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Abstract: Transforming growth factor-beta (TGF-β) signaling is one of the important cellular
pathways that play key roles for tissue maintenance. In particular, it is important in the context
of inflammation and tumorigenesis by modulating cell growth, differentiation, apoptosis, and
homeostasis. TGF-β receptor type 2 (TGFBR2) mutations affected by a mismatch repair deficiency
causes colorectal cancers (CRCs) with microsatellite instability, which is, however, associated with
relatively better survival rates. On the other hand, loss of SMAD4, a transcription factor in the
TGF-β superfamily signaling, promotes tumor progression. Loss of heterozygosity on chromosome
18 can case SMAD4-deficient CRC, which results in poorer patients’ survival. Such bidirectional
phenomenon driven by TGF-β signaling insufficiency reflects the complexity of this signaling
pathway in CRC. Moreover, recent understanding of CRC at the molecular level (consensus molecular
subtype classification) provides deep insight into the important roles of TGF-β signaling in the tumor
microenvironment. Here we focus on the TGF-β signaling in CRC and its interaction with the tumor
microenvironment. We summarize the molecular mechanisms of CRC tumorigenesis and progression
caused by disruption of TGF-β signaling by cancer epithelial cells and host stromal cells.

Keywords: TGF-β signaling; colorectal cancer; SMAD4; tumor microenvironment

1. Introduction

Transforming growth factor-beta (TGF-β) signaling pathway plays critical roles in controlling
tissue development, proliferation, differentiation, apoptosis, and homeostasis [1]. As such, disruption
of this signaling pathway leads to several diseases including cancers. TGF-β signaling regulates many
target genes—either positively or negatively—in a context-dependent manner [2]. Although TGF-β
signaling inhibits epithelial growth in normal tissues, it promotes tumor cell progression in tissues
with advanced cancer [3]. This phenomenon is known as TGFβ paradox. These context-dependent
and paradoxical dynamics of the signaling complicate the understanding of the role of TGF-β signaling
in cancer biology. As the effect on the colonic epithelial cells, TGF-β signaling exhibits reduction in
cell proliferation, along with promotion of differentiation and apoptosis [4]. In addition to its effect
on epithelial cells, TGF-β plays protective roles against luminal bacterial antigens by suppressing
intestinal immune cells in the stroma and inducing immune tolerance [5,6]. Therefore, disruption of
TGF-β signaling in the colon prompts tumor progression not only via epithelial cells transformation
but also via tumor-stromal interactions [7–11].

Recent advances in DNA sequencing technology, such as next-generation sequencing and digital
polymerase chain reaction (PCR), re-focuses the importance of DNA alteration in cancer cells. Recently,
a novel classification for colorectal cancer (CRC) was advocated as consensus molecular subtype
(CMS) based on the following molecular features: CMS1 (microsatellite instability (MSI)-immune) as

Int. J. Mol. Sci. 2019, 20, 5822; doi:10.3390/ijms20235822 www.mdpi.com/journal/ijms

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0001-7356-7065
https://orcid.org/0000-0003-4336-6937
http://www.mdpi.com/1422-0067/20/23/5822?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20235822
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 5822 2 of 16

hypermutated, microsatellite unstable, and strong immune activation; CMS2 (canonical) as epithelial,
marked WNT and MYC signaling activation; CMS3 (metabolic) as epithelial and evident metabolic
dysregulation; and CMS4 (mesenchymal) as prominent TGF-β activation, stromal invasion, and
angiogenesis [12]. Most CRC cells with high levels of MSI (MSI-H) accumulate mutations in TGF-β
receptor type 2 (TGFBR2) as it carries microsatellite sequences [13,14]. As these findings indicated,
disruption of TGF-β signaling plays a pivotal role in CRC pathogenesis in several molecular types
of CRC. Moreover, clinical evidence has revealed its strong involvement in patients’ prognosis after
curative resection [15]. In this review, we summarize the proposed mechanisms of TGF-β signaling
disruption involved in CRC development, progression, and invasion/metastasis.

2. TGF-β Signaling Pathway

2.1. TGF-β Signaling in Cell Biology

TGF-β superfamily signaling involves > 30 components, mainly divided into two subfamilies:
the TGF-β-activin-nodal subfamily and the bone morphogenetic protein (BMP) subfamily [1,2,16]
(Figure 1). TGF-β ligands assemble their corresponding receptors: two type 1 components and
two type 2 components. Type 2 receptors serve as activators to phosphorylate type I receptors,
whereas type 1 receptors function as propagators to transduce the signal downstream to cytoplasmic
proteins. Components of both receptors are serine/threonine kinases. After ligand binding, BMP
type 1 receptors phosphorylate SMAD1/5/8 (the abbreviation of SMAD refers to the homologies
of SMA (small worm phenotype of Caenorhabditis elegans) and Drosophila MAD (Mothers Against
Decapentaplegic), whereas TGF-β type I receptors and activin type 1 receptors phosphorylate SMAD2/3.
These sets of SMAD proteins are known as receptor-regulated SMAD (R-SMAD). Phosphorylation
of two C-terminal serine residues on R-SMAD facilitates trimerization with two R-SMAD molecules
and one SMAD4 (also known as common-mediator SMAD, Co-SMAD). This SMAD trimer plays
a central role in the TGF-β superfamily signaling to translocate to the nucleus and bind DNA via
their DNA binding site. The CAGAC motif or its complementary sequence TCTG motif is referred
to as the SMAD binding element (SBE) where SMAD2/3/4 mainly bind. In addition, SMAD1/5/8
and SMAD2/3/4 can also bind the GC-rich element when activated [4,17]. R-SMAD molecules in
the SMAD4-R-SMAD complex can also bind other transcription factors as partners to regulate their
transcription. In addition to the canonical SMAD-dependent pathway, TGF-β superfamily ligands
transduce non-canonical, SMAD-independent pathways such as various mitogen-activated protein
kinase (MAPK), phosphoinositide 3-kinase (PI3K)/Akt and Rho/Rho-associated protein kinase (ROCK)
pathways [18].

Similar to most signaling pathways, TGF-β signaling is regulated from the ligand level to the
effector level. Most of the TGF-β ligands act as paracrine fashion, and their access to the cognate receptors
is regulated by ligand-binding proteins such as soluble proteins and extracellular matrix [19,20].
In addition to the signal-transducing SMAD members (R-SMAD and Co-SMAD), another type of
SMAD inhibits TGF-β signaling pathway (inhibitory SMAD, I-SMAD). SMAD6/7 (I-SMAD) inhibits
signal transduction by interfering with the phosphorylation of R-SMAD from type 1 receptors.
Ubiquitination of R-SMAD/Co-SMAD is also one mechanism for signal degradation [21].
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Figure 1. Schematic representation of Transforming growth factor-beta (TGF-β) superfamily
signaling pathway.

2.2. TGF-β Signaling in Clinical Situation of CRC Patients

Molecular classification of CRC can provide biological interpretability of CRC. In CMS1 CRC,
MSI-H provides accumulation of many somatic gene mutations including TGFBR2, which results
in the release of tumor neoantigens and activation of tumor immunity. It was reported that MSI-H
was an independent favorable prognostic factor for Stage II/III (no distant metastasis) CRC patients
after curative resection [15]. In fact, CMS1 CRC exhibits a low metastatic rate compared with other
subtypes [22]. Although TGFBR2 mutation itself is not a favorable prognostic factor within MSI-H
CRC population, MSI-H CRC patients exhibit better prognosis compared to microsatellite-stable
ones [15,23]. However, once metastasized, CMS1 CRC exhibits poorer survival. One of the reasons of
poor prognosis after metastases would be that MSI-H confers resistance to 5-fluorouracil (5-FU)-based
chemotherapy [24].

MSI-H derived from deficient mismatch repair (dMMR) accounts for only 15% of CRCs.
Alternatively, approximately 85% of invasive CRCs exhibit chromosomal instability (CIN) and loss of
heterozygosity (LOH) in some chromatin areas [25]. CIN CRCs accumulate driver mutations such as
adenomatous polyposis coli (APC), TP53, SMAD4, KRAS, and PI3K catalytic subunit-α (PIK3CA), which
Vogelstein and colleagues advocated as the adenoma-carcinoma sequence [26]. In this sequence,
TGF-β signaling pathway also plays a pivotal role in CRC progression. In fact, absent expression
of SMAD4 (a key transcription factor for TGF-β signaling) is an independent poor prognostic factor
after curative surgery for Stage II/III CRC and CRC liver metastases [15,27–29]. Moreover, CMS4
carrying the mesenchymal phenotype with TGF-β-activated stroma showed the worst prognosis
with low benefit from chemotherapy among all molecular classes [12,30–32]. In this scenario, TGF-β
signaling causes epithelial-to-mesenchymal transition (EMT) in cancer cells, resulting in an aggressive
phenotype [18]. To this end, TGF-β signaling directs serrated adenomas to the mesenchymal CRC
subtype, while TGFBR2 mutation impairs EMT [33,34]. Collectively, these basic and clinical data
indicate that disruption of TGF-β signaling, especially in advanced CRC, results in an aggressive
phenotype of CRC and, consequently, poor prognosis.
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3. TGF-β Signaling in Cancer Cells

3.1. TGFBR2 Mutation in Cancer Cells

For appropriate function of TGF-β signaling, active TGF-β receptors (both type 1 and 2 receptors)
are mandatory [19]. TGFBR2 mutations are frequently found in MSI-H CRC [35]. MSI-H CRC cells
carrying dMMR harbor silent expression of mismatch repair genes through either germline mutations
of MMR genes such as MutL homolog 1 (MLH1), MutS homolog 2 (MSH2), MSH6, and Postmeiotic
segregation increased 2 (PMS2), or MLH1 promoter hypermethylation [36,37]. Lynch syndrome is an
autosomal dominant hereditary cancer syndrome that carries germline mutations of one of these
4 MMR genes, resulting in the development of many types of cancers including CRC, endometrial,
ovarian, gastric, small intestine, pancreatic, and urothelial tract cancers [38]. Lynch syndrome accounts
for approximately 3% of CRCs, whereas approximately 12–15% of CRCs is sporadic MSI-H CRC,
resulting from hypermethylation of the MLH1 promoter [39]. Because TGFBR2, carrying a 10-adenine
repeat, is only one of the genes affected by dMMR, it is possible that TGFBR2 mutation is merely a
bystander event [13,40]. However, according to several mouse studies, TGFBR2 mutation itself does
have the potential to transform normal colonic epithelial cells to malignant cells [41,42]. In addition
to TGFBR2 mutation, BMP receptor type 2 (BMPR2) can be also affected by dMMR as it also carries a
7-adenine repeat that is also affected by dMMR [43].

MSI-H CRC exhibits high immune response that can be targeted for immune checkpoint
inhibitors [44]. Although high immune response in MSI-H CRC is the result of tumor neoantigen
load caused by hypermutation, TGFBR2 impairment can also directly promote inflammation in the
tumor microenvironment of CRC. TGFBR2 deficiency in an APC-deleted mouse model of intestinal
adenoma increased inflammatory burden and promoted tumor progression via producing tumor
necrosis factor-α (TNF-α), interleukin (IL)-8, and TGF-β1 as well as suppressing of anti-inflammatory
cytokines such as IL-10 and interferon (IFN)-γ, which resulted in increased infiltration of CD11b+Gr1+

granulocyte population into the tumor microenvironment (Figure 2) [45]. Moreover, TGFBR2 disruption
in combination with inflammation in the colon causes invasive CRC via tumor-associated macrophage
(TAM) infiltration [46].

TGFBR2 inactivation in CRC cells contributes to the malignant phenotype via multiple pathways
such as Wnt-β-catenin, Hippo, and MAPK [47]. In a mouse model designed to conditionally knockdown
TGFBR2 in the proximal colon, TGFBR2 impairment in combination with Wnt-β-catenin pathway
activation promoted the upregulation of Gasdermin C, which stimulated the proliferation of CRC
cells [48].

Glycosylation is an important post-translational protein modification and also affects malignant
phenotype of cancer cells [49]. TGF-β signaling can also modulate the protein glycosylation pattern
in MSI-H CRC. TGFBR2 impairment in MSI-H CRC cell line, HCT116, can upregulate some of
glycosylation-related genes and affect important cell signaling pathways such as Notch [50]. In this cell
line model, Nectin-3 (a cell surface glycoprotein that modulates cancer cell invasion and metastasis)
was also upregulated when TGFBR2 was impaired, and reconstitution of TGFBR2 upregulated growth
differentiation factor-15 (GDF15; one of the ligands of TGF-β superfamily signaling) in a cell line
model [51]. TGFBR2 mutation in CRC can also cause changes in the components secreted by cancer
cells. For example, in vitro experiments with MSI-H TGFBR2-deficient HCT116 cells revealed that
extracellular matrix and nucleosome-related proteins were upregulated, while proteasome-associated
proteins in the extracellular vesicles were downregulated [52,53]. Clinical implications of these cell
line-based experiments are, however, not fully understood.
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3.2. Mutations and Deletions of SMAD4 (Co-SMAD) in CRC Cells

LOH is one of the common features of carcinogenesis that causes cancer cells to lose tumor
suppressor genes and acquire malignant phenotype [54]. Chromosome 18q21 is frequently affected
by LOH in microsatellite-stable CRC. There are many genes in this chromosomal region including
SMAD2, SMAD4, and deletion of colon cancer (DCC) that may contribute to form malignant phenotype
of CRC. Among the genes on chromosome 18q21, SMAD4 is the established tumor suppressor gene,
and loss of SMAD4 disrupts canonical TGF-β signaling because it is a transcription factor for the
signaling [54]. Moreover, The Cancer Genome Atlas (TCGA) database revealed that SMAD4 is one of
the most frequently mutated genes in CRC [55].

SMAD4 is one of the key driver genes that contribute to CRC progression and metastasis [56,57].
Consequently, SMAD4 loss onto APC mutation in intestinal epithelial cells causes malignant invasive
phenotype in mouse models [58,59]. Loss of SMAD4 protein expression is found approximately
20–40% of human CRCs [8–11,60,61]. Although LOH can be the main cause of SMAD4 loss in CRC,
there are other proposed mechanisms that contribute to SMAD4 defect in post-transcriptional and
post-translational regulation: ubiquitylation, sumoylation, and mircoRNA interference [62,63].

SMAD4 acts as a transcription factor by forming trimers with R-SMAD components and directly
regulates target genes. R-SMAD-SMAD4 complexes can also associate with DNA-binding partners to act
as a transcription co-factor [4]. Therefore, there are many target genes regulated by SMAD4, indicating
that several changes in cancer cells happen when R-SMAD-SMAD4 complexes are disrupted [64–66].
RNA sequencing comparing SMAD4-proficient and SMAD4-deficient colonic epithelial cells in mice
revealed upregulation of many inflammation-related genes [66]. Among them, Ccl9, one of the C-C
motif chemokine ligands, is upregulated in a SMAD4-deficient intestinal tumor mouse model [59].
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In this mouse model, chemokine expression recruits myeloid cells with corresponding receptors, Ccr1,
to promote tumor invasion and metastases [59,67,68]. Similar interactions between SMAD4-deficient
CRC cells and surrounding myeloid-derived cells via chemokine signaling was observed in human
CRC samples [8–11]. Namely, loss of SMAD4 from CRC cells promotes upregulation of C-C motif
chemokine CCL15 (human orthologue of mouse Ccl9) to recruit CCR1+ myeloid-derived suppressor
cells (MDSC) [8–10,69]. SMAD4-deficient CRC cells also produce C-X-C motif chemokine ligand
CXCL1/8 to recruit its corresponding receptor CXCR2+ tumor-associated neutrophils (TAN) [11].
MDSC accumulation is characteristic of CMS4 immune contexture [70]. These experimental and
observational results suggest that SMAD4-deletion in CRC causes both cancer cell phenotype and
tumor microenvironment to switch to the more aggressive cancer phenotype.

TGF-β signaling plays a crucial role in angiogenesis in the tumor microenvironment [71,72].
SMAD4 can also regulate the expression of vascular endothelial growth factor (VEGF)-A and
VEGF-C, the main angiogenic factors for tumor angiogenesis and lymphangiogenesis. Disruption of
SMAD4 promotes upregulation of these angiogenic factors, resulting in promoting angiogenesis and
lymphangiogenesis in CRC [73,74]. TGF-β signaling also plays a critical role in the differentiation
of epithelial cells. Loss of SMAD4 promotes β-catenin expression, and simultaneous SMAD4 loss
and Wnt activation in the intestinal epithelium trigger the acquisition of stem cell properties and lead
to de-differentiation and rapid adenoma formation in the differentiated intestinal epithelium of the
Cre-driven conditional mouse model [75,76].

Chemoresistance is also an important property of malignant phenotype of cancer cells, and loss of
SMAD4 is a predictive biomarker for 5-FU-based chemotherapy [77,78]. SMAD4 deficiency activates
PI3K/Akt/cell-division cycle 2 (CDC2)/survivin pathway to attenuate G1/2 cell cycle arrest, providing
resistance to 5-FU-based chemotherapy because 5-FU basically acts as a thymidylate synthase inhibitor
to block DNA replication [79,80].

SMAD4 loss-induced changes in vivo and in vitro were summarized in Tables 1 and 2.

Table 1. SMAD4 loss-induced changes in vivo (animal models).

Models Factors Changed Function Observed

GEMM 1 [59,67] Ccl9 upregulation CCR1+ myeloid cell recruitment
Xenograft [8–10] CCL15 upregulation CCR1+ TAN/MDSC recruitment

GEMM [75] Wnt activation Dedifferentiation Stem cell characteristics
Allograft [80] PI3K/Akt/CDC2/survivin activation 5-FU resistance

1 GEMM, genetically-engineered mouse model.

Table 2. SMAD4 loss-induced changes in vitro.

Models Factors Changed Function Observed

CRC cell lines [11] CXCL1/8 upregulation CXCR2+ TAN recruitment
CRC cell lines [74] VEGF-A upregulation Angiogenesis
CRC cell lines [74] VEGF-C upregulation Lymphangiogenesis

3.3. Non-Canonical TGF-β Signaling Pathways in CRC

Non-canonical TGF-β signaling pathways also modulate important cellular physiology.
Disruption of non-canonical TGF-β pathways as well as canonical ones is also frequently found
in CRC. Although loss of SMAD4 may lead to the blockade of canonical TGF-β signaling, it alters BMP
signaling via non-canonical pathway to promote CRC metastasis through activation of Rho/ROCK
pathway, leading to EMT, migration, and invasion [81]. Loss of SMAD4 also activates alternative
MEK/ERK pathways to promote cell mortality, migration, and invasion [82,83].
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4. TGF-β Signaling in Stromal Cells in the Tumor Microenvironment

Cancer tissues contain abundant stromal cells in addition to cancer epithelial cells. Interaction
between cancer cells and surrounding stromal cells can either promote or inhibit cancer progression.
In the tumor microenvironment, various cytokine/chemokine networks play pivotal roles in controlling
the interaction between cancer cells and stromal cells [84,85]. As described above, CMS4 mesenchymal
phenotype with poor prognosis characterizes prominent TGF-β activation [12]. These observations
suggest that TGF-β activation in the tumor microenvironment can promote the tumor-stromal
interaction to induce a malignant CRC phenotype and poorer prognosis (Figure 3).
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4.1. Cancer-Associated Fibroblast

Cancer-associated fibroblast (CAF) is one of the major components of the tumor microenvironment
and act as an important factor in tumor progression and metastasis [86–88]. TGF-β activation in
the tumor microenvironment promotes differentiation of mesenchymal stem cells (MSCs) to CAFs,
activating phosphorylation of signal transducer and activator of transcription 3 (STAT3) and nuclear
localization of p-STAT3 via Janus kinase (JAK)/STAT pathway [86]. Normal fibroblasts or endothelial
cells can also be converted to CAFs by stimulation of TGF-β superfamily ligands, such as nodal
or TGF-β2, to support tumor growth [89,90]. TGF-β ligands also directly activate CAFs; activated
CAFs produce chemokine CXCL12 and interact CXCR4+ CRC cells, or IL-11 to activate CRC cells
through GP130/STAT signaling to metastasize to distant organs [91–93]. CAFs secrete TGF-β ligand
from themselves to accelerate malignant phenotype of CRC in the hypoxic condition that normally
occurs in vivo within the tumor microenvironment [94,95].

4.2. Natural Killer Cell

Natural killer (NK) cells can be expanded ex vivo, activated and transferred to cancer patients to
effectively kill cancer cells. However, highly immunosuppressive tumor microenvironment caused,
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in part, by excessive TGF-β signaling, may limit the activity of NK cells. Exposure to TGF-β ligand
decreases the ability of activated NK cells to kill cancer cells ex vivo, while inhibition of TGF-β signaling
in the tumor microenvironment preserves the function of highly activated, in vitro expanded NK cells
in CRC in vivo [96].

4.3. TANs

Peripheral neutrophil-to-lymphocyte ratio (NLR) in patients with CRC predicts the prognosis
after treatment [97–100]. Although higher neutrophil level could be just bystander in patients
with poor prognosis, neutrophils may contribute directly to the tumor progression. In the tumor
microenvironment of SMAD4-deficient CRC, TANs are recruited via the chemokine CXCL1/8-CXCR2
axis [11]. Tumor microenvironment contains at least two types of neutrophils: N1 with an
anti-tumoral phenotype and N2 with a protumoral phenotype [101–103]. TGF-β signaling in the
tumor microenvironment regulates phenotypical changes in neutrophils to N2 protumoral ones,
while TGF-β blockade with a small molecule inhibitor results in the recruitment and activation of N1
antitumoral TANs [101].

4.4. TAMs

TAMs in the tumor microenvironment were known to release pro-inflammatory cytokines there
to form inflamed environment, which engages in bidirectional interaction between cancer cells and
host immune cells [104]. SMAD4 deletion in CRC cells decreased the number of S100A8+ monocytes
or CD68+ TAMs in the tumor microenvironment; this is associated with unfavorable prognoses in CRC
patients [105,106]. Recruited TAM in the CRC microenvironment produces TGF-β ligand to promote
proliferation and invasion via EMT or VEGF [107,108]. In compound mutant mice that have mutations
in Apc and Tgfbr2 in the intestinal epithelial cells, TAM infiltrates into the invasive tumors express
membrane-type1-matrix metalloproteinase (MMP), causing MMP2 activation [46]. Although TAMs
can be one of the sources of TGF-β ligand expression, the effects of TGF-β signaling on TAMs in CRC
is not fully understood [108].

4.5. T Lymphocyte

As NLR can predict CRC patients’ prognosis, low levels of T cell infiltration or low activity of
type 1 T-helper cells (TH1) can also predict poor outcome of CRC patients [109]. Infiltrating T cells are
activated through both signals from major histocompatibility complex (MHC)-presented immunogenic
peptide antigens to the T cell receptor (TCR) and signals from CD80/86 on the antigen-presenting
cells (APC) to T cell surface receptor CD28. However, once activated, T cell expressed co-inhibitory
receptors, such as cytotoxic T lymphocyte antigen 4 (CTLA4) and programmed cell death 1 (PD1),
and become exhausted T cell [110]. Abundant TGF-β in the tumor microenvironment promotes T cell
exclusion and prevents them to acquire TH1-effector phenotype [95]. Inhibition of TGF-β using a small
molecule inhibitor, galunisertib, unleashed a potent and enduring cytotoxic T cell response against
CRC cells and rendered tumors susceptible to anti-PD-L1-PD-1 therapy.

Regulatory T cells (T-regs) are a subpopulation of T cells that modulate immune system and
self-antigen tolerance. T-regs express biomarkers such as CD4, forkhead box P3 (FOXP3), and CD25,
and differentiates from naïve CD4+ T cells by TGF-β stimulation [111]. In the tumor microenvironment,
T-regs play a critical role in suppressing tumor immunity and promoting cancer progression [112].
Therefore, enriched TGF-β in the tumor microenvironment of CRC promotes phenotypical changes
of T cells to T-regs and tumor progression [113]. A meta-analysis comparing T-reg infiltration and
patients’ prognosis reported that high FOXP3+ T-reg density was associated with poor overall and
disease-free survival in patients with all types of cancer [114]. However, the prognostic role of T-reg
infiltration is tumor-dependent, and, among CRC patients, a higher number of tumor-infiltrating
FOXP3+ T-regs predicts favorable outcome of CRC patients [114,115].
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5. Discussion

CRC is the second to third most common cause of cancer-related deaths worldwide [116,117].
Recent developments in surgical technology (e.g., laparoscopic or robotic surgery) and novel therapeutic
compounds (small molecule inhibitors and molecular targeted antibodies) are promising, and the
mortality rate of CRC is gradually decreasing in some western countries [116,117]. However, once
metastasized, treatment strategies can be limited, and, if unresectable, outcomes in CRC patients are
unfavorable. TGF-β signaling may contribute to this unfavorable outcome in CMS4 and metastasized
CMS1 subpopulations. Therefore, comprehensive understanding of TGF-β signaling in both tumor
cells and the tumor microenvironment is mandatory for the construction of novel therapeutic strategies.

As discussed above, the disruption of TGF-β signaling in CRC cells generally promotes tumor
formation in the early stage, while its activation may promote cancer invasion and metastasis. Moreover,
its activation in the tumor microenvironment generally suppresses tumor immunity and supports cancer
cell survival. The bidirectional function of TGF-β signaling within cancer cells and multi-directional
functions between cancer cells and their microenvironment make effective drug discovery for CRC
treatment difficult. This is because simple blockade of TGF-β signaling can activate tumor immunity
in the tumor microenvironment but may alter cancer cell phenotypes to more aggressive ones.
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5-FU 5-fluorouracil
APC Adenomatous Polyposis Coli
APC antigen-presenting cell
BMP bone morphogenetic protein
BMPR2 BMP receptor type 2
CAF cancer-associated fibroblast
CCL C-C motif chemokine ligand
CDC cell-division cycle
CMS consensus molecular subtype
Co-SMAD common-mediator SMAD
CRC colorectal cancer
CTLA4 cytotoxic T lymphocyte antigen 4
CXCL C-X-C motif chemokine ligand
dMMR mismatch repair deficiency
EMT epithelial to mesenchymal transition
FOXP3 forkhead box P3
GDF15 growth differentiation factor-15
GEMM genetically-engineered mouse model
IL interleukin
INFγ interferon-γ
I-SMAD inhibitory SMAD
JAK Janus kinase
LOH loss of heterozygosity
MAPK mitogen-activated protein kinase
MDSC myeloid-derived suppressor cells
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MHC major histocompatibility complex
MLH MutL homolog
MMP matrix metalloproteinase
MSC mesenchymal stem cell
MSH MutS homolog
MSI microsatellite instability
MSI-H high level of MSI
PCR polymerase chain reaction
PD1 programmed cell death 1
PI3K phosphoinositide 3-kinase
PIK3CA PI3K catalytic subunit-α
PMS Postmeiotic segregation increased
R-SMAD receptor-regulated SMAD
ROCK Rho-associated protein kinase
SMAD Caenorhabditis elegans SMA and Drosophila MAD
STAT signal transducer and activator of transcription
TAM tumor-associated macrophages
TAN tumor-associated neutrophils
TCR T-cell receptor
TGFβ Transforming growth factor-beta
TGFBR2 TGFβ receptor type 2
TH1 type 1 T-helper cell
TNFα tumor necrosis factor-α
T-reg regulatory T-cell
VEGF vascular endothelial growth factor
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