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The Geometry of Somas in Non-Euclidean
Spaces.

By
Teikichi Nishiuchi.

(Received March 17, 1915.)

CHAPTER I
The Geometry of Somas in Elliptic Space.

SECTION 1.

Soma and lts Transformations:

§ 1
Soma and Its Coordinates.

When we consider a rigid body in the elliptic space, its position

in the space is always determined by three oriental lines which are
fixed in the body and cut orthogonally each other.
be brought to e ® different positions.
and any determinate one the ‘protosoma’ by Study. From the pro-

tosoma every other soma is obtained by a determinate motion.

3 » - _ﬁ -9 .ﬁ . -
Consider-three oriented lines 0X3, 0.X;, OX; which intersect ortho-

gonally each other and any point 2 in the space. Let

=X X,0P,

B =22 X0P,

T= Z:JYEO-P&
__ 0P

A G

I .
where - 18 the measure of curvature' of the space.

If we define the coordinates of the point 2 by the ratio®

1, 2 See Coolidge, ¢ Non-euclidean Geometry’, p. 53, 68.

This figure can
Every position is called a ¢ Soma ’
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LR R

such that
cos 7 = e (’;';) R
Ksinrcosa = ”'l/%;‘_j R
Ksinrcasff= 1/_(f:2r_) ,
K =2
e K'sinvcosy T

(xx)=2"+ 2"+ 2"+ 2"

Then the motion in the elliptic space may be represented by the
equation®

X' = PXQ (1P]-1ClFE=0) -ve.... - (),
where X', P, X, Q are the quaternions such that
X' =z +in| + i + Ex/,
X

i

O R R
= potip - ipat Lo,

P
Q = qu+19,+ 70+ s
and

|P|= 20+ 25455425,

|0]= g+’ + g7 +g
Pti=it1=F+1=yk+1

=jk+ b= kit ik=i+ji=0.

From (1) we see that a soma can be represented by the para-
meters PQ. For the sake of brevity, we will assume hereafter that

, , |P|=]2]
without loss of generality.
If a soma P’Q’ can be brought to another soma P”Q” by a motion
PQ, then the following cquations will hold by (i):
PP'=P", éé’= é’,’
where _
O=gy—iq1—jq.— kgs, etc.

1 See Klein, ¢ Zur nicht-euklidischen Geometrie’, Math. Ann. 27.
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Let us now put
1Xo = o, Xo=qv —1,
X1 = 2y, X ==/ =1,
Xs = g, 91{25—9.’1/:-1—,

X3 = P, Xy =—gy —1,
then the following identity exists:
(XX) =X+, X2+ X4, X84 X2+ X2+ X0+ X =o.
Hereafter we shall define the ratios
X) = X X X X, (X) =K, K K K

as the coordinates of the soma PQ. (X),(,X) are analogous to the
coordinates of a cross! For the sake of compactness of expression in
some of the following formulee, we will replace these two sets ((.X), (,&X)
by a single set of parameters of dual sort.

We will introduce dual quantities® of the sort @+ 4,¢(4) which
are subjected to the following rules of multiplication of units:

2 )
187 = 18 1€7, T 0y 18,8 = 808

Or shown with the diagram

V4 ad
© € o
1€ 1 0 €

For two such dual numbers, the following relations are true:

(ae+b,e)x(d e+ e)=aa' e+l e,

b

(e +be)+(ahe+é e) = _Zi' £+ A ré:

The dual guantities satisfy associative, commutative and distribu-
tive laws, but when

1 See Coolidge, < Noneuclidean Geometry,’ p. I24.
2 Scheffers, Ann., 39, 297.
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Ax B=o,

A or B=o
is not always true.

We shall call the dual numbers which are formed from (,X),(,X)

such that
%0 = ZXE)le +,‘X;),.€,

Xy =X, +, X,
&y = 1 Xo e +,X;,8,
&y =, X +,.X;,¢
the ‘dual coordinates’ of the soma (,X), (.X).
Let us now put
=8y + iy + 78, + £Es,
Y=5+a¥ +77+ £,

then the quaternions with dual coefficients (biquaternions) may be

written in the form
& = ,Xpe+,Xe,
where
ZJYE leO -+ Z.Z.I.Yi +].1X3 -+ kzX:-;,

X=X+ 0,5 +7,.X + £,X

The motion .4 by which a Soma (£) is brought to another soma (%)
may be given by the equation

A=9 Z,
B = By—i%—j.—his,
A = ot tAtjAet ks
Ao =%Yoo+ 2, :’714'%2 ye’l‘%s 7
¢41 = 6‘50 :?[1"‘%1 yo’l‘ %2 gs_a‘gs gz;
A=Y~ Y — &, ‘?/o'l'%s 7
As=8) Y3+ B, Yo=Y 1— &3 Yo

where

Or

The totality of all w® somas can be put one to one correspond-
ence with the totality of all «® paiis of points, or with that of all
% pairs of planes, one in each of real, projectively defined spaces.

For the sake of clearness we shall assume our soma-space is
doubly overlaid. We shall say that a soma belongs to the fupper
layer,” when it is represented by a pair of points; when it is repiesented
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by a pair of planes, we shall speak of a soma of the lower layer. The
two spaces shall be called in either case the ‘representing spaces.’

‘When
(%) {4} &)

the cosines of the K™ parts of the amounts of the left and right trans-
lations in the motion are equal to

ZAO s rAO
vV 4d) v/ (4-4)
respectively.

The equation of motion given in (1) may also be written in the
foims

2y = Sy Spty + Seata+ Seats,
&y = Sie%+ Sp#y + St 4 Siss,
2y = Swry + Soty + Soaty + Seats,
2y = Syxy+ Syty + Sgatta + Sests,

Sw = pogo— 2191~ 2:Gs—Pods St = —Pogi— D100+ Deds— D0

See = Poge—0519s— Prgo+ Dsquy Sus = Dofs Prde— 2591~ Psdos

St = pagot Pei— sgs+ Pogsr St = Digit Dot Psgs T 05

St = —pfet Pds—sdo—Pqn S = —Prfs—Poda—Psq1t Dado.

Su = D290+ Lsqi+ Pogr—Pign S = pofrt Psge— D95~ Prd

Sor = poa+ 2ugs+ DogoF 2190 Sn = pegs—Dig2F Dofr—Erdos

Sio = Psq0— Dei T Prgar P Set = =1~ Prgo+ Prgst Dad

S = — s Dt Hfo—Podn Su = Pafa TPt Pigit Pode

Now let (X), () be Klein’s coordinates and Pliicker’s coordinates

of a line and (X"),(#";,) be that of the transformed line in the above
motion respectively, then

. . 9 &
2p0 = X+, X/ ~1=2 P
Yo N
1 This notation means that the soma (&) is brought to the soma (/) by the motion (£).
2 (X) = (X Kot Kt o Xat 1Kot r o),

= xng .
2is "iJ’U/j




180 Teikichi Nishiucli.

Soo Sot. Soz Sos| | Fo A1 A2 A3
S0 S12 S| | Jo S V2 Vs
Sco Sor] | %o X1l Soz Soz| {42 A5
= 2 +2
' S0 S {Yo N S12 S5\ {02 s
Soo Sot Sz Sos
= 22 Dot 22 23
S10 S10 S12 S13
Soo So1 - So2 So3 -
= 23| | k=) 4 (i X/ 7).
S10 Su Sz S13
But, if
9. CRFP. CEEY. CHI0. CRI0. CEI0. &
=pipeipsi—y ~1qi—V/—1q: ~y/ —1g,
then

X /=T = (/=D P10l = (X +. 5 /=D Pl 2.
In the same manner, we can show that

X, X/ —1 = (Ko, Xey/—T)| P+ | O],
X+, X /1 = (Ko, X/ —1)| P |Q.
Therefore the cross defined by the ratios (X;:.X; :,.%5), (Xy:.X:,X5)

remains itself in this motion. The cross (,X), (.X) shall be called the
¢ director-cross’ of the motion.

§ 2
The Special Position of Two Somas.

If a soma (&) is obtained from another soma (&) by a motion in which
the amounts of left and right translations aie equal, then

(XX — (X, X)
. (XX (X X) (X XNXX) ©
(%) {A} (%",
then

X =4 X =,4X
Therefore
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it o Ko Ay Ko 1 As Ky X
W Xot=141  Xo+ 14y K+ 14 1 X — 140 1 X,
1Xot =14, X0— 145 Xy + 14y Kot 14, 15,
Xibem Ay X+ A X— 1Ay Kot 1Ay 1%,
Ko = AorXo— i, X — o Xy~ A5 X,
WX =y, Kot Ay Xt Ay, Xy~ 1 Ay X,
oo =0y Xy —, Ay Kot Ao, X+ oy X

Xt =, Ay, X+, Ao Ky~ A1, K+ Ay X

Since
_ (XX)=—(X.X),
it follows that

XWX L (XE) o (XX)
R ENER) T BN xm) ) e amy
But in our case
Ay £ Ay=0,
provided that
(4,4)+(,4,4)=o.
Hence, we have
XX) = (LX’T"Y) —.
VXXNXX) Ty (XXX X)

This is the relation analogous to the condition® of the intersection of
two crossses in the elliptic space. The converse of this theorem is also
true. The motion here considered shall be called ‘equitranslation in
left and right’ (or simply equitranslation) and the somas (&), (%') ‘ equi-
translational somas.’

A rotation about the origin of coordinates may be represented by

the equation -
X'=PXP.

Therefore, it is easily seen that this motion is an equitranslation.
If 2 soma (#’) can be obtained from another soma (&) by a half
translation, then

Ay=rAy=0.
13 3
12X X, o S\ X/ r &y
e VXX GNX) T ‘;:1‘ V(X XY X X)
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In this case ;4 and ,4 must be vectors. Further, it follows that

(X' X)= (X’[X)-—_-o,
where
(X X)= X+ . X0+ X + X — X — X — X — X
r

(X",X)=(X",X)=o.

This is an analogous relation to the condition of orthogonal intersec-
tion of two crosses in the elliptic space. When one soma (%) lies in
the lower layer the condition takes the form

(2 2%)=o.

Two orthogonal somas will be represented by two orthogonal points
(planes) in the both representing spaces. When one lies in the lower
layer two orthogonal somas will be represented by a point and a plane
in the united position. Thus two orthogonal somas will be represented
by a plane element (a system of a point and a plane in the united

position) after Lie.

The two somas of which one can be brought to the other by a
half translation shall be called ‘orthogonal somas.’

We shall introduce the conception of parataxy of somas. Two
somas shall be called *left (right) paratactic’ if one can be brought
from the other by a right (left) translation. For a right (left) trans-
lation Q@ (P) is merely a real number. Therefore, if two somas (%), (%)
be left (right) paratactic, then

1 Kon X Xony Xo= X0, X0 X 0 X (, Koty Xty Xty K= X2, X2, X2, X,

§ 3

The Fundamental Somas and Improper Somas.

Let us consider the protosoma represented by the coordinate axes
- = =
0X,, 0X,, OX;, then we know that its coordinates P(Q are equal to

the ratios
(1000) (1000).

We can obtain the three somas represented by the system of the ori-
ental lines
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— £ <
(OXir O/Y;y OZYS)I
— > <
(O-A-rlr O-XQ' 0X—3))
= L —_—
(0X,, 0%, 0X),

by the half translations along to the crosses formed by the lines OX;,
0X.. OX;, and their absolute polars respectively. The coordinates (,X)
(-X) of these somas aie equal to the ratios

(o100) (0100),
(oo10) (0010),

(ooo1) (0001),

respectively. Of course, these somas are orthogonal to each other by
the definition of orthogonality. We shall call the soma as well as the
protosoma itself the ¢ fundamental somas.’ The fundamental somas are
analogous to the edge-crosses of the fundamental orthogonal tetrahed-
ron' in the elliptic space.

Sometimes it is convenient to consider certain imaginaiy somas
called ‘improper somas.’

The imaginary somas defined by the equation

(XX) = 0 (XX) F0), (XX) =0 ((X,X)= o)

shall be called left (right improper somas. The left (and right) im-
proper somas will constitute a system which shall be called the { impro-
per somas of the first sort.’

We shall consider another sort of improper somas whose coordi-
nates satisfy the relations

. (XX) = (X, X) = o.
‘ (%) = o.

Such somas shall be called ‘ improper somas of the second sort’
The figure formed by the totality of the improper somas of the second
soit shall be called ‘the soma-absolute.” Thus we see that the equa-

tion to it
(%) =o.

1 A tetrahedron whose opposite edges are formed by crosses cutting orthogonally each
other.
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A left (right) improper séma will be represented by a point in
the absolute quadric in the left (right) representing space and a point
not in the absolute quadric in the right (left) representing space.

An improper soma of the second soit will be represented by a
pair of points in the absolute quadrics in the both representing spaces.

The left (right) improper soma (4) in the lower layer will be
represented by a tangent plane in the absolute quadric in the left (right)
representing space and a plane not touching the absolute quadiic in
the right (left) representing space.

An improper soma of the second sort will be represented by a
pair of tangent planes to the absolute quadric in the both representing
spaces.

The oithogonality of an improper soma (&) and a soma (%) in the
lower layer shall be defined by the equation

(9 2%) = o.

§ 4.
The Functions of the Dual Coordinates of Somas.

If (%) and (&’) be two proper somas, then

D GXWX) D o (XLX) ,
K J/XINXGX) T K /(XX XX)

COS

where 0 and ,D are the amounts of the left and 1ight translations
in the motion by which the soma (#’) is brought from the soma (&).
Now we see that

D D
cos L ¢ + cos L ,¢

K X

= (ZX’IX) _.e + (TXITX) ,e
X EINEX) . AN EX)
- ('%)
TV mE)EE)

We shall define the dual distance of the two somas (&), (%) by

the dual quantity
0D =,Dg+,De.
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And we shall fither define the cosine of the dual distance by the
dual quantity

o) (%'%)

COS —— =

K (BN xEE)

When the somas (&), (%’) are orthogonal

L _LD_=
K K 2
Therefore
D _
€08 - =0.
Notice that —’-ﬁ—g,—- and % are analogous to the Criffaid’s angles' of

two crosses in the elliptic space.

Further we shall define sin —%— by the expression such that

D 7
Sin _K ~/I—COS ]{ .

. .
Thus the expression for sm% becomes

t~

~/‘ o B Ty ]

V(B E )\ ERE)

Let the expression J(XY¥) be such that

_ (X]Y)
j (X Y) - "(X—y)—' ’
then
(X17) - (4Y) - (-X.X)
1/ (Z‘XVZ‘XV) (l y; Y) T/(ZIX);'X )(Z I/l Y) 'l/('rX; X) (’r )’1 Y)
= 2 sin "Dj,;, D gn ’D;{ZD s
(X Y) — (Z‘Y'ZY) + (rArrIZ)

VWEX)GRY)  VX)Y) /X)L Y)

DPO+.0 . D—,D

2 Ccos . S1n

K K

1 See Coolidge’s ¢ Non-euclidean Geometry,’ p. 126.
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Hence
JD+.D ,D—,D

JXY)=tg =t

Thus we can say that the absolute invariant /(XY) is equal to the
product of the tangents of the sum and difference of the K* part of
the amounts of the right and left translations in the motion by which
the soma (%) is brought from the soma (&).

The figure formed by the totality of somas whose dual distances
from a fixed soma are constant shall be called a ¢ soma-sphere.” The
equation to a soma sphere is

_(%ﬁ)___ = COS 2
v/ (2 AA) K

A soma sphere will be represented by a pair of two spheres in the
representing spaces.
The figure formed by three somas shall be called a soma-triangle.
This is represented by a pair of triangles in the both representing spaces.
Let us now consider a dual function formed by the dual coordi-
nates of a soma tifangle [(&)(F)(#)] such that

. VY 2
sin(B8Y 2)= ,
= =TIV )
where
VAW B W N
|%.‘?/f‘[5 YoY% %, ”
y Fo 1 Fe Fs
We see that

. _ PAPAR AL
sin (5 )= o TN ¢ T J (XX)(TIZZ) "

= sin (X, V,.2) 2 + sin (X, V,.2) ,e.

The function sin(& ¥ #) shall be called sine-amplitude of the soma-tri-
angle. This function is a dual quantity formed by the sine-amplitudes
of the triangles in the representing spaces corresponding to the soma-
triangle.

The figure formed by four somas shall be called a ‘soma-tetra-
hedron,” A soma-tetrahedron will be represented by a pair of tetra-
hedrons each formed by the four points in the representing spaces
corresponding to the given somas,
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If we now consider the function formed by the dual coordinates
of the four somas forming a soma-tetrahedron such that

2 Y 2wl ’
V(BENT TN # # Nww)

I

sin (£ £w)

then we see that

. — | X V.2, W]
sin(BY Fu) = R TINZZ) )~

L XY, Z W
VEX) Y2 W W) ¥

= sin (I‘X—ZYZIZZ W) € -+ Sin (lelinl W) €.

The dual quantity shall be called ‘sine-amplitudes’ of the soma-tetra-
hedron formed by the four somas. This is the dual quantity formed
by the sine-amplitudes of the tetrahedrons in the representing spaces
corresponding to the soma-tetrahedron.

Let us assume that the somas (%), (#), (%), (w) are such somas
that no two of these are paratactic and satisfying the condition

|% #uwl =o.

Such an aggregates of somas shall be called a ‘normal net of somas.’
There is a soma orthogonal to all the somas of the normal netl of
somas which is given by the dual coordinates (J[) such that

o: Uz Io: Us =T 2wl

This soma shall be called the ‘ nucleus’ of the normal net of somas.

Let us consider four somas (%), (£), (&), (%) of which no two are para-
tactic with the conditions

(ZZZZT/ZT) =0 ((rY;'ZrVT/rT) = O),
Y, Z.W,T) = o ((1:ZW,T) = o).

These indicate that (,¥), (.Z), (W)CT) [-Y), (,Z), W), (,T)] are the
solutions of the equation

GUX) = 0 ((GUX) = 0) weerrreremvenruens ().

Conversely, the somas whose coordinates satisfy the equation (i) possess
the property that they can be equitranslational only when they are
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orthogonal witn those somas which belong to the system of the left
(right) paratactic somas obtained by giving the left (right) system of
coordinates the fixed values (U) ((.T)).

We shall call the assemblage of all the somas satisfying such an
equation as (i) a ‘left (right) normal net’ of somas.

Now we will define the dual double ratio. Let (&), (¥),(#), (%)
be the dual coordinates of any four somas of which no two are para-
tactic belonging to a one dimentional soma chain® whose equations.are

2, = aF, + 59,

and (R), (S) be those of any two somas which do not belong to any
left (right) noimal net of somas with any two of them, We shall de-
fine the ratio of the dual quantities.

sin (BS% #) : sin (BSET)
sin (BSY #) sin(BSYT)

the dual double ratio of the four somas (&), (%), (#), (%) and denote
it by the symbol

(Y 27%).

The dual double ratio is independent of the somas (%), (§). This may
be written in the form

| 252 £] . | 25%27T]

| 285 7|~ | #SY T

= (ZZYIYEZIT) e+ (,JY, KZrT) 20

§ b

The Transformation-group of the Soma-space
in the Elliptic Space.

The group of dual projective geometry contains 30 essentiai paia-
meters and is isormorphic with the 30 parameter group of two projec-
tive spaces. The group is constituted from two parts;

(1) the half simple subgroup @, under which left and right para-
taxy of somas are invariant,

(2) 9, where the two sorts of parataxy are interchanged.

1 This will be defined in 36.
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Somas of different layers aro subjected to contragradient trans-
formations under &y Hz. and the oithogonality of two somas of differ-
ent layers in an invariant under all transformations of the group.

The transformations of §3 form no group, two compound transform-~
ation of the transformations of £q, being a transfoimation of the group
®g. Every transformation of & has the form

%l.;:(y{i%): Z‘=O, 1,2, 3
where Ay = a8 + by .6,

l‘/g‘m(:l:o‘

This transformation shall be called dual collineation.” This equations
may also be written in the form

X = (a;,.X3), X = (6,X).

Dual double ratio is an invariant for the transformation of @&, We
shall define 4e+a.e as the conjugate dualitic quantity to @+ 4,¢ and
denote by 4. Thus the general transformation of g, is

2. = (A, %).

This may be obtained from the general transfoimation of &, com-

bined the transformation _
o‘gml = %1;.

The transformation shall be called ¢ dual anticollineation.” Dual
anticollineation interchanges left and right parataxy of somas.

The transformation of &, are obtained by combining those of @,
with an interchange of left and 1ight parataxy of somas. This combi-
nation will produce a transformation of (5 when applied in their order.
But it is not, in general commutative.

There is another sort of transformation by which dual soma coor-
dinates of one layer are expressed as linear function of the other, ie.,

¥ R /) N R ()
l '/{tj l # 0.

This is formed by a transformation of ®, compounded with the trans-
formation
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This simple transformation is merely replacing each soma of one layer
by the some of the other conincident with it. The transformation (1)
shall be called ¢ dual correlation.’

We have another transformation

2, = (u@z:?—é)-
This is composed from a transformation of &; and a transformatjon
%! = U,
Or this may be composed from a dual correlation and transformation
AL = 2.

The transformation 9[; = 9, is the interchange of left and right trans-
lations in a soma in the lower layer, This transformation shall be called
‘ dual anticorrelation.’

The determinant formed by the dual coordinates of any four somas
is evidently invariant under the group ®s.

®g has two invariants 15 parametric subgroups ;&y;, @y which are
formed by the most general transformations, transforming each of somas
into another, respectively left and right paratactic to it. These groups
are intransitive and each is isormorphic with the general quaternary
projective group.

Another subgroups @3, 1z of @ are the 12 parametric groups
constituted of all orthogonal transformations among (,X) and (.X).

Here cos-% and cos TIZ{) of two somas are invariable for the trans-

formation of the groups ®y, His; hence two orthogonal somas are trans-
formed into such ones. The groups &, £, make invariable the
equation : :
(#2) = (XX) e + (X.X),e = 0.

And any soma-sphere is an invariant figure for these transform-
ations of the group. This may also be considered as a dual collinea-
tion of soma which leaves the soma absolute absolutely invariant or
the absolute quadrics in the representing spaces invariant.

The groups @&, H:. are composed of all transformations of somas
&2 by which all the generators of the absolute quafiric in the repre-
senting spaces are transformed in itself, and £y, by which all generators
of the different sets are permutated. The group &;, may be written
in the form
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X = AXPB.

The transformations may be decomposed into two sorts of trans-

formations ;
X = A%,

& = 2%

Therefore &;; can be decomposed into two commutative groups &; and
@y, which are defined by the two kinds of transformations of the above
respectively.

®; is the group of motions of somas.

Further the transformation of the group @ can be classified into

the two kinds :
zX /= ZAZX—,

rX I'= rX rB .
The transformations define two subgroups &, ,®; of the group
. O; and ,@; are evidently groups of the left and right translation

respectively. By these transformations of &; (,&;), any soma is trans-
formed to a soma right (left) paratactic to the soma.

SECTION II.
The Soma-manifoldness in the Elliptic Space.

Tet us consider a soma-manifoldness whose dual coordinates are
linearly dependent for a fixed different somas, i.e.

P8, =aB O+ a, B Peinnnen. +a,8M  i=0,1,2,3
a, : real.

We shall define the above soma-manifoldness an ‘n-dimensional
soma-chain’ and (&£©), (™), ..., (% ™) shall be called the ¢ bases’ of
the soma-chain. The fundamental soma-chains are one, two, three
dimensional soma’ chains. We shall use the notation C, to represent
a 7 dimensional soma chain. Any »-+1 somas of C,

08, =aM8, O+ aM8,P+ ... +a, D& ™,

P Y =200+ a,®8O+... +a,0%,m,
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— ”0(n+1) %z(O) + + Qn(n+1) %iu)_
may be taken as its bases, provided that

a®M e L a," j==o.
ao('n+1) al("+l) an(n+1)
If of two families of somas of different layers each consists of all
the somas which are orthogonal to all the somas of the other, "then
the both families are soma-chains.

We shall call the soma-chain arranged to pair ‘reciprocal soma
chain’ to each other.

§ 6
The One-dimensional Soma-chain.

The one-dimensional soma-chain has the equations

&, =a¥ ,+bf, (¢=0,1,2,3)

@, b: real
Aol/Y‘a=”lel + 6ZZL1 ‘O,z-Y:;:(Z,‘K‘*" /71ZL'

Let us consider the case in which

\WZ[® %o, |.¥.Z|=o.

In this case (;Y), (,.Z) are not linearly depent and (,¥) (,Z) are also
such ones. Such a soma-chain shall be called a ‘soma-chain regulus.’
A soma-chain regulus will be represented by a pair of rows of points
(shea’™ -f planes) projectively related in the both representing spaces.

Every soma-chain regulus has at least one pair of real somas,
called ‘principal somas,’ which are oithogonal. To find these, we must
solve the equation

(@F +62,dY +8 2)=o0.
Or aa (YY) + (bl + a'6)( Y, 2) + 66/ (.2, 2) =0,
e (V. V) + (abl + ')V, Z) + b8 (.2, Z) =o.

1YVo:Y1:1Ye: Y
12y 12y 12123

1 I means |; ¥;Z)=Fo, etc. that all the determinants of the matrics n
not equal to zero.

are
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By the elimination of & : 4’ from these equations, we have a quad-
ratic in 2:4; ie,,

(HY) (H2)|, 1GHY) (Z42)

(hZ) (Z2)|
wY) (Bl Clry) (22)

¥2) (Zz)l

2 2

The discriminant of the equation is

(ZYLY) (LZZZ) : (zYz'Y) (zyzz)li(zzzz) (zYzZ)
vy o)l T Hovy (nollczz) (v2)
WBY) (Z2)):
(YY) (Z.2)

+ 4 (VY22 V2) + (T2}

2 o.

Therefore the roots can not be complex. The discriminant may be
considered as the simultaneous invariant of the forms

(al 1/‘_*_ sz, chY+ élZ)=O)
(4, V+8,Z, 0,V +8,2Z)=0

for 2:4. When our somas have real coordinates, the roots of each
of these two quadratic equations are conjugate complex pairs and two
such pairs can not separate one another harmonically : hence the simul-
taneous invariant is not zero. Thus the somas are distinct ones.

In general, onc of the principal somas are not the soma which is
obtained by half translation from the other along one of the crosses
formed 'by a line of these three oriented lines representing the ,other
and its absolute polar. Let us consider the case in which one of the
principal somas is obtained by a half translation from the other. In
this case, let us take the principal somas as the fandamental somas
(oo10) (0010) and (coor) (coor), then the equations to the soma-chain
may be reduced to its canonical form

1Xo=,X,=0,
Xi=,X=0,
Xo=a, rXZ)
WXs=a5 , X
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Such a sort of soma-chain can be generated by the half translations
from the protosoma along every cross of a cross-chain,' provided that
the soma is represented by the two oriented lines of the principal
crosses® of the cross-chain and of the cross cutting orthogonally the
principal crosses. From the cross-chain

Z'Xi.=‘er1 =0,
ZX!= a TA-?:.’v
Xo=ay X,

a soma-chain of such a sort that
Xy =,.X,=0,
X1 =.X1=0,
tXy=a, Xy
As=2y ,X;.
may be generated by the half translations from the protosoma properly

taken.
Let us consider a special case in which

at=al=0"

We can write the equation of the soma-chain in the form

Xo=,X,=0,
zAX1_=r—Xv1=0:
WXKo=a 1Xs,
Xs=a, X

Any soma in this system is transformed into another of the same
system by the equitranslation about X;-axis, thus

0 Xy =0, p » X =0,
14 X' =0, p X/=0,
p X' =a (?o +Xo—p1 rXé): 4 X =p» Xo — 1, X

01X =a (p1. X+ p0 +Xa), 0 o Xs' =p1 Ko+ Po + X

1,2 See Coolidge's dissertation, ¢ Dual Projective Geometry,” p. 24 ,25.
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Therefore we have

1Ko = X/=0,
X =,X=o0,
X =a, X,
X' =a X
General ¢
peXi=aY;+6,7, 0, X;=0,Y;+6,2, (=1, 2, 3), ... (i)
can be generated by half translations of a soma with respect to every

cross of the chain' from a fixed soma (J) with respect to the cross
(X) has the coordinates

TZ—;{()I‘z'_l;(ll]-“l—llnln_l-‘x};lnv Trln,=_r1nr71_rln’r7;—r1nr7-3)
T X=X 0= X, Lt X T <o X =, , L= X Tt 1 X0 T,

T X = X, L+ X L1101y 7 X =, K, Ty + X p 11— X1 o T,y
T, X = X1 Lo— 1 X [+ .5, T, 7 X =X Ti— e, T+ %0, T (ii)

By substituting the values of (X) in (1) to (ii) we have

P X =—(a Y1 +6,2),T,—(a, Yo+ b ,2:) , To—(a . Y3+ 6 ,25) . T,
piXi= (e Y1+6,2),Tv—(a,Ys+6,2) ot (a Yo+ b ,2,) /T,
0 X = (2.Y3+6,2) ,Ty+ (e, Yot 6,2 T~ (a Y1+ 6 ,2) T
piXs'= (2. Y3+6,2),Ti— (2, Yot 6,2), L+ (e Y1+6,2) T
p X =— (2, Y1+6,2) . 1—(a . Yot 6,2) T~ (a,Ys+6,2), T,
pXl= (a,Y1+8,2),L1~(a,Ys+0,2) ,Ti+(a Yo+ 0,215
0 X = (2.Y%+6,2),Ty+(a,Ya+6,2) . [i—(a.Yi+6,2,) T
0 X = (a,Y%+6,2), Ti—(a,Ye48,2) ,Ti+(a, %+ 6,2) T

See Coolidge’s dissertation, ¢ Dual Projective Geomelry,” 1904, p. 24.
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4 X =a( - Y, T1—,Y, I— Y, zfz)'l"é (—121 Ti— 2, sz_zZu]%)- )
4 sz1’=“( zylzTo—zyszZ;‘*‘zY;sz)'*'é( zZLzzz)—'zZsz]:z‘*‘.zZuE):
4 VY?.'-“—‘“( szﬂ*szzz—zﬂ sz)‘*‘é( zZzzZI)‘*'zZszﬂ"'zleZ;),
pXi=a( Y3, 00— Y% L+ Y, T)+0( 1 ZThv—i20, i +:20.Th),
pXd=a(- Y1, L= Y2, Io—, Y4, T) 4 6(— 21 i1 200 To—, 23, T),
peXi=a( Y. 5y— Yo, T34, Y2, 1)+ 0( 20, T5—:2. Tat 20, 2),
P =a( Y5, 00+, Y, I1— Y1, T)+6( 2. Tot,2s, [i—1 20, T),
Py =a( Y, Ty—, Yo, i+, Y1, 1)+ 6( ,Z, 1o~ 20,11 +,24,T)).

Let us consider the case in which the matrices

WYzl =0, (.%Z|50),

L Y2 =k o, (LYZ] =0).} covranininnenn. 6]
In such cases (;¥), (;2), ((-Y), (Z)) are lineaily independent ; the somas
in this chain are all left (right) paratactic. Such a family can be
generated from a fixed soma (&) by the half translations, with respect
to each cross of a left (right) strip,® i.e., from the left strip

0 Xi=a Y +6.2, 0 Xi=a,Y,+0.2,
ZYB =T ZZM

the following soma-system can be geneiated :

t i Xo=(— Y1 po— Yo ps— 1Y, ps)(a+ br),
b Xi=( Vip—iYsp:+ .Y po)(a+ br),
1 Xo=( Yipet+ Yspr— Y1 ps)a+br)
1 Xe=( Ysp0— Y pu+ .Y o) e+ br).

toXo=a (= Y19— Yo = Ya @)+ 6 (=21 go—222 1= Y 02),
pXi=a( Vgt Y Yag)+6( Zig+.Zg—,Y ),
poXo=a( Y.gs=.Y, 00+ Yig)+6( Zrqv— s i t:219)
tX=a(— Y10+ Yoqi— Yo 0)+0( Zigot:20 1—121 42),
But the lines of left strip dre the geneiators of a Clifford’s sur-

face® Thus the family of somas can be generated by the half-trans-
lations along each pair of generators of a Clifford’s surface.

1 See Coolidge, ¢ Non-cuclidean Geometry.’ p, 128.
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The system of the somas defined by (i) shall be called left (right)
‘ one dimensional soma-strip”’ or merely soma-strip.

The reciprocal soma-system to a soma-strip is given by the equations

lU;:alV;.'*'&ZRb'*'CZQw ,.U;:LZ er+é rP2; i:O, I23.

§ 7
The Two-dimensional Soma-chain.

General two-dimensional soma-chain is a system of somas which
has the coordinates linearly dependent with real coefficients on those
of three given somas, ie.,

p %, =a¥ ;+bp .+ cu, £==0,1,2,3 ceures .
Or this may be written in the form
P Z-X:L=al}];l+blZ’L+CZW$) PTX:I,:a 1'K+Z7121 +cam-

There occur many cases :

case 1.

|& 7w o,
Or

YiZW|=o, | ¥,Z,W|zo.

Such ¢, shall be called ‘soma-chain congiuvence.” In this case the
coordinates (;Y), (;Z), (W) are linearly independent. (.Y), (,Z£), (.I¥) are
also such ones. The system of somas are represented by two projec-
tive fields of points, (or two projective hundles of planes in the lower
layer) in the representing spaces. And the somas () in the lower layer
such that

() =17 #wl

is orthogonal to eveiy somas of the soma-chain. For
(ﬂg‘g):‘(l U;X) le+ (rUrX) T€=O.

A soma, orthogonal to all the somas of the soma-chain, shall be
called ¢ soma-nucleus’ of the soma-chain congruence. If we take the
soma-nucleus as the protosoma (1000)(1000), then the equation of the
soma-chain congruence may be writien in the form

1 See Klein ¢Zur Nichteuclidischen Geometrie,” Math. Ann., 27 (1890).
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£ Xy=0, £ rXo=0,

piXy=a, Yi+6,Z+c, T, pXi=a,Y1+6,Z +¢,T.
0 Xa=a, Y+ 0,2+, T, p,.Xo=a,Ys+b, 2+, T
piXs=a Y5+ b Zy e, T 0, X=a,Ys+0,2+ ¢, T,

Solving for @,4,c the equations in the right and substituting in the
left, we have

1Xo=,X,=0
1X1=(a1 . Xy),
Z‘Y; = (” 2 r(Y) ’
l/.Y\i:(’:} rlY)-

Taking the nucleus as the protosoma, if the somas (0100)(0100),
(oo10)(0010), (0oo1)(0001) are included in the soma-chain congruence
and these somas are taken as the bases of the soma-chain congruence,
then we have the equations

p K=, X=0
4 l‘le ar“gb
14 11Y3=¢Z IX.'!

P Zz.Y‘;=tl ,..ng.

Such a special soma-chain congruence can be generated by half
translations along every cross of cross chain congruence by taking the
lines of cross which coincide with its reciprocal cross-chain congruence
as the representation of the protosoma, ie, from a cross-chain con

gruence
piXi=a X,

0 1 Xe=a, ,Xs,

p 1 K= ay Xz,
1Xo=,X,=0
Aa=ay X
1Xo=a,X,
WXy=az,X»

the soma-chain

can be generated
General soma chain C, may be generated by the half translations from
a fixed soma (J) along every cross of chain congruence’ whose equa-

tions are
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oXi=a Y+ b.,Zi+c W, pXi=a,Y;+b,Zi+c W,

The proof is analogous with the case of the generation of (. As the
result of the generation, we have the soma-chain (; which has the
equations

o Xe=a( — VL= Yo=Y o)+ 6 (— i =122 1—125. 1)
+e (=W~ We i Ty~ W2 o T5),

0'11Y|=0( zxzn—zmzﬂ‘*‘zynﬂ)'l'é( 12117:)—12317;+123.17§)
e (Wi ilo— s ot i Wa o T5),

0. Xo=a( Y. 5+, VD= Y, DT ( 2Tt 2 Ti—020.T5)
) +e (W ilo+ Ws  Ii— W11 T5),

o Xi=a( Y, 0= Y0+ Y, 0)+6( 1 Zs:Dv—20 Do+ 120,T)
l +ec (Wa oIy~ Ws 1 In+ . W4 o13).

o Xo=a(— Y1, 1~ Y2, T~ Y%, [5)+ b (21 r [y~ o 22 v To— 1 23 » T5)
+e(~ W, L= W o To— Wy . T),

0. Xi=a( Y1, 0~ Y. L+, Y, 55)+6( Zi,To— 2y o To+,25,T5)
+e( L= Wa Lot W3 1),

o, Xo=a( Y.y +, Y%, i~ Y, I)+6( 2,01+, 2,.11—.2, . T5)
+¢ (W Tyt We o Ii— o W1 T5),

o1 X=a( Y, To— Yo, it , Vi, T)+6 (2, To—1 2 - Tit 2, T5)
+¢ WarTy— o Wo o Ti+ . W1 . T5).

The soma chain congruence, represented by the equation (i), are
represented by a pair of fields of points projectively related in the
representing spaces.

Case 2.

Y:.ZW|=o(.,Z. W

=0); W ZW| % o, (L, ¥.Z,W|==0).
In this case the coordinates (,Y),(,.Z), (W) (.Y),(,Z).(,W) are

linearly dependent. This system is represented by a row of points in
the left (right) representing space and a field of points in the right
(left) representing space. Or this is represented by a sheaf of planes
in the left (right) representing space and a bundle of planes in the
right (left) representing space in the lower layer. Such a system con-
tains clearly a one-dimensional ¢ soma-strip.” Since (,¥), (.Z), (W), (,Y),
(-Z), (-W) are linearly dependent,



20Q Teiteichi Nishiucls.

ZI/V'; =)ZY;+,U le (1 I/V';:=R rK-{-/l th)o
Theiefore

p iXa=(a+cd) Yo+ (8+cp) 2, (0, X,=(a+ch) Vo + (b+ cp), Z,).
Let us now put
atclM=, b+ cu=m,

then
4 le:ll:Y'l—l-}- 7z lZL (,.A.’,;=Z, K+77Z rZL)'

P o Xe= (=), Yot (m—cp), Z,(Xy= (0~ cA) ¥, + (m—cp),.Z,).

Therefore the soma-chain can be grouped into paratactic soma-stiips.

§ 8.
The Three-dimensional Soma-chain.

The three-dimensional soma-c¢hain is foiomed by all the soma-
manifoldness, which have the coordinates linearly "dependent with real
coefficients on those of four given somas. As before we write the
equations in the form

p&,=a¥ ,+bpi+cT +dw, 1=0,1,2,3.0ccecren... ().
These equations may be also written as follows :
0Xi=6Y,+ 62+ e Ty W, 0,X,=a, Yok 8,Z,+¢,T,+ d, W,

Case 1.
| # Jw| = proper dual number®.

Or LYZT W] % 0, L Y.Zu T W] 22 0. ceveeeeenee. (ii).

In this case the four given somas do not lie on one and the same
plane in both of the representing spaces. Let us now solve a:6.c:d

from the equations
0. X,= Ya,Y,

and substitute in the equations
pXi=2a, ¥,
then we have the equations
X,=(a; . X), [ | TFE0 coeinnin v, (ii).

The last ielation is easily seen, for

L A proper dual number 15 such one that oze--fie (X 8= 0)
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= Y2, T, W |
[ ZYZZZTZI/VI

@y

v, 2, T,W .
and hence |, | = ’,lﬁZ_;ﬁW_l‘ e o P (iv)

Conveisely, we can reach to the equations (1), (i) from (iii), (iv).

We shall call the C; as ‘ homographic soma-chain (soma-chain
complex)’.
(:X) and (,X) of a homographic three dimensional soma-chain have
a collinear relation with non-vanishing discriminant. Conversely. every
three dimensional soma-chain, so related, is homographic. Therefore
the relation (iii) may be interpreted as a collinear relation between the
two representing spaces. If, the points (,X) trace a row of points, the
corresponding points (,X) will trace a second row, projectively related
with the rows (,X). and conversely. Further if the points (,(X) trace
a field of points, then the corresponding points (.X) will trace also a
field of points, projectively related with (;X), and conversely. Thus
we obtain o?® soma-chain congruences, contained in the soma chain
complex. The somas of each soma-chain congruence are orthogonal
to the nucleus of the soma-chain congruence, (in the other layer). We
have to find the locus of the nuclei. Since the coordinates (;U),(,U)
of this nucleus are plane-coordinates of the collinear fields in the repre-
senting spaces, they must be related by the transformation contragra-

dient. Conversely, when we have given one soma of the lower layer

" (U),(U), it will be oithogonal with but a single soma of the given
soma-complex, in the case when its (;U)(,U) are connected by the
relation contragredient to (ii), it will be the nucleus of a soma-chain
congruence of the given soma-complex.

These nuclei will thus form a second three dimensional soma-chain,
whose equations are

2y U= (A, pU) o (v),

where A, is the cofactor of the element a;, in the determinant |a;|.
We shall call this soma-chain complex, the ‘reciprocal soma-chain
complex’ of the given soma-chain complex.

No two somas of a homographic soma complex are paratactic.
Each soma in. space has a single left and a 1ight paratactic soma in
the homogtaphic soma complex. For the equation
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p X! =(a,X) (0, X =(,2,.X)

have one and only one system of the solution.

If we suppose two reciprocal soma-chain complexes are superposed,
that is to say, when considered as belonging to the same layer, do
they have any common soma? To investigate this, we replace (;U7)
and (,U) in the equation (v) by (0 ,X) and (po,X) respectively, and
substitute the value (.X) expressed by (;X) in the 1ight hand side of
the resulting equation, then we have

T X = (6, K) ceveiiiinenniiin (vi),

where

&u = bji = 2 Ay Ajl.-

&=y

Therefore, we have a symmetric determinant equation by eliminating
(;X) from the equations (vi) :

But as a symmetric determinant equation has always real roots, we
have four real roots for r. The somas corresponding to the four roots
of the equation (vii) are orthogonal to one another.

Three dimensional soma chain (3 can be generated from a chain
congruence (i) by the equitranslations of a soma (J) along every cross
of the chain congruence as in the case with (¢, The resulting soma

chain has the equations

P X = TuXo+ o( =, 10 Ye =1 T0 Yo — 1 Tu ¥o) + 86— Tuds— T Zs— 1 Tuls)
+5(‘—zﬂzm—zﬂzm—ﬂ§zm>.

p X = TuXiva( JTu¥i—TuYet T Ye)+ 8 T0Zi~ TZ:+ 10 Zs)
:*‘5( TouWh— LaWe+ Ty Wy),

p X =TuXot o T+, T0Ye— T0Ye) v & [ TuZot TuZe—1TuZy)
+c( Ty Wi+ TaWe— 15, W5),

p Xy =T+ o — T Vi + T Vot 1o Vo) + A — 1 T+  TuZa+ 1 Tus)
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0. X =, T, X+ a(—, L Vit T Vit yT0 Vo) + 6 (— o T Z+ o TaZs + 5 T0nZs)
+ e~ T Wik T Wak , Tos W),
p X =T X+ a( T4 Vi~ T Yot T Vo) + O o Toa— T2+, T0Zy)
+ (o To Wy —  Toe Wt . T, W),
p Xl =L Xora( T Yid , T Yo T Yo) 6 TZit, T2y~ T0l)
+e( LW+ T, Wo—, T, W),
0 X = T Xk o= T Vb n LY T V) + M p T2+ n T2+, To 22)
+ e~ n LW+ Ty Wat T3, W),

Therefore the soma-chain is G,

The above four somas found as the roots of the equation (vii) are
not in general identical with the soma and the three somas obtained
by-the half translations along to the three lines representing it. But
as a special case, if the four somas can be looked upon as the funda-
mental somas (1000)(10000), (0100)(0100), (0O10)(0010), (00OI)(000T),

the equation to the soma-chain complex may be reduced to the can-
onical forms

ZX:&=‘ZL7‘X£ i=0, 1,2,3; aoalazﬂ:s:i: o,

The equation of the reciprocal soma-chain complex must have the foim
I .
ZU;:=”['Z‘1-U;! 2=0,1,2, 3.

Such a soma chain complex can be generated by the equitranslations
along each cross of a homographic chain congruence from the somas
defined by three orthogonal somas of the chain-congruence which are
superposed with the somas of its reciprocal congruence.
There aie two specially interesting cases among homographic soma
chain complexes:

(I) af:af, ‘Zluz:asz;

(2) al=al=al=al.
where 7,7, £, 5 is a permutation of the figures o, 1, 2, 3.

In the case (1)

at=al=a’, a}=a'=04"

1 See Coolidge’s dissertation, ¢ Dual Projective Geometry,” p. 4o.
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We can write the equations to the homographic soma-chain complex
in the forms

l‘(.YvOl=a rX(‘)n
l-‘-Y; == QX:L,
l-Xv',‘ = rerx

z‘Y}» =0 ,Af‘/».
Let us now consider the case
=1, j=2, k=3

and apply the equitranslation with respect to the Xj;—axis, then the
soma (&) will be transformed into the soma (&’). The relations be-
tween (&) and (&’) are

14 Z‘A’()’:‘Z ( Po r‘Y;)—PI 1'1Yv1): ‘011‘Y0,= ﬁo 1-2{(-)_ﬁl 71.Y01
o l‘ﬁlz‘z (—/)1 rlYo—ﬁo 1*Xv1): ‘0 r‘Y:l/= “ﬁ1 11Y;)—_p0 r-lYi;
o X =06 (—20 rlY-.’—PL 94! 3): P Xy = ~ 5o 1AX."‘ﬁ1 #2Xas

14 l*/Y;il':é ( ﬁ] rIY:Z_'pU 91Yv8): 0 r-‘.Y:’:,= ?1 rJY."I‘ﬁo 1‘X23
Thus
ZX(-)I=‘Z r‘Y;),:

Z‘Xil:_arf.ylly

12X =6,

X =b X
Therefore a soma of the soma-chain complex is transformed into another
soma of the soma complex by the transformation. In the same man-
ner, we can prove that the general case is true for the Xj-axis.
Case 3.

We may assume, by suitable choice of the bases of the homo-
graphic sonia chain complex that

a, > 0, ay = 5,
a >0, a =0,
@ >0, a, = b,
as >0, as = 0.

But a rotation about the origin is defined by the equations

Z*’Y/ - _Ple. 2 X” =]), X.
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Or
01X =201 X0~ P 1 X — P2 1 Xa— 5 1%, 0 Xd =0, Ko~ 21 1 Xi— 0, Ko~ 15, %,
0. X =21:X0+ po 1 Ko — P31 Kok 121 Xy 0K =21, Ko P01 K~ B3 Xat D20 XK,
X =101 Kot 0 X 01 Xe— 11, o2 =0 Kok 10 1 Xt por 2= 11, Ky
0 XS =51 X0—~ po 1Kt P11 Kot P01 Ky 02X =15, Ko~ 0 1 Ka 01, X+ 20, K

Therefore by the substitution of

IX;I = 61‘Xv0|
X = 56,X,
X = 6,X,

Xy = 6,4,
in (viii), we have

01X =8 Do Ko — 1o X~ purs— 1 XKi)y 01K =0 Xo— 1 K= Per X~ P Koy
X =8 P X+ P Xy — Py Kot 22 25), 02 XY =0y Ko + po Xa =Py Ko+ P1n X
01X =8 po Xy + b X+ porXa = 1)1 02X =X+ por X + oy Xo— p1r Xos
P X =8 Xo 02X+ P Xt 20 X), 0o X =0 Xo— s+ 21, X+ 10 X

Thus X =0,
WXy = 0,X/
XY =0,/
X = 0,%,

Therefore such a soma-chain is transformed into itself by any rotation
about the origin.

Case 1L
| V,Z LW |=o, (. ,Z,T,W|=0), | .Y ZL,W|=Fo, (| ZLT,W| = o).

In this case the coordinates (,Y),(.2),(7),(W),(.¥),(-:Z2),(1),(-W)
of the given four somas are linearly dependent; thus the four points

correspondent to (,Y), ((2), (T), (W) [( Y) (£), (-T), ()] in the left
(right) representing space are coplanar, i.e.

IW£ =Zl :Y-;: +7”ZZ£+ "lY;- (TPV;=/1 Y;:+ 7777'ZL +7, ﬂ)
Therefore
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0 X = (a+ ) Y+ (6+md) 2+ (c +nd) T,
(0. X, = (a+) Y, +(b+md) ,Z;+(c+nd) ,T,).
Let us now put

atld=p,0+md= g, ct+nd=s,
then we have

ple =P1 K + ngb +Sl]‘u ‘UrXizpv I’: +ng'p + srz';l—d(lr}fz'}' 7”1213 + nrz)
(PrXF:ﬁr Vit g2+ 5,7, pXs=p0, Y.+ ¢:Z;+ 5;T;— d(/z Y+ mZ+ mT3)).

Therefore in this case, the system of somas can be grouped into a
system of one dimensional soma strips. The canonical form of the
equations of the soma chain will be

WXy = @iy Xy,

7, % 7, 15 a permutation

WXy = i X,

of 0,1, 2, 3 taken three
WXy = @i . Xy,

at once.
ZXis = O.

Let ;D) E®)(ED)(,2D) be any four somas of the (, then

a® FL LD GO
22 3O [ @

28 HD LD g® V4T W)

[X® ,XO® Xx® x®| =
24P 5D L& g
= 0.
And
| X OXOFOXD | = gama; |, XO,XO,XOXO |
Since by assumption

|, XOXOYO YO ko

one of ay, @, a, @ must be zero. This is the fact which we have to

prove.
‘When the rank of the determinant

[ LLLW| (L LZLW])

is one, we have a system of paratactic somas.
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Case III.

If
I ZKZZZ:WI =0, ITK'Z;"Y;‘Wl = O,'

without the vanishing of the first minors of either determinant, we have
¢y whose somas are all orthogonal to all the somas of the G. &'
may be represented by the equations (in the lower layer)

gggkya o‘ejaal»ozs %ylh% Wy Wi Ws
pui=l FiFrfs|t & %%9’8 + v w,wkws'l'ﬂgggnga

I T2 s w; WL w ¥,7:.9. FiFurdFs
A system of somas whose dual coordinates (&) are functions of three

essential real parameters #, v, w shall be called ‘ soma-system £ We
mean by the ° general position’ such a position where the determinant

09 02 09
“’% 0u 0v ow
is a proper dual number, i.e.
(),U 0U 01 e
Ou O0v 0w 0w Ov Ow

In this case, we shall have as the coordinates of the common
orthogonal soma to a soma (%), (u-+ duy), (u+diu,) (taken in the lower
layer) of such a system £ the following ratio:

Lo Ay U Us
aﬂod 0!2/,0 iy + N3, dw, ., .
HBy:1:%q: Bog= Out 0 O
%y g, s+ 92 g, 0 a"%" dw, ” »
O ov

= Vi Oduy+ VOdv,+ ViPdw,: VP du,+ VPdwy+ ViPdw,
: Vi®dy+ Vi, + VoSdaw, : Vil s+ Vi dew, + VP daws.

If the soma (), (A +dIL) are fixed, then the totalisy of the ortho-
gonal somas to the soma (), (%+29y), (I +dIUs) forms a soma-
chain complex

Specially in the case,

0 0 oA

A5 ou  o0v Ow =0 e
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0,U 0,U 0,
R )

Ud,U 0,0 aU

0w 0v I_ oV,

li
o

the soma, whose dual coordinates are
0L 09, 09,
ou Ou Ou

2 = 0!26 0.,%7, 0L,
0L ="30" "0 0w

28L, 0L, 02,

ow OJdw Ow

is the common orthogonal soma to a soma (J[) and every one of the
somas adjacent to it.

CHAPTER II.
The Geometry of Somas in the Hyperbolic Space.

SECTION 1.

Soma and Its Transformations.

§9.
Soma and Its Coordinates.

Let A4 represents a quaternion

. @yt iy +ja,+ kag (@225 = 0),
and 4

@y— iy — ja,+ fas,
where
1=t 1=+ 1=gk+1

=g+ ji=sk+kj=Fki+ik=o0.

Taking the coordinate in the hyperbolic space as in the elliptic
space, we can write the equation to the absolute in this space in the

form
o+ttt =o0.

For the sake of brevity, we put the measure of the curvature of the

space equal to —1, and take as the coordinates of a point (#) the

Kz
ratio (x) such that
Zxo Xy 2 =% K L KL %



The Geometry of Somas in Non-Euclidean Spaces. 209

Thus we see that (%) is equal to the ratio of four real numbers.
The equation to the absolute may be written in the following form
by adopting the new coordinates :

x02 - xf— 4'1522—' 2532 = Q0.
Let us now put
E= M F-iy g

Fy

b

then the rotation about the coordinate-origin is represented by the

equation .
§ = A5(A)™ (4 = ay+ ai+a, 7+ azk).

The translation by which the origin is brought to the point

L 200ty | 2gUs | 22Ul

b (e~ (um) = (e) °

(unr) = u+ul+ul+ud,

where

is given by the equation
SI — E‘{' o (U= Zl1+z.llg+].l£2>
UE+1 Uy

By the combination of the two kinds of motions, any mhotion in
the hyperbolic space can be obtained. Thus any motion in the space
may be represented by the transformation equation

g AE+B

== o eevescesennteernerearas 1),
BE+A4 ®

where
(B=0y+bg+ by 7+ bof).

The transformation may also be represented by the bi-quaternion

A+ Bo,
where ¢ is a unit such that

i6+0l = jo+aj = o.

The compound motion of the two motions A;+ Big and 4,4 B0
is given by the motion 4,4+ By such that

As + .330' = (A2+ .820') (Al + .Bl).
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Every biquaternion
0 = ay+ia,+ja,+kas+ (b+ib+ 70+ 4b) o

1epresents a motion when
AU = B.
Thus, for a motion
A+ Bo,

(ao - 2‘“1—'].“2 - éag)(l)o + Z’I)l_ +j‘b2 + kba)

must have the form
Litipetyps, e
ayDy— 05+ @l — by = 0.
Let us put
o] = e(=—7")
and substitute

ay = s, &y = by,
a; = —Q,, 51 = bp
A = (I, O, = Uy,
a3 = —A,, Oy = g,

then the biquaternion (4+ Bs) may be written in the form
(A1 4o)o = eAD+ BO = e(ay+iay +ja, + kay) + byt ib -+ by + kbs
with the condition

(aé) = aOéO + 611&1 + agég + [Zg&s = 0.
Now let
4y + Bio = (C+ Do) (A+ Bo),
then

Ay+Bio = CA+DB+(CB+DA)s............ (ii).

The entire preceeding part of this paragraph is abstracted from
Vahlen’s paper, ¢ Ueber Bewegungen und complex Zahlen,” Math. Ann.
Vol. 55, p. 585 and Vahlen’s book, ¢ Abstruckte Geometrie,” pp.
279—-283.

We shall define a soma and the protosoma as in the case of the
elliptic space by a position of a rigid body and a fixed position re-
spectively. A soma is represented by three oriented lines cutting
orthogonally each other and fixed in the body, thus a soma can be
brought from the protosoma whose representing oriented lines coincide
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with the coordinate-axes. Thus a soma may be represented by the
biquaternion A+ Ba,

A motion represented by A4 - Bs may be expressed by the equations

' =(a’+ af+ a2+ @’ + b3+ 02 + b+ b) 2+ 2 (Aeho+ a4+ a,b, 4+ ashy) x,
+ 2 (b1 — Ahy— @l + botty) 25+ 2 (Wb + D — Dy — DY) 3,

2 =2 (egby— 10— @by 4+ AD;) 29+ (W) — 20— A + A+ O — b — b7+ D7)z,
+ 2 (— Gy — Aoyt ByDy 4+ BoB3) 2ot 2 (— Ao+ Ay0is+ By — b,0;) 3,

2! =2 (@b + by — asbs— 30,) 2+ 2 (@0 — 2005+ bby,— 8:0;) 7,
+ (' — a0 + @ — @l — b+ Ol — b? + bd) 1, + 2(A— 05— Ay Ao+ 6,03+ BD;) x5,

25" =2 (@D, + Qb + Oy, + B, ) 2y + 2 (A oo+ Byby + 1005+ ,Dy) 74

+ 2(tty— @@+ BB — Bobs) 2+ 2(7 + A — AP — A — bF— B — b2+ bY) %5

If we put

doty/—1 Oy=00, Co+y/—1d=p, ) +/=20/=a,
a+y/=1 b=a. ¢;++/—1 &=, a/+y/=1b/=a,
At/ =1 by=05, G+ =1 d=p @&l +/—1b/=a),
At/ — 2 Oy=05, C3+/— 1 da=Ps, @/ +y/ 1 b/=a/,

then the relation (ii) may be represented by another set of equations.
Since

0y = — 0yCs— 4o+ Ay — UsCo+ Byds+ Uiy + b,d, + Ded,y

+ /= 1 (@@ + Wy~ @@+ Ayt DyCs+ D, ~ BoC; + D3Cy),
o = @ Cy— (6,C5— QCy + (30— D@5 4 D, + oy + D,

+1/ =1 (— @, + @, A+ @y + sl — byCo+ D65+ by, + Bs0)),
oy = — @ Cy+ 4,6y — WsCy— A:C, -+ by, — b,y + Doy + s,

++/ =2 (@@, — Ay + Ax s+ o+ Dy, — by Gy + DC3 + B5C3),
oy’ = Co -+ U 1€ + ey — A3C3— byly— b, — b, + byl

/=1 (— @y — 0 — Aoy Aty — Dy Co— 016, — Do + b4C3),

— 03 =Bis— By — BiTr— Pitiay

_— a2' '= —_ 3160 +‘ ﬁoal +‘ /ésaz + /9‘2521
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— oy = — Pobiy+ P30, + BT+ i,
—af= B+ L.y — P+ P
Hence, we have —

where
A= ay+ag+o s+ ok

A= ol +a)fi+o! 7+ ok,
B = B+ B+ B+ Pk
Therefore the motion B of the soma 4 to the soma 4’ may be given
by the equation (iii).
The biquateinion A+ B¢ which represents a soma may also writ-
ten in the form

.P = A +Bo’= —_— (ﬂo‘l‘éoe) -l- ([Z1+ 51.6) i— (ﬂz‘l“ 623)]""‘ (ﬂ3+ 536) é.

Therefore the composition of the two motions 7, g may be expiessed

by the equation
P =Q.P

wheie
Q =—(a+dee) + (e +die) i— (-t doe) -+ (e5+ die) £,

Pl=—(a) +&/e)+a’ +b/c) i—(a)’' + &le) j+ (a5’ + &) .
Or at full length, it may be written in the form
— (@ + &) + (@ +bie) i— (2 +bue) 7+ (@ + i) £
=(co+ dye)( @+ be)— (cr + dg)(ay + 6,8) — (co + die )@, + 62€)
—(as+6.8) (as+55¢)
+[—(atde)(@+ be) — (co+ doe) (s +b5) + (65 + doe) (a1 6:¢)
— (et dog) (@t Bs2)] £
+ [(ca+ deg) (@ + bog) + (ca+ dae)(ar+ 8o) + (co+ doe)(an + b5¢)
+ (et die)(as +65€) ]
[ (s @) (o b0) + (ot o) (ay + tng) — (e + €)@+ 6sf)

—(co+die)(as+ &se)] 4.
Thus

@y + & e= — (co+ doe)(ao+ boe) + (¢1+ die)(a + £48) +(co+ dos)(@r+ bee)
+ (e5+ dae)(as + bg),
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ayf +b/e= — (e +dhe)( @y + be) + (cot+ dog)(ar + big) + (c5+ doe) (s + bif)

—(c2+ dog)(as+ b5e),

ag! + be= — (cy+ doe)(ay + bi€) — (ca+ dae)(ay + b1€) — ¢4+ de) (an+ :6)
+ (1 + die) @+ €),

af + ble=—(cs+ die)(ay+ b€) + (co+ ) (@ + bg) — (ay + bie) (@ + bye)
— (ot AN @BF01E) crriiiiiiii e (iv).

We will discuss certain special positions of two somas.
Now

CA = Cyty— €10 — Colly~ Cals -+ (€A + €yl — €30+ C,05) £

+ (€05 + @, + Coly— Colhs) 7+ (Cally— s Cy + €1l - Cotty) 2,
DB=dby+ ;b + A:b;— A.b;+ (A 0y— oy + b, + A,bs) 7

+ (A — A3 — Aby— A bs) 7+ (Aey + Ab— A0, + dohs) £.
DA =aa,+ dia;+ Aot — @tz +- (A0 — Ayt + Ay0to+ Aot £

+ (flzwo—- Ay — Ao, — A, @5) 7+ (A -+ Aoty — A, 00+ dyats) %,
CB =¢ybo— b, —C:0,— €303+ (€0, + €01 — €50+ C2b5) £

+ €305+ €3by + Cohy— €1D3) 7+ (€0 — Coy + €02+ 1) 4.

Therefore if dy=o0, then the following relation is true :

oy by— b, + @) by, — d3,0,— b) a;+ b/ a,— bl a, + bl a,

= {By0ty— Cols— Cy0ty+ Asby -+ doby + A0, + 0.} b,
— €1+ Cylty — C3s + Cx0s + Ay Dy— Aoby + 4,05} b,

+ { €2+ A5+ Coy— €103+ Ayl — Ayl — A, D3} by
— {Cs0y— 1€, + 100, € — A0, — A, by + Ay} by
— {€0y— €;b,— €,b,— €0y + Ayt — yats + A5} @,
+ {€,by+ Cob; — €30+ Cby -+ Ayt — iyt + Aot} @,
— { €Dyt €3by + €by— .05+ Aolo— @y -+ At} @y
+ {€5by— €0, + ¢, bs + Cob; + Aoty — A1+ dyas} a,

=0.

The converse of this is also true.
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But the relation

=0

Cy, Ct Cqit.
dy= G . Gl | G
%, #y %

means ‘that the point (x) lies on the plane whose plane-coordinates are
(0, €5.—¢C,, €y). ’
Now a rotation represented by the trans formation-equation
§=CE(C)* (C:a quaternion)

is a rotation about a line as its inner axis whose equations are

Ctt s = O
ity — ¥y = o}
The axis passes through the origin of coordinates. The absolute pole
of the plane whose plane-coordinates are (g, €,—¢;, €) is the point
whose point-coordinates are (o, €s,—¢;, €;). But the point (0. €;,— €, €;)
lies on the axis. Therefore the plane (o, ¢, ¢y, €,) intersects ortho-
gonally the axis at the origin of coordinates. Thus the motion defined
by (1) must be composed of the translation by which the plane
(0, €z,— €, €1) remains in itself and of the rotation about the axis per-
pendicular to the plane (o, ¢;,—¢€;, ¢;) and passing through the origin.
When a soma can be brought to another soma by such a motion, the
somas shall be called ‘semisymmetrical’ to each other.
If ds=0 and moreover ¢,=o0, the following relation is true:

! Qo+ ' a3+ ! @+ g g — (00’ + 0,/ b+ b b, + by D)
=(— €yl — G4ty — Cally— C3ttg) A+ (Ayby+ by + Aolo— dsbg)ar,
+ (61, + Cott— Co11, +.02""‘> ay+ (@ by— aoby + dh,+ oiol)z) a,
+(cott,+ a4, + Cofly— Cy@ty) @1+ (oby— b, — Ay — d,b;) a,

(coby— €13 — €,0,— ¢3b3) b‘o + (oo -+ Aty + Ayt — Ay115) b,
(€109 €oO1— €305+ €B;) by + (B ys— Aoty + Ayt + Aotts) b
(€:0y+ €3h1+ €l — €183) by (Aot~ Ayt — Aytta— A, ts) b,
(€,09— €5by+ €102+ €4B;) g+ (Aoty+ Aoty — Ay A5+ Ay;) by
=c (@ + al+ @i+ ai+ b2+ 02+ 07+ by?)

=0
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In our case, since ¢;=0, the rotation
§'=Ce(0)?

must be a half rotation about the line (v) as its inner axis. For the
joining line of the initial and final points of the motion cuts the axis
of rotation.

When Q represents a half rotation

Gt+dze =o.
Therefore, in this case, the equation (iii) becomes as follows :
af +0e= — (co+dig)(ay+ 0e€) + (1 + die) (@ + 6:€) + (o + doe)(as -+ b:)
+(c5+ dse) (@ + 042),
! +ble= —(c,+die) (o + 6iE) — (co+ o)+ 8:) + (e dise)(@a+ 56)
— (e +dee)(as+ bs8),
@/ +bfe=—(co+ doe)(@n+ b) — (co-+ die) (@1 + 818) — (co+ o) @+ Bse)
+(at+ )@+ bse),
a +&'e= ~— (e + due)ag+ bog) + (o -+ dog) (@ + b:8) — (e1 + dhe) (@2 + b:)
— (o de)(ay+ be).
When a soma 2 can be brought to a soma Q by a half rotation,
these somas shall be called ¢ symmetrical ’ to each other.

The totality of the somas which aie symmetrical to a soma shall
be called a ‘normal net’ of somas.

Now put
ay+ b = AX,,
a+be = 22X,
a+be = 7.4,
a,+be = AX,,
where = —1. We may take the ratio

~

(.ZY)E (zY;,:,XvI:‘XvZ :-X'g)
as the coordinates of the soma represented by the biquaternion

cAD+ BW,
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Conversely the coordinates (2), (4) of the soma can be obtained from
(X) by giving to 4 such a value that the coordinates shall satisfy the

fundamental identity
(ad) = o.

For this, it is necessary and sufficient that the imaginary part of
A(XX) should be zero, ie.

A, = X, + &,
tY/@Ex) /X))

_(x x
4~ (i * &

(XX)4g=o0.

)szi:o, I,2,3,

with the condition

When two somas (X) and (X7) are symmetrical

(XX")=o0.
But in the case

(X.(Y) =0,
the equation determining @, and &, becomes illusory since

(XX) = (a+2e. atley

the relation
(XX)=o
indicates that
wlE—ul—ut—us = 0,

which occurs when the point (#) lies on the absolute in the hyperbolic

space. In this case, the point (I 2t - Z2itt 2”‘}213) to which the

P (o) 7 (wne) 7 (otor)

origin is translated in the motion

g — §+U

Us+1
becomes a point at infinity which has the coordinates (). Thus such
a kind of soma is obtained from the protosoma by a translation of an
infinite distance from it and by a rotation about axis (inner axis) pass-

ing through the origin of coordinates. We shall define a soma whose
coordinates satisfy the equation
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(XX)=o0

an improper soma in the hyperbolic space.

The figure formed by the totality of the improper somas shall be
called the soma-absolute in the hyperbolic space. This is a manifold-
ness «° and the equation to the soma-absolute is

(.ZYX) = 0.

If the improper somas defined by the biquaternions 4+ B¢ and
A'+B'c be obtained by the same translation and by the different rota-
tions about the axis passing through the oiigin, then these somas are
symmetrical. In fact, in the case (X) and (X’) corresponding to
A+ Bo, A +B'¢ are

Qoey, Q2 a,ug)
b

a2z, 4 [24%/ 73 “33!-;)

X, =—a, +e< Qo 4 G “"”3),

N %, o,
2L L2524 2.

X, = @ +¢ Untty __ o 4 a’13)

Uy 2y y
X/ =—a+e (ao’ w al Uy _ Qg u;)

%

a 7

J.Y‘ll= a2,+€( 17/{1 + “0 ln__— as Tl)’

% 2,

X/ =—a+e (ae “oy a) 7¢2 a, l‘s)
- , %,

X/ = a0’+e(“’,”‘ a,u, or1 uq)

%, N
respectively.
Thus
Y
(XX) = (aa) _Z( Aoty Gy a2u3)(ao #y @y a2'213)
#, o, %, 2%, 2, u,

_*_el: 2 {__ “31( Ootty 2ty az%)} _*_2 {__ a‘,(a"l u _ ofu, a z@)}]
%, 2, , 2, 2, 1,
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But in our case

% Ut o,
I— 10 _ T 5 — 0
uy’ 2, 2,
Hence, we have
(XX") = o.

The common symmetrical soma (U) to the three improper somas
(X),(¥),(Z2) is given by the equations

(UX) =o,
(UY) =0,
(UZ) =o.

The solution of these equations is

Uy: Up: Oy: Uy = | XVZ)|.

Thus
P VAN
()= | %, v. 2| = |xVZP
X ¥V5 Zy
= [(XX) (YX) (ZX)

(X7) (YY) (2V)
(X2) (YZ) (ZZ)
= 2(ZY (XZ)(VX).

When the soma () is proper
(UU)=Fo,

hence non of the expression (ZY), (XY), (¥Y.X) can vanish. Thus any
two of the somas (X),(Y),(Z) can not be obtained by the same
translation.

We can establish one to one correspondence between the totality
of all somas in the hyperbolic space and the totality of all complex
points (or planes) in the elliptic space. For the sake of clearness we
shall assume that our soma-space is doubly overlaid. We shall say
that a soma belongs to the ‘upper layer’ when it is represented by a
complex plane, we shall call a soma of the ‘lower layer. In this
representation improper somas correspond to the complex points on the
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absolute in the representing elliptic space. The soma absolute will be
represented by the absolute in the representing elliptic space. The
necessary and sufficient condition that two somas of the different layers
shouid be symmetrical is that the corresponding complex point and
plane should be in the united position. Therefore the two somas of
the different layers symmetrical to each other may be represented by
a complex plane-element (system of a point and a plane through this
point).

We shall add that W;: I7,: I, are the coordinates of the inva-
riant-cross in the half rotation (%) by which a soma is transformed
into another soma. When the motion (W) is defined by a biquater-
nion A+ Bo, we see easily that the point (o, &, @, @,) is invariable for
the motion

§1 = Ag/(d) (i),
as well as for the motion
§+U
{ A .
¢ = Tert (i),
consequently for the motion
A+ B
{7 A aes
Y =B G

Further the point (#y,—u, —2,, —u;) goes to the point (z 1z 2y u,)
in the motion (ii) and the point (x) is transformed into the point
(#tg, —2ty, — 2y, —25) in the motion (i). Thus, the cross formed by the
joining of the points (zy,—u, —o,, —u;) and (22 2, us) with its abso-
lute polar is an invariant figure in the motion (iii). But the coordi-
nates of the cross defined by the joining of the points (2,— oy, — 24y, — 22;)
and (o, tt5,— a6y, — t;) and its absolute polar is equal to thie expiessions

(73 + ebo,
—d, + ebls

a,; + b, (Ef=—1)
which are equivalent to
w,
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§ 10.
The Fundamental Somas.

If we cons1der three mutually oithogonally cutting oriented lines

0)(1, OXZ, 0X3 which represent the protosoma, thén we see that the
dual coordinates of the protosoma are equal to the ratio (1000). We can
obtain the three somas represented by the systems of the oriented lines

— L L
(04X, 0.%, 0X3),
= =P P~
(0X, 0,X, 0.%),
Lo L —
(0X, 0%, 0.X),

by the half rotations about the axes 0X,, 0.X, OX; respectively. The
dual coordinates of the somas thus obtained are equal to the ratios
(o100),
(oo11),
(ooo1)
respectively, These somas aud the protosoma are symmetrical to each
other, We shall define the somas
(1000),
(o100),

(oco10),
(ooor1)

the ‘fundamental somas’ as in the case of the elliptic space.
The fundamental somas are analogous to the edge crosses of a
fundamental orthogonal tetrahedron in the hyperbolic space.

§ 1L

The Transformation Groups of Soma-space
in the Hyperbolic Space.
The group of the dual projective geometry contains 30 essential

parameters and is isomorphic with the 30-parametric group of the com-
plex space: it is made by two parts g, Hs-
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The transformations of §,, form no group as a succession of two

of them makes a transformation of &, The general transformation
of @, is
X! = (4. X), =0, 1,2.3;

Ay=a,;+aly 2, |4, = o.

Let (X),(¥),(Z2),(T) be the dual coordinates of any four somas of
a one dimensional soma chain defined by the equation of the form

X, = aP+560; (2, &; real numbers)

and (R), (S) be those of any two somas which do not belong to any
normal net of somas with any two of them. And consider the ratio

(xvzT) = JRSXZ| | |RSXT|
|RSYZ]  |RSYT

This shall be called the dual double ratio of the four somas (X),
(¥),(2),(T). The dual double ratio of any four somas of a one-
dimensional soma chain is an invariant for the transformations of ®j,.

The transformation of §; has the form

Xz, = (AiA_r )’

This may evidently be obtained from the general transformation
of ®g, combined with the single transformation

X! = X,

where X; means thé conjugate complex number to X,. The soma
represented by (X ) is obtained from the protosoma by the translation
represented, and by the rotation same with that of the soma represented
by (X).

By the general transformation of the group &, every normal net
of somas is transformed into a normal net of somas.

There is another sort of transformation called ‘dual correlation,’
where by the dual coordinates of a soma of one layer are expressed
as linear homogeneous functions of those of a soma of the other layer
the determinant of the transformation being different from zero. Such
a transformation may clearly be obtained from the combination of the

group @ and
J’Y,,/ = Ub
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This is merely to replace each soma of one layer by the soma of the
other layer coincident with it. In the representing space, the trans-
formation is the replacing of the absolute pole and polar plane with
respect to the absolute.

There is another kind of transformation called ‘ dual anticollinea~
tion expressed by the equation

X! = (4, U).

This is composed by a transformation of the dual collineation together
with a transformation

U =U.

&3, has a group @;; which are formed from ths transformation of
the form
X! =(4X), i=0,1,23,

where 4,,: real.

By this transformation, a soma obtained from the protosoma by the
rotation about the origin is transformed into another soma. For, in
the case of such somas whose coordinates (X') are all real, the corres-
ponding coordinates (X’) are also all real.

Next, let us consider the orthogonal transformations of somas by
which the improper somas are transformed into other improper somas.
These form a mixed groups @, H1. with 12 essential parameters. The
transformations of &, have the form

X' = AXB.
And the transformations of £, have the form
X = AXB.

The group @ can be decomposed into two permutable groups &, @,
which are defined by the equations:

./Y/ = AZ,
and X =ZB.

®; is the group of motion in the hyperbolic space.
A hyperbolic motion may be represented by the biquaternion
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O=—(ay+6€)+(a,+ b:€) i—(a,+ 5,) j+ (as+ )
=—X+Xi~- X7+ X %,

as it was already noticed.
We shall call the special points on the absolute whose coordinates

are
Z, X5 X
(&, 2, 2) = (1,00
Xy xo Xy
X X
and (_lr'_z‘:‘ﬁ)=(_r,0,0)
X Ko X

as its north and south poles.
If we consider the special case in which

(a+ 513) &= (42 +0:),
or Xie= X,

then we see that
al+é1=0, al+é2= 0.
Thus the motion
A5+ B
g =
AE+ B

is that by which the north pole remains unchanged. Such motions

form .a group &, with four essential parameters. The transformation
of @&, takes the form:

= —(a+&e) + (2 +:8) i—e(a+6:8) 7+ (a5 +bee) 2
=X+ Xii—eXij+ Xk
@®, has a subgroup &; whose transformation is represented by the
Q=—aytayi—cajteb A
@, contains also a subgroup &, whose transformation is
Q=—aytayitbjta k.

®, contains a subgroup &, with two essential parameters. The
transformation of the group is expressed by the biquaternion

Q ="‘—‘(¢0+50 €)+(ﬂ3+53 6) é
=X+ X: £
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By this motion, the north and south poles remains fixed.

®, contains a continuous group &, and a mixed group &, with
one essential parameter.

A motion Included in &, shall be called thc rotation about the
axis of the space.

A motion included in & shall be called the sliding along the axis
of the space.

A translation of @&; may be represented by the quaternion

Q =_'ao+agé
=—71E)+11Y-() k.

A transfoimation of & is represented by the biquaternion

Q = — ﬂ0+é3€ é
=—,X+,X:4
SECTION IIL.

The Soma-manifoldness in the Hyperbolic Space.

The soma manifoldness in the hyperbolic space may be discussed.
as in the case of the elliptic space. Consider a som-manifoldness whose
coordinates (X) are linearly dependent on that »+ 1 different fixed
somas (X@), (XW)... (X™),1i.e.

pX, = XO4a X,V+...4a, XM, i=o0,1,2,3;
@, : all real.

We shall define the soma-manifoldness an 7n-dimensional soma-
chain.” The somas (X©)...(X®™) shall be called the ‘bases’ of the
soma-chain. The fundamental soma-chains are one-, two-, three-
dimensional soma-chains. We shall use the notation (, to denote an
n-dimensional soma-chain. Any #-+1 somas of C,

14 zYL = af,‘) X.,EO) Frenes +[I§,1) A’}(”),
PYL=d XP+ o XD,

p 7, = af™d X+ + ot Y™,

may be taken as its bases, provided that
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ad oM L aP %0

a@t) Lt ot

If of two families of somas of different layers each consists of all
the somas which are symmetrical to all the somas of the other, then
the both families are soma-chains. We shall call the soma-chain ar-
ranged to pair ‘reciprocal soma chain’ to each other.

§ 12,
The One-dimensional Soma-chain,
The one dimensional soma-chain has the equations
p X =a¥+0Z, (f7=0,1, 2, 3)

a6 all real.

Every (; has at least one pair of real somas which are symmetrical
to each other. These somas shall be called ¢ principal somas’ of C;
Now we will piove the existence of such somas.

If the somas (ay+&2) and (a’y+&'2) of (; be symmetrical, then
they must satisfy the equation

(ay+82,ay+82) = o.
Or

aa {(+3,9)—(e7e9)} + (@l + &' 8){(» 3:2)— (c3e2)} + 68'{(-2:2) — (c2e2) } =0,
aa’ (rJ'aJ’) +(a'0+ ‘Z/@{(rﬂ/az) +(29)} 00" (r2e2) =0,

where Vi eJo Bre the coefficients of the units 1 and e respectively.
Let ¥, and Z, be the conjugate imaginary numbers to ¥; and Z,
respectively, then the equations take the forms
ad (¥Y)+ (ad' +a'6)(YZ)+86'(ZZ) = o,
ad (YY) +(ab+'a ) YZ)+ b6/ (ZZ) = O evrvvrens (.
We see Y, i correspond to ,¥;, ,.¥; in the equation for

ZLJ Z lzb rzq,



226 Tvikichi Nisiiucki,

the deteimination of the principal somas of ( in the elliptic space.
Thus we see that the equation which is obtained by the elimination
of @ : 4" from the equation (i) has ical roots and they are distinct.

In general, one of the principal somas is not the somas which is
obtained from the other by the half rotation about one of the three
oriented lines which repiesents the latter soma. In this special case,
by taking the principal somas of the (; as the fundamental somas
(1000), (0100), the equation of the C; may be reduced into its canon-

ical form'
Xy =0,
X = a(p+g9),
X;'= (v +s9),
X = o.

Such (; may be generated by a cross-chain whose equations are
X = 0,
Xt = a(p +g9),
Xy = b(r+se).

The half rotations of the soma defined hy the fundamental ortho-
gonal tetrahedron about every cross of this (; give a soma-chain

Xo=o0,
X = a p+ge),
X, = b (r+s€),

.zY:;=O.

§ 13,
The Two-dimensional Soma-chain.

The simplest two dimensional system of somas is the two-dimen-
sional soma-chain. This is made of all the somas which have the
coordinates linearly dependent with real coefficients on those of the
three given somas, ie.

p X, = aVi+oZ 4 cW, (¢7=0, 1, 2, 3).

In the case
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| YZWw| == o,
the soma (in the lower layer) represented by the equation

Y, ¥ %,
z z z
W, W, Z,

0=

is the soma which is symmetrical to all the somas of the soma-chain.
This soma (U) shall be called the ‘ nucleus’ of the G.

The soma-chain will be represented by all the complex points of
the representing complex space, and the nucleus the complex plane.

§ 14,

The Three-dimensicnal Soma-chain.

The soma-chain of three dimensions is the system of somas whose
coordinates (X) are linearly dependent on that of the four somas (Y),
(Z), (T), (W) with real coefficients &, &, ¢, d, ie.

X, =aV,+0Z4-cT,+dW, (i=0,1,2,3) -..... ).

Case 1.

|YZTW | ==o.

This system is represented by all the complex points of the 1ep-
resenting space.

The somas which are represented by the totality of the points of
the real domain of the representing space will generate a soma-chain
complex. The reciprocal soma-chain in the lower layer will have the
equations

pZA:p IG Y}» ¥ _}_g Zf Zk Zs +7 pVilevT/Vs +s Z; Y}» -7::
z, zz| \wmww| |5,z |y v
wwwl |5 5zl |y wnwl lwmwwm

We can piove that there are four somas in a soma-chain which
coincide with those of its reciprocal soma-chain as in the case of the
elliptic space. When they are obtained from one of these somas by
the half rotations about every one of the three mutually orthogonally
interesting oriented lines which present this soma, by taking these somas
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as the fundamental somas the equations to the soma-chain may be
reduced to its canonical forms
p Xy = alty+5, €),
p X, = bt +s€),
p Xy = ctats0€),
o X, = dt;+558) v coeiiniiiiiiiennnn, @,
where @, 4, ¢, & are real numbers.
There are two specially interesting cases.
D LiSo=liSytis, =118 ;
(1) LiSo =1t 18 =1t S =118
In the case (I), the soma of the soma-chain (1) is transformed into

another soma of the same soma-chain by any rotation about X -axis.

In fact, if
lop:Sg =118, L85, = I35,
then the soma
p Xy = a(ty+ s, €),

o Xy = b(tt+se),
0 Xo = c(ta+s26),
o Xy = dt+ 55 €).
is transformed by a rotation about x;—axis (as its inner axis) to the

soma
T X' =—cfty+esp) +altte s),

T ‘X’ll= - Cl(t0+ 3 SO) —60(t1+ =4 .5‘1),
T Xy = —cftstesy)—a(ttesy),

T Xl = —Cl(fg +e Sz)_ 5'0(1‘3-}— e 53)_
Or
T X = (—a+a)(ttes),

T A’i’ = (_'51'—[0)(j_€ S),
r X = (—eo—c)(t+es),
t Xy = (—e—a)(t+e5).

In this case (II), the soma-chain remains unchanged by the rota-
tion about the origin. Let

&= Cé(C)
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represents the rotation about the origin, then the soma
o Xy = a(ty+¢ ),
o Xy = bt +esy),
02X, = c(trte sy
p Xy = d(t+e s5).
is tiansformed by this motion into the soma
1X =~ GEA CET GET G,
1! =— G Xo— G Xt G X X,
1Y =-GX—-GX—-GX+ G X,
A =—GX—GX—GXN—-GX
AXY) = (qteatata)(ites),
2 X = (—a—cyte—e)(t+e ),
‘Z X = (—co—c—cp+ey)(t+es),
X = (—ate—a—c)(t+es).

The soma-chain (X’) is the same with the soma-chain (X).
Case II.
l.{YZWT‘ = 0.

But (V), (2),(W),(T) are not linearly dependent with real coefficients
&y lym,n, ie

RV, IZ,4mW,+nT, %o,

In this case, we have a soma which is symmetrical to all the somas
of the soma-chain, ie.

U=\ % Y,

Z 7, Z,
W, W,

wheie 275 p is a permutation of the figures o, 1, 2, 3. Conversely, we
can prove that every soma which is symmetrical to the soma (U) may
be expressed in this form. Therefore if we take (U) as the protosoma,
then the equations of the chain may be written in the foim
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pXy=o0
o Xy = aVi+ oz c T+ dW,,
0 Xy = a¥yt 62yt c Tt AW,
pXs = aYy+ b2+ c T3+ AW,






