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On Transcendental Integral and
Transcendental Algebraic Functions and
Algebraic Addition Theorems, I.

By

Ry0 Yasuda.

(Received June 28, 1922.)

Our main problem 1is the study of the analytic functions of many
independent variables, which have algebraic addition theorems. For that
purpose we shall first discuss some properties of transcendental integral
and transcendental algebraic functions, which are of fundamental impor-
tance for our later investigations.

CuaprER 1.

TRANSCENDENTAL INTEGRAL FUNCTIONS OF
TRANSFINITE ORDERS.

INTRODUCTION.

Suppose that F(z) be a transcendental integral function and 47(»)
be the maximum value of its modulus for |z| =7. Then there exist two

. 8 I(r
finite numbers a, B such that e’a<]l[(7)<em, or b—g}l%i—‘f& is a
o

number in the interval (¢, 8). In the case that 8 is limited for all values
of », we define, following Prof. Borel,' that when lim loglog A/(r)
o0 log 7

is determinate, F(2) is said to be a regularly increasing function (la

1 Borel, Legons sur les fonctions entiéres, p. 107.
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fonction a croissance réguliére), and in the other case, an wregularly
increasing function (la fonction & croissance irréguliére). The upper limit
o of _log log (7). llog M) for limit »=c0 is called the order of F(2). In this
ogr
case the order of infinitude of the moduli of the zero points of F7(z) is
determinate and is generally equal to the inverse of its order; and
conversely.
We may exdend this conception to the case where p is transfinite.
Definition. ILet log.=log log, ........ ., log,=log log......log; p: any
positive integer. When lim 2% log,M(r) _ oo, and lim fim Log, M) =p is
r=mo logr = logz
finite, we say that the order of F(z) is o+ 'p (e.g. the orders of ¢

~2

and ¢ are o and w-2 respectively). We define also that Z(2)

. . . . . log, M (r
regulavly or arvegularly dncreasing according as hmbgp——(l
7r=m logf‘

is or

is not determinate.
In the following, we deal with only those transcendental integral

(0]

functions whose orders are less than £=w".

1. Let /(s) be an entire function whose zero points are the

origin (of multiplicity 4) and z=a,, ay, ...... R . Suppose that
_ o0
. N
VA AP L. , where 7,=|a,|, and consider the series Z 2
=1 7
where « is a certain positive number. If 2 be divergent for any
n=1
oo

positive value of  (however great), then we con51de12 %, and so on.
n=1 €

Definition. Let ¢, be an inverse function of log,r. If a positive
integer »'(2\2) and a positive value (zero being included) o’ be such

1

that, for any prescribed positive value € (however small), 2* o=

=1
) /> 2
e i N
is divergent while Z o/ve 1s convergent, then the exponent of cos-
n=1 I
€y o
w0
I . s
! For ¢/ =0, we take ;; — 4 instead of _;_ e where G is any positive
=1 V s =1 W n

value, 73 -2
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vergency of the moduli of the zcro points of F(s) is said to be w? ,2"2‘(:’ .
This definition is an extension of that for p'=2."
o]
Lemma. If a series Eﬁn wiose terms arve positive and decreasing

n=1

be convergent, then lim nu,=0."
N=1wmw

Theorcm 1. Let the sevo points of a transcendental intcgral function

F(2) be ay, ay, ...... Y .oand o< Lty (R=1, 2, ......) where
2'~2
Yo=|a,|. If the cxponent of convergency of 7y, ¥ay veveeiFppeennen b &0+ p,
. logy L
the upper limit of — 2" when n is tufinite will be equal to p.
logr,
— lognu . 7~ logw
If im—98” —co, we consider Iim—"8""  and so on. Suppose
n==n QO’}’" n=x OO‘]‘n
log log
1 . . . —
that Iim—2t1 —¢ is finite while 11m—ﬁz——oo. Then for
nen  logr, n== logr,

any prescribed positive value ¢, there is a corresponding positive number
&V such that

log
& L+ = for NV
log7, 2

Accordingly there is a positive value ¢ such that

148
log, () Lpte for nXN,

logr,
or
p,+s
W g for nAN,
b2
so that
2 l+0;2 pate
==X n=N 7”
1’1—2
s} 1 i I
But E ~+5 is convergent and accordingly so also for E:—P—;-
1 72 =
e n
212

Therefore, we have

w? (o, + e)_&w 2,

1 Borel, loc. cit.,, p. 18.
2 Borel, loc. cit., p'. 17.
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which is valid for any positive value of ¢, so that

nz Pz,

(1) U YA
S
Next, we consider the convergent series Z ey By the
=] >
%
n =2
foregoing lemma, we have lim — 7 =0, from which it follows that
Ne=o Vp <
e n
-2
¢+
/
p n
ll<€p/_2 for n\N(e),

where .V(¢) is a certain positive value which depends on e. Therefore

) T 108"
W==N log;/n

We now suppose that p, >p'. As

L 108}51_2” o logpl_zn Iogpl_3lz Iogp,rz Iogp,_ln
lim logr, — lim( lo n" lo 2 lo n  logr, )
== a'n n= g/’1'3 g./’L_4 gP"‘I 87
and
log, ,n log ,n log,, 7
e 08y T A e G
i og,_gr O M log, T =0 I Togy, </ e by @),
we have
__log, n
lim—jl—z“<p’+ g,

n=2x 10g7’n

which is contrary to the assumption that

o log/, N
lim———— =
nemsn 1OV
Hence
(3) A:}”,
so that we have by (1)
(I )’ ‘nlé‘u’,

As, by (2) and (3),
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e log, 7 - log,,
fr=m logr, = ae»

we have p,< ' +¢, which holds for any positive value of ¢; so that

(4) Pl
By (1) and (4), we have p,=p, proving the proposition.
o . - . logfr _271 .
Similarly, supposing that lim —2% =00, while
n=n  log#,
lo 7 —2 /2
lim —gﬁfi-:pz, we have wﬁ“. pzéwp .
n=w 10g7’n
Definition. Let the zero points of a transcendental integral function
F(z)be ay, s .oy, v, and 07, Ly (1=1, 2, ...... ) where 7,=|a.|.
Supposing that the exponent of convergency of 7, 7, ..., 74, ... be
lo 7 lo "
poa, oo logy g  log, o
w . o, 0f 11}:13 logr, = 71;_“4} logr, =/, we say that 2ke ordcr of
. . . - . I I
nfinitude of v, (1=1, 2, «..... ) @s determinate and is equal to — T
‘ll w

and in the other case, zudetermninate.
2. Let the greatest integral value of 7 which satisfies at least one
of r,/1 and née},_z be 7, and we determine the integers p,s as

follows :
D.=0, for n/n,
(s) logrlog,z...... log, 7
2:Z log7, Lp+1, for u>n,.
Let
z 1 z 2 1 5 /’IL
S AV e S
- _y)\m - & an 2 <{Zn> j’n(”n)
=T (s an)e :
i) Supposing that p'=2, we have Tm%gi =4 If ¢ be not
n—n logz,
an integer, we take 2, <p/<p,+1 for n=1, 2, ...... . Then g,s thus

determined will satisfy the lower relation in (5) for sufficiently great
values of #, provided that there is no integer which is less than

w— logn . . logn .
fim 1087 =p’ and is not less than lim 28" If ¢ be an integer,
n=x logr, n=x= logz,
2, I
we take p,=p or p/'—1, (=1, 2, ......), according as E: o s
n==n ”71
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] :+I<s)‘2+ +I<Z)pn
N z — =] ... — (=
divergent or convergent. Thus,” 2‘(1— = )c"" 2 \n Lu\n

n~=1 n

is convergent uniformly and unconditionarily for all finite values of !

so that

2

J (.c)s,;v"i[“f(l_ “ £7L+-;—(E>+ ...... +/_‘n<_[%>1’w

n

n=1

is an entire function whose zero points are the origin (of multipliclty 2)
and S=ay, dsy veeeney py coenen.

ii) Next, we suppose that p’N\3. For any arbitrarily assigned
value of s, whose absolute value is », determine an integer 7, such that

I 1
- (. S—
" 1 2/
(6) /"2 ngl;lll- ___V<7"Hz+ llogp,_l(ﬂﬁ- o,

Let the greater of », and 7, be /V, and put

1/54 I/ 5\
T PN VEE R VL
in which = T(1— e 2\ Iu’Pr/ s an entire function.

I————— -
As r<r log,ut1) by (6), there is a positive value ¢ which

A
satisfies
- 1-+-¢
(7) r=r logp’—l(”2+l) .
77541
Moreover as L. v, Lo .. , we have
R -
(8) 7'” lng/—l” < 7’71 + Ilng’_l(/1+ l) fOl' 71>/\f,
and accordingly by (7) and (8)
logz, )
(9) logr, —logr \(1 +S)W for IZ>¢V.

L Forsylh, Zheory of Functions, 3vd edition, p. 94.
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We have however by (5)

PN lognloga...... log for >N (),
logr,
so that by (9)
(#n+ 1) (logr,—logr) N logrlogy......log,_n (1+¢) log7,
log7, logy_7
(1 +¢)log for #>N,
or
(i)pn__;;l‘“ for 1>
r
Accordingly
* P 1 ® &
7 I I
2’ ( ) L 2 T4e <2 1+: (convergent),
n=N+1 7y n:N-H” n=1 72

and we may put

(10) ﬁ} (_L)”“”:A_
n=N+1

7’”

As mﬁg”’;ﬂl—:p’, there is a finite positive value B such that
’ n=e  log#,

ljgp'—l’__'l < B for >N, and we have by (6)
087,

1 logry 1

e —— ——
. logyr1z __ logyy_an B -
r<r OB =y OEr <r,e for 2>, so that

(r1) 1—~L>1—e_F for n>N.

Now
z P y
E (D) et (2)
0 o [ 2 \dy Pn\an
N ,
1 » Pn ¥l 1 , P2
o /n +x<ﬁ) +m+z<;;) o

L Te
n=N+1

Patl Pat2

» (&)
<N

n=N+
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-\Pn
()"

< by (10) and (r1).

Consequently T is convergent

n+41

s 5\ 52
¢ (o) e
7

uniformly and unconditionally for all finite values of z, so that

A=A T

n=1

_5_+L(i>2+ ______ +;(L)f’ "
(I——Z_)C’n” 2 \a, P \an
72
is an entire function whose zero points are the origin (of multiplicity 4)
and s=a, @y ...... ) By aeenen .
In all cases f(z) is an entire function which has the same zero

&

points of the same orders as F(s). Hence 7{% is an entire function

which has no zero points, and we may put _j;%z eQ(s), where Q(2)
is an entire function. Thus F(2) may be written in the form

)

g 1 (52 1/ 3\Fn
R R S

=1

where Q(3) 1s an entive function and p,’s arc integers determined as in (5).
3. Zhcorene 2, Let

NS RN + L (= Pn

» %0 o\ a7 (e) to 7la)
JE=z Tl1———)e

=1 [l”
be an entive function whose exponcnt of convergency of the moduli of the
sero points is wPT!, where p,'s are determined as to satisfy (5). Then
Jor any prescribed positive value <, theve corvesponds a positive value R
sucl that 2=

|A(5)| Le, for all 2| =rAR,

»—1

that is, the order of [(3) can not ciceed the exponent of convergency.
The proof of this theorem for p'=2 is given in Borel, loc. cit.,
p. 61, and the following proof is for ' \3. Determine 7, and #, as
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in §2. Then for sufficiently great values of », we have 7, \#,, and

3 1/ 3 \/n
17 1y 2 —+.... s
ra=T(-2) Tli~Z)e" wala)

=1 12 /] 41 ay

2
o PN e +§I-(%> *
>< -[r (I —_ ) 6’ 13 n n .

729+1 @n

P! &
z 'ﬂ'(x— - > being a polynominal of the (7, l)m degree, we have
n=1

n
o
Pyt Z 7
& 'ﬂ'([ ——~) Le
n=1 @y

- p—1

/

for all values of » greater than & which is a suitably chosen positive
value. Secondly, we consider

z 1/ =z >('2 1 ( 2 )j’n
3 o~ — ) +..... —{—
1;—‘[—(1__ ~ >ean+2<ﬂn +]’n an
41 (4773 .

n(pn +x)r~/’”
e
ST
Lk
2 Prte 1)
<e

’

where g, is the greatest of 2, .,
by (5)

Prjgar weeees » Py We have, however,

PP logn logyn...... log,.%

logz,

for n>n,

so that p,<logrlogyt......Jog,, =(logn)+? where ¢ is a positive value

which can be made as small as we please by taking 7 sufficiently great.
Accordingly



130 Ryé Yasuda—On Transcendental Integral and Transcendental
e/
14¢/ (10g/§)l+'
| 7y ] n_,{(log/é) + l}r
e

B
w41 1+

} 1ogih)
1y {(logiy) + 157
2 :
I
lo 7 PR

As  lim —&f‘—‘—zp’ and » " log, w Lr by (6), we have

n—n lOgr, 7y

r/+-// .
7, Ae where ¢/’ is a certain positive value which can be made as

2

small as we please by taking 7, sufficiently great; so that

P’+—”
5/+~// rl_,*_w 142 1+ 10 v
i 7,y ’ I‘ )+l €( )ﬂ—-.)) g
2 )3
F T _ée’ 1
112,41
o+, .
7
éep’—l

where ¢, is a certain positive value of the same property as ¢’. As
72, increases with 7, we have

/e
1y 1’0 +24

T [Le

o1 Y1

for »r \K,, where R, is a certain positive value which corresponds to e,.

0
Lastly, for T

729+1

s 1/ 2\ 1 /2 \n
(1— )gﬁ?(z;)Jf ----- )

, we have only to
Ay

repeat the process carried out in §2 and the same result must follow

A
5 \2 2 1
2 I z " ——
—+—~<~> + ( ) _. B
-lc? (I_ Z )eﬂn 2\ay ]’n 2y §<el ¢ s
1y +1 @ \
or
o/
0 ra
T Le,
25+1

for ¥ A\R;, where R; is a suitably chosen positive value. We have
accordingly

f(z)\z ST T
n=1| |mg+1] |mpt1

¢ o e

e s
_ p—1 p—1 Pp—~1
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for » >R;, R, R, or
|28

»—1

e

for all value of » >R, where R is a certain positive value corresponding
to e
4. Lemma. et the sero points of @ transcendental integrval function
¢(2) be s=ay, ay ...... y @iy enrenn and 0 #,tny (R=1,2, ..., .) where
vo=\a,|. Ilor an arbitrarily assigned value of | 2| =v, find r, as to satisfy
¥, L [ S¥uyy,

where s is a certain integer greater than 2. Then
nlog(s— 1)< log M (r),

where MM(r) is the maxinum value of |@(z)| for

The proof of this lemma is given in Borel, loc. cit., p. 73.

Theorem 3. Extension of Hadamard’s first theorem' to entive functions
of the transfinite ovders.

Let F(s) be an entive function of the transfinite order w?T*p and the
exponent of convergency of the moduli of the zero points of F(z) be
W' Then o¥T LoV, .

Suppose that the zero points of F(s), which are different from the
origin, be z=ay, a3, ...... ) (py sesens , and that o<», L7, (n=1, 2,...... )
where 7,= |a,|. Then the exponent convergency of 7,7, ...... is @7/,
As F(z) is of the order w” %o, for any prescribed positive value ¢, there
corresponds a positive value K such that

o~
<

=Y.

gt+e
F(z) l _/__e;_l for |z

=72 K.
We have, however, by the lemma
nlog(s— 1)< logd(»)

o+e
.
o

£ lobep_1
e

j)——'?.

for »r\R, where s»,Lr/ st ;. Accordingly,

<

+e +e ate
n+1 1 » 2 g 2 (7 41)

2+ 1 7 log(s—1) o2 £ log(s—1) €p2 < log(s—1) S ?

from which it follows that

1 L'exposant de converg:nce ¢ de la suite des 7;, est au plus égal a ¢/, (Borel, oc. cit.,
P 74.) ’
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2 e A ,
1)t {m(s_l)} o (#'>0)

where &’(>¢) is a certain positive value which can be made as small
as we please by taking X sufficiently great and ¢, sufficiently small.

. I
But 2 is convergent and so also for ——, so that
R p+e’’

=1 + b gt
n

14
2

W7 Lo Hp 4",
which holds for any positive value ¢. Hence we have
=27 p—2
W’ o’ Lo,
proving the proposition.
5.  Theorem 4. Extension of Hadamard's sccond theorens' o entive
Junctions of the transfinite orders.
Let e L
1.0 — H(L> + o +—<~>
f(5)==s 'ﬂ"(l————z )f"n+ 2\an Lu\an
=1 7
be an entive function of the order ©PTp. Then, for any positive values €
(however small) and G (however greal) there is a civele whose radius is
greater than G and on which
pte

A2)] 2~

Let all the annular domains which are expressed by

1 - ~, , -
7, — NI, — a7, —P-FT be excluded from the total s-plane, where
71 e ‘71
p—2 P2

¢ is a certain positive number. Determine 7, as in §2, and for an
arbitrarily assigned value of 2 (r>r”1) in the remaining domain, determine
72, as in §2, which is necessarily greater than or equal to 7. Then

5 1 s "
7y z "y z — . +~——(L)
(5) % ( TI— ([_ f”” D\ @y
@y 21 n
3 1/:=\""
5\ ot +*<T>
X —n_ [— p e 2 "
nl+1 n

1 Etant donnés un produit canonique (s} de facteurs primaires d’ordre p et un nombre
positif arbitraire ¢, on peut touver une inﬁnité de rayons indefiniment croissants sur chacun

desquels on a Vinégalité |G(2) . (Borel. Joc. cit., p. 76).
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72 -
We now consider 37‘"[1"(1— )

n=1 (Y”

’ 3 s ,l s/ 7 v 7
L — Nl ——1— 1) 1
| 71(1 P ) = ( % )( ¥ ( Vaay

7_\0+51
e e

for AR, where ¢, is any assigned positive value and R&,;is the corre-
sponding value to it. Secondly, we consider

9 Zn
z I( H )' 1 ( 3 )
7y 5 — ) ... +—{—
Tr(l_ - )eﬂlz+2 dy Iu\an 3
12, 4+1 Tn
L2 2
7z_,l 71,] ;,-)_f‘_ L(L)_*‘ ...... I/;) }
]; ’l—— e li/L 2\ 7 Pa\7a
w4 i+t Y
I
7y | G rp:}:a/ N AL )_'*‘ (L j,n}
L n —y—t—(—) 1+ ...... —_——
; _n' I— Cp—2 \E \ Tn 2 ( “n _]’n( n )
At ”, !
D
ST
41 P
it r/tep 2
L L rfk 12—y
N pres € F
g
Vllué’p_g
o+
- 1 7
N /zz{logrm + ¢ 3’ +p7 " }
e - ’

where p, is the greatest of Puggvs Puyas ooeees Py But we have,
similarly as in §3,
. 1+ Ie/
£:<(logk) ~ L(logn,)
where ¢/ is a positive value which can be made as small as we please,
by taking #, sufficiently great. Hence, by similar reasoning as in §3,

we have s e
T |De
n+1

for »2\R,, where ¢, is any prescribed positive value and R, is the corre-
sponding value to it. We consider lastly
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” N2 . f’:b
o0 _:_FL(;)jL ,,,,,, +L<;) ‘
Tli—_% )e”“ 2\ N/ . By repeating the process
2,41 a,
carried out in §2, we have
7 \Putl
(7,,_) 4

o | , :
/:lI >—”_€ I—‘,I >€ 1—¢ B

725+ 1

and accordingly

o) €
i‘ﬂ_ Ne 22

741

for » AR, where & is any assigned positive value and R is the corre-
sponding value to it. Consequently we have

711 72y
)| =TT+ T
=1 7+1 72,41
e P Pt
’_\e—ep—i —€p—2 e”é’p—z
for r2\R,, R, R, or ore
B
Ne 2

for AR, where ¢ is assigned positive value and R is the corresponding
value to it.
We have excluded all the annular domains expressed by

T p+-’ < 1<7’” 7 p+'/ , (n=1,2,...... )
’”/

»—2 »—2
from the total z-plane and have considered the points in the remaining
domain. But the sum of all the annular domains

8 (i)

=1 ‘n

ep——. gp—".'
o0
O ¥
- 4 “ : I F+=T.
== "5
Pp—2

For any positive value g<¢’ there corresponds a positive integer NV
such that
for 1> N\
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o
I
As o LT (§4), 2 o is convergent and so also for
n=N 7,
e 2
p—2
2%; so that the sum of all the annular domains is finite and
ol 7
l e;:—Z
there exists a circle whose radius is greater than G and on which
pre
i
| )| Ne=hs .
Corollaly 1. Let f(2), fi&),ee--Si(5), be the canonical products of
Vs 2D g RO . .
the orders w” « "py, @ < Py ... , W« py vespectively.  Then for any

prescribed positive value e, there is a civcle whose radius is greater than
any prescribed positive value G and on whick

7’pi+a
Lfe) ] De™ €92, ((=1,2,...... ) B).
Let the moduli of the zero points of fi(s) be P, P, ..., 7D, .......

7'(J i

Then, we have, by the theorem, |f(s)| Ne— &%= for the values of
7 which are greater than G and satisfy

. I ) I
4+ —'——,é r L Fogpr— —
p+e p,+e
(" (4"
7 Tntl
e‘prf, 2 t’p(i)_g
£ m
" for a certain value of 7. But E: E: — being finite, the sum
=1 n=1 () +-
’ll
€ {.7:)_2

P
of all the annular domains is finite and there exists a circle whose

radius is greater than G and on which
7'p'i+E

| fi(z)] De TG, (i=1,2, .0 4)
Covollaly 2. Let
F(z) =,1). Jo(2)
Fie)= % 1 (z)
Fyz)=e710) f_(a),
where F, (2) is a polynominal (y’ the pth (z’cgree and f(z), (i=o0,1,

—2), is a canonical product of the order w?’*”“‘( If WP be greater
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(i)_y

than & T p, (1=0, 1, ..., p—2), the same will be true of the order of
F(z).

For any prescribed positive value e, there exists, by corollary 1,
a circle whose radius is greater than any prescribed positive value and
on which Fite

, —€ ,
Ve e o=t (f=o, 1, ...... ,p—2).

- . . Foq4(z) -
As F._(2) is a polynominal of the ¢ degnee, ¢'? 1G) is a reculart

=1 poly i S Ly
increasing entire function of the p* order, that is, the maximum value

Foul= . -2 s .
of ,e » 1()| for |z]|=r lies between ¢ and ¢ for sufficiently
great ». Hence, we have, on the circle
1 i o2 pts 3
Sl # 9 RS
1= ’ —e P2 ’
max | &7V A (5) [ Ne ce ¢ N,
I By o5) ’
v s p—2
. p—2 =2 EIP—-L(N)][ 0(3) I l ‘o ./1‘)—2(3)
since @ . p>wPF o, .. As ‘e =AY and e
are of the same orders, we have, similarly,
{ -
. -z pte —
max| & Sy ) N E L T N

( p—3)
. . p—2 2 .
on that circle, since " - p>w?F p, ;. By repeating the same reason-

ing, we have N
max | Fz)| =Mr) Ne,y
on the assigned circle, where ¢, ; is a certain positive value which be-
comes as small as we please for sufficiently great ». Determine » so*
large that ©”™(p—¢, ;) becomes greater than the greatest of mf(’zr)gpi
(f=0,1, ......,p—2). Then the order of 7{z), being gr%lter than or
equal to @’ *(p—e, ), is greater than the greatest of w*’p,, (i=o0, 1,
...., p—2), which is the proposition.
Corollary 3. If 0 2 i L+L(_~”_)2+ ..... +L(7i>fn
Flg)=e®’ z«"ﬂ'([——’L)e”n 2\ FANA

n=1 a,
be of the WP order, ¢Q=) will be, at 1ost, of the same order.
Suppose that the order w”?p’ of Q) be higher than w?7%, and
determine two positive value ¢ and ¢ such that

OV —e) > P pte).

Then there exists a positive value R, corresponding to ¢, such that
ate

|F(2) | £ ey for  7AR.
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By theorems 2, 3 and 4, we have

5 2 \2 2 \2 otz
3 o - ~—+i(_> o, +i<—) " 7
o -n-( .z )gan 2\ In\ —€p—2

& > e

n=1 n

for any z (» \R,) in the exterior of the annular domains

1 I
o <I<7”+T’ (n=1,2,...... ),
7 n
€pa €pz
i
Q=) 2
and, accordingly, we have le <" for & (r N Ry, R,) in the

same region. The order of ¢@#) however being w?T%,
e

€y _L_{ the maximum value of \eom‘ for [z]:y}ée;,_l
must be satisfied for infinitely many values of & which diverges to
infinity, and from what has been proved, they must be in the interior
of the annular domains. The maximum value of |eQ()

increasing with », we have

P2cs

for |z|=7r

(o -— )™
T ————— )
" e /p’—s’
e R s
P €p o 45’ 1
£ the maximum value of |¢QF) | for |z| =~
. I
£ the maximum value of [¢€() | for |z|=7r,+ o
( 1 )p+a gf‘n
¢ —— e -2
"+ e »
2¢. . n
L e’ : =2 ’
I 1
where ¥, — <vr<r,+
ots e
n n
ép_g [’p -2
This is however impossible for sufficiently great 7, since
- ) . 1 .-
@ H'—&)>0"*(p+¢) and lim——=o. Hence, the proposition
n=n gre
. . n
s true. €p—z

Corollary 4. Let
F()=el® . fi2)
F(z)=ct5) fi(2)
F,_(s)=elp(2) - f,_o(3),
where Iy () is @ polynominal and f{5), ({=0, 1, ..., p—2), is a canonical
product of the order (uft)*?+i)‘t)i. Theen w?’(?zpi, (=0, 1, ..., p—2), is at most
equal to the order of Is).
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- Let the order of £(z) be w?*. Then by theorems 2 (§3) and 3
©)

(84), the order w?*p, of fi(z) is, at most, equal to w7, As efi(®) is,

by corollary 3, at most of the order w??p, F(z)=el2%)-f(s) is at most

of the w? %ot order. Hence, again by theorems 2 and 3, the order
) )
w? TP of £(z) is not greater than w? P, or w’¥p,=w?Pp. We

have similarly by the alternate applications of theorems 2 and 3 and of
(i)

corollary 3, w p;_gpi L o' (=0, 1, .c0vus ,P—2).
6. Theorem 5. If the order of infinitude of v,=|a,|, (n=1.2,...... )
be deterininate, the function.

d 2\ D
T

n=1 n

will be increasing regularly.
We assume that /{z) is increasing irregularly, and that the exponent
of convergency of #,, (#=1,2,...... ), is equal to the order of 7(s).
Supposing that ¢ is any prescribed positive value, and that & is the
corresponding value, we have by theorem 2z (§3),
pte
\F(2) | Loy for all  7A\R.
As F(z) is, by assumption, increasing irregularly, there is a number
©” %, finite or transfinite, such that 7% >"%¢ and [F(z)[_l__e;f_
for infinitely many values of » which increase without limit. Supposing
that |s| =# be one of such values, determine a positive integer 2 as
to satisfy
§70 L ¥ iy
where s is a prescribed positive integer greater than 2. Then we have,
by the lemma in §4.
nlog(s — 1)< log M7)< e,’,}i._ < e(‘f’_"jlf s
or

(12) P {lob”""(”lof ‘))} > {log,s (71—}-1)} ,

where ¢ may be taken as small as we please for sufficiently great 7.
The inequality (12) holds for infinitely many values of #. Supposing

that those values be 7, <m<...... LI ennnn , we have
. log,_n, o
lim _—ﬁf’ )
= logr, 1—o¢

1 The assumption is legitimate by the generalized theorem of Picard in 37, Chap. II.,
the proof of which is independent of the above theorem,
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that is, the order of infinitude of 7, (#=1, 2,......), is indeterminate,
proving the theorem.
]716’01’3712 6 Let z 1/ 2\ 1 5 \In
(T,,> ...... E(E)

L2 s\ ¥tz
H)=dTli——)e
n=1 (l"’

be of the order w'Tp. If the function f(z) be increasing regularly, the
order of infimitude of r,=a,| will be determinate.

We assume that p\3'. Supposing that the order of infinitude of
7, is indeterminate, let

(13) log, <a?
log7,
for infinitely many integral values of #, where o is subjected to the
condition that s<p. Suppose that /% (>#n,) be an integer which
satisfies (13), where 7, is dletermined as in §2, and put
(14) (log,.ot)* =7,
where s is subjected to the condition that

g s p.
5 2 5\ D
ht I z 1 z n
» +_(_> A, +—<-—\
I 2 Ty 2\ Ay P\ 4/
Tl r— e
n=1 229
3 ny  h—1 o
—z" . . Tr .
n=l n,+1 2

ll1 ~
z)"ﬂ'<1 3

n=1 n

being a polynominal of the (»,+2A)% degree,

z)‘:{lll(l———f—)\<e;il for sufficiently great ». We have, similarly as

n=1 n

. 4
in §3, . (logk) "+ logr

b

n,+1
or in virtue of (14),
h—1

[ems
TiL

= ep—l »
n,+1

where ¢/ is a certain positive value which may be taken as small as
we please for sufficiently great /.

—Icf (1_ d )e7+l?<71)+ ...... +]>Ln<;2;>/’n‘

w=h
T 7"“)1511 +1'—1 Bt
éﬁ_gpn_{_l(?; +f’n+2<7'n)+ .........

n=h

< St (log/h) T} e

"

1 For p=2, see Borel, Joc. cit.,, p. 110,
s 9
2 By theorem 3 (74), the exponent of convergency wf's zp’<(o7)7'p.
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We have, however, from (13) and (14)
ra>log, Ji=r"

As a<s, we have - = <1—. ' _ for sufficiently great 7, and ac-
log, ./t
G 1
cordingly »<r,* < r,bl"@,,j, which satisfies the inequality (6) in §2.
A _
Hence we have, as in §2, J'ﬂ“<e I—¢"F where A and B are certain
==l

X ViR
finite values such that 2(77/—) = A and %ﬂ<8 for #\/%, so
S n

n=h ”

o0
that | \ <€f_1 for sufficiently great ». We have therefore

=l | (142
[lve] K3 218 s
” s ”
‘ T < Cp1* €y ¢ €y
, =1
S+ .
( I 5) _.Z; ep—l

where ¢, is a certain positive value which diminishes with —. As
v

there are infinitely many values of /2 which satisfy (13), the relation
(15) holds for infinitely many values of » which increase without limit,
that is, f{s) is increasing irregularly, which is the proposition.

Cuaprrer 1.
TRANSCENDENTAL ALGEBRAIC FUNCTIONS.

INTRODUCTION.

Supposing that the zero points of a transcendental integral function
]).i(S), (l.:I, 2, cheeen N A’). be Sy X2y everes s @iy vevvas N /7]_, éz, ...... , ék;"""
where 4,’s are the common zero ponts of F(z), By(&), vee.er, £4(2), put

pot 1 3 2 I 5 /7,” L
fasf(i- ) Trala)

and s 1(= 2+ Lt :)/)ff)
%0 2\ ?(r) """ ~o (o
fo=f (=2 )i )
=i n

i

~ s
1 If the number of 2,,’s be finite, say .V, f\z)E'[]'"(I—T-). Similarly for f;{z), ({i=1,
PSRN O%
2, e ) &) I
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in which p,’s and p’s are determined by the condition (5) in §2,
chap. I. Put

P()="f) £, (=1, 2, e, ).
where Zf2), (i=1, 2, ...... , %), is evidently an entire function. If the
orders of ¢Zd?)~Pi), (=2, ...... , £), be all less than the greatest of all
orders of ¢Pi(®), (z':I,/ 2, veeeen, B)Y, put

K(2)= e}i.(:)f(z)
and in the other case, put

KE=A6).

Definition. When AT{s) is a constant, we say that P(s), Pf2),
...... , Pi(s) are relative prime.

Definition. A function (z) which is defined by

(1) Pz)o"+ P(z)a"+...... +P(5)=o0,

where 7 is a positive integer and Zy(s), Py(2), «ev--. , P(z) are transcen-
dental integral function of z, is called a #ranscendental algebraic function
of z.

Definition. When the left hand side of (1) be not decomposable
into factors of the same form, and Fy(2), P,s), wu... , P(2) be relative
prime, (1) is called an érreducible equation.
 Definition. In an irreducible equation (1), if @?<% be the highest
of the orders of /3(2), Pfs), ..uv-. , PA2), (1) is called a transcendental
algebraic equation of the w¥o'% order and the n' degree and the function
defined by (1) is called a zranscendental algebraic function of the w?T*u'h
order and the 1w degree.

1. Zheorem 1. A transcendental algebraic function behaves algebraic-
ally in any finite part of the plane, the number of the branches being
constant ; and conversely.

We may assume, without loss of generality, that (1) is an irre-
ducible equation. Then the function w(z) defined by (1) is evidently
n-valued. As Ffz), Fy2), «..... , B(2) behave regularly in any finite
domain D, w(s) behaves algebraically in the neighbourhood of #z in D,
at which Z(s) and the discriminant $(g) of (1) do not vanish. The
zero points of Fy(z) in D are finite in number, and at those points, at
least one of the branches of ©(2) becomes infinity, the infinities, how-

1 This occurs only when all €Pi(:), (i=1, 2, ......, %), are of the same orders.
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ever, being of finite orders, since F(2), A(8), . .vnt , Fu(2) behave like
polynominals in 2. The equation (1) being irreducible, (z) does not
vanish identically in D, and it is an entire function. Accordingly, the
zero points of D(z) in D are finite in number and so also for the branch
points of w(z). Moreover, as Py(3), Py2), seevee, Po(2) behave regularly
in D, o(z) behaves algebraically in the vicinities of the branch points.
In short, w(z) has, at most, oaly a finite number of singular points in
D, and the singularities are poles, branch points, or the combinations
of them, that is, w(z) behaves algebraically in any finite domain. Con-
versely, suppose that w(2) is n-valued and behaves algebraically in any
finite domain. Then any symmetric polynominal of the branches «,,
Wy, eunnnn , @, of w(z), being one-valued, has, as singularities, only a finite
number of poles in any finite domain, so that it is a meromorphic function
of 5. Accorningly, o(z) is the solution of

J{L[‘ (w—w)=0"+R ()" +...... +R,(z)=0,
£t
where Ry(s), Ry2), ...... , R,(2) are meromorphic functions of 5. Hence,
putting R,(z) = £(5) P , R,,(z):—_—_{)?_l("i) where £Fy(z), F(2), ...... ,
A A

B (z) are entire functions of z, we have the proposition.

2. Theorem 2. Let (z) be a transcendental algebraic function of
the w70 order defined by

(1) LPg)w™ + P(z)o™ " +...... +2(z)=o0.

Then for any prescribed positive value <, theve corvesponds a finite value
R suck that

otz
| Py(a)w| L e, 4 Jor all r=|z] \R.
Suppose, if possible, there were a sequence of values 2, 25, ...... ,
pte
Ziy veenns which satisfy lim z;=c0 and [Z(z)®|> ¢, . Then by (1)
| Po| LB+ | BB Pl e | BB P | Y
| 2| I— | Fw |:’i
o 1— | Po| ™
where |P| is the greatest of |Z)], |2F,], ...... , 1L As
pte
| Po(z)w(z)| > e;”;l by assumption, where 7= |z, (=1, 2,...... , we

have
Rl P ENUIEN] I
G=n T -— i P0<5i)w(3i) ]—1

b

so that
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1— | Pfz)o(z)| ™ L2
1— | P(z)o(z;) |
B(2), P5)Pf2), ...... , B(2)P(2)"™ being entire functions at most of the

1 ot:
0Pt order, we have ]P|é?e;_l for AR, Then for all 2 such
as 7, \Ry, Ry, we have

for #\R,.

Jote

ep_l < | Pfz)yo(z,)] L* eppji- 2=6,",

which is a contradiction. Hence we have the proposition.
Corollary 1. For any positive value <, there corvesponds a finite value

P )
R such l‘/z:th (2) L,y Jor all r=|z] AR,
1

Corollary 2. Extension of Hadamard's second theorend' to transcen-
dental algebraic functions.

Let w(2) be a transcendental algebraic function of the order w?>p,
defined by (1). Then for any prescribed values ¢ (however small) and G
(however great), there wz'll ée a circle whose radius is greater than G

and on which l(u(?)|4 p—l . Similarly, theve will be another circle of
p4e

the same property, on which [w(z)l;e—"l,z_lg .

Supposing that (s)=¢7(%)-f(2) where f{z) is the canonical product
of the order w?7% (Lw? %) of all the zero points of F(z), divide both
members of (1) by ¢#2), by which the order of (1) is invariable. Then

we have, by the theorem,
pte
| (5)o(z)| L ejlf_‘l for [z| QR

By Hadamard’s 27¢ theorem? (for p'=2) or by its extension® (for ' \3),
there is a circle whose radius is greater than any prescribed positive
value G, and on which
| PN

e e is Nem e
so that Js ot f+€’

|o(z)] =[A&)(z)]-| A2)| 7' Leo <d,
where ¢ may be taken as small as we please by taking |#z| sufficiently
great. Thus the first part of the corollary is proved. In precisely the
same way, the second part of the corollary may be proved by did of
corollary 1 instead of theorem 2.

1 See 35, Chap. 1.
2 See foot-note in 35, Chap. 1.
3 See g5, Chap. 1.



144 Ryd Yasuda— On Transcendental fntegral and Transcendental

3. Theorem 3. Lct

(2) I, w)= L) + L(z)w™ 1. + Lia(2),

(3) Iz, 0)=M(2)w™+ M(5)0™ " +...... + M, (2),

(4) Iz, w)=Ny(8)w" + Ny(5)o" 4 ...... + NV,(2),
where L{3), (=0, 1,...... , mn), are all entire functions and M(z), (i=
O, 1,..... ,m), and N{2), ({=0,1,...... 1), are generally ineromorplic
Sunctions.  Supposing that

(3) [1(21 w =1z, w)« [3(5: ),

we may determine Tz, ©) and Iz, ) such that their degrees in o are
equal to those of Iz, w) and Iz, w) respectively, while their coefficients
are entive functions and the functional velation (5) still holds.

B Let 7(2) E—‘;‘Vﬁ(;)), (f=o0, 1, ...... , m), where M(3), M (2), ...... ,
M,(z) are all entire functions and A/(z) is the canonical product of the
primary factors of the infinity points, at least, of one of M(z) (that is
to say, in the case that all AZ(s) are rational, # ) is the least common
multiple of their denominators). Similarly, we determine N(2), Ny(2),
JAE:) , V,(z). Supposing that a be an arbitrary zero point of 4z),
there exists, at least one J/(z) which is indivisible by (s—a). Let
My(2) be the one whose suffix is the least among them. Similarly, if
there are V which are not divisible by s—e, let V() be the first one.
Comparing the coefficients of &™™~*+® iy (5), we have

M) N2) Lyi2) = o 2) Vo 1(2) + () Ny ioa(2) + + My _y(5) Vi ya2)
+ M (YN + M) Vi) + ... + My i(2) Vil 2),

in which all #7(z)'s whose suffixes are greater than m, and all NV(z)’s
whose suffixes are greater than 7 are zero. Here, on both sides, all
terms except M(2)V,(2) of the right hand are divisible by (s—), which
is impossible. It follows, therefore, that all Jvi(z)’s must be divisible by
(s—a). Consequently, a being an arbitrary zero point of M), all V(2)'s
are divisible by #(z), Similarly all 47(z)’s are divisible by M2). Put

:[L(z‘) = V) (7=0,1,...... , L),
N(g)= TZ/,V;%}’ (t=o,1,...... , 72)
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functions and

L(s, 0)= ]1:{0(2) O + ]?[—m(z),
7i(s, 0)=N(s)w" +...... =N,(2)

are desired functions.

4. Theorvem 4. Let L{z), M{z2) and N{z)in (5) be entive functions
and A(2), (i=0,1,...... , m), be relative prime  If w™7p,, w7, and
w520y be the highest ovders among those of L(z), (1=0,1, e, m+n),
of M(2), (=0, 1, ..., m), and of Nfz), ((=0,1, ..... , m), vespectively,
O o, will be equal to the greater of wP>Tp, and w?sTp,

Ly=MN,

L= N, + M,

L= MNy+ BNt oo+ BN,

Loy =My IV,

As Ly=MN, by (6), the canonical products in A4, and N, can not be
of higher order than 7, that is, at most of the w"p/* order, so that
we may put My=Me® and N,y=Npe " respectively where M, and N,
are entire functions at most of the ?7%0* order and 4 is identically
zero or ¢" is an entire function of order higher than w?7?p, and has

(6)

no zero point. Putting M= e* (i=1,2,...... ,m), and Ny=Nye
(i=1,2,...... , ), and solving M, (or IV;) from m+n equations except

the first in (6), 47 (or V) may be determined as an algebraic function
of L, Lgy...... s Lonts M, and N,

ALy neee. s Loy Moy NYMP A .. + ALy eenens s Loins My Ny)=0,
where s is a positive integer, and all A's are polynominals of Z,, L,,
...... y Lsn, M, N, that is, entire functions at most of the w?2p/h

pte

order. Accordingly we have, by theorem 2 in §2, |A,M;| L, _, for
r \R, that is, 4,47 is an entire function at most of the w? %% order.
Put A,=¢%f, and M,=¢Cf, where Q,, O, are’entire functions and £, £,
are the canonical products of the zero points of A, and A7 respectively.
As A‘)ﬂ[i—:—,eQ"JfQ%;ﬂ is at most of the order w?:3%p,, the same is true,
by §4, Chap. 1, of fif; and accordingly of f,. Similarly, as A, and
A,M; are at most of the order " 7%, the same is true by cor. 3 in §g,
Chap. 1, of ¢@ and @+, so also that of e¢¢. Consequently,
eOuf;=01; is at most of the order wn%p. But M=e*M, (i=o, 1,

1 See Introduction.
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..... ., ), being relative prime by assumption, we have £=0, so that
all M’s are at most of the w”7?0/% order, and so also for all NV's.
Hence we have o”17%0, N0™ 70, and 0”770, Nw?s7%0;. Now, suppose
that @70, > w70, w7, Then in virtue of m2+ 7241 equations in
(6), the orders of Z,, L, ...... y Ly, are not greater than the greater of
?:7%0, and w"7%p, and accordingly are less than 7%, which is a
contradiction.

5. Zheorem 5. No transcendental algebraic equation is satisfied by
a Zranscendental algebraic function of the higher order.

Let w(z) be a transcendental algebraic function of the w”7%0% order
defined by

i (1) Pe)o"+ L)+ ... +2,z)=0

an

(7)  Of2)o™+ Q)™ +...... + Ou(z)=0
be a transcendental algebraic equation of the w?:>7'p/t order where
w70, < w7, As (1) is irreducible, in order that (7) be satisfied by
w(s) defined by (1), it must be decomposable, that is

O™ + Oy (z)™ 4. +0.(2) = (Po(z,‘w" e + P,L(z))

X (R()(g)wm——n __,r_]\)l(z)w’nzfn—l e T +Rm—n(:))-
Qu5), Q&) venens , Oa(8) being relative prime, Ry(s),...... , R, .(z) are,
by §3, entire functions and accordingly by $4, Fy(s), Fls), «ov... , ()

are at most of the order w?:7%p,, that is, of orders lower than w7,
which is impossible.

Corollary.  No transcendental algebraic function satisfies an irveductdle
equation of the higher order.

This may be proved in the same way as the above theorem.

6. Theorem 6. Let R(z), (i=1, 2. ...... , 1), eing diffcrent from
sero, be @ vational or a wmeronmorplic fuiction of a lower order than
o), where K{(2) is a polynontnal or an entire function of order lower
than 2 ; let R(3) be a rational function (zero being included ) or a miero-
morphic function of a lower order than all X33, (i=1.2, ......,m). Then,
e order that

&) Ri(s) + Ry(s)ebrlz) +...... + R,.()ehnlzl=0,
it is necessary that, for each Kz), there exists, at least one Ki(z) (i><j)
suche that both eXi(z) and eA52) are of ligher orders than eAd=)—4j), and

all the sums of those tevins relating fo one another in such a manner, and
accordingly R, also, vanish identically.
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Supposing that the theorem is untrue, we may assume, then that
in (8), no K(s) has the property above described; for otherwire we
combine all the terms relating to one another in such a manner into
one term, by which the coefficients of the combined terms, by assump-
tion, do not all vanish identically. First, we assume that R(s)=o.
Then we may assume, without loss of generality, that ¢£1(%) is one of
the lowest orders in &), (i=1, 2,...... ,7). Dividing both members
of (8) by R,(2)ef1(%), and differentiating with respect to &, we have

) x
sy Z{ {1\’1 L %_ d([(;;—[(])}/‘;_zqzo
= ds .y 44

(%) A )

does not vanish
ds R, dz

of which any coefficient

R
(") LR AR~
dz R, dz ’
L~ (Ki—&3)

identically. For if we have, by inte-

. R, . .
gration, —-= where € js a constant different from zero.

1
By the assumption that at least one of ¢A1 and ¢4A% is not of a higher
order than ¢A:—4] and that ¢41 is one of the lowest orders, e¢Ai—~4L is
not of a lower order than e41. Suppose that eAi—41 be of an order
lower than 4% As the order of the product of the finite number of
entire functions is.not greater than all of their orders, the order of

eli=eAi— 4104 is not greater than that of ¢Ai—41, and accordingly by
assumption, is Jess than itself, which is a contradiction. Similarly ¢4i—4A%
is not of a higher order than e¢4Ai. Hence ¢Ai and ¢4i—4AL are of the
same orders. By the assumption that R, and R; are of lower orders

than ¢41 and ¢4 respectively, and that ¢4 is one of the lowest orders

1
in e&i, (i=1,2,...... , 772), the order of £ is less than that of ¢A%, that

1
is, is less than that of ¢&:—41, and the above identity does not hold.

The order of an entire function does not increase by differentiation,? and
this theorem may ecasily be extended to mermorphic functions, so that
a ( Ri) is not of a higher order than —[—ei Similarly, ,’Z(A]E’C@)“
dz \ R, %y ds

is not of an order higher than X,— K, which is of a lower order than
e&i~A1, Hence, it follows that eXi—47 is of an order higher than

1 All rational functions are of the order sero.
2 See Borel, Lccons sur les Ionctions méromorphes, p. 60.
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Cousequently, we have

d (Ri>+ R, dK—K)

dz \ R, R, dz
RPeAs= A4 RPeAs=Kit ... + RiVeln—Ki=0,

where R.”, being different from zero, is a rational or @ meromorphic

function of a lower order than ¢Ai~AL, By repeating the same reasoning,

we would have
RSZ;L_DE A—:n - ]\'m——l = O,

which is impossible, since R is different from zero.

Secondly, we assume that Ry(z)3zo0. In this case, we may prove
the theorem, by dividing, at first, both members of (8) by R, whose
order is less than those of ¢4%, (=1, 2, ......, ), and then by proceeding
in the same way as before.

7. We are now to prove the generalized theorem of Picard. Let

(1) Fs)w"+ L) +...... P (s) =0,
and )

(9) O (5w, + Qi ()" .+ O5(2)=0, (1, 2, ...... ),
be irreducible equations of the w”~?p" order and the 27 degree, and of
the @?7°p % order and the 77% degree respectively. In order that w,=w
at a certain point, it is necessary and sufficient that

Dy By, , 00, 0 ciiiiann.l. R eI = R e N R AT
o, b, ..... ceeees Y A o N , O

O, veenns y O, Ly e , L2,

L y
02, 0P, ... L 09,0,00 e , 0
y "
O, OP, cecviiviiin... , 08.0,00in.. , 0
O) ererrrnenennns , 0, OF v, e Q0

. . 72+ 72) !
vanishes at that point, where M/=,,..C,= ( ‘ml'— and ¢ and ¢ are
! n!

homogeneous polynominals of the 7/ degree in O and of the m/t
k=] =

degree in /[ respectively.
Theorenr 7. Ficard's theorem generalized.!

1 Le theoréme de M. Picard :—Une fonction enti¢re /{s) telle que les équations /{z)=aq,
Fzy=b, a4, nalent pas de racines, se réduit nécessairement 4 une constante. (Borel: Zegons
sur les fonctions entidves, p. 88).

Extention aux fonctions méromorphes:—Etant donnée une fonction méromorphe f{z)
d’ordre 5 et une autre fonction méromorphe quelconque ¢(s) d'ordre inférieur, parmi les
équations f{z)=¢(s) il n'y en a pas en général déxceptionnelles, et s'il en a, il y en a deux
an plus. (Borel :—Zegorns sur les fonctions méromorphes, p. 66).
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Let &(z) be a transcendental algebraic function of the «P*pl’ order
and the 1wt degree and wiz), (i=1, 2, ..... o7, be any transcendental
algebraic functions of the wPpfh order (WPil’0,<dPTp) and the mith
degree vespectively, under the condition that none of the determinants

(1.9711 Sbrzl............g/)f'_“l

9’17‘12 gbr.zz ........... . 9"7’_“2
(O T T (

R R R X T R R

vanishes identically  Then all the orders of the canonical products of the
primary factors corresponding to the points which satisfy w(z)=wiz),
(=1, 2, ...... , ¥), can not be inferior to wPTip, unless v/ N=2{(M—1).

Let (1) and (9) be the equations which define w’z) and w/(s)
respectivly, and «%%s; be the order of the canonical product of the
primary factors corresponding to the points which satisfy w(s)=w(2).
Let 0”0 be the greatest of oo, (=1, 2, ......, 7) and "%, (i=
I, 2, oren, 7). Then w?7?0<w?®0. Now we have

(I I) S',’L'l(icl_'l—sﬁiisai_}- sesene +$'/"L'JISO.MERI$€[(L-’2 (Z-: I, 2_, ...... ) 7’).

where R, is the canonical product of the primary factors corresponding
to the points which satisfy o(s)=w/z), so that it is an entire function
of the w%T?¢ /% order. Accordingly, ¢%i is an entire function at most of
the @?7*c% order. Suppose that »>7° and eliminating ¢,, ¢s, «v...., €y

from any J/+ 1 equations, say equations corresponding to i=1, 2, ......,
A+1, we have
¢’11, S'/’I'J’ cresesasnris f 9”1)1! ]\D.l(fAL
3‘021) 9927_, ............ s ¢’2‘1[, ]\)251‘:’
| —
(12) Ceeenene eteieeererateereeintraniieene =0
Darss Pagay oveenrvnnnns s Py Ry

e
Darrasy Parrazs +oos Parsann Karpsf ”’"'ll

in which the coefficient =R (¢ Pogeeeretlioss1@igrieeere-arpry) of &5,
by assumption, does not vanish identically and is at most of the w?7?p/%
order. For each ¢/i of the wP 0% order, there exists at least one ¢4
(/=F2), in ehy, ehy, ..., eArt1 such that eAi—4j is of an order lower

 When m =1, the condition will be satisfied if w;(i=1, 2, ...... , 7), are different from
one another.

9,

2 By theorem 3 in 75, A;=o0.
5 If 7£M, then A beingN2, we have rL/L2(M—1)=NV.
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than those of ¢4 and ¢4, or is of an order lower than «”7%, and ac-
cordinglyc4i is of the w?7%p* order (§6). Now we divide ¢4y, ¢4, ......,
eAr into groups such that all ¢A7s which are of order lower than w7
belong to one group, and for other ¢A%'s of the order w?T
them have the relation above mentioned, they belong to one and the
same group; otherwise, to different groups. Let those groups be G,
Gy eeenen , G, and s; be the number of ¢A¥s which belong to G}, (J=1,
2, wovoes, ). Then we hove evidently

2

0, if any two of

(13) S St et =r

Now all s;’s are less than A For otherwise, suppose that ¢4, ¢4,
..... ., ¢Aur belong to one and the same group. Then as the determinant
(D11y Przy vovveey ¢ary) by assumption, does not vanish identically, we may
express, by solving 47 equations in (11) corresponding to =1, 2, ......,
M, ¢, ¢sy «....., @y as function of the form

@ =Riebi, (=1,2, s, 1),

where R, (1,2, ......, M), are entire functions of orders lower than
w'*o, and e41is an entire function, at most, of the w?7*p?% order. But
among ¢,, ¥y, «....., ¢ there exist 7' (7=0, 1, ...... , #2), and we
Ay

have i
P=S,e ™ | (=0, 1, veruen, 2),

where S;, (=0, 1, ......, m), are entire functions of orders lower than
@’7%),  Substituting these values in (1), we have

Sl a)o"+ S(s)o" 4 ... A+ S(s)=0,
that is, @(s) is of order lower than @"7?p, which is a contradiction.
Hence s;£01—1, (j=1, 2, ...... , ), and consequently we have, from (13),
(14) N2

Next, the number of all e4A7's which belong to G, G, ......, G, is less
than 47 For otherwire, taking any M ehis, say ¢4, chs, ......, ehu,
which belong to G,, G, ......, G, and any e4%, say A1, which belongs
to G, and eliminating ¢,, @,, -....., ¢y from 4741 equations in (11) which
correspond to ¢=1, 2, ......, #/+ 1, we have the identity (12). Hence
there exists at least one ¢Ai among ¢4, ¢4, ......, ¢, which belongs
to the same group as ¢4ur+1(§6). This is however impossible, and ac-
cordingly we have

Sotb S5t eennenrennn +85,L M~ 1.



Algebraic Functions and Algcbraic Addition Theoremns 1. 151

Similarly,

K R O +s5, LM -1,

SiF SaF evieiinainas + 5L M1,
or, by addition,

(t—1) (s +s2F oo +5)LHM—1),
by (13) ;

rL y (M—1).

—1

As t N2 by (14), we have p d £2 and consequently
-1

rL2(M—1).

Theoren 8. If a transcendental algebraic function @(z), having only
a finite mumber of branch points, be such that w(z)=a and w(z)==0, a==0,
have 1o voot at finiteness, then it will be an ordinary algebraic function.

Though this theorem is more restricted than the former one, it is
very useful for later investigations. As w(z) has only a finite number
of branch points, any branch of w(s) may be expressed as a regular
function of 7= 57 in the region (G £ |¢] <oo) where 4 is a certain posi-
tive integer and G, a certain positive value. As w(z)=a and w(s)=4,
a==6, have no root in the assigned region, the infinity point is, by
Picard’s theorem generalized,! a regular or a non-essential singular point
of the function () of #. Accordingly each of the coefficients 7yz),

(1) B(z)o"+ Ps)o"™ +...... +£2(s)=0

has, as singularities, at most a pole at infinity, that is, &(z) is an ordinary
algebraic function of .

8. We now proceed to consider the Riemann’s surface for trans-
cendental algebraic functions. They are entirely analogous to those for
ordinary algebraic functions, except for the vicinity of the infinity point.
As for the branch lines, we determine them as follows: If w(s) be a
transcendental algebraic function of the 7% degree, the Riemann’s surface
for it is z-sheeted. If the origin be a branch point, we take as the
branch line, a half straight line in any direction, having the origin as
its end point, and extending to infinity. For other branch points, (».6,),

1 Voraussetzung: f{x) sei filr 0<(| x—uxp [<Cp eindeutig-regulir, D= und F£4 (wo a==0 ist).

Behauptung: x, ist keine wesentlich singulire Stelle (sondern regulir oder cin Pol).
(E. Landaw, Darstellung und Begrimdung elniger newerer Ergebuisse der Funktionen-theorie
p- 96)-
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we arrange them in order of increasing moduli, and when there are
branch points of equal moduli, we arrange them in order of increasing
arguments, (0£8;<27). Then we have

(n0), (), ... , (7)), e .

As the branch line corresponding to (7, 8,), we take a half straight line,
RNry, O=0, where (R, 0) are the current coordinates, and if there
exists another branch point (7, ) such that f.=80,, we take a small semi-
circle as a part of the branch line,
whose center being (7, 8.), (sce Fig.
1). For (mfh), (75, 05), «.... , similar
process will be applicable. As the
branch line corresponding to (7, ), ‘
we take the line determined as above, /
but slightly deformed so as to have (70p)

r/_,)

no common point with that corre- (26,
sponding to (7, #;), and soon. On 7y,

the Riemann’s surface determined as™ @
before, w(z) is evidently a uniform

. . Fig. 1.
function of position.

9. We shall prove some theorems concerning the Riemann’s surface.
Theorcin 9. Let S be the Riemann's surface for (s) defined by

(1) P+ Ps)w" ™ e +{sy=0

and f (s, w) be a uniform function of position on S and be branching out
as S. If [z, w) be a lolomorphic analytic funct'on of position on the
total surface S, the infinity point being included, it will be a constant
Let
(a, @), (@ wy), veie , (@, w), (a,=a,=...=a,=a),

be 7 analytic points corresponding to s=a. In the vicinity of (a;, a;),
(l=1,2,...... ,72), we have f(z, w)=/{2)=/i(s|a). S(f), being any sym-
metric polynominal of (=), /(%), +ee... , Ju(£), has the same value in what-
ever sheet z may lie and by whatever path ¢ may have attained its
position in that sheet. Hence it is a uniform function of 5. Moreover,
as .S(/) is holomorphic on the total surfaces .S, the point at infinity being
included, the same is true on the total s-plane, the point at infinity being
included, and accordingly it is a constant. From this, it follows that, in

(=PI eer f=L) B+ ST S,=0,

all S;, (=1, 2,......,2), are constants and hence /(z, ) is also.
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Theorcie 10, Lot f(z, w) be a uniform function of position on S and
be branching out as S. If all the singulavitics be poles, finite in mumber,
in any finite part of S, 5, w) will be rational in o and mevomorphic in
s and conversely.

Let

(@), (@), ...... , (@), (y=a,=......a,=a),

be n analytic points corresponding to s=a. In the vicinity of (am)),
we have fiz, o)=f{s]a), ¢=1,2,......,n). Put

fitfit oo So=0
(13) S + w0, =P,
5
'fl(uln‘_l +’f2(l);l—l+ """ +f;L O = ,L~—l)
where 7, (i=0,1,...... ,—1), are evidently one-valued functions of z

and have only finite number of poles in any finite part of the s-plane,
so that they are mormorphic functions of 7. Next, we determine 4,_,,

Ay venen, 4, so as to satisfy the following relations
(16) W Al +A,.=0, ((=2,3,.000.. , 72).
Multiplying the equations in (15) by A, 4, A, coeies , A, 1 respectively
and adding side by side, we have
2 Sl Al g A, =P AL AuiPy,
i—1
which is reduced, in virtue of (16), to
(17) j;((r)'l—l 1(/)'1' L S +Al_1) })n—l'i' b 1,L__,q+ ...... A,l¢‘1)‘,.
From (16), the roots of w" 1+ 40"+ ...... +A, ;=0 are w,, w;, ...... ,
w,. Hence we have
@" + iy Foeeies + —QLE((:) —a)(w—o,)...... (0—w,)
QO o
E(u)— w,)(a}"" T w7+ +4,.)
=o'+ (A — o L —aw, A,

Comparing the coefficients, we have

g — Qs+ Oy
A=t =2
Qo
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g = Qi+ Qi Y+ ...+ O;

ie. Ay (i=1,2,......,n—1), are polynominals of ®, whose coefficients
are meromorphic functions of &. From (17), we have

fi= P+ A0 ... + A, .,
! ot AT +A4, .,

Proceeding just as above, we may obtain an analogous expression for
each branch of w, so that we have

P kAP o Ay
(U7L——1+A1(,)” '.‘)-‘f- ...... +An—~l
i i—1
where A,;:_QELLQJ&O:LLiQL, (i=1,2,.cc.,n=1), ie. fiz, )
=0

is rational in @ and is mermorphic in s.

Conversely, let f{z, @) be a function which is rational in w and
mermorphic in 5. In virtue of the equation (1), it may be reduced to
the form

Sz, w) E&Ciiiikl(“:'tj+ e H R, )
xsbw' +\5le ~+.....- +\S‘“,4;

where R; and S; (=0, 1, ......, 2—1), are entire functions of 5. In the
determinant

Qo Oy eoveevnnnnn 2y Oy 0, Oy vevenennnns , 0
O, Qo) vevervneneens ceneey O, 0y vviennnn Ol rows
_l o vereny O, Oy vnnnnn Cetreateieaaens ey O,
B=
Sor Spy i, y Sty 0, Oy vevennnns , O 1
o, Sy, ... verrreny Sty Oy ceineenns, O 2 rows
T« Y v S, iy,

which is evidently an entire function of s, multiply the first 2{(n—1)
columns in order by ™% o™ ..... ., @ and add the products to the
last column. Then we have

DB=¢(z, 0) (S +...... + .S, )+ ¢z, 0)( Q'+ Q'+ .+ ),

whefe ¢ and ¢ are polynominals of @ whose coefficients are entire
functions of 5. But as Q'+ Q"7+ ......0,=0 on S, we have
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F= R+ ... R, ¢z . T+ T '+ + T,
ST+ S, ¢z, w) B
where s is a positive integer and 7; (f=o0, I, ...... , 72), are entire

functions of 2. Accordingly, it follows from the identity, that f{z, ®) is
one-valued on S and is branching out as S, and moreover it has, as
singularities, only a finite number of poles in any finite part of S.

The author wishes to express grateful acknowledgements to Prof.
Wada for his kind remarks and encouragement.






