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ABSTRACT: The total synthesis of (–)-sigillin A, a highly chlorinated and oxygenated octahydroisocoumarin, is described herein. 
A hexahydroisocoumarin skeleton was constructed from (R)-4-(trichloromethyl)oxetan-2-one in seven steps. Its unique manganese 
oxidation provided an enone as the key intermediate of sigillin A. Stereoselective installation of two hydroxy groups and formation 
of gem-dichloroalkene from the corresponding ketone led to the total synthesis of (–)-sigillin A in a total of 16 steps.   

Halogenated compounds are often used in the pharmaceutical 
and agricultural industries.1 Approximately 40% of the drugs 
that are a part of the market or used in clinical trials are halo-
genated compounds; this is because incorporation of halogen 
atoms into drug candidates improves the metabolic stability, the 
lipophilicity, and the drug target affinity.2 Recently the number 
of reports on halogenated natural products has been increased 
owing to the development of isolation and identification tech-
nologies.3, 4 Thus, efficient syntheses of newly isolated halogen-
ated products would be attractive for the development of vari-
ous areas of chemistry such as drug discovery.  

Sigillin A (1) and its congeners 2–9 are polychlorinated oc-
tahydroisocoumarins that have been isolated previously from 
the snow flea Ceratophysella sigillata (Collembola) in 2015 by 
Schulz’s group (Figure 1).5 The structure and the absolute con-
figuration of 1 was revealed by X-ray crystallographic analysis. 
Sigillins have characteristic structural features in these rather 
compact skeletons: 1 possesses five chlorine atoms and three 
hydroxy groups in four consecutive stereocenters decorated in 
a trans-fused octahydroisocoumarin structure. This molecule 
has showed high repellent activity in a bioassay against preda-
tory ant Myrmica rubra and some cell toxicity. We have been 
fascinated by these structural features and biological activities, 
which has led us to investigate the total synthesis of this mole-
cule. 

Total synthesis of 1 and related natural products have not 
been accomplished to date. Schulz’s group reported the synthe-
sis of desoxysigillin A, which lacks hydroxy groups at the C-5 
and C-6 positions (Scheme 1).5, 6 They found that the installa-
tion of a gem-dichloroalkene moiety, one of the unique func-
tional groups of 1, is quite challenging and gives the desired 
compound 11 with only 2% yield. Thus, the major challenge in 
the synthesis of this natural product is the introduction of these 
hydroxy groups and gem-dichloroalkene group. 
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Figure 1. Structure of Sigillins 1–9. 

Herein, we report the first asymmetric total synthesis of 
sigillin A. Our synthetic plan is depicted in Scheme 2. We en-
visioned that the synthesis of sigillin A could be accomplished 
by dichloromethylenation of the corresponding ketone 12, 
which would be prepared using enone 13 via a boron conjugate 
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addition. Enone 13 would be sourced from hexahydroisocou-
marin 14 by performing several oxidations. The carbon frame-
work of sigillin 14 was expected to be constructed from the β-
keto-δ-valerolactone 15 via double allylations and ring-closing 
metathesis. Furthermore, 15 could be synthesized by Claisen 
condensation of the known optically active β-lactone 167 with 
tert-butyl propionate, followed by lactonization. 

 
Scheme 1. Synthesis of desoxysigillin A by Schulz6 
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Scheme 2. Our synthetic plan 
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We initiated the synthesis of hexahydroisocoumarin 21 with 
the known enantiopure β-lactone 16 (Scheme 3). Claisen con-
densation of β-lactone 16 with tert-butyl propionate produced 
5-hydroxy-3-oxoester 17 at a yield of 82%, which was sub-
jected to cyclization under acidic conditions to afford the β-
keto-δ-valerolactone 15 (fragment of sigillin A on the left). 
Next, we performed the electrophilic allylation of keto-lactone 
15. Tsuji-Trost allylation8a of 15 using allyl acetate produced 
the desired compound 19 in 70% yield albeit with low diastere-
oselectivity (dr = 60:40). Even the use of chiral ligands, such as 
PHOX8b and the Trost ligand8c could not improve the diastere-
oselectivity. We turned our attention to the intramolecular var-
iant of this reaction, referred to in Mulzer’s protocol,9 to im-
prove the diastereoselectivity. The allyl carbonate 18 could be 
prepared from 15 using allyl chloroformate in an almost quan-
titative yield. As expected, allylation of 18 catalyzed by 3 
mol % of Pd2dba3·CHCl3 with 15 mol % of PPh3 as a ligand 
proceeded even at −78 °C to obtain 19 and showed good dia-
stereoselectivity (dr = 85:15) and high yield (90%).10 After 
screening several phosphine ligands, (2-furyl)3P was found to 
be suitable (dr = 94:6). Furthermore, the amount of catalyst 
loading could be reduced to 1 mol % of the palladium source 
without any loss in yield and diastereoselectivity (dr = 94:6). 
Nucleophilic allylation of 19 (dr = 94:6) with allylzinc bro-
mide11 led to the production of alcohol 20 with a 95% yield that 
exhibited high diastereoselectivity (dr = 94:6). The crude was 
directly purified by recrystallization to produce 20 in 78% yield 
as a single stereoisomer, whose structure was confirmed by X-
ray crystallography. Then, 20 was subject to ring-closing me-
tathesis and silyl protection to achieve the synthesis of com-
pound 21 on a >5 gram scale. Thus, we successfully constructed 
a carbon framework of sigillin A from the known (R)-4-tri-
chloromethyl-2-oxetanone in 7 steps. 

 
 
 
 

 
Scheme 3. Construction of the Carbon Skeleton of Sigillin A 
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Scheme 4. Oxidative Stage toward the Synthesis of Sigillin Aa 
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aORTEP view of compounds 23 and 1 with thermal ellipsoids drawn at the 80% probability level. 
To increase the oxidation level toward sigillin A appropri-

ately, several oxidation reactions were attempted. First, we ex-
amined the allylic oxidation of 21 to introduce an oxygen func-
tionality at C-6 position. The use of SeO2, Pd(OAc)2/BQ and 
CrO3 resulted in the formation of complex mixtures. After tre-
mendous effort of oxidations, we found that Mn(OAc)3-cata-
lyzed allylic oxidation12a of 21 proceeded with unexpected regi-
oselectivity to afford enone 22 in high yield (Scheme 4). We 
assumed that this regioselectivity arose from the bulkiness of 
silyl group. Initially, the hydrogen atom at C-6 position might 
be abstracted by the peroxy radical. After the generated allyl 
radical was delocalized, oxidation would occur at the less hin-
dered position to produce enone 22.12b Then, enone 22 was em-
ployed in the installation of a hydroxy group at the C-9 position. 
In situ Rubottom oxidation13 of triethylsiloxy diene using 
DMDO led to successful installation of a hydroxy group with 
the desired configuration to afford diol 23 as a single diastere-
omer.14 The unpredicted diol 23 was obtained as a result of the 
loss of TMS protecting group of the tertiary hydroxy group. The 
structure of 23 was confirmed by X-ray crystallographic analy-
sis. We speculated that TMS group might translocate to the sec-
ondary hydroxy group and then be removed under aqueous 
basic conditions. Protection of diol 23 with dichlorodial-
kylsilane led to the production of the bridged silyl protected 
compound 24. For installation of a hydroxy group at the C-6 
position, copper-promoted conjugate addition15 of a boron pina-
col ester to enone 24 gave the desired product 25 as a single 
diastereomer. Boron would attack enone 24 to avoid the steric 
hindrance of the bulky diisopropylsilyl group. As mentioned in 
the previous report,5,6 transformation of carbonyl group into di-
chloroalkene proved to be problematic for us. Several methods 
for the formation of dichloroalkene from ketone are reported.16 
The most reliable methods using Wittig-type reactions with spe-

cies such as the CCl4/phosphine system17 did not lead to a reac-
tion with 25, and the reactions were complicated in more forcing 
conditions such as refluxing or under microwave-assisted con-
ditions. β-Elimination-based reactions18 have also been investi-
gated. However, the formation of trichloromethyl carbinol using 
25 with LiCCl3 has remained unsuccessful. To our delight, the 
transformation was achieved using Wittig-Horner reactant19 
(EtO2)P(O)CCl2Li to produce dichloroalkene 26 in 40% yield. 
The key to success was that the corresponding carbanion was 
more nucleophilic than the Wittig-type phosphonium ylide20 
and less reactive than carbanions such as LiCCl3, which pre-
vented side reactions. Oxidative cleavage of the C–B bond fol-
lowed by acetylation afforded 27 in 78% yield over 2 steps. Re-
moval of the silyl group by Hf·pyridine produced sigillin A (1) 
in a total of 16 steps from (R)-4-trichloromethyl-2-oxetanone. 

In summary, we accomplished the first asymmetric total syn-
thesis of (−)-sigillin A in 16 steps by using enantiomerically 
pure β-lactone 16. The keys to the success of the synthesis were 
1) an unexpected manganese allylic oxidation to form enone 22; 
2) stereoselective installation of two hydroxy groups via Ru-
bottom oxidation and borylation/oxidation using enone 22; 3) 
formation of gem-dichloroalkene 26 by the Wittig-Horner reac-
tion. These late-stage oxidation strategies proved to be effective 
in the synthesis of sigillin A. The syntheses and biological eval-
uation of related analogues of sigillin A are currently under way. 
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Crystallographic information for 20 (CIF) 
Crystallographic information for 23 (CIF) 
Crystallographic information for 1 (CIF) 
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