
. log,,,_,_2 n 
Im ✓'- =00, 

n~,, Iogrn 

log/>rin _ P2-2 p1-2 
1 lim -~-- - p2 , we have (I) • p2L(I) • {' . 

logr,. 

while 

Definition. Let the zero points of a transcendental integral function 

F(z) be a1 , a2, ••• , an, ... , and o<r,,,Lr,.+1 (n= I, 2, ...... ) where r,.= [ an I• 

Supposing that the exponent of convergency of r1 , r2, ... , r,,, ... be 

Y-2 
(l) • p', we say that t!te order of 

in.r;nitudc 1!f Yn (u= 1, 2, ••.... ) is determinate and is equal to -.~-,-'./'· ,/ (I)/> -2' 
j 

and in the other case, indeterminate. 

2. Let the greatest integral value of 1t which satisfies at least one 

of r,,L I and nLe}_2 be n1, and we determine the integers p;,s as 

follows: 

Cs) 
{ 

Pn=o, 

lognlog21t •••••• log/>, _ 1 n 
Pn< logr,. for 

Let 

i) Supposing that P'=2, we have lim logn =p'. If p' be not 
n~cn logr" 

an integer, we take Pn<f"<Pn + I for ll= I, 2, ...... . Then p:s thus 

determined will satisfy the lower relation in (5) for sufficiently great 

values of n, provided that there is no integer which is less than 

Jim logn = p' and is not less than 
n-:n logrn 

lim logn 
'Yl='l: 

If p' be an integer, 

(X) I 
we take jJ,.=P' or p'-r, (n=I, 2, ...... ), according as ~~ is 

n=:F. rn 
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divergent or convergent. 

is convergent uniformly 

Thus, f (I-~ )c': +-}C~J+ ...... + P:f;J/',, 
n=l an, 

and unconditionarily for all finite values of z,1 

so that 

1s an entire function whose zero points are the origin (of multipliclty A) 
and .:::=a1, a'!,, •....• , an, ....... 

ii) Next, we suppose that p' ~3. For any arbitrarily assigned 

value of .:::, whose absolute value is r, determine an integer 1t1. such that 

(6) 

Let the greater of n1 and 111. be N; and put 

) X ( c• ) ~+~(~)\ +.2._(~)fn 
111 which ::: ·7r I --•J_ ea,. 2 a,, ,, .... fn Pn is an entire function. 

n=l an 

I 
As r<r logP'-'\ 111.+ 1) by (6), there is a positive value e which 

111.+l 

satisfies 

(8) .1 - log 
1

1
z pf-flt 

and accordingly by (7) and (8) 

1 ( ) 
logr,, 

ogr,. - Iogr ~ I + e ~-"-'-----
IogP' _1n 

l Forsyth, Theory of Functions, 3rd edition, p. 94. 

for 
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We have however by (S) 

so that by (9) 

(p,,+ 1) (logrn-logr) ~ lognlog2n ...... logJJ,_11l ( 1 +e) logrn 
logrn logp1-1lZ 

~(r +e)logn for n>N, 
or 

Accordingly 

( convergent), 

and we may put 

As lim logp1-i1Z = p', there is a finite positive value B such that 
n-"' logrn 

logp1-1n <B for n>N, and we have by (6) 
logr,. 

for 

I 
r --

1-->r-e 13 for n>N. 
rn 

Now 

I ( r Pn +1 I ( r )Pn +z 
00 Pn +1 r,;-) + p.,, +z rn + ...... 

L lf e 
n== .. N+l 

Pn +1 fn+ 2 

(~) +(-;-) + ........... . 
00 Yn 1 n < lf e 

n=..:\·•+1 
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A 

by (ro) and (rr). 

Consequently 

::; I ( c 
2 

I ( ::; Pn 
CC M -+- - + .. ,,.,+- -
7T ( "' ) tin 2 tin) /'n a,,) . 

11 I - - e ts convergent 
n+l a,, 

uniformly and unconditionally for all finite values of :::, so that 

is an entire function whose zero points are the origin ( of multiplicity J) 
and :::=a1 , a2, •••••• , an ....... 

In all cases f(z) is an entire function which has the same zero 

. f h d c( ) H Fi(:::) . . f . pomts o t e same or ers as I''.,; . ence -- 1s an entire unction 
f(z) 

which has no zero points, and we may put F(:::) == l(:::), ,vhere Q(,:::-) 
/(z) 

is an entire function. Thus F(z) may be writtm in the form 

w!terc Q(.:::-) is m1 entire function and p,/s arc integers determined as i11 (5). 
3. T!tcorcm 2. Let 

::; I ( ::; 
2 

I ( ::; fn 
<Y.) M -+- - + ...... +- -

f(z)==./ir(r --" )e"'' 2 
"") p,. a,.) 

n=1 an 

be an entire function whose expollcnt of con·uerp,·ency of the moduli ef t!te 
zero points is w 1'

1
-:-

2p1
, where p,:s are determined as to satisfy (5). T!ten 

for any prescribed positive value s, t/1ere corresponds a positive value R 
suc/1 tltat 

for all 

tlwt is, t!te order ef f(z) can not exceed t!te exponent ef con,,rergency. 
The proof of this theorem for P'=z is given in Borel, Zoe. cit., 

p. 6r, and the following proof is for p' ~3- Determine 111 and 11" as 
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in §2. Then for sufficiently great values of r, we have n2~n1, and 

z 1 ( z )Pn 
00 M -+••••••+- -
lf ( 

,.;; ) a,. Pn a,. 
X I-- e 

n~ ~ . 

being a polynominal of the (n1 + ;flt degree, we have 

for all values of r greater than R which is a suitably chosen positive 

value. Secondly, we consider 

"1(")2 I(z)Pn 
1

112 ( M) _::_+- __::__ + ...... +p- - I 

lf 
F.I an 2 an n an 

1-- e 
n,+I an 

where pk is the greatest of P,,
1
+ 11 Pni+2' ...... , Pn

2
• We have, however, 

by (5) 

Pn< logn log21t ••••• • log-p1_11l 

logr" 

so that Pn< lognlog2n ..... .logP,_1n= (logn)1+u where r/ is a positive ·value 

which can be made as small as we please by taking 1t sufficiently great. 
Accordingly 
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As lim log1,,_11t 

n~,, logr,. 
':J'+zll 

r' 

p' and by (6), we have 

n2L e
1
,,_

2 
where e11 1s a certain positive value which can be made as 

small as we please by taking u2 sufficiently great; so that 

where e1 is a certain positive value of the same property as e11
• As 

ltz increases with r, we have 

for r ~R2, where R 2 is a certain positive value which corresponds to "1' 

we have only to 

repeat the process carried out in §2 and the same result must follow 
A 

or 

I 

00 I i' lr Le1,,-1 
n2+I 

for r ~R3, where R 3 is a suitably chosen positive value. vVe have 

accordingly 

I \ I 
111 

I I 11

2 

I I 
00 

I f(z) = :i lf · lf · lf 
n~I n1+1 n2+1 

p' ,. 
• e 

J/-1 
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for r_>R1 , R 2, R 3, or 

I 
\ r'+s 

/(z) [Le;;,_
1 

for all value of r >R, where R is a certain positive value corresponding 
to e. 

4. .lemma. .let the zero points {!( a transcendental integral function 
<p(z) be :::=a1 , a2, •••••• ,a,,, ...... ando<rnLYn+i(n=1,2, ...... ) where 
rn = I a,, I . For an arbitrarily assigned value ef I z I = r, find rn as to satisfy 

sr,,Lr Lsr,,+i, 

wlzere s zs a certain integer greater than 2. Then 

nlog(s- I)< logll~(r), 

where ~H;_(r) is the maximum 'i.'alue of I <p(.:::) \ for \ z I = r. 
The proof of this lemma is given in Borel, loc. cit., p. 73. 
Theorem 3. Er:tension ef Hadamard's first theorem1 to entire functions 

ef the transfinite orders. 
Let F(.:::) be an entire function of the transfinite order wP;-2p m1d the 

expomnt ef c01z,.1ergency qf the moduli of the zero points ef F(z) be 
w11'-:-

2p'. Then wr'-:-2,r/ Lw1'-:
2p. 

Suppose that the zero points of F(.-;), which are different from the 

origin, be :J=a1 , a2, •••••• ,a,,, ...... , and that o<rnLrn+1(n= I, 2, .....• ) 

where rn= I a,, I• Then the exponent convergency of r1 , r2, •••••• is w1"-:-
2p'. 

As F(z) is of the order w 1'-:-
2p, for any prescribed positive value e, there 

corresponds a positiYe value R such that 

\Ve have, however, by the lemma 

nlog(s- 1)< logiV(r) 

o+' 
L locrbe'" -
- JJ--1 

,.P+s 
=e 

j)-2 

for 

for r ~R, where sr,,Lr Lsr,,+i· Accordingly, 

o+z p+ 0 ~+E n+ I I r' 2 ,. - 2 (s",,+1)' 
n+r<------e L----e <-,-----e n log(s-1) 1H - log(s-1) p--Z log(s-1) ,,-2 

from which it follows that 

1 L'exposant de convergence p de la suite des r,, est au plus cgal a p'. (Borel, !oc. cit., 

p. 74.) 
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where c11
( >c) is a certain positive value which can be made as small 

as we please by taking R sufficiently great and c1
, sufficiently small. 

00 

But ,-, --1
- is convergent and so also for 

~ I-Lei 
'il'=-l 1l I ... 

w1''-;-2p' L<u1,-2(p + c"), 

which holds for any positive value E
11

• Hence we have 

proving the proposition. 
5. Theorem 4. Extmsion if Hadamard's 

functions if the transfinite orders. 
Let 

second tlzcorem1 to entire 

be an mtire function if the order wJ>-:2p. T!tm,for any positi,,e "Z 1a!ues e 

(howe,,,er small) and C (howez,,er great) there is a circle w!tose radius is 
greater than G and on ,ulzic!t 

pH ,. 
[ /(.c:) [ .::::,.e -e p-2 

Let all the annular domains which are expressed by 

be excluded from the total .c:-plane, where 

e1 is a certain positive number. Determine 111 as in §2, and for an 
arbitrarily assigned value of z (r>rn) in the remaining domain, determine 

l 

1t2 as in §2, which is necessarily greater than or equal to 11L. Then 

1 ttant donnes un produit canonique C(c') de facteurs primaires d'ordre p et un nombre 

positif arbitraire e, on peut touver une infinite de rayons indefiniment croissants sur chacun 

desqnels on a l'ineg<1lite ice~) I> e-ro+s. (Borel. foe. cit., p. 76). 
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\Ve now consider .ll{-(r-~). 
n=l tlll 

~ r" (___!___- 1)111 
r111 

/+z, 
~e-:{'JJ-~ 

for r ~R1 , where :::1 is any assigned positive value and R 1 is the corre
sponding value to it. Secondly, we consider 

where pk is the greatest of Pni+I' p
111

+v ...... , p
112

• But we have, 
similarly as in § 3, 

• I+c1I r+c11 
p.,<(logk) L(logn2) 

where :::" is a positive value which can be made as small as we please, 
by taking n2 sufficiently great. Hence, by similar reasoning as in §3, 
we have 

for r ~R2, where :::2 is any prescribed positive value and R2 is the corre
sponding value to it. We consider lastly 
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z I ( z )Z 1 ( z )f,. co -+- - + ...... +- -
lf (r-_!!,_ )ea" z "" i'n a,, . 

11t+ 1 all 

By repeating the process 

carried out in §2, we have 

A 

and accordingly 

for r~R3 , where e3 is any assigned positive value and R 3 is the corre
sponding value to it. Consequently we have 

for r ~R, where e is 
value to it. 

/+s, /+'2 
_\. e-ep---z • e -ep-z 

PH 
r 

~e -ep-2 

rr+~!I 
e-el'-z 

assigned positive value and R is the corresponding 

\Ve have excluded all the annular domains expressed by 

r -
" 

(ll=I,2, ...... ) 

from the total z-plane and have considered the points m the remaining 
domain. But the sum of all the annular domains 

For any positive value o<E. 1 there corresponds a positive integer N 
such that 

for 
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oo I 

As cu1''-:2p' Lo11':""
2p (§4), ~~- is convergent and so also for 

n=.J..Y r,,, 

e~2 
~ rn 
""'-i p+s' ; so that the sum of all the annular domains 1s finite and 
'li==l rn 

e1,_2 
there exists a circle whose radius is greater than G and on which 

p+e 
r 

I f(z) 1 ~e-ep-2 . 
Corollaly I. Let J;_(z), /2(:::), ..... :fi;;), be the canonical products of 

ill_z 1/2)-2 p'k)_2 . 
tlte orders w • (11, <I.I • (12 , •••••• , w • '°" respectively. Then for any 
prescribed positive value e, there is a circle whose radius is greater than 
any prescribed positive value G and on which 

/i+E 

(i= I, 2, ...... , k). 

Let the moduli of the zero points of f;(z) be r/il, r/il, ... , r,,(il, ...... . 
p .+s ,. ' 

Then, we have, by the theorem, I //s) I ~e- ep<iL2 for the values of 
r which are greater than G and satisfy 

· for a certain value of ll. But 
k r,:i fiJ 

~~ rn 
""'-i-"""'-
i~l ?1---l p '+s' 

/i) 'l, 

" e/iLz 

being finite, the sum 

of all the annular domains is finite and there exists a circle whose 
radius 1s greater than G and on which 

,.Pi+s 

I f.(z) I ~ e - e1/i!_z' 

Corolla!y 2. Let 

F(z)-eFi(z),J
0
(z) 

Fi(z)= eRi(zl.J;_(z) 

F ( ) - F,r-1(z) r ( ) 
1,-2 Z =e 'J~2 Z, 

(i= I, 2, ...... k). 

where FP_1(z) i's a po!ynominal of t!te plh degree and f;(z), (i=o, I, ... , 
(i) 

p-2 ), is a canonical product of the order w 1H;+i)Pi• .{f c1.1P;-2p be greater 
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JiiL2 . 
tltall (I) • p;, (z=O, r, ... , p-2), tlte same wlll be true ef t!tc order ef 
F(.::). 

For any prescribed positive value c:, there exists, by corollary r, 

a circle whose radius is greater than any prescribed positive value and 

on which rpi+c 

I ./4 :::) I ~ e - c1/iL:2+0, (i=O, I, ...... , p-2). 

As J--,~·-1(z) is a polynominal of the pt!, degnee, er'i,-i(z) is a regularly 

increasing entire function of the p111 order, that is, the maximum value 

of I eFp-i(c) I for I .z j = r lies between e,.p-sand e'"p+s for sufficiently 

great r. Hence, we have, on the circle 

max 

• 1)-2 ).!:.2'2) 
smce w • p ><u • p11-2 • As and e 

are of the same orders, we have, similarly, 

I . J)-2 > p( JJ;-3J 
on t 1at circle, s111ce 01 • p 1u -.- f'p-3• 

ing, we have 
By repeating 

,_p-s1,-1 
max I F(z) I = M(_r) ~ ep-t 

the same reason-

on the assigned circle, where c:JJ_1 is a certain positive value which be
comes as small as we please for sufficiently great r. Determine r so• 

(i) 

large that <uP-2(p-c:JJ-1) becomes greater than the greatest of w1'-;
2p; 

(i=o, r, ...... ,p-2). Then the order of F(z), being greater than or 
(i) 

equal to mP-
2(p-c:JJ-1), is greater than the greatest of w1>-:-2p;, (i=o, ,, 

...... , p-2), which is the proposition. 

Corollary 3. l.f z r ( z ) 2 
1 ( ., )t" 

F(z)=eQ:_z) .ilf(r-~)ea;;:-+z a; + ...... + Pn -;,;: 
n=l an 

be ef t!te wP-;2pth order, eQ(z) will be, at most, of tlze same order. 

Suppose that the order w 1"~
2p' of cQ(o) be higher than w 1'-;

2p, and 
determine two positive value c: and c1 such that 

Then there exists a positive value R1 corresponding to c:, such that 

for 
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By theorems 2, 3 and 4, we have 

for any z (r ~R2) in the exterior of the annular domains 

(n=I,2, ...... ), 

p+s 

I 
Q(z) I 2/ 

and, accordingly, we have e < e 1r-2 for ::: (r ~ R1 , R2) in the 
same region. The order of eQ:z) however being w 11

-:-
2p', 

r/-z1 ?'+sf 
r' ( I Q(zJ I ) ,, 

ep,-l L l the maxim um value of e for I z I = r J L ep,-l 
must be satisfied for infinitely many values of z which diverges to 
infinity, and from what has been proved, they must be in the interior 
of the annular domains. The maximum value of I eQ(z) \ for I::;\ =r 
increasing with r, we have 

---)p'-s' 
p+a; i,P'-s' 

rn, 
ep-2 bJp-1 

L the maximum value of j eQ(z) j for 

L the maximum value of I eQ(z) j for 

where 

!zj =r 

!z! =rn+~ 
?
,P • 
n 

ep-2 

This is however impossible for sufficiently great u, since 

<,.;"-2(p'-c')>wP-\p+c) and lim 1 o. Hence, the proposition 
n='.fJ r~+a. 

ep-2 ts true. 

Corollary 4. Let 

F(:::)-===efii(z) •/0(z) 

Fi(z)=cF2(z),J;(:::) 

J,~,-i:::) =eFp-1(z) ·/2-lz), 
wlzere Fp_1(z) is a polJ11zomi1tal and f/z), (i=o, r, ... , p-2), is a canonical 

(i) (i) 

product of tlze order w 1,-{:+0pi• Tlzen <l)P;-
2pi, (i=o, r, ... ,p-2), is at most 

equal to tlze order of F(:::). 
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Let the order of F 1z) be wP-;-2/i. Then by theorems 2 (§3) and 3 
(OJ 

(§4), the order wP---:2p0 of _/o(z) is, at most, equal to w1'---;2fi. As eFi(z) is, 

by corollary 3, at most of the order 01"---:
2p, Fi(z)==cr2(z).J;_(z) is at most 

of the wP-r~+ilptli order. Hence, again by theorems 2 and 3, the order 
w w 

(l)v-~2+1lp1 of J;_(z) is not greater than wP-C'f+llp, or wl'-;-2Pi==wP-:2p. We 

have similarly by the alternate applications of theorems 2 and 3 and of 
corollary 3, ii> wP-:2pi L wP---:2p (i=O, I, ...... ,p-2). 

6. 17teorem 5. if the order ef infinitude ef r,,= [ an [, (n= r. 2, ...... ), 

be determinate, tlze function. 2 p 

Q'o) )00( N ) ~+:__(_!__) +.,.,.,+~(~),. 
F(z) == e ~" ,c; :! 1 --;{,-:- /'" 2 a,, Pn an 

wz!l be illcreasing regularly. 
We assume that F(z) is increasing irregularly, and that the exponent 

of convergency of r,,, (n= I, 2, .••... ), is equal to the order of F(z)1. 
Supposing that c is any prescribed positive value, and that R is the 

corresponding value, we have by theorem 2 (§3), 
,.P+s 

[ F(z) [ L ep-1 for all 

As F(z) is, by assumption, increasing irregularly, there is a number 

(1)1'
1
-:-

2a, finite or transfinite, such that wl'---;2p> o;1'1-:-2a and [ F(z) [ L e;L 
for infinitely many values of r which increase without limit. Supposing 

that [ ,c: [ =r be one of such values, determine a positive integer n as 
to satisfy . 

where s is a prescribed positive integer greater than 2. Then we have, 

by the lemma in §4. 

or , > {logp,_z(/zlog(s- 1))} r, >{I ( + )}f-c' 
1 n+1 S ogpl-2 7Z l 

where c1 may be taken as small as we please for sufficiently great n. 
The inequality ( r 2) holds for infinitely many values of n. .Supposing 

that those values be n1 < n2 <. ...... < lli < ...... , we have 

Jim log-v,_111i <-~a_ __ , 
;~~" logr

11 
1 - ar::' 

1 The assumption is legitimate by the generalized theorem of Picard in il7, Chap. II., 

the proof of which is independent of the auove theorem. 
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that is, the order of infinitude of r,. (n = r, 2, ...... ), is indeterminate, 

proving the theorem. 

T!teorem 6. Let 'le M ....:__ + !...( _:__} + ...... + _2.._( ~ /" 
/(,:;) =z"lf ( I _ __':'___) e "n 2 a,, Pn r,, 

n---4 a,1, 

be fl/ tlze order w 1'72fi. If t!te function f(s) be increasing ngularl.J1, t!te 
order ef infinitude of r,.= [ a,. I will be determinate. 

\Ne assume that p~31. Supposing that the order of infinitude of 

r,, is indeterminate, let 

( r 3) log1r-11Z < a 2 

logr,, 
for infinitely many integral values of n, where a is subjected to the 

condition that a<p. Suppose that It (>n1 ) be an integer which 

satisfies ( r 3), where n1 is determined as in §2, and put 
1 

(r4) (logJJ __ /t)• =r, 
where s is subjected to the condition that 

a<s<p. 
z l ( z )

2 
I ( z )P,,, 00 -+- - + ...... +- -<!( 1 _ :,, ) e "n 2 a,, i'n a,,, 

) ·n 1 li-1 er.; 

= z 'lf . lf . lf . 
n=l n 1+1 h 

) ,,, ( N ) 

Z ·7r I-_::-_ 
n=l a,,, 

being a polynominal of the (n1 + ).)!h degree, 

) ,,, ( z ) I ,.s z 'lf r -- < ep-l for sufficiently great r. \i\Te have, similarly as 
n-=1 an, 

in §3, ., (louh{t"'io r 

l
~ff\</z{r+(log/t)r+, }e b g' 

11 1+1 
or 111 virtue of ( 14), 

I 
h--1 I 1,(l+E

11
)s 

lf L ep-1 ' 
,1,+1 

where c'1 is a certain positive value which may be taken as small as 

we please for sufficiently great It. 

I 
00 ( - ) ~+!...(....:__)2+ ...... +_!..._(~)i'"1 ,!,, I - :, e "n 2 a,, Pn a,, 

I ( r')Pn+1 
· I ( ,- )p,,+2 

"= lr /'" + I r,,' + j,, + 2 G, + ........ . 
n=-h 

1 For p =2, see Borel, loc. cit., p. IIO. 

2 By theorem 3 (~4), the exponent of convergency ,.,P':-
2 

p' <,}':"2
p. 
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\\'e have, however, from (r 3) and (q) 
r7,> logp_/t=r'. 

As a<s, we have _I!_< I- 1 for sufficiently great It, and ac-
s log1Hlt 

,; 1 

cordingly r<rn' < r,.1- togJJ __ /t , which satisfies the inequality (6) in §2. 
A 

Hence we have, as in §2, J ,!, \ < e { ~~-i where A and B are cert~in 

~..,( r )fn+I log n 
finite values such that -=! ,:: = .. d and lo;,: < B for n~lt, so 

that I,!,: <e;._1 for sufficiently great r. \Ve have therefore 

: 00 I rs ,fi+S"_,s rs 
I ,Ii < ep-t • ep-t • ep-i 

(15) 

where e1 1s a certain positive value which diminishes with As 
r 

there are infinitely many values of It which satisfy ( r 3), the relation 

( I 5) holds for infinitely many values of r which increase without limit, 

that is, f(s) is increasing irregularly, which is the proposition. 

CH,\PTER II. 

TRANSCENDENTAL ALGEBRAIC FU~CTIONS. 

INTRODUCTION. 

Supposing that the zero points of a transcendental integral function 

JJ/s), (i= I, 2, ...... , k), be z=aa, ai2 , ...... , a1k, ...... , b11 b2, ...... , bk, ...... 

where b;/s are the common zero ponts of Pi(,~), Pl~), ...... , Pl'J), put 

and 

1 If the number of b,. 's be finite, say • v~ fi..z)2 ·1f ( r --f,- ). Similarly for _/1 '. ::), (i= r, 
// 1 II 

2, ...... , k). 
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in which p,.'s and p\~J's are determined by the condition (S) in §2, 
chap. I. Put 

(i= r, 2, •••.•• , k). 

where P;,(z), (i= I, 2, ...... , k), is evidently an entire function. If the 

orders of ePi(z)-P1(z), (i=2, ...... , k), be all less than the greatest of all 

orders of eA(z), (i= r, 2, •••.•• , k)1, put 

f((z) = /'~(s 1/(z) 

and in the other case, put 

Definition . 
...... , Pk(z) are 

Definition. 

K(z)-= f(:::). 

When K(::::) is a constant, we say that Pi(:::), Pl:::), 
relatfre prime. 

A function w(.:::) which is defined by 

where 1z is a positive integer and P.,(,:::), Pi(z), •..... , P,1(2:) are transcen
dental integral function of :::, is called a transcendental algebraic fullction 
of z. 

Definition. \Vhen the left hand side of ( r) be not decomposable 

into factors of the same form, and Po(z), Pi'.,::), •..... , P,,(s) be relative 
prime, ( r) is called an irreducible equation. 

Definition. In an irreducible equation ( r ), if 01 1'--;
2p be the highest 

of the orders of P0(,:::), Pi(z), ...... , P,,(z), (1) is called a transcendental 
algebraic equation of t!te wP---:2p1h order and tlte nth degree and the function 

defined by ( r) is called a transcmdmtal algebraic function of t!te w 1'--:
2i'11, 

order and t!te nth degree. 
I. Tlteorem I. A transcendental algebraic function behaves algebraic

ally in any finite part qf tlte plane, the number of the branches being 
constant; and conversely. 

We may assume, without loss of generality, that (r) is an irre

ducible equation. Then the function a.1(2:) defined by (I) is evidently 
n-valued. As Po(z), l~(z), ...... , Pn(::.:) behave regularly in any finite 

domain D, w(.:,) behaves algebraically in the neighbourhood of z in D, 
at which J~(z) and the discriminant .1J(z) of (I) do not vanish. The 
zero points of Po(::;) in D are finite in number, and at those points, at 

least one of the branches of w(z) becomes infinity, the infinities, how-

1 This occurs only when aJI eA(z), (i= 1, 2, ...... , k), are of the same orders. 
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ever, being of finite orders, since P.,(z), Pi(.s), ...... , Pn(z) behave like 
polynominals in D. The equation ( 1) being irreducible, 2J(z) does not 
vanish identically in D, and it is an entire function. Accordingly, the 

zero points of 2J(z) in Dare finite in number and so also for the branch 
points of (L)(z). Moreover, as P0(z), Pi.(z), .....• , Pn(z) behave regularly 
in D, (L)(z) behaves algebraically in the vicinities of the branch points. 
In short, 01(z) has, at most, only a finite number of singular points in 

D, and the singularities are poles, branch points, or the combinations 
of them, that is, (L)(z) behaves algebraically in any finite domain. Con

versely, suppose that (IJ(z) is n-valued and behaves algebraically in any 
finite domain. Then any symmetric polynominal of the branches <tJ1 , 

w2, ...... , <tJn of <u(z), being one-valued, has, as singularities, only a finite 
number of poles in any finite domain, so that it is a meromorphic function 
of z. Accorningly, (L)(z) is the solution of 

lf (w-oii)=<u" +Ri(,:,)w"-1 + ...... +R,/:,)=o, 
f.__-c,1 

where Ri(:::), Rh,;), ...... , Rn(:;) are meromorphic functions of,:,. Hence, 

putting Ri(z) = P/z), ...... , R,,(z)= ]~,(:,;) where l~(z), P
1

(:::), •••••• , 

Po(r:) P0(z) 
P,,(z) are entire functions of z, we have the proposition. 

2. Tlteorem 2. Let <u(z) be a transcendental algebraic function of 
tlze wP-:-2//h order defined bJ! 

(r) 

Tlzen for any prescribed positiz;e value c, t/zere corresponds a finite i 1a!ue 
R sztclt t!tat o+s 

I Po(::;)w [ L. e;_1 for all r= I z [ ~R. 

Suppose, if possible, there were a sequence of values JJ1 , ::;2, ...... , 

p+s 
Z;, ...... which satisfy limzi=oo and [Pu(z)<u[>e;:_1 . Then by (r) 

i=Y:! 

I l{oJ I L I P1 I + I P2Po [ • I Pow 1-1 + • • • • • • + [ l~Po"-1 
[ • [ Pow 1-cn-IJ 

L j p I ~I Pow 1-:•, 
I- /Po<o/-

where IP I is the greatest of j P1 I, I P2P0 I, ...... , j P,,P/-1 
[ • As 

p+s 
r 

/Po(:::£)w(JJ;)l>epi_1 by assumption, where r;=/:::;/, (i=r, 2, ...... ),we 
have 

so that 
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I - \ Po(zi)w(zi) 1--n Lz 
I - [ P0(z.)w(z;) 1-1 

-

Fi(z), Pz(z)P0(z), ...... , Pn(z)Po(zt--1 being entire functions at most of the 
I PH 

<uv--;2pt!t order, we have [ P [ L 2 e; __ 1 for r :-:-...R2• Then for all zi such 

as ri:-:-...R1 , R 2, we have 

,-_~H I ,_PH 
1 
~H 

e/-1 <[Pu(zi)<u(zi)l LzeP'_l ·2=ep'_l 

which is a contradiction. Hence we have the proposition. 

Corollary r. For any positive value E, there corresponds a finite value 
I _f) (z) \ p+s 

R suclt thatj <~,(z) i L e;_1 for all r= [ z [ :-:-...R. 

Corollary 2. Extension of Hadamard's second tlteorem1 to transcen
dental algebraic functions. 

Let <u(z) be a transcendental algebraic function if the order wP;2p, 
defined by (I). Then for any prescribed values E ( however small) and G 
(lwwever great), there will be a circle whose radius is greater than G 

pH 
and on which \ w(z) [ L e~l1 • Similarly, there will be another circle of 

P+E 
the same property, on which \ w(z) \ ..:se-e1,~2 • 

Supposing that P0(z)=eP(z)f(z) where /(z) is the canonical product 
of the order wP'-:-2p' (LwP-2p) of all the zero points of Po(z), divide both 
members of (1) by eP(z), by which the order of (1) is invariable. Then 

we have, by the theorem, 
PH 

\f(z)lu(z) / L e1~1 
By Hadamard's 2 nd theorem2 (for p' =2) or by its extension3 (for p' :-:-.,.3), 

there is a circle whose· radius is greater than any prescribed positive 

value G, and on which 
[z (H [zf+s 

\Az)[ >e-ev,-2 :-:-.._e-ev-2 

so that \z(+s lc\p+s' 
\ w(z) [ = [f(z)w(z) \ · [/(z) 1-1Le2e1,--2 < ep--1 

where E
1 may be taken as small as we please by taking [ z \ sufficiently 

great. Thus the first part of the corollary is proved. In precisely the 
same way, the second part of the corollary may be proved by aid of 

corollary I instead of theorem 2. 

1 See ~5, Chap. 1. 

See foot-note in ~5, Chap. 1. 

3 See ~5, Chap. 1. 
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3. T!teorem 3. Let 

(2) Ji(z, w)=L0(z)wm+n + Li(z)w"'+n-! + ...... + Lm+n(z), 
(3) fl,::, lu)=ll:fo(z)<u"'+ ll:f,_(z)<u"'-1 + ...... + 111m(z), 
(4) _fs(z, lu) =No(z)w" +Ni(z)w"-1+ ...... + N;,(z), 

where L,(,,:), (i=o, I, ...... , m+n), are all mtireftmctions and M;,(z), (i= 
o, 1, ...... , m), and N;(z), (i=o, r, ...... , n), are generally meromorphic 
functions. Supposing that 

we may determine .lz(z, w) and /2(z, lU) such that their degrees in <u are 
equal to those ef 1/r:, w) and .fs(z, <u) respectively, while their cod.ficients 
are entire (ullctions and the functional relation (5) stilt holds. 

ffe/4(z) . -
_ Let lli;(s) = M\z) , (z=o, r, ...... , m), where Jvl(z), ll:fo(z), ...... , 

l/1,,,(:::) are all entire functions and ll1(z) is the canonical product of the 
primary factors of the infinity points, at least, of one of llffc(z) (that is 

to say, in the case that all .lv/4(z) are rational, Jvf\z) is the least common 

multiple of their denominators). Similarly, we determine N(z), N 0(z), 

l½_(z), ...... , 1V,:(z). Supposing that a be an arbitrary zero point of Jvl(z), 

there exists, at least one JJ{;(z) which is indivisible by (z-a). Let 

l/1",,(z) be the one whose suffix is the least among them. Similarly, if 

there are N which are not divisible by z-a, let Mc(z) be the first one. 
Comparing the coefficients of w"'+n-Ch+kJ in (5), we have 

M(z)N(:1)L,,+iz)=llfo(z)M,+lz) + l/1;_(z)iv;,+k_1(z) + ...... + J/,f,._1(z).zv',;+1(z) 

+hf;,(.r:)N/z)+ iVJ;,+iCz)Nk-1(z)+ ...... + .lvfa+iz)No(z), 

in which all Jlf;(z)'s whose suffixes are greater than m, and all N;,(z)'s 

whose suffixes arc greater than n are zero. Here, on both sides, all 

terms except Jvllr:)iv;/z) of the right hand are divisible by (z-a), which 

is impossible. It follows, therefore, that all .M(z)'s must be divisible by 
(z-a). Consequently, a being an arbitrary zero point of Mtz), all ,M(z)'s 

are divisible by Jvf(z), Similarly all 11,f;(z)'s are divisible by N(z). Put 

= il/4(z) 
.lv/4(z) = N(z)' (i=o, r, ...... , nz), 

= N;,(z) 
Nl,s-)= 111(:::)' (i=o, r, ...... , n). 

Then ilI(,;::), (i=o, 1, ...... , m), and N/z), (i=O, 1, •..... , n), are all entire 
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functions and 
I2 (z, (t))=llfo(z)(t)'"+ ...... + M,n(z), 

/2(,:;, w)=No(z)(t)"+ .....• =N,,(z) 
are desired functions. 

4. Theorem 4, Let L;(,:;), M/z) and N;(,c:) in (S) be entire functions 
and 1li;(z), (i=o, I, •..... , m), be relative prime.1 If <u 1' 1 -:-

2p1 , (t) 1'•-:-
2p2 and 

wP,-;2p3 be tlte higltest orders among tltose ef L;(z), (£=o, I, ...... , m+n), 
ef Jf;(z), (i=o, 1, •....• , m), and of .l\l;(z), (i=o, I, •...• , n), respectively, 
(t)P,-;2,01 wzll be equal to tlte greater of <uP 2 -;

2p2 and <uP•-:2
(13 • 

Lo=JlifoNo 

L1 = Jl,foA7i + 111;_ N0 

(6) 

Lm+n = .11fmN,,. 

As L0 =Jlfo,¼ by (6), the canonical products in Jl-'.fo and N;, can not be 
of higher order than L0, that is, at most of the luP1

-:-
2p/'' order, so that 

we may put Jl!fo-==.Jl-'foek and N 0=J¼•e-k respectively where M0 and N0 

are entire functions at most of the (t)P,.- 2p/!t order and k is identically 

zero or e1
' is an entire function of order higher than £u1'1

-:-
2p1 and has 

no zero point. Putting ,11;=Jl~•e" (i= 1, 2, •....• , m), and N;=N;•e-", 

(i= I, 2, •..... , n), and solving X:J; (or N;) from m+n equations except 

the first in ( 6), Jil; ( or .l\7;) may be determined as an algebraic function 

of Li, L2, .... .. , Lm+n, 11'fo, and i¼. 
Ao(L1, ...... ' Lm+n• Jlfo, 1¼)11.J/ + ...... + As(Ll' .....• ' Lm+n• Jlfo, No)= 0, 

where s is a positive integer, and all A's are polynominals of L1 , L 2, 

...... , Lm+n, J1fo, lVo, that is, entire functions at most of the (t)JJ'~2p/h 
P1+s 

order. Accordingly we have, by theorem 2 in §2, I A0Jl!I; I L e;;,_1 for 

r ~R, that is, A 0Jlf; is an entire function at most of the w 1'a.-2p/!t order. 

Put A 0 =eQofo and ~=eQ1-J;_ where Q0, Q1 are• entire functions and fo,J;_ 

are the canonical products of the zero points of A0 and }Ill;, respectively. 
As A 0.f1f;,=eQo-i;Q¼:fi is at most of the order wP 1 :

2p1, the same is true, 

by §4, Chap. I, of / 0-/i and accordingly of J;_. Similarly, as A 0 and 

A 0111i are at most of the order £uP,-;2Pi, the same is true by cor. 3 in §5, 
Chap. I, of eQo and eQo+ Qi, so also that of eQ1. Consequently, 

eQi-J;_-==.31;, is at most of the order OJP 1 -:
2p1. But Jl-'f;-==.e"M., (i=o, I, 

1 See Introduction. 
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.....• , m), being relative prime by assumption, we have k==O, so that 
all 1}/'s are at most of the (l)P 1 ----:

2p/h order, and so also for all N's. 
Hence we have (l)P 1 :

2p1~(1)P2 ----:
2p2 and (uP 1-;

2p1~(1)P3 ----;
2p3 • Now, suppose 

that (uP 1 ----:
2.oi > (l)P2----;

2p2, (1)1' 3 -:
2p,1• Then in virtue of m+ n + 1 equations in 

( 6), the orders of L0, L1 , ...... , Lm+n are not greater than the greater of 

(ul' 2 :
2p2 and (l)P3-;

2p3 and accordingly are less than (l)P,-:2Pi, which is a 

contradiction. 

5. Theorem 5. No transcmdmtal algebraic equation ts satisfied by 
a tmnscendental algebraic /unction ef tlze lziglzer order. 

Let (l)(z) be a transcendental algebraic function of the wr 1----:
2p/7' order 

defined by 
(r) l~(z)lu"+Pi(.s')cv"-1+ ...... +l~,'.;;)=o 

and 
(7) Qo(z)(l)'n+ Qi(,:::)w'n-1+ ...... + Qv,(z)=O 

be a transcendental algebraic equation of the (l)r 2 -:!p/h order where 

wP 2 --::
2p2 < wv,-;2p1 • As ( r) is irreducible, in order that (7) be satisfied by 

w(,:::) defined by ( r ), it must be decomposable, that is 

Q.,(.:::)w"'+ Qi(z)w'"-1 + ...... + Q,a(,i) = (1~(z;w"+ ...... +P,,(z)) 

X ( Ro(z)w"•-n + Ri(z)uJn-n-t + ...... + R,n_,,(z) )-

Qo(::;), Qi(,3'), ...... , Q,n(z) being relative prime, R 0(z), ...... , R,,,_,,(,:::) are, 

by §3, entire functions and accordingly by §4, Pu(,:::), Pi(:::), ...... , P,,(z) 

are at most of the order (uv 2 ----:
2p2, that is, of orders lower than w1' 1 -:

2p, 
which is impossible. 

Corollary. No transcendental algebraic .function satisfies an irreducible 
equation ef the lziglzer order. 

This may be proved in the ~ame way as the above theorem. 

6. Theorem 6. Let R;(z), (i= I, 2 ....... , m), beiug d(lfcreut from 
,:::ero, be a rational or a meromorphic /undion ef a lower order than 
eK;,(z), w!zerc I<;(,i) is a polynominal or mi entire /unction ef order lower 
titan !2 ,· let Ro(z) be a rational function (zero being included) or a mero
morp!tic /unction of a lower order titan all eK/0

), (i= r. 2, ...... , m). T!tm, 
m order t!tat 

(8) Ro(,z:) + R/.:::)e1'11z) + ...... + R,,,(.:)eA~,,(c)=O, 

it is necessary that, /or each K;(,:::), t!tere exists, at least one Kis) (i~j) 
suclt t!tat bot!t eAi(0) and eII':i(z) are of !zig-/ter orders than eAi(z)-Kk), and 

all tlze sums if t!tose terms relating to one another in suc!t a mmmer, and 
accordingly R 0 also, ·vanish identically. 
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Supposing that the theorem is untrue, we may assume, then that 

in (8), no K,(::;) has the property above described; for otherwire we 
combine all the terms relating to one another in such a manner into 

one term, by which the coefficients of the combined terms, by assump
tion, do not all vanish identically. First,. we assume that Ro(:::) =0. 
Then we may assume, without loss of generality, that eKi.(z) is one of 
the lowest orders in eK,(z), (i= I, 2, ...... , m). Dividing both members 

of (8) by Ri(z)eKi.(0
), and differentiating with respect to ::;, we have 

(S)' 

does not vanish 

identically. For if we have, by inte-

· R. C' -(A··- 1•·1) h C. d'ff, f grat10n, -' = e ' w ere 1s a constant 1 erent rom zero. 
R1 

By the assumption that at least one of e1't and eA:, is not of a higher 
order than eK,-K1 and that eK'i. is one of the lowest orders, e1•i-Ej_ is 

not of a lower order than eA,. Suppose that eA";-A1 be of an order 

lower than eK,. As the order of the product of the finite number of 

entire functions is . not greater than all of their orders, the order of 
eK,=el0,-A1,el'1 is not greater than that of e10,-A1, and accordingly by 

assumption, is less than itself, which is a contradiction. Similarly el,~- 1'1 
is not of a higher order than el.I_ Hence eA'i and eAI-A, are of the 

same orders. By the assumption that R 1 and R, are of lower orders 
than el(j_ and eA·, respectively, and that e1'1 is one of the lowest orders 

in eK;,, (i= r, 2, ...... , m), the order of R; 
1 

is less than that of e1'1, that 
R1 

is, is less than that of el{,-K1, and the above identity does not hold. 

The order of an entire function does not increase by differentiation,2 and 
this theorem may easily be extended to mermorphic functions, so that 

d ( R;) . f 1 · 1 . ·d . 1 R; s· ·1 -1 d(Ki-K1) - - ts not o a 11g 1e1 01 et t 1an -. 11111 a1 y, --- --~--"-
dz R1 R 1 d:: 

is not of an order higher than l(-K1 , which is of a lower order than 
eKi-A1. Hence, it follows that eKi-.l(j_ is of an order higher than 

l All rational functions are of the order aero. 

See Borel, L,·ro11s sur !e's J,;,nctiom m<'romorp1ics, p. 60. 
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R?leA;-A·L + R;1leI,;i-Ki_ + ...... + Ri,!leA:.n-Ki=O, 

where R/>, being different from zero, is a rational or a meromorphic 
function of a lower order than el,;.-A;., By repeating the same reasoning, 
we would have 

which is impossible, since R;;;i-lJ is different from zero. 

Secondly, we assume that R 0(z)$0. In this case, we may prove 

the theorem, by dividing, at first, both members of (8) by R0 whose 
order is less than those of eA\ (i= r, 2, ...... , m), and then by proceeding 
in the same way as before. 

7. \,Ve are now to prove the generalized theorem of Picard. Let 

and 
(9) (r, 2, ...... ), 

be irreducible equations of the wi>-:-21/11 order and the nth degree, and of 
the cv 11 ;-:

2,{)/h order and the mt!t degree respectively. In order that w,=ciJ 

at a certain point, it is necessary and sufficient that 

]~, Pv ·········, J~p o, o, ............. , 0 =s-'1,1SC1+s\2sc2+ ...... +s-"rnt9J1 
o, Po, ..... ...... , P,,, o, ............ , 0 

o, ...... , 0, I'0 , ........................ , 1~, 
Q~il, Q\il 1 ......... , Q;,'.!, o, O, ............ , O 

o, Q~0 , ••...••...••.•• , Q;},l, o, ·········, 0 

o, ............... , o, Q~n, ............. , Q;,i;,i 

vanishes at that point, where Jl.f=in+nC,,,= 
(m+n) ! 
m! n! 

and s-'• and 9 are 

homogeneous polynominals of the nt!t degree in Q:0 and of the mt!t 

degree in l' respectively. 

71zeorem 7. Picard's theorem g-enerali:::ed. 1 

1 Le theoreme de l\'I. Picard :-Une fonction enticre 11c) telle que Jes equations f1s)=a, 
]1z)=b, a=l=b, naienl pas de racines, se reduit necessairement i't une constante. (Borel: Lerons 

sur ks .fo11ctions cntieres, p. 88). 

Extention aux fonctions meromorphes :-Etant donnee une fonction meromorphe .fl•") 

d'ordre ? et une autrc fonclion meromorphe quelconque y(z) d'ordre inferieur, parmi !es 

equations /(c )= '!{o) ii n'y en a pas en general dcxceptionnelles, et s'il en a, ii y en a deux 

an plus. (Borel :-Lerons sur !es .fo11diom m/romorph,'s, p. 66). 
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Let w(z) be a transcendental algebraic function cf the wP--:2pt!t order 
and the nt!t degree and w;(z), (i= 1, 2, .....• , r), be any transcendental 
algebraic functions cf tlte oJPc:2p p, order ( wr>;--:2pi < wP--:2p) and tlie mth 

degree respectively, under the condition tlzat none cf tlze determinants 

'?r1 I ¢r2I ..•........• cjJr"I 
'fr1 2 ¢r22 •••••••••••• ¢·r"2 

(ro) 

,@zishes idmti'cally.1 Then all the orders cf the canonical products cf the 
primary factors corresponding to the poi1Zts whiclz satisfy w'.z)=w.(z), 
(i=I, 2, ...... , r), can not be inferior to wP~·

2p, unless rLN=2(i1I-1). 

Let (1) and (9) be the equations which define o.<z) and <v;(,s') 
respectivly, and uPc:2a; be the order of the canonical product of the 

primary factors corresponding to the points which satisfy w(.c:)=<v;(z). 

Let <vP':-2p' be the greatest of <u1'i--:2p; (i= I, 2, •.•..• , r) and w1c:2a, (i= 
1 1 2, ...... , r). Then wP'-:-2,o<wP-:\>. Now we have 

where R, 1s the canonical product of the primary factors corresponding 

to the points which satisfy w(s)=<vJr:), so that it is an entire function 
of the <vq;-:2a/1t order. Accordingly, eK;, is an entire function at most of 

the wP--:2/ th order. Suppose that r>1113 and eliminating <f11 <p2, •••••• , <fM 

from any JI+ l equations, say equations corresponding to i= I, 2, ••.•.. , 

J1l+ 1, we have 

¢111, 'Fw 
'?21, 922, 

············, 
............ , 

¢'ur. R1eA~ 

¢'2Jii R2e.A2 

'F;lfl, 'F:M2, •········ ... , 9.iIJt, RJ11eA~11 

'FN+11, ¢.1r+12, •··, ¢.11+1111, R111+1eA~1r+1
1 

m which the coefficient ±Rz(¢1,¢22 ..•..• ¢'i--ti-t'Fi+li"•··•'FM+w) of e1½, 
by assumption, docs not vanish identically and is at most of the wP'-;'p'tli 
order. For each el<;, of the <vP-:2,ot!t order, there exists at least one eK 

(j=l=i), in eR;_, eA2, ...... , eKM+i such that eKi-Kj is of an order lower 

1 When m= r, the condition will be satisfied if wi(i= 1, 2, ...... , r), are different from 

one another. 

By theorem 5 in ~5, R ;,,¼:o. 

3 If r£M, then ill being~z, we have r£Jl£2(il·l-1)=.iV. 
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than those of eA";, and cXj, or is of an order lo,1·er than (IJ1r:2p, and ac-
cordinglyc1(j is of the (IJV-:

2pt!t order (§6). Now we divide eAi, eA;, ...... , 

eA;. into groups such that all e1<i's which are of order lower than w1r:2p 
belong to one group, and for other eAi's of the order w1r:2p, if any two of 

them have the relation above mentioned, they belong to one and the 
same group; otherwise, to different groups. Let those groups be G1 , 

G2 , ...... , Gt and S.i be the number of cE/s which belong to Gj, (j= 1, 

2, ...... , t). Then wc hove evidently 

(13) s1 +s2 + ...... +st=r. 

Now all s/s are less than llf. For otherwise, suppose that eAi, eK"-2, 
...... , eAM belong to one and the same group. Then as the determinant 

(c/,i11, if112 , ...... , if1,1m) by assumption, does not vanish identically, we may 
express, by solving 111 equations in (11) corresponding to i= 1, 2, ...... , 

]II, <f 11 <p2, •••••• , </JI as function of the form 

where Ri, ( l, 2, ...... , fol), are entire functions of orders lower than 
wv-:2,11, and eA·1 is an entire function, at most, of the <u1'-:2p1;, order. But 

among <fv <p2, ...... , 'fJ1, there exist I'o"'-1IJ (j=o, I, ...... , m), and we 
have A.t 

Pi=-Ste 11
' , (i=o, 1, ...... , 111), 

where Si, (i=o, 1, ...... , m), are entire functions of orders lower than 
<ul'-:-2,o. Substituting these values in ( 1 ), wc have 

that is, w~D) is of order lower than uP-:-2p, which is a contradiction. 

Hence sjLllf- 1, (j = 1, 2, ...... , t), and consequently we have, from ( r 3), 

t~ 2. 

Next, the number of all eAi's which belong to G,, G8 , ...... , G, is less 
than 111. For otherwire, taking any llfeAi's, say cA~, cl'z, ...... , eA:,r, 

which belong to G2, G.s, ...... , G1 and any eA.1, say cA:11+1, which belongs 

to G1 and eliminating <p11 <p2, ...... , <f,11 from llf+ I equations in (r r) which 

correspond to i= I, 2, ...... , JII+ I, we have the identity (12). Hence 
there exists at least one eJ,", among cK1, ,Ej, ...... , cA~v, which belongs 

to the same group as e/(ll+1 (§6). This is however impossible, and ac

cordingly we have 

s2 + S3 + ............ + S1Li1[- I. 
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Similarly, 

or, by addition, 

by (13) 
(t-1) (s1 -+-s2 + ...... +s1)Lt(ll1"-1), 

t rL--(111- 1). 
t-1 

As t ...":-.2 by t (14), we have --L2 
t-1 

and consequently 

rL2(M- r). 

Theorem 8. If a transcendental algebraic function w(z), hm1ing only 
a finite number if branch points, be such that w(z)=a and w(z) =b, a=4=b, 
have no root at finiteness, then it will be an ordinary algebraic function. 

Though this theorem is more restricted than the former one, it is 
very useful for later investigations. As w(.s') has only a finite number 
of branch points, any branch of w(z) may be expressed as a regular 

1 

function of t=zT in the region (G L It! <oo) where ), is a certain posi-
tive integer and G, a certain positive value. As w(z)=a and <iJ(z)=b, 
a=4=b, have no root in the assigned region, the infinity point is, by 
Picard's theorem generalized,1 a regular or a non-essential singular point 
of the function ro(ti) of t. Accordingly e::ich of the coefficients P0(z), 
...... , Pn(z) in 

(1) 

has, as singularities, at most a pole at infinity, that is, w(z) is an ordinary 
algebraic function of z. 

8. We now proceed to consider the Riemann's surface for trans
cendental algebraic functions. They are entirely analogous to those for 
ordinary algebraic functions, except for the vicinity of the infinity point. 
As for the branch lines, we determine them as follows: If w(z) be a 
transcendental algebraic function of the nth degree, the Riemann's surface 
for it is n-sheeted. If the origin be a branch point, we take as the 
branch line, a half straight line in any direction, having the origin as 
its end point, and extending to infinity. For other branch points, (r;Oi), 

1 Voraussetzung: f(x) sei filr o<J x-x0 l<P eindeutig-regular, ::j=a und ::j=b (wo a::j=?, ist). 
Behauptung: x 0 ist keine wesentlich singulare Stelle (sondern regular oder ein Pol). 

(E. Landau, Darstel!ung und Begrii11dmzg ei11ige1· 11euerer E1-gebnisse der fl1mktione11-t!zeorie 

P· 96). 
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we arrange them in order of increasing moduli, and when there are 

branch points of equal moduli, we arrange them in order of increasing 

arguments, ( oL(}i < 271"). Then we have 

As the branch line corresponding to (r1 , ()1), we take a half straight line, 

R~r1, 0=(}1 , where (R, 0) are the current coordinates, and if there 

exists another branch point (r,, t},) such that (},=(}11 we take a small semi-

circle as a part of the branch line, 

whose center being (r,, {},), (see Fig. 

I). For (r2H2), (r3, t/3), •••••• , similar 

process will be applicable. As the 

branch line corresponding to (r,, I},), 
we take the line determined as above, 

but slightly deformed so as to have 

no common point with that corre
sponding to (r1 , d1), and so on. On 

y 

I~ (r,_o,) 

(lzB2) 

the Riemann's surface determined as--;or==--------------4 X 

before, <u(s) is evidently a uniform 

function of position. 
Fig. 1. 

9. \Ve shall prove some theorems concerning the Riemann's surface. 

Theorem 9. Let S be the Rienzamz's swface for <u(D) defined bJ' 

and f(:::, w) be a uniform function of position on S and be branclzing out 

as S. If f(,:;, w) be a lwlomorplzic mzal.ytic funct.-on ef position mt the 

total smface S, the infinity puint being included, it will be a constant 

Let 

be It analytic points corresponding to .:.:=a. In the vicinity of (ai, wJ, 
(i= I, 2, ...••• , u), we have f(.:;, w)=_/4(.s')=/;;(,'.;[a). S(/), being any sym

metric polynominal of fi(:::),fl:.:), .•.... ,fJ,c:), has the same value in ,drnt

ever sheet z may lie and by whatever path .'J may have attained its 

position in that sheet. Hence it is a uniform function of .,:. Moreover, 

as .S(f) is holomorphic on the total surfaces S, the point at infinity being 

included, the same is true on the total z-plane, the point at infinity being 

included, and accordingly it is a constant. From this, it follows that, in 

(/-/2)(/-/z) ...... (/-f,) = f"+SJ"- 1+ ...... S,=o, 

all S;, (i= I, 2, .••.•• , n), are constants and hence f(z:, w) is also. 
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Theorem IO. Let f(.c:, w) be a uniform functioll of position 011 S and 
be branching out as S. if all t!ze singularities be poles, finite in number, 
lit any finite part of S, f(.c:, (IJ) will be rational in co mzd meromorplzic in 

a11d con,;erse!y. 

Let 

be n analytic p8ints corresponding to .::=a. In the vicinity of (a,{l)i), 
we havef(z,w)=j/c:ia), (1=1,2, ...... ,n). Put 

(15) l 
J;, + /2 + ..... ./,,=Po 

~(:):. ~-~~~~ ~• •. •• •• •.:•.~~~I.~,:~.~~•• 
firo/>-1 + .fiw~-1 + ...... + f,,w;:-1 = l~,-r, 

where Pi, (i=o,1, ...... ,n-1), are evidently one-valued functions of::: 

and have only finite number of poles in any finite part of the ,:;-plane, 

so that they are mormorphic functions of ,::. Next, we determine A,,-1, 
A 11_ 2, ...... , A 1 so as to satisfy the following relations 

Multiplying the equations in (15) by 11,, _1, A,,_:2, ...... , A 11 I respectively 

and adding side by side, we have 
,, 

~_/;(w~'-1 + A1w]-2 + ...... +A,,_1)=P,,-1 +A1I~,-2 + ...... A,,_1Pu, 
i=l 

"·hich i:-; reduced, in virtue of (16), to 

From (16), the roots of r,/' ·1 +A1w"-·2 + ...... +A,,. 1 =0 are lo2, w3, ...... , 

<o". Hence we have 

Comparing the coefficients, we have 
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Ai= Qo<uf + Q1w; 1 +. • • + Qi 
Qo 

z.e. Ai, (i= I, 2, ...... , n-1), are polynominals of cu1 whose coefficients 

are meromorphic functions of ,r:. From (17), we have 

l--~1._1 +A1 !~, _2+ ...... +A,,_1P0 

<ut 1 + A1w\'-2 + ...... + A,, _1 

Proceeding just as above, we may obtain an analogous expression for 

each branch of w, so that we have 

j = P,,-1 + A1P,, -2 + · .... . An-1Po , 
(Un-1 + Ai<,/' 2 + • • • . • • + A,, __ l 

'\·he1·eA.,._= Qo<oi+Qi<ui-t+ ...... +Q; (·-,, - ) . -r: ) --, t-I,~, ..•... ,ll I,1-e.1\Z,lU 
Qo 

is rational in cu and is mermorphic in z. 
Conversely, let f(z, cu) be a function which is rational in w and 

mermorphic in .r:. In virtue of the equation ( r ), it may be reduced to 
the form 

R 11--l+R '"-"+ +R f( " ~ ) = 0W /V - ..... • . ,i-1 
,..,, ' lV - ... n- -1 ... , n--'' S ' 

Sew + Slw - + • • • · • • + ,i-1 

where R; and 5; (i=o, r, ...... , 1z-1), are entire functions of,,. In the 
determinant 

Qo, Q1 , ............ , Q,,, o, o, ............ , o 
o, Q0, .................. , Q,,, o, ............ , O 

O, ......... , O, Q0 , ........................ , Q,, 

l 7l- I 

J 

rows 

5 0, 51 , ............... , S,,_1, o, o, ......... , o 
o, 5 0 , .................. , S,,_1 , o, ......... , o 

o, ......... , o, S0, ..................... , Sn-t 

It_ n rows 

1, 
which is evidently an entire function of z, multiply the first 2(n - I) 

columns in order by w21
'-

2
, w2

"- \ ...... , w and add the products to the 

last column. Then we have 

B~<f(B, w) cs:w11
~
1 + ...... + s,,_1) + cf'(z, w)(Q,,w11 + Q1w"-1+ ...... + Q,,), 

whei'e <p and cf' are polynominals of w whose coefficients are entire 

functions of .r:. But as Quw" + Q1w" _, + ...... Q,/==0 on S, we have 
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f = Roa>"-1 + ...... + R,, __ 1 • q;(z, w) 
S0ui'1-

1 + ...... + S,,_1 cp(z, w) 
Tow"''+ I;_w"'-1 + .. • ... + T,,. 

B 

where m is a positive integer and T;, (i=o, 1, ...... , m), are entire 
functions of z. Accordingly, it follows from the identity, that f(z, w) is 
one-valued on S and is branching out as S, and moreover it has, as 
singularities, only a finite number of poles in any finite part of S. 

The author wishes to express grateful acknowledgements to Prof. 
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